
Chapter 2
Background on Multiobjective Optimization
for Controller Tuning

Abstract In this chapter a background on multiobjective optimization and a review
on multiobjective optimization design procedures within the context of control sys-
tems and the controller tuning problem are provided. Focus is given onmultiobjective
problems where an analysis of the Pareto front is required, in order to select the most
preferable design alternative for the control problem at hand.

2.1 Definitions

A MOP, without loss of generality,1 can be stated as follows:

min
θ

J(θ) = [J1(θ), . . . , Jm(θ)] (2.1)

subject to:

g(θ) ≤ 0 (2.2)

h(θ) = 0 (2.3)

where θ ∈ D ⊆ �n is defined as the decision vector in the searching space D,
J(θ) ∈ Λ ⊆ �m as the objective vector and g(θ), h(θ) as the inequality and equality
constraint vectors, respectively. As remarked previously, there is no single solution to
this problem because in general there is no best solution for all objectives. However,
a set of solutions, the Pareto SetΘP, is defined, where each decision θ ∈ ΘP defines
an objective vector J(θ) in the Pareto Front. All solutions in the Pareto Front are said
to be a set of Pareto-optimal and non-dominated solutions:

1A maximization problem can be converted to a minimization one. For each of the objectives to
maximize, the transformation: max Ji(θ) = −min(−Ji(θ)) should be applied.
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24 2 Background on Multiobjective Optimization for Controller Tuning

Definition 2.1 (Pareto Dominance): A decision vector θ1 dominates another vector
θ2, denoted as θ1 � θ2, if J(θ1) is not worse than J(θ2) in all objectives and is better
in at least one objective.

∀i ∈ A := {1, . . . ,m}, Ji(θ1) ≤ Ji(θ
2) ∧ ∃i ∈ A : Ji(θ1) < Ji(θ

2).

Definition 2.2 (Strict Dominance [91]): A decision vector θ1 is strictly dominated
by another vector θ2 if J(θ1) is worse than J(θ2) in all objectives.

Definition 2.3 (Weak Dominance [91]): A decision vector θ1 weakly dominates
another vector θ2 if J(θ1) is not worse than J(θ2) in all objectives.

Definition 2.4 (Pareto optimal): A solution vector θ∗ is Pareto optimal iff

�θ ∈ D : θ � θ∗.

Definition 2.5 (Pareto Set): In a MOP, the Pareto Set ΘP is the set including all the
Pareto optimal solutions:

ΘP := {θ ∈ D|�θ ′ ∈ D : θ ′ � θ}.

Definition 2.6 (Pareto Front): In a MOP, the Pareto Front JP is the set including the
objective vectors of all Pareto optimal solutions:

JP := {J(θ) : θ ∈ ΘP}.

For example, in Fig. 2.1, five different solutions θ1 . . . θ5 and their corresponding
objective vectors J(θ1) . . . J(θ5) are calculated to approximate the Pareto Set ΘP

Fig. 2.1 Pareto optimality and dominance definitions. Pareto set and front in a bidimensional case
(m = 2)
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Fig. 2.2 Design concept and design alternative definitions

and Pareto Front JP (bold lines). Solutions θ1 . . . θ4 are non-dominated solutions,
since there are no better solution vectors (in the calculated set) for all the objectives.
Solution θ4 is not Pareto optimal, since some solutions (not found in this case)
dominate it. However, solutions θ1, θ2 and θ3 are Pareto optimal, since they lie on
the feasible Pareto front.

Obtaining ΘP is computationally infeasible, since most of the times the Pareto
Front is unknown and likely it contains infinite solutions (notice that you shall only
rely on approximations of the Pareto set Θ∗

P and Front J∗
P). In Fig. 2.1 the non-

dominated solutions θ1 . . . θ4 conform an approximated Pareto Set Θ∗
P (although

only θ1 . . . θ3 are Pareto optimal) and their corresponding Pareto Front J∗
P approx-

imation. Since ΘP contains all Pareto optimal solutions it will be desirable than
Θ∗

