
Chapter 2
Background on Nonlinear Systems,
Control, and Optimization

This chapter provides a brief review of several concepts that are used throughout
this book. The first section presents the notation. In the second section, stability of
nonlinear systems is discussed followed by a brief overview of stabilization (control)
of nonlinear systems. For a more detailed and complete overview of stability and
control of nonlinear systems, the reader is referred to, for example, the classical
textbooks [1, 2]. In the last section, a review of nonlinear and dynamic optimization
concepts is presented.

2.1 Notation

The set of real numbers is denoted by R, while the set of integers is denoted by
I. The symbol R≥0 (I≥0) is used to denote positive reals (integers), and R

n is an
n-dimensional real (Euclidean) space. The variable t where t ∈ R will typically
be reserved for time and thus, the notation x(t) ∈ R

n represents a time-dependent
vector. The symbol | · | denotes the Euclidean norm of a vector, i.e., |x | = √

xT x
where x ∈ R

n and xT denotes the transpose of x , and | · |2Q denotes the square of
a weighted Euclidean norm of a vector, i.e., |x |2Q = xT Qx where Q is a weighting
positive definitematrix. A square diagonalmatrixwith diagonal elements equal to the
elements of a vector v and off-diagonal elements equal to zero is written as diag(v).
An infinite sequence is denoted by {tk}k≥0, while a finite sequence is written as {ti }Ni=0
which describes the sequence: t0, t1, …, tN−1, tN .

With regard to functions, a function, V : R
n → R≥0, is said to be positive

definite with respect to x̄ ∈ R
n if V (x) > 0 for all x ∈ R

n except for x̄ when
V (x̄) = 0. When a function is positive definite with respect to the origin (x̄ = 0),
the function may be referred to as positive definite, and the distinction that it is
positive definite with respect to the origin is omitted. A function, V : Rn → R≤0, is
negative definite (with respect to the origin) if −V is positive definite. A continuous
function α : [0, a) → R≥0 is said to be of class K if it is strictly increasing and
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α(0) = 0, and it is of class K∞ if it is of class K , a = ∞, and α(r) → ∞
as r → ∞, i.e., it is radially unbounded. A function β : [0, a) × R≥0 → R≥0

is said to be of class-K L if, for each fixed t , the mapping β(s, t) is of class-
K with respect to s and for each fixed s, the mapping β(s, t) is non-increasing
with respect to t and β(s, t) → 0 as t → ∞. The family of piecewise constant,
right-continuous functions with period Δ is denoted as S(Δ). With a slight abuse of
notation, we will say u(·) ∈ S(Δ) (or simply, u ∈ S(Δ)) when the vector-valued
function u : [0, NΔ) → R

m , u : t �→ u(t), may be described by

u(t) = ūi , for t ∈ [iΔ, (i + 1)Δ)

for i = 0, 1, . . . , N − 1 where Δ > 0 is the period and ūi ∈ R
m ; the appropriate

domain of the function u will be implied by the context. The floor and ceiling func-
tions, denoted as 	a
 and �a� for a scalar a ∈ R, respectively, are the largest integer
not greater than a and the smallest integer not less than a, respectively.

The set Ωr is a level set, also referred to as a level surface or sub-level set in other
contexts, of a scalar-valued positive definite function: Ωr := {x ∈ R

n : V (x) ≤ r}
where r > 0. A ball of radius R > 0 is given by BR := {x ∈ R

n : |x | ≤ R}. The
notation B \ A denotes the relative complement of the set A in B, i.e., B \ A = {x ∈
B : x /∈ A}. Finally, for algorithms, the notation j ← j + 1 is used to denote that at
the next time step or at the next iteration, the index j is incremented by one.

2.2 Stability of Nonlinear Systems

First, unforced nonlinear systems are considered to present some definitions and
stability properties. Specifically, consider the following class of time-invariant non-
linear systems, which is described by the following system of first-order nonlinear
ordinary differential equations (ODEs):

ẋ = f (x) (2.1)

where x ∈ D ⊂ R
n , f : D → R

n is a locally Lipschitz map from a domain D ⊂ R
n

toRn . The vector x describes the current state of the system. Thus, x is referred to as
the state vector, and the space Rn is referred to as state-space. The initial condition
of system of Eq.2.1 is given by x0 ∈ D, i.e., x(t0) = x0 where t0 ∈ R is the initial
time.

The solution of Eq.2.1 starting from x0 at time t0, is denoted as x(t, x0, t0) for
t ∈ [t0, t1] with x(t0, x0, t0) = x0 and where t1 > t0 is the maximal time that the
solution exists. The initial time may be taken to be zero with no loss of generality.
The solution of Eq.2.1 is also referred to as the state trajectory, and with slight abuse
of notation, the notation of the solution of Eq.2.1 at time t ≥ t0 may be abbreviated
to x(t). Two ofmost fundamental properties of the system of Eq.2.1 are the existence
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and uniqueness of a solution to the system of Eq.2.1 for a given initial condition. If
it can be shown that every solution lies in some compact set X ⊂ D for all t ≥ t0,
then a unique solution is guaranteed for all t ≥ t0, e.g., [2].

Owing to the fact that the vector field, f , of Eq.2.1 is nonlinear, the system may
possess multiple isolated equilibrium points. Without loss of generality, the origin
x = 0 is taken to be an equilibriumpoint of the system of Eq.2.1, i.e., f (0) = 0. If the
origin is not the equilibrium point of interest, deviation variables may be introduced
such that the origin of the shifted coordinate system is the equilibrium point. For
example, consider the system ẋ = f (x) with an equilibrium xs �= 0 ( f (xs) = 0).
Defining a shifted state z := x − xs , the system may be rewritten in the following
coordinates:

ż = f (z + xs) =: g(z) (2.2)

where the equilibrium point of the shifted system is z = 0 and g(0) = 0.
Within the context of the system of Eq.2.1, stability of solutions is considered. In

particular, the stability of the solution x ≡ 0 is considered using Lyapunov stability
concepts. The origin of Eq.2.1 is

• stable if, for each ε > 0, there is δ(ε) > 0 such that

|x(0)| < δ ⇒ |x(t)| < ε,∀ t ≥ 0 (2.3)

• unstable if it is not stable
• locally asymptotically stable if it is stable and δ may be chosen such that

|x(0)| < δ ⇒ lim
t→∞ |x(t)| = 0 (2.4)

• globally asymptotically stable if it is stable and |x(t)| → 0 as t → 0 for all
x(0) ∈ R

n

• locally exponentially stable if there exist positive real constants δ, c, and λ such
that all solutions of Eq.2.1 with |x(0)| ≤ δ satisfy the inequality:

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.5)

• globally exponentially stable if there exist positive real constants c, and λ such
that all solutions of Eq.2.1 satisfy the inequality:

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.6)

for all x(0) ∈ R
n .

Since the system of Eq.2.1 is time-invariant, the stability properties above are
uniform; that is, they do not depend on the initial time. The stability definitions may
be written in equivalent forms using so-called comparison functions.

The stability definitions are restated using comparison functions.
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Lemma 2.1 ([2, Lemma 4.5]) The equilibrium point x = 0 of Eq.2.1 is

• stable if and only if there exist α ∈ K and a positive constant c, such that

|x(t)| ≤ α(|x(0)|) (2.7)

for all t ≥ 0 and |x(0)| < c.
• locally asymptotically stable if and only if there exist β ∈ K L and a positive
constant c such that

|x(t)| ≤ β(|x(0)|, t) (2.8)

for all t ≥ 0 and |x(0)| < c.
• globally asymptotically stable if and only if there exist β ∈ K L such that

|x(t)| ≤ β(|x(0)|, t) (2.9)

for all t ≥ 0 and x(0) ∈ R
n.

When the origin is asymptotically stable, the state-space set of initial conditions
where the solution to Eq.2.1 will asymptotically converge to the origin is of interest.
This gives rise to the notion of the domain of attraction, which is the set D = {x0 ∈
R

n : limt→∞ x(t, t0, x0) = 0}.
Aweaker notion of stability than asymptotic and exponential stability of the origin

is boundedness of the solution. Specifically, the solutions of Eq.2.1 are

• bounded if there exists a positive constant c and for every a ∈ (0, c), there is
β(a) > 0 such that

|x(0)| ≤ a ⇒ |x(t)| ≤ β,∀ t ≥ 0 (2.10)

• ultimately bounded with ultimate bound b if there exist positive constants b and c
and for every a ∈ (0, c) there is T (a, b) ≥ 0 such that

|x(0)| ≤ a ⇒ |x(t)| ≤ b, ∀ t ≥ t0 + T (2.11)

For practical systems, global stability properties are often not relevant owing to
system constraints. Therefore, we extend the stability concepts to the case where
the state of Eq.2.1 is constrained to be in the set X̃ ⊂ R

n . We need the following
definition to state the stability properties of the constrained system of Eq.2.1.

