
Chapter 2
A 50-Year Retrospective and the Future

William K. George

2.1 Big Data

Experimental turbulence research has always been about “Big Data”—and usually
never enough of it. Part of the reason has been because of the need to use statistical
measures. Data records measured in thousands of time integral scales are necessary
to make even the simplest estimators converge, sometimes even tens and hundreds
of thousands of integral scales in length for probability density functions and
correlations at large lags. As a general rule the time (or length of record required)
for a given statistical error is proportional to the rms fluctuations of the statistical
quantity being estimated divided by the square root of the number of effectively
independent realizations of it. Note that the variance of the quantity being measured
is not the same as the variance of the underlying process. For example, if a second
moment is to be measured its variance is hŒu2�hu2i�2i, which for a Gaussian process
is 3 Œhu2i�2, and can be much larger for non-Gaussian processes which are common
in turbulence. The pre-multiplying factor for simple powers of the variance increases
rapidly with the order of the moment, so demands on data length can increase
very rapidly (v. [15, 29, 30], or appendices of my turbulence notes available at
www.turbulence-online.com). The same is true for attempts to measure events of
decreasing probability (like the tails of a pdf), since the lower the probability of it
being observed, the more “statistically independent” data that must be acquired to
measure it. Fractional statistical error, or variability, is the rms fluctuation of the
quantity being measured divided by its average or expected value, or the variability
of the quantity desired itself. So the higher the variability of the process, the more
independent samples are required to estimate it. Quantities with zero mean will
always have infinite variabilities, but finite errors. Many a student has thrown away
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excellent statistical estimates as “too noisy” because they failed to realize that
the quantity they were estimating was zero. Modern DNS is now encountering
these same difficulties that have plagued experimentalists for decades: as Reynolds
numbers get higher, simulations must be much longer to examine the rare events
which have become of increasing interest.

So whether experiment or numerical simulation, how to store the data for even a
short while is a major issue. Long term storage is even more problematic, so often
it is easier (at least for DNS) to contemplate doing the simulation again instead
of storing the data. Or alternatively, only storing certain “starting points.” Or even
more efficient, storing the snapshot POD coefficients at these starting points. Given
the difficulty to get an experiment right in the first place and the cost of maintaining
the facilities, this is not an option for most experimentalists. But neither is simply
storing the data a viable option either, since the march of technology will soon make
it unreadable, or simply make it useless to anyone but those who actually recorded
it. This is of course a colossal waste, and any efforts (like this meeting) to address
ways to preserve data for posterity are laudable.

Sadly I have little to offer as a solution to this problem. In spite of my best
efforts, the rush of universities to clear disks and tapes, the urgency of students
to get on with their careers, and the simple press of academic survival has meant
that some really wonderful data has simply disappeared, or cannot be recovered
for use even if preserved. Even preserving a simple email address or website after
retirement or change of location seems to be too much of a stretch for modern
university administrations. Only it seems to me if there is a national repository and
a contractual commitment to use it might there be the possibility of preserving it.

So while I do not have any panacea for the problem of how to keep “big data”
once we have acquired it, I do have considerable experience in generating it. The
experiments of me and my students almost always stretched the bounds of what was
possible at the time we did them. Since that is likely to be true for all turbulence
experiments in the future (whether laboratory or computer-generated) the amount
of data collected will undoubtedly increase. In the absence of a general solution to
the storage problem, it therefore becomes more and more crucial to make sure we
use it properly when we have it. And that is the point of this paper.

2.2 What Should We Be Looking For?

There is no point it seems to me to be carrying out large simulations and experiments
if we don’t have some idea what we are looking for in the first place. The last thing
turbulence needs is more random numbers, more disks of poorly generated data, and
more poorly thought-out applications of existing or yet-to-be-developed technology.
Or for that matter, more pictures of random intertwined vortices. What exactly are
we trying to find? How will we know when we’ve found it?
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2.2.1 We Have No “Exact” Solutions

The single biggest problem of turbulence research is that we really have no exact
solutions. Similarity solutions for averaged quantities (especially multipoint) should
have been particularly useful (e.g., [33, 35, 40]). These have, however, been quite
controversial. In large part I believe because most of these early similarity solutions
were done incorrectly, usually by making wrong assumptions at the first step or
overconstraining the solutions. I have written a great deal about this starting in the
late 1980s [10, 12, 14]. Of course these “wrong solutions” did not agree with most
experiments. And the few that appeared to were discredited as better experiments
were performed. So a mythology was born and took root which argued that such
solutions never applied to turbulence. And alternative ideas took over—like that
turbulence could never be described by a single length scale, which meant that pretty
much any simulation or experiment could be justified if it collapsed in a local scaling
over a range of scales. So our field has become cluttered with experiments which
claim to be one thing—like jets or decaying turbulence or wakes—but really are
flows largely determined by initial and spatially confined boundary conditions.

In the absence of believable analytical solutions, or at least some way to
decompose turbulence, there is no way to sort out boundary and initial condition
effects from actual dynamical processes. We do have such tools for homogenous
flows, even though we seldom use them as such. And (as we shall see below), we
have them for several other classes of turbulent flows as well. But first let’s look at
a field which closely resembles our own, so we can see what we are missing.

2.2.2 Examples from Wave Research of What We Are Missing
in Turbulence

My very first research experience was using a small internal wave tank in the
lab of Owen Phillips at the Johns Hopkins University. In many ways this set a
pattern for much of my career which was to follow. Phillips was at heart an applied
mathematician with extraordinary abilities and physical insight. He was also a
mesmerizing lecturer, and it was the simple elegance of the sophomore mechanics
course he taught which led me to work in his lab in the first place.1 Phillips’
experimental work, mostly on wind waves and non-linear interactions, was pretty
much left to his Ph.D. students and undergrads like me.

The original goal of my study was to examine how internal waves at a saltwa-
ter/freshwater interface broke and propagated when subjected to a current—which
we generated by towing a contraction through the tank. Sinusoidal waves indeed

1A fraternity brother and physics student, Ben Wegbreit, who was already working for Phillips,
made the suggestion to me that I trade my job in the library sorting books for one in the lab, and
for that I have been forever grateful.
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steepened, broke, then reformed and propagated as symmetrical disturbances. What
we were seeing were multiple solutions to the governing equations which very much
resembled the Schrödinger equation. For a budding young physicist the excitement
was very real. Parallel experiments at Cambridge in the UK pretty much scooped our
focus on the second and higher modes, so nothing on our work was published. But
thanks to an elegant analysis by Phillips, and hundreds of meters of 8 mm movie film
of aluminum-flake particle paths, we did manage to provide a rather nice analysis
and experimental confirmation of how the waves were steepened by the current [32].

It was this synthesis of phenomena we could clearly see, elegant analysis of
well-posed equations, and massive amounts of data (for that era at least) which
really captured me. I fell in love with waves, and it very much influenced my
professional (and non-professional) life thereafter. It was the very need of such
theory for turbulence which attracted me to it. And in an interesting way to my
linking up with John Lumley.

What is nice about surface water waves in particular is that you can easily see and
generate them. Throw a stone into a pond, pull a boat through the water, or just blow
on a surface, and all sorts of interesting mathematics take real form before your eyes.
They often organize themselves into recognizable forms, and they can be analyzed
by equations which are for the most part tractable. The reason is that wave non-
linearities are relatively weak—at least compared to turbulence. For surface waves,
these non-linearities enter at fourth and fifth order in expansions about the wave
slope (amplitude divided by length), so waves can travel great distances without
significant modification.

This weak non-linearity implies that any coherent features of surface waves are
maintained or destroyed almost entirely by the phase speeds and bandwidth of
the Fourier components that are present. The more monochromatic the wave, the
farther it can propagate, even if different wavelengths are traveling at different phase
velocities. In fact the “visibility” (or lifetime) of a group of deep water waves is
entirely determined by the bandwidth of the disturbances comprising it. The reason
is that for deep water waves the speed is proportional to the square root of the
wavelength. (A deep water wave is one whose length is much less than the water
depth.) This is why it is impossible to track a deep water wave on the open ocean for
very long by watching it—it just disappears (or comes “unglued”) as the different
components comprising it propagate through. Shallow water waves whose length
is greater than the depth by contrast can be followed indefinitely since all phases
propagate at the same speed which is proportional to the square root of the depth of
the water. This is why we can follow the surf in at the beach, and why the energy
piles up as the depth is reduced and the wave slows down.