P ⊂ ΘP.
In [84], some refinement is incorporated into the Pareto Front notion to differen-

tiate design concepts. A Pareto Front is defined given a design concept (or simply, a
concept) that is, an idea about how to solve a given MOP. The design concept is built
with a family of design choices (Pareto-optimal solutions) that are specific solutions
in the design concept. In the leading example, the PI controller is the design concept,
whereas a specific pair of proportional and integral gains is a design alternative. For
example, in Fig. 2.2, the Pareto Set/Front (bold lines) for a particular design concept
are approximated with a set of Pareto-optimal design alternatives (©) (for exam-
ple, a PI controller for a given MOP as a design concept). But sometimes, there are
different concepts, all of which are viable for solving an MOP (for example, for a
given control problem an LQR or a fuzzy controller can be used as alternative to
PI concept). Therefore, the DM can calculate a Pareto Front approximation for each
concept in order to make a comparison. Accordingly, in [84] the definition of Pareto
Front and Pareto optimality were extended to a Pareto Front for a set of concepts
(s-Pareto Front) where all solutions are s-Pareto optimal.
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Fig. 2.3 s-pareto front
definition

(a)

(b)

Definition 2.7 (s-Pareto optimality): Given an MOP and K design concepts, a solu-
tion vector θ1 is s-Pareto optimal if there is no other solution θ2 in the design concept k
such that Ji(θ

2) ≤ Ji(θ
1) for all i ∈ [1, 2, . . . ,m] and all concepts k, k ∈ [1, . . . ,K];

and Jj(θ
2) < Jj(θ

1) for at least one j, j ∈ [1, 2, . . . ,m] for any concept k.

Therefore, the s-Pareto Front is built joining the design alternatives of K design
concepts. In Fig. 2.3 two different Pareto Front approximations for two different
concepts (© and � respectively) are shown (Fig. 2.3a). In Fig. 2.3b, an s-Pareto
Front with both design concepts is built.

As remarked in [84], a comparison between design concepts is useful for the
designer, because he/she will be able to identify the concepts strengths, weaknesses,
limitations and drawbacks. It is also important to visualize such comparisons, and to
have a quantitative measure to evaluate these strengths and weaknesses.



2.1 Definitions 27

In the next section, it will be discussed how to incorporate such notions into a
design procedure for multiobjective problems.

2.2 Multiobjective Optimization Design (MOOD)
Procedure

It is important to perform an entire procedure [9] minding equally the decision mak-
ing and optimization steps [14]. Therefore, a general framework is required to suc-
cessfully incorporate this approach into any engineering design process. In Fig. 2.4
a general framework for any MOOD procedure is shown. It consists of (at least)
three main steps [18, 19]: the MOP definition (measurement); the multiobjective
optimization process (search); and the MCDM stage (decision making).

Fig. 2.4 A multiobjective optimization design (MOOD) procedure
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2.2.1 Multiobjective Problem (MOP) Definition

In this stage, the design concept (how to tackle the problem at hand), the engineering
requirements (which is important to optimize) and the constraints (which solutions
are not practical/allowed) have to be defined. In [84] it is noted that the design concept
implies the existence of a parametric model that defines the parameter values (the
decision space) leading to a particular design alternative and performance (objective
space). This is not a trivial task, since the problem formulation from the point of view
of the designer is not that of the optimizer [45]. A lot of MOP definitions and their
Pareto Front approximations have been proposed in several fields as described in
[17]. Also, reviews on rule mining [123], supply chains [2, 79], energy systems [35,
38], flow shop scheduling [129], pattern recognition [21], hydrological modeling
[34], water resources [107], machining [139], and portfolio management [88] can be
consulted by interested readers.

The designer will search for a preferable solution at the end of the optimization
process. As this book is dedicated to control system engineering, the discussed design
concepts will be entirely related to this field. As a controller must satisfy a set
of specifications and design objectives, a MOOD procedure could provide a deep
insight into the controller’s performance and capabilities. In counterpart, more time is
required for optimization and decisionmaking stages. Although several performance
measurements are available, according to [3]2 the basic specifications will cover:

• Load disturbance rejection/attenuation.
• Measurement noise immunity/attenuation.
• Set point follow-up.
• Robustness to model uncertainties.

It isworthwhile noting how the selection of the optimization objectives formeasur-
ing the desired performance can be achieved. A convenient feature of using MOEAs
is the flexibility to select interpretable objectives for the designer. That is, the objec-
tive selection can be close to the point of view of the designer. Sometimes, with
classical optimization approaches, a cost function is built to satisfy a set of require-
ments such as convexity and/or continuity; that is, it is built from the point of view of
the optimizer, in spite of a possible loss of interpretability for the designer. Therefore,
the MOP statement is not a trivial task, since the problem formulation from the point
of view of the designer is not that of the optimizer [45].