Definition 2.1 A set M is said to be positively invariant set with respect to the
system of Eq.2.1 if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0

We will also use the term forward invariant set to refer to a positively invariant
set. Consider a set X ⊆ X̃ to be an positively invariant set for the system of Eq.2.1
that contains the origin in its interior. Then, the origin is, e.g., [3]:
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• stable in X if, for each ε > 0, there is δ(ε) > 0 such that Bδ ⊆ X and

|x(0)| < δ ⇒ |x(t)| < ε,∀ t ≥ 0 (2.12)

• locally attractive in X if there exists a η > 0 such that x ∈ Bη ⊆ X implies
|x(t)| → 0 as t → ∞

• attractive in X if |x(t)| → 0 as t → ∞ for all x(0) ∈ X

• locally asymptotically stable in X if it is stable and locally attractive
• asymptotically stable in X if it is stable and attractive
• locally exponentially stable in X if there exist η > 0, c > 0, and γ > 0 such that

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.13)

for all x(0) ∈ Bη ⊆ X

• exponentially stable with a region of attraction X if there exist c > 0, and γ > 0
such that

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.14)

for all x(0) ∈ X.

2.2.1 Lyapunov’s Direct Method

For nonlinear systems, stability of the equilibrium points may be characterized in the
sense of Lyapunov’s direct method. Lyapunov’s direct second method uses a scalar-
valued positive definite function whose time-derivative is negative (semi-)definite
along the state trajectory.

Theorem 2.1 (Lyapunov Stability Theorem, c.f. [2, Theorem 4.1]) Let x = 0 be
an equilibrium point for Eq.2.1 and D ⊂ R

n be a domain containing the origin
(x = 0). Let V : D → R be a continuously differentiable positive definite function
such that

V̇ (x) ≤ 0 (2.15)

for all x ∈ D. Then, x = 0 is stable. If

V̇ (x) < 0 (2.16)

for all x ∈ D \ {0}, then x = 0 is asymptotically stable.

A continuously differentiable positive definition function V as in Theorem 2.1 is
called a Lyapunov function. The time-derivative of V along the state trajectory x is
given by:

V̇ (x) = ∂V (x)

∂x
ẋ = ∂V (x)

∂x
f (x). (2.17)
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Theorem 2.1 is a sufficient condition for stability and asymptotic stability of
the origin. Various converse Lyapunov theorems show that the conditions of Theo-
rem 2.1 are also necessary (under a few additional mild conditions), see, for example,
[2, 4–8].

Lyapunov’s direct method has an intuitive interpretation by regarding the Lya-
punov function as an abstract notion of the total energy of a given system. Specif-
ically, consider any x on the level or Lyapunov surface V (x) = c, which is the
boundary of the set Ωc = {x ∈ R

n : V (x) ≤ c} ⊂ D. When V̇ (x) < 0 for all
x ∈ D, the state trajectory evolves from the boundary of Ωc to the interior of Ωc.
Over time, the level surface that state trajectory evolves along shrinks to the origin
owing to the fact that V̇ (x) < 0 for all x ∈ D. In other words, the energy of the
system decays with time when V̇ < 0. If, instead, V̇ (x) ≤ 0 for all x ∈ D, this
implies that the state trajectory evolves inside the set Ωc ⊂ D without coming out,
and the energy over time may only stay the same or decrease (it cannot increase).
This in turn means that a trajectory starting from the boundary of Ωc will stay in
the set Ωc for all time without coming out. In this case, the conclusion that may be
made is the origin is stable since the trajectory is contained inside any ball, Bε, by
requiring that the initial state x0 to lie inside a Lyapunov surface contained in that
ball.

2.2.2 LaSalle’s Invariance Principle

LaSalle’s invariance principle allows for making stronger conclusions about the
behavior of solution of Eq.2.1 when V̇ (x) ≤ 0 for all x ∈ D.

LaSalle’s invariance principle states that any state starting in any compact forward
invariant subset of D will converge to the largest invariant set where V̇ (x) = 0.

Theorem 2.2 (LaSalle, c.f. [2, Theorem 4.4]) Let Ω ⊂ D be a compact set that
is positively invariant with respect to Eq.2.1. Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω . Let E := {x ∈ Ω : V̇ (x) = 0}
and M be the largest invariant set in E. Then every solution in Ω approaches M as
t → ∞.

A consequence of LaSalle’s invariance principle, one may show asymptotic sta-
bility of the origin when M = {0}, i.e., when M is the set containing the point x = 0.
This result is stated in the following corollary.

Corollary 2.1 (c.f. [2, Corollary 4.1]) Let V : D → R be a continuously differ-
entiable positive definite function on a domain D containing the origin x = 0,
which is an equilibrium point of Eq.2.1, such that V̇ (x) ≤ 0 for all x ∈ D. Let
S = {x ∈ D : V̇ (x) = 0} and suppose that no solution can stay identically in S,
other than the trivial solution x ≡ 0. Then, the origin is asymptotically stable.
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2.3 Stabilization of Nonlinear Systems

Consider, now, the class of forced nonlinear systems described by the following
system of nonlinear ordinary differential equations:

ẋ = f (x, u,w) (2.18)

where x ∈ D ⊆ R
n is the state, u ∈ U ⊂ R

m is the manipulated (control) input,
and w ∈ R

l is a disturbance. The set of admissible input values U is assumed to be
compact, and the disturbance vector is bounded in the set W := {w ∈ R

l : |w| ≤ θ}
where θ > 0 bounds the norm of the disturbance vector. Throughout this book, the
disturbances vector as in Eq.2.18 taken to be unknown and un-modeled forcing of
the system. Disturbance models, e.g., integrating disturbance models, may readily
be incorporated into the model of Eq.2.18 through augmenting the state vector.
However, a complete and thorough discussion of disturbance modeling is beyond the
scope of this book and is not considered further. The vector function f is assumed
to be locally Lipschitz on D × U × W. Without loss of generality, the origin of the
unforced nominal system is assumed to be the equilibrium point of the system of
Eq.2.18, i.e., f (0, 0, 0) = 0.

Regarding existence and uniqueness of solutions of the system of Eq.2.18, first
it is important to point out that the input and disturbance trajectories are often not
continuous functions of time. In the deterministic framework that we consider, the
input and disturbance trajectories require a degree of continuity, and the disturbance
may not rigorously be treated as noise. A standing assumption throughout the book
is that the disturbance trajectory poses enough continuity to ensure existence of
the solution of Eq.2.18 almost everywhere. In practice such assumption poses little
restrictions. For a more complete discussion of conditions that guarantee existence
and uniqueness of a solution the interested reader is referred to [9].

2.3.1 Control Lyapunov Functions

The concept of control Lyapunov functions is described, which is utilized in many
Lyapunov-based control design techniques. For simplicity of presentation, the case
of a system with a single input is presented. Nonetheless, this concept extends to
systems with multiple inputs. Thus, consider the following single-input system of
the form:

ẋ = f (x, u) (2.19)

where x ∈ R
n , u ∈ R, and f (0, 0) = 0. The control objective considered is to design

a feedback control law h : D → U that renders the origin of the closed-loop systems
given by:

ẋ = f (x, h(x)) (2.20)
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globally asymptotically stable.
One potential approach may be to pick a function V : Rn → R≥0 as a Lyapunov

function candidate, and find a control law that guarantees that the time-derivative of
the Lyapunov function candidate along the solutions of the closed-loop system of
Eq.2.20 satisfy:

∂V (x)

∂x
f (x, h(x)) ≤ −W (x) (2.21)

for all x ∈ R
n where W : D → R is a positive definite function. It may be possible

to find a stabilizing control law but Eq.2.21 may fail to be satisfied for all x ∈ R
n

because of a poor choice of functions V and W . Therefore, picking a control law
that satisfies Eq.2.21 is a difficult task in general. A system for which a good choice
of the functions V and W exist is said to possess a control Lyapunov function.

Definition 2.2 A control Lyapunov function (CLF) for the system of Eq.2.19 is a
smooth positive definite radially unbounded function V : Rn → R≥0 that satisfies:

inf
u∈R

{
∂V (x)

∂x
f (x, u)

}
< 0, ∀ x �= 0. (2.22)

Equation2.22 is necessary and sufficient for the existence of a control law satis-
fying Eq.2.21 [10]. Also, it may be shown that the existence of a CLF is equivalent
to global asymptotic stabilizability.

For control-affine systems of the form:

ẋ = f (x) + g(x)u, (2.23)

where f : Rn → R
n , g : Rn → R

n , and f (0) = 0. Using the Lie derivative notation:

L f V (x) := ∂V (x)

∂x
f (x),

LgV (x) := ∂V (x)

∂x
g(x),

the CLF condition of Eq.2.21 is given by:

L f V (x) + LgV (x)u ≤ −W (x) (2.24)

for all x ∈ R
n . Note that Eq.2.24 may be satisfied only if:

LgV (x) = 0 ⇒ L f V (x) < 0, ∀ x �= 0 (2.25)

If V is a CLF for the system of Eq.2.23, then one choice of stabilizing control
law is given by Sontag’s formula [11]:
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h(x) =

⎧⎪⎨
⎪⎩

− L f V (x) + √
(L f V (x))2 + (LgV (x))4

(LgV (x))2
LgV (x), LgV (x) �= 0

0, LgV (x) = 0
(2.26)

In this case, the positive definite function, W is given by:

W (x) =
√

(L f V (x))2 + (LgV (x))4 > 0, x �= 0 (2.27)

While the construction of CLFs is difficult for the general class of nonlinear sys-
tems of Eq.2.19, systematic methods exist for several important classes of nonlinear
systems that allow for the construction of CLFs.