Now all of the above is well known, and has been for a long time. Coherent
features, clearly visible, and their dynamics completely explained (at least until
they start to break) as the action, interaction, and superposition of eigensolutions
of the governing equations. The structures themselves are what we see. But it is the
behavior of the underlying eigensolutions in the governing equations which enables
us to understand the dynamics.

Now what does this all have to do with turbulence? And big data?
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2.2.3 How Can We Decompose Turbulence?

Everyone who has ever looked at turbulence sees structures. Artists painted them
centuries ago. Children and adults alike are fascinated by them. We see them in
moving rivers because of the disturbances they generate. Clouds track them in our
skies, even the simple processes of stirring our food and drinks present them to
us. But what are they? The last five decades have seen a massive effort to find
and quantify turbulence structures. And while these have cured us of any illusions
about whether an average flow really exists, they have contributed little to our
understanding of turbulence. We still don’t know how to write equations for them,
much less predict them. We suspect they are important but really can’t prove it.
We are sure they are a necessary part of turbulence and many believe they must be
accounted for if turbulence is to be controlled. But we have made almost no progress
in proving the first nor moving forward with the latter.

Many have argued that these structures are vortical, and that we simply need to
concentrate on vortex dynamics to understand and predict them. Indeed DNS and
PIV coupled with clever vortex recognition algorithms show tantalizing strings of
vorticity—usually quite concentrated in strings or sheets with lots of empty space
around them. Whether these are related to the large scale coherent features we see is
debatable, but the role of vorticity is not! Even so, recognizing these concentrations
of vorticity has not been particularly helpful. Thanks to the Biot–Savart law, each
vortex feels the velocity of all the other vortices in the field. So the problem is quite
complex, even without the complications of viscous effects (like “cut and connect,”
vorticity diffusion, etc.). Like the water waves above if we had just taken pictures of
them, simply studying pictures of what we see in turbulence and labeling it vortical
has not led us to a methodology for predicting anything about them.

Our modern quest for coherent structures really started with the Schlieren
pictures of a mixing layer [3] and the low Reynolds number near-wall dye boundary
layer studies of Kline and co-workers [26]. But even before that Townsend and
his co-workers (v. [35]) had noticed that correlation functions seemed to go to
zero at large separations and time lags slower than they might have guessed. And
they postulated that these were a result of “large eddies,” which provided spatial
coherence over large distances, but relatively little energy. No dynamic role for these
was suggested, so they were quite different than the role postulated for coherent
structures in the early 1970s by many (e.g., [21, 22]).

It was in trying to understand and contribute to the original Townsend idea that
John Lumley [28] made what I believe was his most important contribution to
turbulence. Published in an obscure Russian proceedings in 1967, I first became
aware of it scarcely a year later. I was taking my first turbulence course, and was
chasing down a paper on the buoyant subrange by Phillips who had presented it at
the same meeting. And there in the same volume was Lumley’s paper, seemingly
the answer to the questions I had been posing above to myself about the differences
between waves and turbulence. Little did I know that in a short while we would
be working together, first with Lumley as my mentor and thesis advisor, then as
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my colleague. In order not to interrupt the narrative of this paper, I have placed in
Appendix 1 my own mostly personal history of Lumley’s idea and my involvement
with it. It might be of special interest to anyone struggling to be heard in the hostile
world that sometimes turbulence becomes for new ideas.

2.3 Lumley’s Great Idea

What Lumley had proposed was an objective way to decompose a turbulent flow—
or for that matter, any random process. His stated goal was quite modest—to find
an objective way to identify Townsend’s “big eddy.” What he found was a way to
decompose almost any flow into an infinite set of eigenfunctions. What he did NOT
find was a unique way to identify any one of them as a large eddy or coherent
structure.

It is not clear when Lumley himself recognized this, but most likely it was when
Mark Glauser (then my Ph.D. student) and I showed him the results from our round
jet mixing layer experiments in the early 1980s (see Figs. 2.1 and 2.2). What was
clear to us from our very first results was that our “Lumley decomposition” had
led us to a set of eigenfunctions which turned on and off, different eigenfunctions
describing whatever structure was there at different points in its life cycle. Unfortu-
nately (for us) a journal editor pretty effectively prevented us from publishing our
results archivally. It is with some satisfaction that our meeting papers have exceeded
100 citations anyway (e.g., [16]). And probably not unrelated that Holmes et al. [20]
included an entire chapter on our early results.

So what exactly did Lumley propose? This: imagine a random vector field of
space and time. If you like pictures, think of time-resolved holographic PIV images
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Fig. 2.1 Reconstruction of Fourier transform of instantaneous streamwise fluctuating velocity in
center of axisymmetric jet mixing layer at x=D D 3 with only three POD modes. POD performed
across mixing layer using seven probes. From Leib et al. [17, 27]
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Fig. 2.2 Reconstruction of streamwise fluctuating velocity spectrum in center of axisymmetric jet
mixing layer at x=D D 3 with only three POD modes. POD performed across mixing layer using
seven probes. From Leib et al. [17, 27]

of an entire field in which the vectors are changing with time at every point and
different in every realization. Now imagine another vector field that is not random,
but is doing its best to track the random one. How could one chose the deterministic
field so that it optimally (in some statistical sense) follows the random one?

Now here it is the brilliant part of what Lumley did. And by doing so managed
to formulate the problem mathematically so that the solutions could be related
to existing mathematics—and the Navier–Stokes equations. Lumley proposed to
maximize the mean square inner product in two senses. First, the usual scalar
product of two vectors; but then second, the inner product of two fields in the
sense of projections in Riemann space. This was in my mind the great moment
(and Lumley’s great talent)—taking an idea, and turning it into mathematics. Not
even new mathematics, but very old established mathematics and statistics. This was
new—very new! That he initially misinterpreted what he did (as did most others) is
irrelevant. A great idea was born, and a whole new way of thinking about turbulence
had begun. Thanks to my brief background in waves, I recognized this immediately,
even at this very early point in my career and while still a student. It was therefore a
great shock for me to discover subsequently how controversial Lumley’s approach
had become—even ridiculed (see Appendix 1).

So how does this great idea work? Here it is. If ui.x; t/ represents the random
field of space and time, and �i.x; t/ the deterministic one which is to optimally track
it in a mean square sense, then we need to maximize the square of their “double
inner product,” hj˛j2i; i.e.,

hjui.x; t/ �i.x; t/j2i D hj˛j2i (2.1)
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where

ui.x; t/ �i.x; t/ �
Z
: : :

Z

all space; time
ui.x; t/ �i.x; t/dxdt (2.2)

defines the inner product in both senses. This was the brilliant part! For want of a
better terminology I will call this the “Lumley integral” or the “Lumley projection.”

From here on the rest is easy, and could have been performed by even the
most mediocre mathematician. From all the hostility the results generated in some
quarters (then and even now), and the misuse of them since, it must be presumed
that many turbulence researchers qualified (at least then) as less than mediocre
mathematicians.

Squaring the integrals, averaging and maximizing the variation of it yields what
I have chosen to call the Lumley Integral Equation:

Z
: : :

Z

all space; time
Ri;j.x; x0; t; t0/ �j.x0; t0/dx0dt0 D � �i.x; t/ (2.3)

where the kernel, Ri;j.x; x0; t; t0/ D hui.x; t/uj.x0; t0/i is the two-point two-time
correlation (or two-point two-time Reynolds stress tensor). Equation (2.3) is
sometimes erroneously called the POD integral. It most certainly is NOT! There
are circumstances under which it reduces to a proper orthogonal decomposition. As
we shall be reminded below, more often it does not!

What is important is that the integral converges and does so independent of
the boundaries used in practice to truncate its estimation (e.g., field of view, size
of tunnel, computational domain, etc.). In fact, it is not at all obvious whether
the integral even exists in many turbulent flows; for example, flows which are
statistically homogenous and/or stationary. Both of these types of flows are of
necessity of infinite extent, and hence have infinite energy. Not surprisingly, these
flows behave very differently than flows which are of “finite total energy,” meaning
that either they are bounded in space or die off rapidly enough in all directions
(and time).