Given the MOP definition some characteristics for the MOEA could be required.
That is, according to the expected design alternatives, the MOEA would need to
include certain mechanisms or techniques to deal with the optimization statement.
Some examples are related with robust, multi-modal, dynamic and/or computation-
ally expensive optimization. Therefore, such instances could lead to certain desirable
characteristics for the optimizer, which will be discussed in advance.

2Although specified in the context of PID control, they are applicable to all types of controllers.
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2.2.2 Evolutionary Multiobjective Optimization (EMO)

Some of the classical strategies to approximate the Pareto Set/Front include: Nor-
mal constraint method [86, 116], Normal boundary intersection (NBI) method
[24], Epsilon constraint techniques [91] and Physical programming [87]. In [55],
a Matlab© toolbox kit for automatic control3 is presented that includes some of the
aforementioned utilities for multiobjective optimization. For the interested reader,
in [81, 91] reviews of general optimization statements for MOP in engineering are
given. However, as noticed earlier, this book focuses on the MOOD procedure by
means of EMO so MOEAs will be discussed.

MOEAs have been used to approximate a Pareto set [144], due to their flexibil-
ity when evolving an entire population towards the Pareto front. A comprehensive
review of the early stages of MOEAs is contained in [20]. There are several popular
evolutionary and nature-inspired techniques used by MOEAs. The former, mainly
based on the laws of natural selection where the fittest members (solutions) in a
population (set of potential solutions) are more likely to survive as the population
evolves. The latter is based on the natural behavior of organisms. Anyway in both
cases a population is evolved towards the (unknown) Pareto Front. We will refer to
them simply as evolutionary techniques.

The most popular techniques include Genetic Algorithms (GA) [69, 122],
Particle Swarm Optimization (PSO) [15, 65], and Differential Evolution (DE)
[27, 28, 90, 128]. Nevertheless, evolutionary techniques as Artificial Bee Colony
(ABC) [64], Ant Colony Optimization (ACO) [33, 93] of Firefly algorithms [42] are
becoming popular. No evolutionary technique is better than the others, since each has
its drawbacks and advantages. These evolutionary/nature-inspired techniques require
mechanisms to deal with EMO since they were originally used for single objective
optimization. While the dominance criterion (Definition 2.1) could be used to evolve
the population towards an approximated Pareto Front, it could be insufficient to
achieve a minimum degree of satisfaction in other desirable characteristics for a
MOEA (diversity, for instance). In Algorithm 2.1 a general structure for a MOEA
is given. Its structure is very similar to most evolutionary techniques [43]: it builds
and evaluates an initial population P|0 (lines 1–2) and archives an initial Pareto Set
approximation (line 3). Then, optimization (evolutionary) process begins with the
lines 5–10. Inside this optimization process, the evolutionary operators (depending
on the evolutionary technique) will build and evaluate a new population (line 7–8),
and the solutions with better cost function will be selected for the next generation
(line 10). The main difference is regarding line 9, where the Pareto Set approxi-
mation is updated; according to the requirements of the designer, such process will
incorporate (or not) some desirable features.

Desirable characteristics for a MOEA could be related to the set of (useful) solu-
tions required by the DM or the optimization design statement at hand (Fig. 2.5).
Regarding a Pareto Set, some desirable characteristics include (in no particular
order) convergence, diversity and pertinency. Regarding the optimization statement,

3Freely available at http://www.acadotoolkit.org/.

http://www.acadotoolkit.org/
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Fig. 2.5 Desired properties for MOEAs

1 Build initial population P|0 with Np individuals;
2 Evaluate P|0;
3 Build initial Pareto set approximation Θ∗

P|0 with P|0;
4 Set generation counter G = 0;
5 while convergence criteria not reached do
6 G = G + 1;
7 Build population P∗|G using P|G−1 with an evolutionary or bio-inspired technique;
8 Evaluate new population P∗|G;
9 Build Pareto set approximation Θ∗

P|G with Θ∗
P|G−1

⋃
P∗|G ;

10 Update population P|G with P∗|G ⋃
P|G−1;

11 end
12 RETURN Pareto set approximation Θ∗

P|G;
Algorithm 2.1: Basic MOEA.

some features could be related to deal with constrained, many-objectives, dynamic,
multi-modal, robust, computationally expensive or large scale optimization instances.
These desired characteristics are also a guide to appreciate current trends andongoing
research on EMO and MOEAs development [30, 144].
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Fig. 2.6 Convergence
towards the pareto front