2.3.2 Stabilization of Nonlinear Sampled-Data Systems

In the subsequent chapters, EMPC methods are considered. The Lyapunov-based
EMPC methods that are presented take advantage of an explicit stabilizing feedback
controller. The explicit controller satisfies the following assumption.

Assumption 2.1 There exists a feedback controller h(x) ∈ U with h(0) = 0 that
renders the origin of the closed-loop system of Eq.2.18 with u = h(x) and w ≡ 0
asymptotically stable for all x ∈ D0 where D0 is an open neighborhood of the origin.

There are several methods to design an explicit feedback control law, h : D → U,
that renders the origin of Eq.2.18 asymptotically stable. Specifically, methodologies
for (explicit) feedback control design for nonlinear systems include employing lin-
ear feedback control techniques, Lyapunov-based control techniques, and geometric
control methods, e.g., [12–16].

Applying converse theorems [2, 4], Assumption 2.1 implies that there exists a
continuously differentiable Lyapunov function, V : D → R

n , for the closed-loop
system of Eq.2.18 with u = h(x) ∈ U andw ≡ 0 such that the following inequalities
hold:

α1(|x |) ≤ V (x) ≤ α2(|x |), (2.28a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −α3(|x |), (2.28b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (2.28c)

for all x ∈ D where D is an open neighborhood of the origin and αi , i = 1, 2, 3, 4
are functions of class K . A level set of the Lyapunov function Ωρ , which defines
a subset of D (ideally the largest subset contained in D), is taken to be the stability
region of the closed-loop system under the controller h(x). Standard techniques
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exist for designing a stabilizing control law for various classes of continuous-time
nonlinear systems (see, for instance, [1, 2, 13, 15–17] as well as the references
contained therein).

While there are no generalmethods for constructing Lyapunov functions for broad
classes of nonlinear systems with constraints, there exists some general methods
for constructing Lyapunov functions for certain classes of systems, e.g., Zubov’s
method [18] and the sum of squares decomposition [19].Within the context of chem-
ical process control, quadratic Lyapunov functions have been widely used and have
been demonstrated to be effective for estimating the region of attraction of a given
equilibrium point of a system (see, for example, the numerous examples in [16] as
well as the examples of the subsequent chapters of this book).

The explicit controller poses a degree of robustness to disturbances/uncertainty in
the sense that when w �≡ 0, the controller will force the closed-loop state to a small
neighborhood of the origin if the bound on the disturbance, θ , is sufficiently small.
Moreover, owing to the fact that digital computers are often used in the implementa-
tion of controllers, we must also consider the closed-loop stability properties of the
controller h(x) applied in a sample-and-hold fashion. When the feedback controller
h(x) is applied in a sample-and-hold fashion, the resulting closed-loop system is a
nonlinear sampled-data system given by:

ẋ(t) = f (x(t), h(x(tk)),w(t)) (2.29)

for t ∈ [tk, tk+1), tk = kΔ, k = 0, 1, . . ., and Δ > 0 is the sampling period.
Regarding the disturbance in Eq.2.29, in many applications, it is sufficient to take
w to be constant over the sampling periods. This is essentially what is done when
considering a discrete-time model for a sampled-data system.

Applying standard results on sampled-data systems, e.g., [20–24], it can be shown
that when the bound on the disturbances and the sampling period are both sufficiently
small the origin is practically stable for all initial conditions inΩρ . More specifically,
the state trajectory of Eq.2.29 starting inΩρ will remain bounded inΩρ and converge
to a small compact set containing the origin where it will be maintained thereafter
when the bound on the disturbance and the sampling period are sufficiently small.
It is important to emphasize that asymptotic stability of the origin of Eq.2.29 is
typically not achieved unless additional conditions hold.

To achieve asymptotic stability of the origin of sampled-data system of Eq.2.29,
a stronger assumption is required. The following assumption and result are stated
generally in the sense that no restrictions are placed on the state and input.

Assumption 2.2 There exists a locally Lipschitz feedback controller u = h(x)
with h(0) = 0 such that the vector field of the closed-loop system f (x, h(x), 0) is
continuously differentiable on R

n . Furthermore, the origin of the nominal closed-
loop system of Eq.2.18 (w ≡ 0) under the controller h(x) implemented continuously
is locally exponentially stable and globally asymptotically stable.

The following theorem characterizes the type of stability achieved when the con-
troller h(x) is applied in a sample-and-hold fashion with a sufficiently small hold
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period. The result below extends to a more general setting where asynchronous sam-
pling is considered; see, [25] for this more general version of the following result.

Theorem 2.3 If Assumption 2.2 holds, then given R > 0, there exist Δ∗ > 0 and
M, σ > 0 such that for Δ ∈ (0,Δ∗) the nominal closed-loop sampled-data system
of Eq.2.29 with arbitrary initial condition x(0) = x0 ∈ BR satisfies the estimate:

|x(t)| ≤ M exp(−σ t)|x0| (2.30)

for all t ≥ 0.

Proof By virtue of Proposition 4.4 of [26], there exists a C1 positive definite and
radially unbounded function V : Rn → R≥0, constants μ, ε > 0 and a symmetric,
positive definite matrix P ∈ R

n×n for the nominal closed-loop system of Eq.2.18
under the controller h(x) implemented continuously such that

∂V (x)

∂x
f (x, h(x), 0) ≤ −μ|x |2, for all x ∈ R

n, (2.31)

V (x) = xT Px, for all x ∈ R
n with |x | ≤ ε. (2.32)

Let R > 0 and define ρ̂ := max{V (x) : x ∈ BR}. By virtue of Eq.2.32 and the
compactness of Ωρ̂ , there exist constants c1, c2 > 0 and c4 > 0 such that:

c1|x |2 ≤ V (x) ≤ c2|x |2, (2.33)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x | (2.34)

for all x ∈ Ωρ̂ . Since f and h are locally Lipschitz mappings with f (0, 0, 0) = 0
and h(0) = 0, there exist constants L , M > 0 such that:

| f (x, h(z), 0) − f (x, h(x), 0)| ≤ L|x − z|, (2.35)

| f (x, h(z), 0)| ≤ M |x | + M |z| (2.36)

for all x, z ∈ Ωρ̂ . Let Δ∗ > 0 be sufficiently small so that the following inequality
holds:

c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
< μ (2.37)

In order to prove of estimate of Eq.2.30, it suffices to show that for every initial
condition x(0) ∈ Ωρ̂ and for every integer k ≥ 0 it holds that:

∂V (x(t))

∂x
f (x(t), h(x(tk)), 0) ≤ −q

2
|x(t)|2, (2.38)
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for all t ∈ [tk, tk+1) where

q := μ − c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
> 0. (2.39)

Using Eqs. 2.33 and 2.38, local exponential stability can be established. The proof of
Eq.2.38 is given below for k = 0 and t ∈ [0, t1). For every other interval, the proof
is similar.

If x(0) = 0, thenEq.2.38 trivially holds (since x(t) = 0 for t ∈ [0, t1)). Therefore,
consider the case when x(0) �= 0. The proof is made by contradiction. Suppose that
there exists t ∈ [0, t1) with

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) > −q

2
|x(t)|2.

The case that x(t) is not defined for some t ∈ [0, t1) is also covered by this assump-
tion. Define

a := inf

{
t ∈ [0, t1) : ∂V (x(t))

∂x
f (x(t), h(x(0)), 0) > −q

2
|x(t)|2

}
.

A standard continuity argument in conjunction with the fact that

∂V (x(0))

∂x
f (x(0), h(x(0)), 0) ≤ −μ|x(0)|2 < −q

2
|x(0)|2

shows that a ∈ (0, t1) and that

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −q

2
|x(t)|2

for all t ∈ [0, a] with (∂V (x(a))/∂x) f (x(a), h(x(0)), 0) = − q
2 |x(a)|2. Moreover,

for all t ∈ [0, a] the inequality of Eq.2.38 implies that V (x(t)) ≤ V (x(0)) ≤ ρ̂.
Therefore, x(t) ∈ Ωρ̂ for all t ∈ [0, a]. Using inequalities Eqs. 2.31, 2.34, 2.35, we
obtain:

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −μ|x(t)|2 + c4L|x(t)||x(t) − x(0)| (2.40)

for all t ∈ [0, a]. Using Eq.2.36 and since a ≤ t1 ≤ Δ∗, a bound on the difference
between x(t) and x(0) is obtained:

|x(t) − x(0)| ≤ 2MΔ∗|x(0)| + M
∫ t

0
|x(τ ) − x(0)| dτ (2.41)
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for all t ∈ [0, a]. Applying the Gronwall-Bellman lemma to Eq.2.41, we obtain:

|x(t) − x(0)| ≤ 2MΔ∗ exp(MΔ∗)|x(0)| (2.42)

for all t ∈ [0, a]. Using Eq.2.42, the triangle inequality and the fact that

2MΔ∗ exp(MΔ∗) < 1

which is implied by Eq.2.37, we get for all t ∈ [0, a]:

|x(t) − x(0)| ≤ 2MΔ∗ exp(MΔ∗)
1 − 2MΔ∗ exp(MΔ∗)

|x(t)|. (2.43)

Thus, using Eqs. 2.40, 2.43 and the fact that

q := μ − c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
> 0

we get for all t ∈ [0, a]:
∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −q|x(t)|2. (2.44)

Consequently, we must have:

∂V (x(a))

∂x
f (x(a), h(x(0)), 0) ≤ −q|x(a)|2 ≤ −q

2
|x(a)|2. (2.45)

Since (∂V (x(a))/∂x) f (x(a), h(x(0)), 0) = − q
2 |x(a)|2, we get x(a) = 0. However,

this contradicts Eq.2.42 (since Eq.2.42 in conjunction with the fact that

2MΔ∗ exp(MΔ∗) < 1

implies that |x(a) − x(0)| < |x(0)|), which completes the proof.