Only when the finite total energy property is satisfied in ALL directions AND
time does the integral equation yield what can properly be referred to as POD
solutions. Failure to recognize this has been the source of much confusion over the
years since Lumley first derived it. I have discussed these various conditions in detail
in several papers [11, 13], and in several places in my turbulence notes (available
on www.turbulence-online.com). And of course pretty much all of the information
is there quite cryptically in Lumley’s original paper and even more obscurely in his
Stochastic Tools in Turbulence [29]. In the succeeding sections, I shall review what
Lumley told us, and then some of what we have learned since.

http://dx.doi.org/www.turbulence-online.com
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2.4 It is All About the Total Energy in the Flow

If the integral of Ri;i.x; x; t; t/ D hui.x; t/ui.x; t/i itself converges when integrated
over all directions and time, then the flow is said to be of finite total energy; i.e.,

Z

all time

Z Z Z

all space
hui.x; t/ui.x; t/idxdt < 1: (2.4)

Note that this “finiteness” does not imply that the field itself need be finite, only that
the total energy in it is finite.

“Finiteness” is, of course, automatically satisfied if the field is of finite extent
or time, so the results of it can be applied to all experiments and computer
simulations. But this “finite energy by truncation” can be quite artificial and can
yield solutions which have nothing to do with the flow and everything to do with
the boundary conditions imposed upon it. Obviously it makes a difference whether
we are truncating just the integral by our “field of view” or actually creating the
flow in a finite space. Note that a similar phenomenon occurs with spectral analysis
when the window is too small relative to the flow integral scale—the resulting
spectrum looks more like the Fourier transform of the window than the flow. In
optics and signal analysis usually we can evaluate the effect of windows since we
know the eigenfunctions. In turbulence we do not—at least without Lumley. All of
our experiments and DNS are always of finite total energy, even when we are trying
to model flows which are not. So we have much to be concerned about. Since these
“eigenfunctions” in principle vary from flow to flow, no general conclusions are
possible about the validity of our results without first finding them. Hence what I
believe should be the primary goal of our “big data”—making it possible to find the
appropriate basis functions for the flow of interest.

2.4.1 Flows of Finite Total Energy

If the energy integral converges, then the solutions are indeed what are referred to
as the “classical proper orthogonal decomposition solutions” (or “classical POD”).
When most people refer to the POD (or the Lumley decomposition), these are the
kinds of solutions they think they are referring to. There can be denumerably infinite
eigensolutions, they are orthogonal, and proper (meaning their eigenvalues can be
arranged so the lowest order one has the most energy, the next the second most
energy, etc.). The sum of the eigenvalues is equal to the total energy in the field; i.e.,

Z
: : :

Z

all space time
Ri;i.x; x; t; t/dxdt D ˙1nD1�n (2.5)
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Finally the two-point two-time Reynolds stress tensor, the original kernel, can be
reconstructed like this:

hui.x; t/ uj.x0; t0/i D ˙1nD1 �n �
.n/
i .x; t/ �.n/j .x0; t0/ (2.6)

Most importantly, any random realization of the field can be represented using
appropriate “random” coefficients determined by projecting the entire field onto the
eigenfunctions; i.e.,

ui.x; t/ D ˙1nD1 an �
.n/
i .x; t/ (2.7)

where the random coefficients, an, are determined by:

an D
Z Z Z Z

all space
�
.n/
i .x; t/ ui.x; t/dxdt (2.8)

The eigenvalues are given by:

�n D hanami ımn (2.9)

since the coefficients are uncorrelated.
Thus each realization of the entire instantaneous field can be reproduced from

its POD decomposition. But to determine the coefficients requires the entire field at
once. This is where the really big data problem enters. The actual determination of
the eigenfunctions needs only statistics, which in turn requires only simultaneous
measurements at two space-time points. So pairs of points can be considered one
pair at a time. But to reconstruct the instantaneous field we need the entire space-
time field at once. It should be noted that while this POD representation can in
fact describe any existing field, there may also be other types of solutions (non-
orthogonal) needed to get to any field from a transient condition. This is no different
than the transient versus steady-state solutions of every other differential equation.

It is a common misconception that there are only empirical solutions to Eq. (2.3).
A simple analytical example proves otherwise. Assume the two-point correlation
for a one-dimensional scalar field to be given by R.x; x0/ D R.0; 0/ expŒ�.x2 C
x02/=2L2�. Substitution into the Lumley integral yields

Z 1
�1

R.0; 0/ e�Œx2Cx02�=2L2 �.x0/ dx0 D � �.x/ (2.10)

But the kernel can be separated to yield:

R.0; 0/ e�x2=2L2
�Z 1
�1

e�x02=2L2 �.x0/ dx0
�

D � �.x/ (2.11)

The integral in brackets is just a number proportional to L. So clearly �.x/ /
L e�x2=2L2 where the factor of proportionality must be chosen to make the integral
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of ��.x/ �.x/ unity. Clearly in this case there is only a single eigenfunction, and
the corresponding eigenvalue contains 100 % of the energy. It should not be at
all surprising that a flow might have eigenfunctions that resemble the correlation
function, since it might be simply a random superposition of them sprinkled in
space.

Unfortunately very few flows are of finite total energy, and in fact none of the
“ideal” ones we realize in the laboratory (since most are statistically stationary and
many are assumed to be “homogeneous” in one or more directions). A number
of investigators, however, not realizing this, have produced data (usually using
the snapshot POD) which showed the “POD-modes.” And many of them noticed
the domain dependence of their data. The reason for this is obvious (at least in
hindsight): the finite domain they could see from their PIV (or DNS) was an
arbitrary truncation of the energy to make it finite, so indeed it was the domain
that determined the eigenfunctions, not the flow. This was not what Lumley had
in mind! But it is exactly the problem we have in all of turbulence—and one of
the main points of this paper. In the absence of an exact solution, or at least basis
functions, how can we know the degree to which our computational or experimental
domains are determining or affecting our solutions?

An example of a flow that truly fits the POD solution might be a mass of
turbulence without boundaries which is decaying. But even such a mass (like
the sun) is probably spinning. So this imposes a preferred axis with consequent
azimuthal homogeneity and periodicities—which like the periodic box turbulence
moves it into a different mode of solution—at least in the homogenous periodic
direction. And this makes the solutions and coefficients (POD though they may be)
dependent on the azimuthal mode number. And since they will be complex, phase
is also important. This immediately almost guarantees that any actual “coherent
features” or structures will be transient, as they will be comprised of different modes
at different times. In other words, they will “evolve”; meaning sometimes you will
see them, then other times you won’t. Most maddenly they will seemingly vanish
before your eyes!

2.4.2 Homogenous Fields of Infinite Energy

In spite of their highly idealized nature, statistically stationary and homogeneous
flows are those that have received the most attention theoretically. In particular,
homogeneous turbulence which is either forced or decaying, and homogeneous
shear flow turbulence. In the former the energy is usually assumed (or derived from
similarity considerations) to be decaying either exponentially or as a power law.
And in the later to be increasing exponentially in time. Since they are all assumed
homogeneous they are of infinite energy in the spatial directions quite independent
of the time dimension. Few (if any) have considered such flows in the context of the
Lumley integral above. But without understanding the implications of the Lumley
integral on these solutions, flows with partial homogeneities cannot be understood.
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And it is that lack of understanding which I believe has held our field back for the
past half-century. We have looked for things that were not there; and when we have
seen things, we often did not understand them.

Most of the flows we create in the laboratory are presumed to be excellent
approximations to stationary random processes. And for decades we have attempted
to study them by using various grids in wind and water tunnels. While the flows we
investigate are of course of finite total energy (since we have truncated them by our
experimental boundaries or record lengths), it is important to recognize that our goal
is to measure flows that can be interpreted theoretically. Hence, the short-comings
of our attempts to create them notwithstanding, the “real” flows are of infinite extent
in all directions and time. Otherwise the statistics cannot be independent of origin,
a necessary condition for both homogeneity and stationarity. And as a consequence,
most “real flows” of interest are of infinite energy, no matter which direction or time
is used to examine it.