Feature 1 Convergence

Convergence is the algorithm’s capacity to reach the real (usually unknown) Pareto
front (Fig. 2.6). Convergence properties usually depend on the evolutionary parame-
ters of theMOEA used. Because of this, several adaptation mechanisms are available
as well as several ready to use MOEAs with a default set of parameters. For exam-
ple, the CEC (Congress on Evolutionary Computation) benchmarks on optimization
[58, 142] provide a good set of these algorithms, comprising evolutionary techniques
as GA, PSO andDE. Another idea to improve the convergence properties of aMOEA
is by means of using local search routines through the evolutionary process. Such
algorithms are know as memetic algorithms [95, 98].

Evaluating the convergence of a MOEA over another is not a trivial task, since
you are comparing Pareto front approximations. For two objectives it could not be
an issue, but in several dimensions is more difficult. Several metrics have been devel-
oped to evaluate the convergence properties (and other characteristics) for MOEAs
[67, 148].

Convergence is a property common to all optimization algorithms; from the user’s
point of view it is an expected characteristic. Nevertheless, in the case of MOEAs it
could be insufficient, and another desired (expected) feature, as diversity, is required.

Feature 2 Diversity Mechanism

Diversity is the algorithm’s capacity to obtain a set of well-distributed solutions on
the objective space; thus providing a useful description of objectives and decision
variables trade-off (Fig. 2.7). Popular ideas include pruning mechanisms, spreading
measures or performance indicators of the approximated front.

Regarding pruningmechanisms, probably the first techniquewas the ε-dominance
method [70], which defines a threshold where a solution dominates other solutions
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Fig. 2.7 Diversity notion in
the pareto front

in their surroundings. That is, a solution dominates the solutions that are less fit for
all the objectives, as well as the solutions inside a distance than a given parameter
ε. Such dominance relaxation has been shown to generate Pareto Fronts with some
desirable pertinency characteristics [82]. Algorithms based on such concept include
ev-MOGA4 [52], paε-MyDE [51], and paε-ODEMO [48]. Similar ideas have been
developed using spherical coordinates (or similar statements) [5, 10, 113] in the
objective or decision space.

In regard to spreading measures, the crowding distance [31] is used to instigate an
algorithm to migrate its population to less crowded areas. This approach is used in
algorithms such as NSGA-II5 [31], which is a very popularMOEA. Other algorithms
such as MOEA/D6 [141] decompose the problem in several scalar optimization
subproblems, which are solved simultaneously (as in NBI algorithm) and thereby
assure diversity as a consequence of space segmentation when defining the scalar
subproblems.

In the case of performance indicators, instead of comparing members of the pop-
ulation, at each generation solutions who best build a Pareto Front are selected based
on some performance indicator. An example is the IBEA algorithm [147] which is
an indicator based evolutionary algorithm. Most used performance indicators are the
hypervolume and the epsilon-indicator [148].

However a good diversity across the Pareto Front must not be confused with
solution pertinency (meaning, interesting and valuable solutions from the DM point
of view). Several techniques trying to accomplish a good diversity on the Pareto Front

4Available for Matlab© at: http://www.mathworks.com/matlabcentral/fileexchange/31080.
5Source code available at: http://www.iitk.ac.in/kangal/codes.shtml; also, a variant of this algorithm
is available in the global optimization toolbox of Matlab©.
6Matlab© code available at: http://cswww.essex.ac.uk/staff/zhang/IntrotoResearch/MOEAd.htm.

http://www.mathworks.com/matlabcentral/fileexchange/31080
http://www.iitk.ac.in/kangal/codes.shtml
http://cswww.essex.ac.uk/staff/zhang/IntrotoResearch/MOEAd.htm
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Fig. 2.8 Pertinency notion

seem to be based on (or compared with) uniform distributions. Nevertheless, a large
set of solutions may not be of interest to the DM, owing to a strong degradation in
one (or several) objectives [22]. Therefore, somemechanisms to incorporate designer
preferences could be desirable to improve solutions pertinency.

Feature 3 Pertinency

Incorporating DM preferences into a MOEA has been suggested in order to improve
the pertinency of solutions. That is, improving the capacity to obtain a set of interest-
ing solutions from theDMpoint of view (Fig. 2.8). Several ways to include designer’s
preferences in the MOOD procedure comprise a priori, progressive, or a posteriori
methods [96].