Explicit feedback controllers that may be designed to satisfy Assumption 2.2
include, for example, feedback linearizing controller and some Lyapunov-based con-
trollers [2, 15]. Owing to the input constraints, it may not be possible to design a
controller h(x) that achieves global asymptotic stability of the origin. In this case,
we must modify the assumption which is considered in the following corollary.

Corollary 2.2 Suppose there exists a locally Lipschitz feedback controller u = h(x)
with h(0) = 0 for the system of Eq.2.18 that renders the origin of the nominal
closed-loop system under continuous implementation of the controller h(x) locally
exponentially stable. More specifically, there exist constants ρ > 0, ci > 0, i =
1, 2, 3, 4 and a continuously differentiable Lyapunov function V : Rn → R+ such
that the following inequalities hold:
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c1 |x |2 ≤ V (x) ≤ c2 |x |2 , (2.46a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −c3 |x |2 , (2.46b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4 |x | , (2.46c)

for all x ∈ Ωρ . There exists Δ∗ > 0 and M, σ > 0 such that for all Δ ∈ (0,Δ∗)
the estimate of Eq.2.30 holds for the nominal closed-loop sampled-data system of
Eq.2.29 with arbitrary initial condition x(0) ∈ Ωρ .

Proof The proof follows along the same lines of Theorem 2.3 and shows that V is
a Lyapunov function for the closed-loop sampled-data system and takes advantage
of the compactness of the set Ωρ to establish an exponentially decaying estimate for
the state trajectory of the closed-loop sample-data system for any initial condition
x(0) ∈ Ωρ .

Remark 2.1 Sufficient conditions such that there exists a function V satisfying the
inequalities of Eq. 2.46 are when x = 0 is a locally exponentially stable (LES)
equilibrium point for the closed-loop system ẋ = f (x, h(x), 0) and the mapping
f (x, h(x), 0) is continuously differentiable on Rn . Indeed, by Lemma 8.1 in [2] the
region of attraction A of x = 0 is an open, connected, invariant set. Let r > 0 be such
that the set S = {x ∈ R

n : |x | ≤ r} is contained in the region of attraction A. Then
LES and compactness of S imply that an exponential bound holds for the solutions of
the closed-loop system ẋ = f (x, h(x), 0)with initial conditions x(0) ∈ S. It follows
from Theorem 4.14 in [2] that there exists a Lyapunov function V for the closed-loop
system ẋ = f (x, h(x), 0) that satisfies inequalities of Eq. 2.46 for certain constants
c1, c2, c3, c4 > 0 and for all x ∈ int(S) (int(S) denotes the interior of S). Let R < r
be an arbitrary positive number and define V (x) = V (Proj(x)) for all x ∈ R

n , where
Proj(x) denotes the projection on the closed ball of radius R centered at x = 0. Then
all inequalities of Eq. 2.46 hold with arbitrary ρ < c1R2.

2.3.3 Tracking Model Predictive Control

Designing an explicit feedback control such as one that satisfies Assumption 2.1 to
stabilize the origin of the system of Eq.2.18 has many advantages such as it may be
shown to possess robustness to disturbances and sample-and-hold or discrete-time
implementation. However, the most significant drawback of such an approach to
controller design is that performance considerations and system constraints are not
explicitly handled in a general framework. For example, consider that the system of
Eq.2.18 is subject to the following constraint:

(x(t), u(t)) ∈ Z (2.47)
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for all t ≥ 0 where Z is assumed to be compact, which accounts, for example, state,
input, and other process constraints. One such mathematical framework that allows
for one to explicitly account for these considerations is optimization. This is the
framework employed in model predictive control.

Tracking model predictive control (MPC), also referred to as receding horizon
control, is an on-line optimization-based control technique that optimizes a perfor-
mance index or cost function over a prediction horizon by taking advantage of a
dynamic nominal process model, i.e., Eq. 2.18 with w ≡ 0, while accounting for
system/process constraints, e.g., [27–32]. The main objective of tracking MPC is
to steer the system to and maintain operation thereafter at the economically opti-
mal steady-state or the economically optimal trajectory computed in an upper-layer
optimization problem (real-time optimization). To manage the trade-off between
the speed of response of the closed-loop system and the amount of control energy
required to generate the response, MPC is typically formulated with a quadratic
objective function which penalizes the deviations of the state and inputs from their
corresponding optimal steady-state or reference values over the prediction horizon.
Within this book, the term tracking MPC will refer to both regulation MPC or MPC
that forces a system to steady-state and tracking MPC or MPC that forces a system
track a reference trajectory.

The trackingMPC problem is given by the following dynamic optimization prob-
lem:

min
u∈S(Δ)

∫ tk+N

tk

lT (x̃(τ ), u(τ )) dτ (2.48a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (2.48b)

x̃(tk) = x(tk) (2.48c)

(x(t), u(t)) ∈ Z, ∀ t ∈ [tk, tk+N ) (2.48d)

where
lT (x, u) = |x |2Qc

+ |u|2Rc
(2.49)

and Qc is a positive semidefinite matrix and Rc is a positive definite matrix that
manage the trade-off between the speed of response and the cost of control action.
Given that the cost function is positive definite with respect to the origin, which is
the steady-state of the system of Eq.2.18, the global minimum of the cost function
occurs at the optimal steady-state. The stage cost function of Eq.2.49 may be readily
extended to be positive definite with respect to a reference trajectory. The state
trajectory x̃ is the predicted evolution of the state using the nominal dynamic model
(w ≡ 0) of Eq.2.18 under the piecewise constant input profile computed by theMPC.
The initial condition on the dynamic model are given in Eq.2.48c which are obtained
at each sampling period through a measurement. The constraints of Eq.2.48d are the
system/process constraints, e.g., input and state constraints.

MPC is the resulting control law when the problem of Eq.2.48 computes the
control action applied to the system in a receding horizon fashion. Specifically,
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at the sampling time tk , the problem of Eq.2.48 is initialized with a state feedback
measurement and the problem is solved. The optimal input trajectory, i.e., the optimal
solution, is denoted by u∗(t |tk) and defined for t ∈ [tk, tk+N ). A brief overview of
methods for solving such dynamic optimization problems of the form of Eq.2.48 is
given in Sect. 2.4.4. The (constant) input trajectory u∗(t |tk) defined for t ∈ [tk, tk+1),
whichmay be denoted by u∗(tk |tk), is send to the control actuators to be implemented
on the system for t ∈ [tk, tk+1). At tk+1, the problem is re-initialized with an updated
measurement and the problem of Eq.2.48 is re-solved by shifting the horizon one
sampling period into the future. Thus, the resulting input trajectory under MPC is
given by:

u(t) = u∗(tk |tk), ∀ t ∈ [tk, tk+1). (2.50)

When the prediction horizon N is finite, it is well-known that the MPC scheme
of Eq.2.48 may not be stabilizing, e.g., [29]. To handle guaranteed stabilization of
the closed-loop system when N is finite, various constraints and variations to the
cost function may be made to guarantee stability such as using a sufficiently long
prediction horizon, incorporating terminal constraints and/or a terminal cost in the
optimization problem, or the use of contractive constraints (see, for example, [29],
and the references therein).

2.3.4 Tracking Lyapunov-Based MPC

To address stability of the closed-loop system with tracking model predictive control
(MPC) and recursive feasibility, one tracking MPC technique unites the stability
and robustness properties of the Lyapunov-based controller, i.e., a control law that
satisfies Assumption 2.1, with the optimal control properties of model predictive
control (MPC) [21, 33–35]. The resulting tracking MPC is called Lyapunov-based
MPC (LMPC) and is characterized by the following optimization problem:

min
u∈S(Δ)

∫ tk+N

tk

lT (x̃(τ ), u(τ )) dτ (2.51a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (2.51b)

x̃(tk) = x(tk) (2.51c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (2.51d)

∂V (x(tk))

∂x
f (x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) (2.51e)

where x̃ is the predicted state trajectory over the prediction horizonwith the computed
input trajectory by the LMPC, and N > 0 is the number of sampling periods in the
finite prediction horizon. The constraint of Eq. 2.51d is the input constraint, while
the constraint of Eq.2.51e is a contractive constraint for guaranteed stability that is
explained further below.