Since homogeneity and stationarity imply that the integrals are infinite and
the flows of infinite energy, then the solutions will be entirely determined by the
boundaries we arbitrarily impose on them— unless there is some property of the
kernel itself which makes the integral converge. Solutions which depend only on
how the field is truncated are pretty useless. CFD people are very conscious of
these problems, since they are always trying to make the computational domain as
small as possible. In my experience experimentalists are generally not nearly as
concerned as they should be, and for sure not as concerned as the integral equation
above demands they must be. Not unexpectedly, a number of experimenters through
the years have noticed this field dependence of their “raw” application of the POD
solution of Lumley’s integral (or its snapshot version). Few though recognized the
reasons.

2.4.3 A One-Dimensional Field of Infinite Energy

That the Lumley integral can converge even with infinite total energy can best be
illustrated by a simple one-dimensional example. Consider a stationary random pro-
cess with the two-time correlation function, R.t; t0/ D B.�/ where � D t0 � t. If the
limits of integration are infinite, then the Lumley integral equation reduces to:

Z 1
�1

R.t; t0/�.t0/dt0 D
Z 1
�1

B.�/�.t C �/d� D � �.t/ (2.12)

But this can be rearranged as follows (since the integral is only over �):

Z 1
�1

B.�/

�
�.t C �/

�.t/

�
d� D � (2.13)
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There is no time-dependence left on the right-hand side, so clearly the solution must
have the property that makes the bracketed term t-independent! Only an exponential
function has this property, and only if the argument is pure imaginary does it not
either blow up or die out.

Clearly this implies that the eigenfunctions for a stationary random process are
harmonic functions (sines and cosines or complex exponentials). The “eigenvalues”
are just their spectral energy content. And as before we determine the coefficients
of the eigenfunctions by projecting the field upon them. But these are just Fourier
transforms in the continuous radial frequency variable !; i.e.,

Ou.!/ D 1

2�

Z 1
�1

e�i!tu.t/dt (2.14)

where the 2� is placed before the integral so that the spectrum defined below
integrates to the energy.

So statistical stationarity implies Fourier transforms in time. And of course in
the generalized sense for the instantaneous random fields that are being represented.
Statistical stationarity also implies the Fourier coefficients at different frequencies
are uncorrelated, so:

hOu�.!/Ou.!0/i D F.!/ı.!0 � !/ (2.15)

where F.!/ is the “spectrum” defined as just the Fourier transform (in the ordinary
sense) of the two-time correlation, B.�/; i.e.,

F.!/ D 1
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�1

e�i!�B.�/d�: (2.16)

2.4.4 A Homogeneous and Stationary Random Field

So what does this imply if the field is homogeneous and stationary? Then the optimal
representation is also harmonic functions and the coefficients are Fourier transforms
in the sense of generalized functions, but of four dimensions; i.e.,

Oui.k; !/ D
�
1
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�4 Z 1
�1

e�iŒk�xC! t� ui.x; t/ dxdt: (2.17)

where the Oui.k; !/ are the Fourier coefficients, which are functions of both spatial
wavenumber, k, and radial frequency, !, both defined over infinite domains. These
Fourier “coefficients” tell how much of each Fourier “eigenfunction” is present in
the field.
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The field can of course be reconstructed using them and the eigenfunctions as:

ui.x; t/ D
Z 1
�1

eCiŒk�xC! t� Oui.k; !/ dkd!: (2.18)

Homogeneity and stationarity both dictate that the Fourier coefficients in non-
overlapping bands are uncorrelated; i.e.,

hOu�i .k; !/Ouj.k0; !0/i D Fi;j.k; !/ ı.k0 � k; !0 � !/ (2.19)

where Fi;j.k; !/ is the four-dimensional cross-spectral tensor which itself is the four-
dimensional Fourier transform (in the ordinary sense) of the two-point two-time
cross-correlation (or Reynolds stress tensor) given by:

Bi;j.r; �/ D h ui.x; t/ uj.x C r; t C �/i (2.20)

Fi;j.k; !/ and Bi;j.r; �/ are well known to be a four-dimensional Fourier transform
pair; i.e.,
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e�iŒk�xC! ��Bi;j.r; �/drd� (2.21)

and

Bi;j.r; �/ D
Z Z Z Z 1

�1
eCiŒk�xC! �� Fi;j.k; !/dkd! (2.22)

where r D x0� x and � D t0 � t are the spatial separation and time lag, respectively.
This is, of course, just the classical Wiener–Khintchine theorem stating that in
homogeneous and stationary random fields the Fourier coefficients at different
wavenumbers and frequencies are uncorrelated.

So these are exactly like the Fourier decompositions of the random water waves
(or acoustic or optical waves) described in Sect. 2.2.2 above. And it gives a rationale
for books on homogeneous turbulence which seem to have almost arbitrarily chosen
to represent homogeneous fields by continuous Fourier modes.

Now there are a several things we can surmise immediately if a homogeneous
turbulent field of uniform density were to be decomposed into these optimal Fourier
modes. First, consider what happens after transforming in four dimensions the
uj @ui=@xj term in the instantaneous velocity fluctuation equation. Since the Fourier
transform of a product is simply the convolution of its Fourier transforms, then the
four-dimensional transform is

1

.2�/4

Z

x

Z

t
e�iŒk�xC!t�

�
uj.x; t/

@ui.x; t/
@xj

�
dxdt (2.23)

D
Z

k0

Z

!0

��ik0j Ouj.k0; !0/Oui.k � k0; ! � !0/	 dk0d!



2 A 50-Year Retrospective and the Future 27

where all integrals are over the infinite domain. Thus all the non-linear interactions
are among triads of the four-dimensional wavenumber–frequency combinations
.k; !/, .k0; !0/; and (k0 � k; !0 � !/.

That there are interactions among triads of wavenumbers of Fourier decomposed
homogeneous fields has been well known since the 1940s at least. But that frequency
also interacts as triads of frequencies does not seem to have been previously noticed.
What this also means is that unless there is some mechanism to make the phases
of these superimposed eigenfunctions lock together, then a stationary random field
can have no definitive lasting (or coherent) structure. The reason is that the phases
will cancel each other out as the eigenfunctions of different wavenumbers and
frequencies move and evolve. Or said another way, analysis of a field with time-
dependent Fourier coefficients (as is common), say Ovi.k; t/, will be very different
from a complete four-dimensional analysis using Oui.k; !/ since any complex phase
frequency information in the latter will be smeared out in time in the former. This
could have important implications for our studies using forced turbulence since it is
both homogeneous and stationary (and in fact the only flow we know that is). I know
of no attempts to look at four-dimensional triadic interactions, but they could be very
interesting as noted below.

Turbulence in this regard is very different than a homogeneous field of surface
water waves, for example, where the dispersion relation between wavenumber and
frequency means different wavenumbers propagate at different speeds. To the best
of my knowledge no such general relations for turbulence exist. Maybe structures
can form and persist anyway. But without including frequency in the analysis along
with wavenumbers we will never really be able to tell. For example, one question
which might be asked is: when we see these vortical structures in DNS of forced
turbulence, how do they evolve and how long do they persist? And what Fourier
wavenumber–frequency combinations make them up? This we know from wave
theory: if these vortices are spatially compact, they must have a very wide spectrum
of contributing wavenumbers. But if they persist for long times (say relative to the
Kolmogorov or Taylor microtimes), then they must have very narrow bandwidth in
the frequency domain. Persistence time will be inversely proportional to frequency
bandwidth, just as spatial localization corresponds to a broad spectral content in
wavenumber space. The wider the bandwidth, the less localized the disturbance is
in either space or time. So the whole idea of associating small scales with high
wavenumbers and frequencies is intrinsically wrong. If one is localized in space,
then a broad band of wavenumbers must be in play. If it persists for a long time,
however, the spectral band in frequency must be quite narrow. (Note that in a real
flow, “frequency” becomes a bit garbled by advection, so frequency is probably best
thought of in a moving frame. Or by removing k � U from it where U is the mean
velocity; i.e., ! � k � U.)
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2.4.5 Homogeneous Periodic Flows

Homogeneous periodic flows are a special case as was noted by Lumley [28].
(See also [11, 13], the latter of which shows how the above relate to them.)
The eigenfunctions can similarly be shown to be Fourier modes, but this time
at frequencies which are integral multiples of the fundamental (or inverse of the
period). This is of course just classical Fourier series.

Note that it is commonly assumed that when we model homogenous flows as
periodic, then “real” turbulence must also be periodic. This is false. There is a
fundamental difference between a truly periodic flow, and one which we have only
imagined as such. The difference is whether the flow has been “windowed” or not.
Periodic flows are not “windowed.” But flows artificially treated as periodic are.
The differences can be quite important. For example, it is quite common to analyze
finite records of time series of statistically stationary flows by assuming them to
be periodic. This is incorrect, and inverse transformation leads to estimates of the
correlations that are wrong unless the window is included.

2.4.6 Mixed Flows

Flows that we commonly encounter can be a mixture of all the possibilities above:
inhomogeneous and of finite energy in one-direction, homogeneous in one (or more)
directions, perhaps periodic in one and stationary in time. This is in fact pretty
close to flow in a turbulent pipe, and fairly typical of many axisymmetric flows
we generate in the laboratory. Axisymmetric jets and wakes have received particular
attention (e.g., [4, 8, 9, 16, 23–25, 34, 36, 41]). Even high Reynolds number turbulent
boundary layers have been investigated using Lumley’s approach [37].

The easiest way to address these flows is to carry out the Fourier decompositions
first, usually on the instantaneous velocities; then carry out the Lumley integral
in the inhomogeneous and non-periodic directions using the cross-spectral tensors
computed from them. Finally determine the random POD coefficients by projecting
the resulting eigenfunctions onto realizations of the random Fourier coefficients.
For example, imagine the flow to be homogeneous in x, periodic in an azimuthal
coordinate � , stationary in time t, and inhomogeneous in a transverse coordinate y.
The corresponding Lumley projection is

Z

finite energy direction
F˛;ˇ.y; y

0I k; !;m/ ˇ.y
0I k; !;m/dy0 D �.k; !;m/  ˛.yI k; !;m/

(2.24)

where the subscripts ˛; ˇ indicate the appropriate components in the various
directions (streamwise, azimuthal, and transverse). Only the triple transform of the
instantaneous velocity can be constructed by summing up its POD modes, all of
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which are functions of not only y, but also the wavenumber, k, the frequency,!, and
the periodic mode number, m; i.e.,

Ou˛.yI k; !;m/ D
1X

nD1
an.k; !;m/  

.n/
˛ .yI k; !;m/ (2.25)

The velocity itself (or some portion) of it can only be obtained by inverse transfor-
mation over k; ! and inverting the Fourier series for each harmonic component m.
Since these Fourier coefficients are complex, this can yield results that look nothing
like the individual eigenfunctions. And reconstructions and inferences from partial
decompositions may look totally different.

It should be easy to see from this example why simplifying the decomposition
to make the random coefficients a function of time only most likely will not
succeed, since the various Fourier contributions from k; !;m to the complex random
coefficient an.k; !;m/ can change very much which POD modes contribute to the
sum as various Fourier modes turn off or on, or propagate through. In general,
homogeneities, stationarity, and periodicities tend to “destroy” the very coherent
features that they have built up. This is very much like the disappearing deep water
wave groups described earlier. It is probably more correct to think of coherent
features in turbulence as “groups” rather than structures, “groups” whose lifetime
and visibility depend on the frequency bandwidth of the Fourier components
comprising them. Or they may act more like solitons and actually propagate as fixed
form solutions of the equations. In the absence of suitable eigenfunctions to study
turbulence we simply can never know.

Unfortunately it has taken us (me in particular) decades to realize the source
of the problem with “partial dimension” decompositions—which in fact describes
all our experiments to date (and those of others as well). While those applications
of Lumley’s methodology using partial-dimension decompositions have given us
considerable insight into many flows, they have not produced for us the eigen-
functions we sought. The reason is that no partial decomposition can avoid the
phase-scrambling that comes from ignoring even one dimension. This is even more
of a problem with the snapshot decomposition as noted in Appendix 2. The good
news is that we have now learned enough to know how to carry out a complete
four-dimensional Lumley decomposition, especially using the multipoint similarity
methodologies described in the next section. And experimental and computational
capabilities are now large enough to be able to support it. So my challenge to the
generations behind me: do it!

2.5 Extensions Beyond Lumley

There is little in the preceding section which was not in Lumley’s original paper,
or at least could not be inferred from it. But part of my life-long quest has been to
extend the same kind of analysis to flows for which there was no obvious solution
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to the Lumley integral, nor any reason to believe such solutions might exist. All
of these extensions involve similarity solutions to the actual governing equations,
equations which were only tangential to Lumley’s decompositions. But for the
extensions described briefly below, it is similarity solutions to the actual two-point
two-time equations which provide the key to solving the integral, and indeed to
whether or not it is solvable at all. Amazingly, it turns out that in these cases at least,
the integral not only has solutions, they are analytical. So the real challenge for the
future for these flows becomes not to find empirical eigenfunctions from knowing
the flow, but to use the analytical ones to calculate it. Two examples are described
in the following sections, the second for the first time.

2.5.1 Partially Inhomogeneous Flows of Infinite
Extent and Infinite Energy

Since this example has already been partially published elsewhere, I shall keep this
discussion brief. But I would call attention to the paper on the fully developed jet by
Velte et al. [39] in this volume which discusses some recent extensions of this work
and summarizes it nicely.

Inhomogeneous flows of infinite extent were not a case considered by Lumley,
but it was always a major interest for me and my students because of our interest
in turbulent jets exhausting into a quiescent environment. And it should be a major
concern for anyone worried about most turbulent shear flows. In the ideal case the
jet in the streamwise direction continues forever. If the ideal flow can be assumed to
statistically stationary (as opposed to a starting jet), then momentum conservation
ensures that total energy associated with that direction is infinite. So the Lumley
integral can converge ONLY if some property of the kernel ensures that it does. But
what is that property?

The answer is: two-point similarity of the averaged equations [6, 7]. What
we found was that two-point similarity of the axisymmetric far jet allowed us
to transform the streamwise coordinate logarithmically. As a result the kernel of
Eq. (2.3) could be rewritten as R.x; x0/ D Us.x/Us.x0/B.	 0 � 	/ where 	 D ln x=D
where D can be any convenient dimension (like jet exit diameter). The result of this
is that the transformed flow is now homogeneous in the transformed streamwise
direction. And as noted above, a direct consequence is that the eigenfunctions are
now Fourier transform modes in the logarithmic coordinate, 	. In other words, it was
NOT necessary to solve the Lumley Integral Equations empirically, the solutions
were analytical! Note that these results are not approximations, they represent an
exact solution of the instantaneous equations.

That real jets behaved this way were confirmed by the extensive experiments of
Bettina Frohnapfel (reported in her master’s thesis) and in Ewing et al. [7]. Subse-
quently we were able to confirm these results in the studies at the Danish Technical
University by Maja Wänström [41, 42] using both cross-plane and streamwise plane
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Fig. 2.3 Composite images of streamwise and radial velocities showing homogenization of field
by mapping from physical to similarity coordinates. From Wänström et al. [42]

PIV. (As noted above, Clara Velte and Azur Hodzic are continuing these studies at
the Danish Technical University.) But more importantly we were able to extend them
to the instantaneous field. The thesis of Wänström reports these studies in detail. But
Fig. 2.3 summarizes the important points. The actual jet measurements from 30 to
100 diameters were transformed using only the local downstream half-width and
centerline velocity into a flow which was homogenous in the streamwise direction.
And by stretching the streamwise coordinate logarithmically, it was possible to
analytically determine the eigenfunctions to be Fourier modes in the logarithmically
stretched coordinate. The great streamwise extent of the flow was necessary to avoid
windowing when Fourier transforming in the stretched streamwise variable.