2.3 Stabilization of Nonlinear Systems 37

Fig. 2.1 A state-space
illustration of a closed-loop
state trajectory under LMPC

Ωρ

Ωρs

Ωρmin

xs

x(t0)

Specifically, the constraint of Eq.2.51e ensures that the LMPC computes a control
action for the first sampling period that decreases the Lyapunov function by at least
the rate achieved by the Lyapunov-based controller at tk . The Lyapunov-based con-
straint of Eq.2.51e is a contractive constraint and ensures that the Lyapunov function
decays until the closed-loop state converges to a small neighborhood of steady-state.
Moreover, from the Lyapunov-based constraint, the LMPC inherits the closed-loop
stability and robustness properties and the stability regionΩρ of the Lyapunov-based
controller in the sense that for any initial condition x(0) ∈ Ωρ , the closed-loop sys-
tem state is guaranteed to converge to a small neighborhood of the origin and the
optimization problem of Eq.2.51 is guaranteed to be feasible.

Figure2.1 gives an illustration of the closed-loop state trajectory under LMPC.
The state trajectory starts in Ωρ \ Ωρs whereby in this region the Lyapunov function
is guaranteed to decay with time. Once the state trajectory converges to Ωρs , the
Lyapunov function is no longer guaranteed to decay owing to the sampling-and-hold
implementation of LMPC and the effect of persistent disturbances. However, the
state will be maintained in a small forward invariant set Ωρmin ⊃ Ωρs when the the
sampling period and the bound on the disturbance are sufficiently small.

2.4 Brief Review of Nonlinear and Dynamic Optimization

Although this book does not directly deal with developing nonlinear and dynamic
optimization techniques, a brief review of nonlinear optimization (also commonly
referred to as nonlinear programming) and dynamic optimization/optimal control
concepts is provided in this section. The presentation is meant to demonstrate to the
reader how onemay approach obtaining a solution to dynamic optimization problems
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which is required to understand the concepts presented in the subsequent chapters.
This section includes definitions, optimality conditions, nonlinear optimization solu-
tion techniques, and practical dynamic optimization strategies. For a comprehensive
and detailed presentation on optimization methods, the reader is referred to one of
the many textbooks on the topic, e.g., [36–40]. For more details relating to dynamic
optimization or optimal control, see, for instance, [37, 41–43].

2.4.1 Notation

For a vector x ∈ R
n , x ≥ 0 means component-wise inequality, i.e., xi ≥ 0, i =

1, . . . , n. The transpose of a vector or matrix is denoted (·)T , e.g., the transpose
of x ∈ R

n is denoted xT . The gradient (n-dimensional vector) of a differentiable
scalar-valued function f : Rn → R evaluated at x ∈ R

n is denoted as

∇ f (x) :=
[
∂ f (x)

∂x1

∂ f (x)

∂x2
· · · ∂ f (x)

∂xn

]T

.

When a scalar-valued differentiable function has multiple arguments, for example,
f : Rnx × R

ny → R, f : (x, y) �→ f (x, y), the notation ∇x f (x, y) may be used
to denote the gradient of f with respect to x . For a vector-valued differentiable
function g : Rn → R

m , the gradient matrix is an n ×m matrix whose i th column is
the gradient vector ∇gi (x) (i = 1, . . . ,m):

∇g(x) := [∇g1(x) · · · ∇gm(x)
]
,

while the Jacobian of g is

∂g(x)

∂x
:=

⎡
⎢⎢⎢⎢⎣

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

. . .
...

∂gm(x)

∂x1
· · · ∂gm(x)

∂xn

⎤
⎥⎥⎥⎥⎦ .

With the definitions above, the gradient matrix is the transpose of the Jacobian:

∇g(x)T = ∂g(x)

∂x
.

TheHessianmatrix of a scalar-valued differentiable function f : Rn → R is denoted
as
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∇xx f (x) =

⎡
⎢⎢⎢⎢⎢⎣

∂2 f (x)

∂x21
· · · ∂2 f (x)

∂x1∂xn
...

. . .
...

∂2 f (x)

∂xn∂x1
· · · ∂2 f (x)

∂x2n

⎤
⎥⎥⎥⎥⎥⎦

.

2.4.2 Definitions and Optimality Conditions

Consider the following nonlinear constrained optimization problem:

min
x∈Rn

f (x)

s.t. g(x) ≤ 0
h(x) = 0

(2.52)

where x ∈ R
n is the decision variable or the unknown variable to be determined

that minimizes the objective function ( f : Rn → R) while satisfying the inequality
constraints (g : R

n → R
ng ) and the equality constraints (h : R

n → R
nh ). The

objective function is also referred to as the cost function or cost functional in the
context of dynamic optimization problems. Here and elsewhere in the book, the
usage of the notation “min” in Eq.2.52 is more aligned with that typically found in
the engineering literature, that is, it refers to the greatest lower bound or infimum
of f (x) over X. Nevertheless, in the application studies contained in this book, the
optimization problems are formulated in a manner that guarantee that they may be
numerically solved in the sense that f ∗ = inf x∈X f (x)whereX = {x ∈ R

n : g(x) ≤
0, h(x) = 0} is non-empty, f ∗ is finite, and there exists a vector x∗ ∈ X where the
minimum is attained. The issue of the existence of a minimizing vector will not be
treated in depth.

The functions f , g, and h are assumed to be continuously differentiable. A vector
x ∈ R

n is said to be a feasible point if g(x) ≤ 0 and h(x) = 0. The set of all feasible
points or the feasible set to the problem of Eq.2.52 is the setX ⊆ R

n . For the problem
of Eq.2.52 to be meaningful, the feasible set must be non-empty. Otherwise, the
problem of Eq.2.52 is said to be infeasible. Feasibility of the optimization problems
formulated in this book will be carefully examined which is a crucial property for
control purposes. A vector x∗ ∈ X is said to be a local minimum if there exists ε > 0
such that f (x∗) ≤ f (x) for all x ∈ X with |x − x∗| < ε. A vector x∗ ∈ X is said to
be a global minimum if f (x∗) ≤ f (x) for all x ∈ X. A local or global minimum is
called a strict minimum if the inequalities are strict for all x �= x∗. For a given local
or global minimum x∗ ∈ X, f (x∗) is called the local or global optimal objective
function value or optimal value.

In subsequent chapters, non-convex dynamic nonlinear optimization problems
will be considered. It is sufficient, for purposes of this book, to understand a non-
convex optimization problem as one possibly having multiple local minima. For
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non-convex problems, most general nonlinear optimization solvers are capable of
computing a local solution to the problem. Generally, no guarantee can be made that
the computed local solution is or is not a global solution without further analysis.
To ensure that a global solution is returned, one needs to employ more advanced
techniques that are typically more computationally expensive, (see, for example, [44,
45] on global optimization techniques). Owing to this consideration, local minima
will be of interest in this book. Also, in the subsequent chapters, the term optimal
solution may be used to refer to a local minimum of an optimization problem, and
the explicit distinction that the minimum is a local minimum may be omitted.

While minimization problems are treated here, maximization problems, e.g.,
maxx∈X f (x) may readily be converted into a minimization problem by minimiz-
ing the negative of the objective function, e.g., minx∈X − f (x). The optimal solution
of each optimization problem are the same, and the optimal objective function value
of the maximization problem is equal to the negative of the optimal value of the
minimization problem. Thus, there is no loss of generality by considering only min-
imization problems.

To present general necessary and sufficient optimality conditions for optimality,
some regularity conditions or constraint qualifications must be satisfied. First, the
active set is defined. For a feasible vector x ∈ X, the index set of active inequality
constraints is defined as A (x) := { j ∈ {1, . . . , ng} : g j (x) = 0}. For all j /∈
A (x) \ {1, . . . , ng}, the j th inequality constraint is said to be inactive at x , i.e.,
g j (x) < 0. Since the equality constraints are always active, the active set includes all
the active inequality constraints and all equality constraints. The linear independence
constraint qualification (LICQ) holds at x ∈ X if the gradients of all active constraints
are linearly independent at x , that is, the vectors ∇g j (x), j ∈ A (x) and ∇hi (x),
i = 1, . . . , nh are linearly independent.

The Lagrangian function of the problem of Eq.2.52 is given by

L (x, λ, ν) = f (x) + λT g(x) + νT h(x) (2.53)

where λ ∈ R
ng and ν ∈ R

nh are the Lagrange multipliers. Necessary and sufficient
optimality conditions have been derived for the problem of Eq.2.52. These condi-
tions are not only fundamental to the theory of optimization, but also, allow for the
development of computational algorithms that are capable of computing solutions to
the optimization problem of Eq.2.52. The Karush-Kuhn-Tucker (KKT) optimality
conditions [46, 47] are first-order necessary conditions for a (local) solution to the
problem of Eq.2.52.

Theorem 2.4 (KKT Conditions, e.g., [36, Proposition 3.3.1]) Let x∗ ∈ R
n be a

local minimum of the problem of Eq.2.52 and the LICQ holds at x∗. Then there exist
unique λ∗ ∈ R

ng and ν∗ ∈ R
nh such that:

∇xL (x∗, λ∗, ν∗) = 0 (2.54a)

g(x∗) ≤ 0 (2.54b)

h(x∗) = 0 (2.54c)



2.4 Brief Review of Nonlinear and Dynamic Optimization 41

λ∗ ≥ 0 (2.54d)

λ∗
i gi (x

∗) = 0, i = 1, . . . , nh (2.54e)

If in addition f , h, and g are twice continuously differentiable, then

yT∇xxL (x∗, λ∗, ν∗)y ≥ 0, (2.55)

for all y ∈ R
n such that

∇hi (x
∗)T y = 0,∀ i = 1, . . . , nh,

∇g j (x
∗)T y = 0,∀ j ∈ A (x∗).