Unfortunately we were not able to measure all directions simultaneously. So we
ran into exactly the problem that quite surreptitiously complicates most attempts
to use various decompositions (or to determine turbulence structures). Even though
we had three (of four) dimensions, the missing fourth dimension meant the eigen-
functions were contaminated by the complex phases of the missing dimension. So
even though the results were quite robust and repeatable, each partial decomposition
gave different profiles for the actual radial dependence of the eigenfunctions. In the
light of our discussions above, this is exactly what we should have expected. Efforts
are now underway by Velte and Azur and co-workers to use the similarity results
and log stretching to perform a DNS of a jet of sufficient length (x=D > 100)
to allow Fourier analysis in the streamwise direction and decompose all four
dimensions simultaneously. Someday, hopefully soon, we will see what the full
four-dimensional eigenfunctions really look like.
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2.5.2 Homogeneous, but Non-stationary Turbulence

This is a particularly interesting class of flows since it includes several of the
turbulent flows which have received the most attention: decaying homogeneous
turbulence and homogeneous shear flow turbulence. Some years ago a master
student of mine at Chalmers (Adam Wachtor, now at Los Alamos) and I considered
applying the POD to a DNS simulation of decaying turbulence to see what the
eigenfunctions in time would look like. It seemed like the perfect application, since
it really was in a box and even of finite total energy in time (since it decayed
more rapidly than t�1). Unfortunately he had only one realization to work with.
This is because almost all DNS of decaying turbulence compute only a single
realization, but then “average” over space (or spherical shells of radius k) to get
the time-dependent statistics. Since he could not average we (really he) simply
applied the POD to the entire time record and to our great puzzlement (and
subsequent amusement) found the entire flow described by just one eigenfunction—
which looked exactly like the data. We laughed when we realized that the optimal
projection on just one data set is of course just the data set itself. I never told John
Lumley about this, but I suspect we were not the first nor the last to do this. In
fact a few months later a Danish Ph.D. student showed me exactly the same result
applied to the wake of a wind generator. Obviously statistics are an important part
of the whole Lumley projection idea. Clearly application of Lumley’s methodology
can advance only if we have enough realizations to perform reasonable statistics.
Unfortunately, except for “forced turbulence,” this is seldom the case for DNS.
And while experiments often have well-converged statistics, they often have a very
limited spatial field, thus either arbitrarily truncating (or windowing) the flow, or
limited resolution and not resolving the important scales.

But let’s think ahead and presume that someday we will have enough statistical
information at sufficient spatial resolution. Here is what I think the lucky person
who does this will find—probably from a DNS with many integral scales in the
field of view.

First since the three space dimensions are presumed to be homogeneous, then
the spatial eigenfunctions will be Fourier modes. Moreover, since the scales grow
in time, the energy moves to lower wavenumbers with time. If we further assume
the George similarity theory for decaying turbulence to be correct [12, 14], then
we know there are single length scale similarity solutions for which the Taylor
microscale is the best choice of scaling parameter, and the integral scale is
proportional to it. Since for long times at least our length scales grow relative to
the computational box (or move to lower wavenumbers in a fixed wavenumber
domain), our resolution will improve at the smallest scales in time, but the large
scales will try to grow out of the box. The result will be more energy at not just
the lowest wavenumbers, but also at the highest wavenumbers because of the triadic
interactions (between two high and one low wavenumber). The net result will be to
“artificially” increase the dissipation—at least relative to the flow we were trying
to create. So to avoid this, what we really need is a simulation which rescales
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dynamically so the box grows in time with the turbulence length scales. This actually
seems quite straightforward, but surprisingly does not seem to have been done. So
let’s imagine that we have done it. How do we apply Lumley’s projection to this
field?

If Fi;j.k; t/ is the two-time three-dimensional cross-spectral Reynolds stress
tensor from the result of decomposing in space first, Lumley’s projection integral
leaves us with the following integral equation for the time-dependence:

Z 1
to

Fi;j.k; t; t0/ �j.k; t0/dt0 D �.k/ �i.k; t/ (2.26)

where the wavenumber part of the three-dimensional cross-spectral tensor is given
by the three-dimensional spatial transform of the two-point two-time correlation
tensor; i.e.,

Fi;j.k; t; t0/ D 1

.2�/3

Z Z Z

all space
e�ik�r hui.x; t/uj.x C r; t0/i dr (2.27)

where r D x0 � x is the separation vector in the homogeneous directions. Clearly
we need the two-point two-time cross-correlation, hui.x; t/ uj.x0; t0/i, or its three-
dimensional spatial transform. In spite of all the experiments and DNS of decaying
turbulence I am not aware that this has ever been computed.

But there are a few facts which can make our job easier. First, since the flow is
homogeneous at every time even though its scales grow in time, we can define a
growing coordinate system using � D x=ı.t/ where x is our space coordinate at
time, t, and ı.t/ is our length scale, and �0 D y=ı.t0/ where y is our coordinate
system at time t0 and ı.t0/ is the length scale at t0. (Note that ı.t/ can be either the
Taylor microscale or the physical integral scale, since they are proportional. But the
former is usually more accurately determined.) By examining the two-point two-
time Reynolds stress equations (which I have been working on with Clay Byers and
Marcus Hultmark of Princeton University) it is possible to show that they admit to
an exact similarity solution for all times and spatial points of the following type:

hui.x; t/ uj.x0; t0/i D Rs.t; t
0/ fi;j.�;�

0; t; t0/ (2.28)

By substituting into the two-point two-time Reynolds stress equations, the function
Rs.t; t0/ can further be shown by equilibrium similarity arguments to decompose into
two functions, one of t only, the other of t0 only, and they are the same functions;
i.e., Rs.t; t0/ D Us.t/ Us.t0/. It is easy to show that this reduces to the two-point,
single time result of [12] if Us.t/2 is identified as the turbulence kinetic energy per
unit mass.

Second, it turns out that the turbulence is also homogeneous in the scaled space
coordinates. Now we already know that homogeneity in any coordinate (scaled or
unscaled) implies that the Fourier modes are the solutions to the Lumley integral in
these directions. So our two-point two-time Reynolds stress tensor in scaled space
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will behave very much as it does in regular space with one important difference—in
scaled space wavenumbers, say �, the scaled spectra will be fixed. There will be no
evolution as no energy moves to lower wavenumbers. The energy will, of course,
be moving to lower wavenumbers in physical space wavenumbers, but not in their
scaled space counterparts. The computational advantages of using this coordinate
system for any simulation should be obvious, and completely eliminate some of the
concerns expressed earlier about resolution and box-size by making sure that the
scales of turbulence do not change relative to them. This should help immensely in
sorting out how things really vary in time.

Third, it also turns out that time should be measured (and discretized) logarithmi-
cally. This should have been obvious to us from the single point similarity equations,
but for some reason was not. It leaps out at us inescapably from the two-point two-
time similarity Reynolds stress equations in similarity variables. So it means we
really should be looking at everything from the perspective of things evolving in
logarithmic time, say � D ln t and � 0 D ln t0.

But it gets even better yet. It is straightforward to show that in fact in these
new logarithmically stretched time-coordinates the scaled statistics are statistically
stationary. To anyone who has been reading and understanding the essential points
of this paper, the implications for the Lumley integral for this flow are obvious—and
striking! The solutions in logarithmic time are also Fourier modes—Fourier modes
of dimensionless frequency and logarithmically stretched time. In other words the
solutions are known analytically!

2.5.3 But What If Turbulence Decays as t�1, or More Slowly?

One of the oldest points of discussion in turbulence is about whether homogeneous
decaying turbulence should decay as t�1. Many theories suggest it should. All
experiments show it decays more rapidly. The reason for the latter is now obvious
in light of the previous section: there is no way to do an experiment or DNS which
does not have a finite total energy in the field. Even if allowing for the finiteness
in the spatial directions, there is no way to feed an infinite amount of energy in.
So the energy must decay more rapidly than t�1. So our “theoretical” flow is never
obtainable.

In spite of our inability to generate it, there is something even more interesting
that we can learn from the theoretical possibility of an infinite energy flow, a BIG
BANG TURBULENCE if you like. Let’s suppose that the integral of Eq. (2.26)
is indeed infinite. Can the Lumley projection still apply? Amazingly the answer
is yes—if the two-time kernel can be shown to be statistically stationary in
an appropriately stretched coordinate system. But this is exactly what we just
discovered in the preceding section.

What this means in practical terms is that the solutions in a truly infinite time,
infinite energy domain (the flow we think we are analyzing) are fundamentally
different solutions than the ones we can realize in the lab or the computer. Thus
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any attempt to verify infinite domain theory by experiment is doomed to failure—at
least unless the differences are recognized and accounted for. Some aspects will be
testable, others will not. The point is that the eigenfunctions describing them are
fundamentally different.

Before leaving this point, let me note the analogy to standard Fourier analysis. We
have long known that windowing affects our ability to do Fourier analysis. The same
is true in our fluid experiments but with one difference. We are not really windowing
an infinite solution, the flow we have generated inside our finite domains is truly
different. It is only at best an approximation to those we analyze theoretically with
assumptions which make analysis possible. The great challenge is to understand
how the two relate. When is the experimental data telling us the theory is wrong?
And when is the theory telling us the experiment is not a valid test? Lumley’s
Projection seems to have provided a way.

2.6 Conclusions: Similarity and the Lumley
Projection Integral

The importance of symmetries for POD has long been recognized (c.f. Holmes
et al. [20]). But the interrelation of similarity theory and the Lumley integral for
inhomogeneous flows of infinite extent are only just beginning to be explored. The
relation of two-point two-time similarity and the Lumley integral has been presented
here for the first time. And it raises several interesting questions.

First, it is clear that in flows which are not of finite total energy, unless there are
symmetries or some type of similarity (of the type exploited above), then there is no
possibility of representing (or decomposing) the flow in the manner suggested by
Lumley. It is only the additional information that the statistical properties bring to
bear that makes the integral solvable.

Second, is it possible that Lumley’s optimal projection integral is really more
than that? Is it possible that the optimization criterion Lumley has applied, also
implies that similarity solutions exist for these flows. Clearly the inverse is true.
Two-point two-time similarity in at least the few cases we have considered yields
analytical solutions to the Lumley integral equation. In both cases (decaying
turbulence and the axisymmetric jet), the optimal bases are Fourier modes in a
logarithmically stretched coordinate system. But are solutions of the Lumley type
a necessary feature of all flows? And in turn, do they imply similarity in some?
If so, this would be a very powerful result indeed, and substantially enhance our
understanding of turbulence.
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One has to be incredibly lucky to have been able to enjoy working in turbulence for five decades.
And even more lucky to be honored by his fellow travelers and former students. I am humbled, and
truly grateful to all those who have been a part of my life’s journey to this point.

Appendix 1: A Brief History of Lumley’s Projection
and My Involvement with It

History of science is always difficult, since the published literature often does not
correspond to the way things happened, and especially since order of publication
is often unrelated to the actual chronology. The “first results” are sometimes not
published at all, or published much later. As a result, newcomers frequently are
misled about who did what and when. This is especially true when an area of
research is suppressed, as was the case with Lumley’s early work on this subject
as well as my own work with my students. Since I joined this area of research just
about the time Lumley was losing his enthusiasm for it, and we played some small
role in both keeping it alive and re-inspiring him, the following account might be of
some value to those struggling in their own isolated corners of turbulence.

With just a few exceptions, Lumley’s ideas beginning in the early 1960s were
not received with great enthusiasm by the turbulence community. Nils Busch, a
colleague and friend of Lumley’s in Meteorology at Penn State returned to his native
Denmark to set up the Meteorology group at the Danish National Lab (RISOE) and
carried Lumley’s ideas with him, most notably the Ph.D. thesis of Eric Lundtang
Petersen (of Wind Atlas fame) who applied it to turbulent gusts. And Rex Reed at
U. Missouri at Rolla (in Switzerland at the time) also saw the advantages, and for
years tried to carry out experiments to obtain enough information to apply them. The
group at Poitiers under the leadership of Jean-Paul Bonnet embraced it somewhat
later, and collaborated extensively with Glauser starting in the 1980s (e.g., [5, 38]).
So this particular respect for Lumley’s work was very much a part of the reason that
the U. Poitiers gave him an honorary doctorate. But most others in the world, and
especially the USA, ignored this part of Lumley’s work. In part, this was because
they didn’t understand it. But that alone cannot explain why a few were so openly
very hostile to his idea.

Most of this hostility I believe was based on misinformation, in part a con-
sequence of the early applications of Lumley and his students themselves. In
particular, Bakewell [2] carried out experiments in the viscous sublayer of the
glycerine tunnel at Penn State built especially to apply the decomposition to
near-wall turbulence, and Payne [31] applied it to existing measurements of a
turbulent plane wake using Grant’s measurements [19]. Both had the tremendous
disadvantage of working with very little data. Bakewell’s near-wall measurements
were taken with a single hot-film probe along a single line perpendicular to the wall,
with only a single component of velocity and only out to yC D 40. By using a series
of “tricks” to fill in some of the missing component and cross-stream data, they
inferred that the near-wall structure might be counter-rotating vortices, and created
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the schematic seen in many publications. Payne had even less data to work with, but
managed to produce a pair of counter-rotating structures which spanned the wake.
Unfortunately both of these efforts, instead of stimulating more work, just increased
the criticism and the cynicism.

I don’t have any accounts of the Moscow meeting where Lumley presented his
now famous paper, other than the paper which got my attention as a first year
grad student. But I do know a bit about what happened later—mostly from Lumley
himself. Lumley’s problems with the fluids community’s lack of acceptance, or even
interest, began with his presentation at the 1967 APS meeting in Hawaii. He felt
humiliated by the comments after his presentation, especially by the public criticism
from Otto Laporte, and often cited this bad experience as one of his reasons for
avoiding such meetings as much as possible—at least in his earlier years. Ironically
Laporte did not criticize the ideas themselves, but instead castigated (Lumley’s
words) him for using dots (“�”) instead of symbols for the independent variables
(x; t), even though these were quite commonly used by mathematicians.

But the bigger problem with acceptance came from the emerging coherent
structures community, and from Lumley’s own misunderstanding of what he had
done. The coherent structure people led by the Cal Tech and Stanford groups were
observing very active events, but Lumley was still thinking like Townsend’s big and
mostly passive eddies. The attacks at meetings were fierce, so that by the time I
arrived on the scene in the late 1960s Lumley had already lost interest (at least in
the fight). His unwillingness to respond to unsolicited attacks often left me in the
1970s as his lone defender at APS and coherent structure meetings, even when he
was present. He often thanked me for my efforts to defend his ideas in public, but
clearly was disheartened by the need to do so.

By contrast with Townsend’s “passive large eddies,” and probably thanks to my
wave background, I had never thought of Lumley’s decomposition as passive. From
the very first I saw the dynamic possibilities, and went to Penn State to work with
Lumley—in part because of my enthusiasm for working on the decomposition with
him. (The other reason was to avoid being sent to Vietnam. Thanks to being hired
at Penn State on a Navy contract I was able to avoid a war I did not approve of.
And still finish my dissertation at Hopkins, but under Lumley’s supervision, thanks
to Stan Corrsin’s intervention on my behalf.)

Once at Penn State, and somewhat to my disappointment, I instead ended up
taking over the non-Newtonian drag-reduction experiments which were underway.
And this in turn led to my early work with polymer drag reduction and the LDA.
But immediately upon finishing my Ph.D. I set about to reactivate the glycerine
tunnel to look for dynamic near-wall events. My very first proposal was to the
GHR program of ONR and it was funded in 1972 with Lumley as co-PI. The idea
was to include time in the measurements as well as multiple velocity components
in multiple planes so we could see how things changed in time, not just space.
Unfortunately I left for Buffalo before the facility modifications were finished, and
the work was ultimately taken over by Siegfried Herzog. Shortly thereafter Lumley
moved to Cornell, leaving “my” experiment and Herzog behind to finish it. (Siggy
eventually wrote his dissertation at Cornell about 10 years later.) As per normal
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the experiments had proven more difficult than we had hoped, mostly because of
probe and data storage issues. Herzog did complete them, but by this time the DNS
efforts of Moin and Kim had caught up, in part because of our interaction with them.
Our combined efforts proved important in laying the groundwork for the dynamic
systems work of Aubrey et al. [1] later.

At Buffalo starting in 1974 I set out to do the same type of experiments that I
had started at Penn State, but in the axisymmetric jet mixing layer. With a modest
grant from NSF and some support from AFOSR in a collaborative program with
Roger Arndt at Minnesota and Hassan Nagib at IIT, my students and I began the
series of experiments which continue until today. Given the acceptance and wide-
spread use of POD-based techniques today, it is hard in hindsight to imagine the
hostility we faced at every step of the way. While I had gotten used to the negative
proposal reviews, I really was quite surprised at how ready opponents were to make
their disdain obvious in public. It was never clear, at least early on, whether the
opposition was to Lumley’s idea, or to Lumley himself with me as surrogate for
their attacks.