(2.56)

As pointed out in Theorem 2.4, LICQ at a local minimum x∗ guarantees existence
of Lagrange multipliers. It can be shown that the multipliers are unique as well if
the KKT conditions are satisfied and the LICQ holds at x∗. Any triple (x∗, λ∗, ν∗)
satisfying the KKT conditions is said to be a KKT point. The KKT conditions mean:
the gradient of the Lagrangian with respect to the decision variable must vanish
at the KKT point, the primal problem, i.e., Eq. 2.52, must be feasible at a KKT
point, the dual problem (not discussed here) must be feasible at the KKT point,
and complementarity or complementary slackness, i.e., the condition of Eq.2.54e,
must hold at the KKT point. Since the KKT conditions are necessary conditions, not
all KKT points are local minimums. Often second-order necessary conditions are
included with the KKT conditions, which is the condition of Eq. 2.55. The second-
order necessary conditions mean that it is necessary for a local minimum that the
Hessian of the Lagrangian must be positive semidefinite in all feasible directions.
If the Hessian of the Lagrangian is shown to be positive definite for a KKT point
and strict complementarity or strict complementary slackness holds, i.e., λ∗ > 0 if
gi (x∗) = 0 and λ∗

i = 0 if gi (x∗) < 0, it can be concluded that the KKT point is
a local minimum. This is stated in the following second order sufficient optimality
conditions.

Theorem 2.5 (Second Order Optimality Conditions, e.g., [36, Proposition 3.3.2])
Let the triple (x∗, λ∗, ν∗) be a KKT point that also satisfies:

yT∇xxL (x∗, λ∗, ν∗)y > 0 (2.57)

for all y ∈ R
n such that

∇hi (x
∗)T y = 0, ∀ i = 1, . . . , nh, (2.58)

∇g j (x
∗)T y = 0, ∀ j ∈ A (x∗), (2.59)

λ j > 0, j ∈ A (x∗). (2.60)

Then x∗ is a strict local minimum of Eq.2.52.
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Numerous variants of the optimality conditions and constraint qualifications given
above exist (see, for example, [36]).

2.4.3 Nonlinear Optimization Solution Strategies

The KKT conditions form a set of nonlinear equations and many computation meth-
ods for solving for a local minimum of Eq.2.52 seek to find a solution to the KKT
conditions. However, the inequality constraints and the complementary slackness
condition, which poses a non-differentiability in the equations, must be handled care-
fully, and one cannot simply solve the KKT conditions directly in general. Owing
to the fact that these conditions form a set of nonlinear equations, the most widely
adapted method employed to solve the KKT conditions is Newton’s method. More
precisely, variants of Newton’s method are typically used. From a high level perspec-
tive, most nonlinear optimization solvers utilize the user-supplied input information
shown in Fig. 2.2 to compute a solution to an optimization problem. The input infor-
mation includes the functions and their corresponding derivatives. TheHessian of the
Lagrangian may also be supplied to the solver. However, in some algorithms such as
quasi-Newtonmethods, the Hessian is approximated in the algorithm. In this section,
a basic review of Newton’s method is given along with the basic concepts of two
widely employed solution techniques for solving nonlinear optimization problems.
The twomethods include sequential quadratic programming (SQP) and interior point
(IP) methods.

2.4.3.1 Newton’s Method

The core of most nonlinear optimization solution strategies relies on some variant
of Newton’s method to solve a set of nonlinear algebraic equations. The standard
Newton method is presented to facilitate the discussion of SQP and IP methods for

Nonlinear
Optimization Solver

min
x

f(x)

s.t. g(x) ≤ 0
h(x) = 0

Objective function: f

Constraints: g, h

Derivatives:
∇f , ∇g, ∇h

Hessian of
Lagrangrian: ∇xxL

Optimal solution: x∗

Optimal objective
function value: f(x∗)

Constraint values:
g(x∗), h(x∗)

Solver Statistics/
Information

Fig. 2.2 Typical inputs and outputs of a nonlinear optimization solver
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solving nonlinear optimization problems. However, it is important to emphasize that
key modifications are made to ensure computational efficiency, robustness, etc. To
review Newton’s method, consider the following nonlinear algebraic equation:

F(y) = 0 (2.61)

where F : Rny → R
ny is a vector-valued differentiable function.

Newton’s method is an iterative algorithm that is initialized with a starting guess
y0 ∈ R

ny . At each iteration, the following system of linear equations, which is a
linearized version of Eq.2.61 around the iterate yk ∈ R

ny , is solved:

∂F(yk)

∂y
dk = −F(yk) (2.62)

where k denotes the iteration number and dk ∈ R
ny is the unknown variable. At the

next iteration, i.e., the (k + 1)th iteration, the iterate is updated as follows:

yk+1 = yk + dk . (2.63)

From the update formula of Eq.2.63, the variable dk can be interpreted as a descent
direction of Newton’s method. One of the most advantageous properties of Newton’s
method is that it has a locally quadratic convergence rate meaning for an initial guess
y0 that is sufficiently close to the solution of Eq.2.61, Newton’smethodwill converge
at a quadratic rate.

To demonstrate applying Newton’s method to solving an optimization problem,
consider the following unconstrained problem:

min
x∈Rn

f (x) (2.64)

where f is a twice differentiable scalar-valued function. The necessary conditions
for optimality at a point x∗ ∈ R

n are

∇ f (x∗) = 0, (2.65a)

∇2 f (x∗) ≥ 0. (2.65b)

Applying Newton’s method to solve the nonlinear equations, we have the following
update:

xk+1 = xk − ∇xx f (xk)
−1∇ f (xk). (2.66)

Owing to the fact that the Hessian, i.e., ∇xx f in the unconstrained case or ∇xxL
in the constrained case, may be expensive to compute, quasi-Newton methods have
been designed to approximate the Hessian; see, for example, [40]. Let Hk > 0 be
the approximation of the Hessian at iteration k. Then, the update takes form of:
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xk+1 = xk − H−1
k ∇ f (xk). (2.67)

The fundamental requirement for the convergence of Newton’s method algorithm
is that the initial guess supplied to the algorithm be sufficiently close to the solution.
Globalization strategies are used to allow for convergence to a solution from initial
guesses that are not close to the solution.Numerous numerical nonlinear optimization
solvers have been developed that are equipped with various globalization strategies.
Globalization strategies are briefly discussed here (see, [36, 37, 40], for the details),
and they include algorithm monitoring strategies to decide if a computed iterate
update is acceptable and modification strategies to modify the iterate updates.

In the first category, merit functions and filter methods are used as a measure
of the progress of the algorithm. This adds logic to the algorithm to decide if the
step/update is acceptable (loosely speaking, defining the step as dk in Eq.2.63).
Merit functions are scalar-valued functions that are typically chosen to have the
same local minimum as the nonlinear optimization problem. At each iteration, the
step is accepted if the update yields a decrease in the merit function. Otherwise,
the step is rejected. However, merit functions may lead to rejecting pure Newton
steps near the optimum and thus, slow down the convergence of the algorithm. As
an alternative, filter methods treat making the objective function as small as possible
and reducing the constraint violations as equal goals. In a filter method, a filter keeps
track of previous iterates with the best objective function value and amount of the
constraint violation. A step is accepted if the update yields a better objective function
value or smaller constraint violation. If the update yields a step that is such that one of
the previous iterates have a better objective function value and constraint violation,
the step is rejected.

In the second category, strategies are used to modify the step or update of the
iterates. Line search methods take potentially shortened steps if necessary. In other
words, line search methods add a dampening factor α in the update formula. The
update formula for the iterates is given by:

yk+1 = yk + αdk (2.68)

whereα ∈ (0, 1] is selected by the line searchmethod. On the other hand, trust region
methods recognize that Newton’s method utilizes a linearization of the nonlinear
function. The resulting linearization is only valid in a neighborhood of the current
iterate. Thus, it restricts selection of the step dk in a small region of the current iterate
yk .

2.4.3.2 Sequential Quadratic Programming

One of the two main solution strategies of nonlinear constrained optimization is to
consider successive linearization of the KKT conditions (Eq. 2.54). It turns out that
the linearized KKT conditions are the KKT conditions for the following quadratic
program (QP) (for a complete derivation one may refer to [37]):
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min
dx

∇ f (xk)dx + 1

2
dT
x Hkdx

s.t. g(xk) + ∇g(xk)
T dx ≤ 0

h(xk) + ∇h(xk)
T dx = 0

(2.69)

where Hk is either the exact or an approximation of the Hessian of the Lagrangian
evaluated at iteration k, i.e., ∇xxL (xk, λk, νk). If Hk is positive semidefinite, the
problem of Eq.2.69, which is a quadratic program (QP), is convex and efficient
methods exist that can readily solve the quadratic program to global optimality. This
approach to solving a nonlinear optimization problem is referred to as sequential
quadratic programming. Many primal-dual methods used to solve each QP work to
find a KKT point of the KKT conditions of Eq.2.69. The KKT conditions are given
by:

Hkdx + ∇ f (xk) + ∇g(xk)dλ + ∇h(xk)dν = 0

g(xk) + ∇g(xk)
T dx ≤ 0

h(xk) + ∇h(xk)
T dx = 0

dλ ≥ 0[
g(xk) + ∇g(xk)

T dx
]
i dλ,i = 0, i = 1, . . . , ng

(2.70)

With dx , dν , and dλ, the primal and dual iterates, i.e., xk , λk , and νk , are updated.
Using this type of the solution strategy, the active set is automatically discovered
once the algorithm converges. Under strict complementarity, the solutions of the QP
subproblems converge to a local solution to the nonlinear optimization problem once
the iterates xk are in the neighborhood of x∗, e.g. [37].