The turning point for me came at the 1976 APS meeting in Eugene, OR where
in an invited talk, Hans Liepman of Cal Tech went out of his way to trash Lumley’s
ideas. His specific comment after a brief tirade: “I’ve never seen any structures just
sitting there.” There was really no opportunity to question him in the plenary session,
but seeing him with a small group at the coffee break which followed I tried to
engage him about his comment (quite gently—since I was only 31 at the time).
I suggested he was being unfair and clearly lacked understanding of what Lumley
had actually done. And I tried to explain briefly why the time-dependence was really
all there. Hans was not in a mood to listen and pretty much exploded in my face.
By this time a rather larger group of 20 or so had gathered around us, probably
smelling my blood. At the most intense moment I felt an arm pushing me aside and
Bill Reynolds of Stanford stepped between us. He tapped Hans on the stomach with
this program and pointed over his shoulder with his thumb at me and said with a
big smile: “The kids’s right, Hans!”. Liepman said not a word, turned on his heel
and left.2 Needless to say, Bill Reynolds was my hero after that. And while I got my
reputation as “controversial,” not many took cheap shots in public after that at either
me or Lumley or his decomposition.

The real breakthrough in our collective thinking about Lumley’s decomposition
actually came with the work of Mark Glauser and Stewart Lieb, both Ph.D. students
of mine in the early 1980s. My colleague Andres Soom at Buffalo had several MS
students design for us a special computer controlled rig to make the measurement

2Seven years later I went to Liepman’s 70th birthday celebration at Cal Tech, a marvelous event
celebrating his life and career. We had not spoken since the meeting in Oregon. When he expressed
his surprise at seeing me there, I explained that many of the things I thought I had learned from
Corrsin and Lumley actually started with him. And I wanted to personally thank him. He seemed
quite appreciative. Indeed he was the bridge between turbulence and the classical physics of
Europe. But I never understood his problem with Lumley, nor to the best of my knowledge did
Lumley.
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program possible—a real novelty in the late 1970s. It was constructed by Scott
Woodward, who for many years afterward was an important part of my life and
lab. Mark copied an idea from Hassan Nagib of making rakes of probes instead of
individual ones. So we had finally both space and time information simultaneously.
Figures 2.1 and 2.2 show the results of this decomposition. It was clear to us from
the moment we saw the first reconstructed velocity traces that the Lumley integral
had produced almost exactly the most dynamic events. And it had done so with only
three eigenfunctions.

We showed these very plots to John Lumley during a break in a meeting at
Cornell in the summer of 1983 and presented them about the same time [17, 27].
Looking at the plots together was truly the moment I think that John first realized
the meaning and potential for what he had done. And it is also this moment I think
that his interest in POD was reborn, but recast this time in the context of dynamic
systems. Our paths also diverged—no longer was his decomposition about coherent
structures or large eddies. He, with the collaboration of Phil Holmes and students
Aubrey and Podvin and Bergooz, went for how to model these dynamic events.
A whole new field of dynamic systems approach to turbulence was born—about
which much has been written (c.f. [1, 18, 20]).

My group, by contrast, continued our quest to find the eigenfunctions and
learn how the flow itself put them together. And that quest continues until this
day. Not as much as been written, but enough to merit some discussion of its
theoretical underpinnings. That is what this article was about—understanding what
Lumley’s integral truly implies about (and demands of) the underlying flows,
whether experimental, computational, or theoretical.

Appendix 2: The Problem with the “Snapshot POD”

The so-called Snatpshot POD was introduced by Sirovich in the early 1980s and
has been used extensively since for a variety of purposes. It has been extremely
popular for the dynamics system attempts to understand and control turbulence,
especially since the pioneering study of Aubrey et al. [1] and the book by Holmes
et al. [20]. It is easily implemented if one has many ‘snapshots’ of data like those
commonly produced by PIV. But it is a mistake to confuse it with what has come
to be known as the ‘classical POD’, and it has only a superficial connection to the
Lumley decomposition discussed above.

The primary problem with it for real turbulent flows can be demonstrated quite
easily. Understanding why there is a problem is a bit more subtle. To simplify
things, consider a field of only the spatial variable, x, and time, t. The snapshot
POD basically replaces the instantaneous velocity with the following expansion:

u.x; t/ D
NX

nD1
an.t/ �

n.x/ (2.29)
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Like the classical POD, the eigenfunctions, �n.x/, are still orthogonal and the
random coefficients, an.t/, are uncorrelated at different times. The two-point two-
time correlation can therefore readily be computed as:

hu.x; t/u.x0; t0/i D
NX

nD1
ha�n .t/an.t

0/i �n�.x/�n.x0/ (2.30)

The connection to the classical POD (first noted by Sirovich in the early 1980s)
comes about by replacing the classical POD integral with its finite difference
approximation over space. In most applications this number is quite low so the
matrices involved are quite manageable. But when using all the data available from
DNS or PIV, these spatial arrays can be very large—typically 106 or more. It might
be argued, why not just take a smaller number of points—say a subset of those
available. Unfortunately this causes serious aliasing, exactly like what happens if a
time series is sampled too slowly. Now this can be overcome by spatially filtering
the instantaneous data, but this can also be quite computationally intensive.

So enter the snapshot POD. By assuming the flow to be stationary, time averaging
can be recognized to also be a summation, not over space but over snapshots. And
by comparison the number of snapshots can be quite manageable, thousands instead
of millions. Now comes Sirovich’s clever trick: interchange the order of summation
so the time ‘average’ is outside the double summation and solve that eigenvalue
problem instead. Presto, the classical POD and snapshot appear to have produced
exactly the same result! So where is the problem?

Implicit in the derivation of the snapshot POD is the assumption of statistical
stationarity, hence han.t/an.t0/i D Fn.t0 � t/ only. So letting � D t0 � t, we can
rewrite Eq. (2.30) as:

hu.x; t/u.x0; t0/i D
NX

nD1
Fn.�/ Rn.x; x0/ (2.31)

where Rn.x; x0/ D �n�.x/�n.x0/, There is nothing in principle wrong with this except
for the fact that I know of no turbulence which behaves this way. It would be a very
rare flow indeed were the turbulence scales uncoupled from the temporal evolution
of the flow.

This problem with the snapshot was first pointed out by me and Mark Glauser
in 1986 in an APS/DFD presentation, but ignored and even disputed (see note by
Aubrey et al. [1]). The failure of near-wall models and other dynamic system models
to advance beyond relatively simple or separated flows, I believe can still be largely
attributed to this underlying deficiency.

The underlying rationale for the snapshot POD lies in the clever interchanging of
order of summation and the numerical approximations to both the Lumley integral
and the finite sum arithmetic used to estimate an averaged value. The basic problem
lies in the fact that Lumley’s optimization applied to a field which is inhomogeneous
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in space but stationary in time implies that the time-modes are Fourier modes in
frequency. And this means all of the spatial eigenfunctions are functions of both
space and frequency, not separate functions of space and time. This was one of
the most important points of the body of this paper. Similarly, if the field has
some directions which are homogeneous and/or periodic, then the eigenfunctions
in these directions are Fourier modes, and so in the other directions they depend
on frequency and mode number as well as space. Moreover, stationarity implies
complex coefficients so that the same eigenfunctions can be used with different
phases between them. The snapshot POD cannot reflect this since it is missing
information, and simply mixes them.

Now my negativity about the snapshot POD should not be interpreted to mean
that I think it cannot be useful. It can be very useful—just not in the sense of
Lumley’s projection. Sometimes the periodic spatial pieces can be sorted as noted
in the work of my students and co-workers and those of Glauser, Tinney, and
co-workers. But in general, the time–frequency problem does not appear to be
tractable, and this complicates attempts to use it for understanding dynamics. On
the other hand, the snapshot POD can be a VERY useful way to sort and reduce
data sets. One example previously mentioned was suggested to me by J. Freund
who stored snapshot POD coefficients to provide a starting field for large scale CFD
computations of a compressible mixing layer well into the run. Another example is
from the work of Wänström et al. [41, 42] who used the snapshot POD results to
filter and reconstruct the cross-correlation before applying the classical POD to the
snapshot results.
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