2.4.3.3 Interior Point Methods

The second widely used class of numerical nonlinear optimization solvers is based
on interior point methods. In a number of applications in this book, an open-source
interior-point solver, called Ipopt [48], is applied to solve theMPC(EMPC)problems.
One interpretation of interior point methods is that the inequality constraints are
replacedby the barrier function. Thebarrier function has the property that the function
becomes very large in value as one of the constraint values goes to zero, i.e., if
the barrier function is denoted as B, then B(x) → ∞ if gi (x) → 0 for some
i ∈ {1, . . . , ng}. One widely used barrier function is the logarithmic function:

B(x) = −
ng∑
i=1

ln(−gi (x)). (2.71)

The resulting optimization problem is obtained:
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min
x

f (x) − τ

nh∑
i=1

log(−gi (x))

s.t. g(x) = 0

(2.72)

where τ > 0 is a parameter. In particular, to solve the original nonlinear optimization
problem for a local solution, a sequence of modified problems of the form of Eq.2.72
are solved for a given parameter τ > 0. Under certain conditions, it may be shown
that the solution of the original nonlinear optimization problem is the same as the
one of the modified problem when the parameter τ approaches zero, e.g., [37, 40].

Another interpretation of interior point methods is that they replace the non-
smooth complementary slackness condition of the KKT conditions (Eq.2.54e) by a
smooth approximation. Specifically, the smooth approximation of the KKT condi-
tions is given by:

∇ f (x) + ∇g(x)λ + ∇h(x)ν = 0 (2.73a)

h(x) = 0 (2.73b)

λi gi (x) + τ = 0, i = 1, . . . , ng (2.73c)

where τ > 0 is a smoothing parameter. From the last condition, λi = −τ/gi (x),
i = 1, . . . , ng , and thus, the modified KKT conditions of Eq. 2.73 are the KKT
conditions of the modified nonlinear optimization problem of Eq.2.72.

2.4.4 Dynamic Optimization

The specific class of optimization problems that will be of interest in this book
is dynamic optimization problems. In particular, the EMPC methods presented in
subsequent chapters require the repeated solution of a dynamic optimization problem
to compute control actions to apply to a dynamic system. Dynamic optimization or
optimal control problems are optimization problems that have a dynamic model
embedded in the problem. At this point, the literature on dynamic optimization is
vast and impossible to summarize in this brief overview. For general references on
theoretical and applied optimal control, the interested reader is referred to one of
the many texts on the subject, for example, [41, 49–52]. Important early results that
helped shape the foundations of optimal control include optimal control based on the
Hamilton-Jacobi-Bellman equation and dynamic programming [53], Pontryagin’s
maximum principle [54], and the linear quadratic regulator [55].

In this section, direct methods are considered, which are the most commonly
employed solution technique for dynamic optimization problem in practical appli-
cations. Direct methods first discretize a continuous-time dynamic model and then,
use a nonlinear optimization solver to solve the resulting nonlinear optimization
problem. Besides direct methods other methods exist including dynamic program-
ming [53] and solving the Hamilton-Jacobi-Bellman partial differential equations,
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and indirect methods, which optimize first and then, discretize. The latter methods
include setting up the so-called Euler-Lagrange differential equations and applying
Pontyragin’s Maximum Principle [54], which is a necessary condition, to solve for
the optimal control. For a comprehensive review on dynamic optimization with a
particular focus on the application of solutions method to moving/receding hori-
zon problems within the context of chemical processes, the reader is referred to the
review [42].

Consider the following nonlinear dynamic system:

ẋ = f (x, u), x(t0) = x0 (2.74)

where x ∈ X ⊆ R
n is the state vector, u ∈ U ⊂ R

m is the input vector, and
f : X × U → X. For simplicity, the sets X and U are assumed to be compact sets
and the vector field f is assumed to satisfy enough smoothness assumptions so that a
unique solution to Eq.2.74 exists over the interval [t0, t f ]with an initial condition x0
and piecewise continuous input function u : [t0, t f ] → U. The smoothness properties
will also be needed to solve the resulting optimization problems below. The solution
is denoted as x(·, x0, u(·)), i.e., x(t, x0, u(·)) denotes the solution at t ∈ [t0, t f ] and
x(t0, x0, u(·)) = x0.

Since the purpose of this section is to highlight the various computational
approaches to solving dynamic optimization problems, a simple dynamic optimiza-
tion problem is considered.Nevertheless,more complex problemsmay be considered
while utilizing the presented techniques, e.g., problems with algebraic constraints
like path or end-point constraints. Specifically, consider a dynamic optimization
problems in Mayer form:

min
x(·),u(·)

φ(x(t f ))

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0
x(t) ∈ X, u(t) ∈ U,∀ t ∈ [t0, t f ]

(2.75)

where x0 ∈ X denotes the initial condition, which also could be a decision variable
in the optimization problem. For simplicity, the initial condition will be assumed to
be fixed in the remainder of this chapter. The set constraints are assumed to take the
form of inequality constraints, i.e., of the form hx (x) ≤ 0 where X = {x ∈ R

n :
hx (x) ≤ 0} and similarly, for the input constraint with hu(u) ≤ 0. The existence of
minimizing trajectories for the problem of Eq. 2.75 is assumed; for conditions that
guarantee existence of a solution, the interested reader is referred to [56, 57].

It is important to point out that if one seeks the solution to a dynamic optimization
problem that optimizes an objective function of the form, i.e., Bolza form:

J (x0, u(·)) =
∫ t f

t0

l(x(t), u(t)) dt + V f (x(t f )), (2.76)
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one could readily convert this type problem into Mayer form by defining the state
vector as:

x̄ :=
[
x
φ̄

]
(2.77)

with dynamics:

˙̄x =
[
f (x, u)

l(x, u)

]
. (2.78)

Then, the Mayer term is given by φ(x̄(t f )) := φ̄(t f ) + V (x(t f )).
The major difference between the optimization problem of Eq.2.52 and the opti-

mization problem of Eq.2.75 is the presence of the dynamic model embedded in the
optimization problem. To avoid an infinite dimensional optimization problem, the
control function u(·) must be parameterized by a finite set of parameters, which is
referred to as control vector parameterization. The most widely used control vector
parameterization is zeroth-order hold, i.e., the input trajectory is assumed to take the
form of:

u(t) = ūi (2.79)

for t ∈ [τi , τi+1) where ūi ∈ U, τi := iΔ + t0 for i = 0, . . . , N − 1, τN = t f , and
Δ > 0 is the hold period. In what follows, the family of (possibly vector-valued)
functions that take the form of Eq.2.79 is generally denoted in this book by S(Δ)

where Δ > 0 is the hold period. For the remainder of this chapter, zeroth order hold
control vector parameterization is assumed for simplicity.

Given that the dynamic model embedded in the problem of Eq.2.75 may be non-
linear, an analytic solution is often difficult to obtain for a given initial condition
and input trajectory. Therefore, some numerical method that obtains the solution
of the dynamic model is required to solve the optimization problem. The choice of
numerical solution techniques used to solve the optimization problem substantially
influences the computational efficiency and therefore, is an important implementation
consideration. From a nonlinear optimization point of view, dynamic optimization
problems typically have a high degree of sparsity and therefore, using sparsity-
exploiting nonlinear optimization solvers may also be an important implementation
constraint. On the other hand, from a numerical integration standpoint, the most
computationally expensive part tends to lie in solving the dynamic model. In partic-
ular, computing sensitivity information of the dynamic model tends to be the most
computationally expensive step. Therefore, selecting the numerical solver is critical
for the success of the solution technique. Below three solution techniques are briefly
described.

2.4.4.1 Single Shooting Approach

With a given input trajectory and initial condition, the dynamicmodel of Eq. 2.74may
be solved forward in time using an ODE solver, i.e., numerical integration method,
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Nonlinear
Optimization

Solver

ODE Solver

u(k)x(k)

Fig. 2.3 In a single shooting approach, the input trajectory is computed by the nonlinear solver at
each iteration. The input trajectory is passed to an ODE solver to compute the corresponding state
trajectory, and the corresponding sensitivity information

to obtain the solution over the time interval [t0, t f ]. In this respect, the solution to
the dynamic model is a function of the input trajectory and of the initial condition.
After the solution to the dynamic model is obtained from the ODE solver, the input
trajectory may be updated using a nonlinear optimization solver. These concepts are
used in the design of a solution strategy to the optimization problem of Eq.2.75,
which is the single shooting approach.

A block diagram of the methodology is given in Fig. 2.3. At each iteration, the
model is first solved over the interval to obtain x (k)(t, x0, u(k)(·)) for t ∈ [t0, t f ]where
the notation x (k) and u(k) denote the state and input trajectory at the kth iteration of the
nonlinear solver. With x (k) and u(k), the objective value, the state and input constraint
values, and the sensitivity information (first and second-order derivatives) of the
problem of Eq.2.75 are computed and the nonlinear optimization solver computes
the updated input trajectory for the next iteration. The algorithm repeats until the
solver converges to a local optimal input trajectory.

For the sake of simplicity, the input trajectory is assumed to be the only decision
variable of the dynamic optimization problem and piecewise constant input trajectory
is assumed. The resulting formulation of the optimization is given by:

min
ū0,...,ūN−1

φ(x(t f , x0, u(·)))
s.t. u(t) = ūi , ∀ t ∈ [τi , τi+1), i ∈ I0:N−1

hu(ūi ) = 0, ∀ i ∈ I0:N−1

hx (x(τ j , x0, u(·))) ≤ 0, ∀ j ∈ I0:Nx

(2.80)

where τ j ∈ [t0, t f ] for j = 0, . . . , Nx denotes the time grid that the state constraints
are imposed with τ0 = t0 and τNx = t f . In many cases, taking the time grids used
for the control parameterizations and for imposing the state constraints to be equal
yields acceptable results.

As a first-pass implementation, one may employ a finite-difference method to
approximate sensitivity information of the problem of Eq.2.80. However, this tends
to be inefficient, result in large numerical error, and yield unreliable performance,
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e.g., [37]. Instead, onemay obtain exact first-order sensitivity information fromdirect
sensitivity, adjoint sensitivity, or automatic (algorithmic) differentiation, e.g., [37,
41]. While methods exist that are capable of computing the exact Hessian of the
Lagrangian of the problem of Eq.2.80, efficient methods for obtaining an approxi-
mation of the Hessian have been developed such as the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. Moreover, the BFGS method tends to yield good com-
putational performance; see, for example, [36, 40].

The key advantages of the single shooting approach to solving a dynamic opti-
mization problem relative to the other two approaches described below are that the
method tends to be the easiest to implement and the dynamic model is satisfied (up to
numerical precision) at each iteration of the solution method. However, the single
shootingmethod tend to be substantially slower than the multiple shooting and collo-
cation approaches described below. Also, the input trajectory being computed by the
nonlinear optimization solver at each iteration of the solutionmethod is an open-loop
one, i.e., the input trajectory is first specified by the optimization solver and then,
the dynamic equations are solved forward in time with the given open-loop input
trajectory. Therefore, solving dynamic optimization problems with a single shoot-
ing method when the dynamic model is open-loop unstable may result in numerical
problems like unbounded solutions being computed or convergence failure.

2.4.4.2 Multiple Shooting Approach

The multiple shooting method [58] serves as an alternative to a single shooting
method. Instead of solving for the solution of the dynamic model over the entire time
interval [t0, t f ], the time interval may be divided into subintervals and the dynamic
model may be initialized and solved within each of these subintervals. For simplicity
of the presentation, the time horizon [t0, t f ] is divided into N intervals of constant
size Δ > 0, referred to as nodes. While the node intervals are taken to be equally
spaced and equal to the hold period of the controls, neither assumption is required
for implementation. Let τi := iΔ + t0 for i = 0, . . . , N . At the beginning of the
i th subinterval, the dynamic model is initialized with an initial condition denoted by
si ∈ X, which is determined by the optimization solver, and the solution, x(t, si , ūi )
defined for t ∈ [τi , τi+1] where ūi denotes the constant input applied over the i th
subinterval, is computed by employing a numerical integration method. To ensure
that the dynamic model is satisfied over the entire time interval, a constraint is
imposed in the optimization problem to ensure that the initial condition specified for
the i th subinterval is equal to x(τi , si−1, ūi−1). In other words, the solutions of each
subinterval are pieced together by imposing a constraint in the optimization problem
to obtain the solution over the entire interval [t0, t f ].

The resulting optimization problem for the multiple shooting approach is given
by:
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min
s0,...,sN ,

ū0,...,ūN−1

φ(sN ) (2.81a)

s.t. s0 − x0 = 0 (2.81b)

x(τi+1, si , ūi ) − si+1 = 0, ∀ i ∈ I0:N−1 (2.81c)

hu(ūi ) = 0, ∀ i ∈ I0:N−1 (2.81d)

hx(si ) ≤ 0, ∀ i ∈ I1:N (2.81e)

where the constraint of Eq.2.81b ensures that the initial condition for the first subin-
terval is equal to x0 and the constraint of Eq.2.81c ensures that the solution value
at τi+1 is equal to the initial condition specified for the (i + 1)th subinterval. The
constraints of Eqs. 2.81d–2.81e are the input and state constraints, respectively. The
state constraint of Eq.2.81e may readily be extended so that it is imposed over a
different time grid like that of the problem of Eq.2.80.

The multiple shooting method has advantages over a single shooting method in
that, loosely speaking, the open-loop instabilities and nonlinearities are distributed
amongst the nodes of the time grid. Since solving the dynamic model and the cor-
responding sensitivity information of the dynamic equations is typically the most
computationally expensive task when solving dynamic optimization problems, the
multiple shootingmethod offers a clear way to parallelize the one of themost compu-
tationally expensive calculation. Additionally, the problem presents a high-degree of
sparsity which may be exploited. Therefore, although the problem of Eq.2.81 clearly
has more decision variables than the problem of Eq.2.80, the problem of Eq.2.81
tends to be more computationally efficient than a single shooting approach owing
to the aforementioned reasons. The main disadvantage of the method are that the
iterates of the method do not necessarily satisfy the dynamic model in the sense each
iterate may not satisfy the constraint of Eq.2.81c.

2.4.4.3 Orthogonal Collocation Approach

The third technique to solve the optimization problemofEq.2.75 is to employ orthog-
onal collocation to obtain the solution to the dynamic model of Eq.2.74 [59, 60].
Orthogonal collocation approximates the solution of a system of the form of Eq.2.74
with an interpolating polynomial, e.g., Lagrange polynomials. The coefficients of the
polynomial are adjusted such that the interpolating polynomial satisfies the dynamic
equation at the collocation points, which are points along the time horizon chosen
on the basis of a quadrature rule.

Similar to the multiple shooting approach, the time interval [t0, t f ] is divided
into N subintervals of length Δ > 0. Again, for simplicity of presentation, the
subintervals are assumed to be of equal length and constant, i.e., may not be adjusted
by the optimization solver. The method extends to the more general case when the
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subintervals are not of equal length andmay be a decision variable of the optimization
problem; please see, for example, [37] and the references therein. Let τi = t0 +
iΔ, i = 0, 1, . . . , N , and the interval [τi , τi+1] is the i th subinterval. Within the
interval [τi , τi+1], nc collocation points are chosen. Let pi (t, ci ) be an interpolating
polynomial defined for the i th subinterval, i.e., t ∈ [τi , τi+1], that is parameterized by
a coefficient vector ci and τ

j
i denotes the j th collocation point in the i th subinterval

where j = 1, 2, . . . , nc. The solution of Eq.2.74, obtained through collocation, is
computed by solving the following equations:

pi (τi , ci ) = si (2.82a)

ṗi (τ
j
i , ci ) = f (pi (τ

j
i , ci ), ūi ), ∀ j ∈ I1:nc . (2.82b)

The optimization problem solved through the collocation approach is given by:

min
s0,...,sN

ū0,...,ūN−1

c0,...,cN−1

φ(sN ) (2.83a)

s.t. s0 − x0 = 0 (2.83b)

pi (τi , ci ) − si = 0, ∀ i ∈ I0:(N−1) (2.83c)

ṗi (τi, j , ci ) − f (pi (τi, j , ci ), ūi ) = 0, ∀ j ∈ I1:nc , ∀ i ∈ I0:(N−1)

(2.83d)

pi (τi+1, ci ) − si+1 = 0, ∀ i ∈ I0:N−1 (2.83e)

hu(ūi ) = 0, ∀ i ∈ I0:N−1 (2.83f)

hx (si ) ≤ 0, ∀ i ∈ I1:N (2.83g)

where the decision variables of the optimization problem are states values at the
nodes, si for i = 0, . . . , N , the input trajectory parameterization vectors, ūk for
k = 0, 1, . . . , N − 1, and the coefficients of the interpolating polynomial, ci for
i = 0, 1, . . . , (N − 1).

Owing to the similarities in the structures of the problems of Eqs. 2.81 and 2.83,
the orthogonal collocation approach has similar advantages and disadvantages to the
ones of the multiple shooting approach. Since the solution to the dynamic model is
approximated as a polynomial, analytic computation of the sensitivity information
is perhaps easier to obtain than the shooting method approaches because the latter
may use a general ODE solver.Within the context of solving the problem of Eq.2.83,
the use of a sparsity exploiting optimization solver is critical because the resulting
optimization problem is large-scale with a high degree of sparsity.
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