• A priori: the designer has some knowledge about his/her preferences in the objec-
tive space. In such cases, you could be interested in an algorithm that could incor-
porate such preferences in the optimization procedure.

• Progressive: the optimization algorithm embeds the designer into the optimization
process adjusting his/her preferences on the fly. This could be a desirable charac-
teristic for an algorithm when the designer has some knowledge of the objectives
trade-off in complex problems.

• A posteriori: the designer analyzes the Pareto Front calculated by the algorithm
and, according to the set of solutions, he/she defines his/her preferences in order
to select the preferable solution.

Some popular techniques include ranking procedures, goal attainment, fuzzy rela-
tions, among others [14]. Improving pertinency in multiobjective algorithms could
have a direct and positive impact in theMCDMstage, since theDMcould be provided
with a more compact set of potential and interesting solutions. It has been suggested
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that the size of the Pareto Front approximation must be kept to a manageable size for
the DM. According to [87] it is usually impossible to retain information from more
than 10 or 20 design alternatives.

A natural choice to improve solutions’ pertinency is the inclusion of optimization
constraints (besides bound constraints on decision variables). This topic will be
exposed below.

Feature 4 Constrained optimization

Another desirable characteristic in MOEAs is constraint handling. Since most of
the design optimization problems need to consider constraints, such mechanisms are
always an interesting topic of research. Various techniques have been developed for
evolutionary optimization [16, 44]. In [89], those techniques are classified as:

• Feasibility rules. An easy and basicmanner to implement the approach is discussed
in [29]. It consists in:

– When comparing two feasible solutions, the one with the best objective function
is selected.

– When comparing a feasible and an infeasible solution, the feasible one is
selected.

– When comparing two infeasible solutions, the one with the lowest sum of con-
straint violation is selected.

• Stochastic ranking. This approach briefly consists in comparing two infeasible
solutions by their fitness or by their constraint violations.

• ε-constrained method. This method uses a lexicographic ordering mechanism
where the minimization of the constraint violation precedes the minimization of
the objective function. This mechanism, with an adaptive parameter scheme,7 won
the CEC2010 competition in a special session on constrained real-parameter opti-
mization [77].

• Novel penalty functions and novel special operators.
• Multiobjective concepts. In the case of MOO, it can be a straightforward approach
where the constraint is treated as an additional objective to optimize towards a
desired value (goal vector).

• Ensemble of constraint-handling techniques. This approach involves taking advan-
tage of all the mechanisms for constraint handling and using them on a single
optimization run (for example [78]).

Regarding controller tuning, constrained optimization instances may appear in
complex processeswhere, for example, several constraints on settling time, overshoot
and robustness must be fulfilled.

7Code available at http://www.ints.info.hiroshima-cu.ac.jp/~takahama/eng/index.html for single
objective optimization.

http://www.ints.info.hiroshima-cu.ac.jp/~takahama/eng/index.html
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Feature 5 Many-Objectives optimization

Algorithms with good diversity preservation mechanisms could have problems if
solutions are dominance resistant in an m-dimensional objective space and so waste
time and resources in non-optimal areas [104]. This is because of the self diverse
nature and the large number of objectives (usually, m ≥ 5). Furthermore, recent
research has indicated that a random search approach can be competitive for gener-
ating a Pareto Front approximation for a many-objectives optimization [22]. Several
approaches to deal with many-objectives optimization include [61]:

• Modification of Pareto dominance to improve the selection pressure towards the
Pareto Front.

• Introduction of different ranks to define ametric based on the number of objectives
for which a solution is better than the other.

• Use of indicator functions as performance indicators of the quality of the Pareto
Front approximation.

• Use of scalarizing functions (weighting vectors, for example).
• Use of preference information (see above), that is, information on the region of
interest for the DM.

• Reduction in the number of objectives.

Examples to deal with this last issue can be seen in [75] where an objective
reduction is performed using principal component analysis (PCA), or in [120] where
a heuristic approach is used for dimensional reduction. Besides, algorithms which
incorporate preference information in the optimization approach could be used in
many-objective instances [61].

In the specific case of controller tuning, a many-objective optimization instance
would appear according with the complexity of a given control loop or process, and
the number of requirements to fulfill.

Feature 6 Dynamic optimization

Sometimes the static approach is not enough to find a preferable solution and there-
fore, a dynamic optimization statement needs to be solved where the cost function is
varying with time. The challenge, besides tracking the optimal solution, is to select
the desired solution at each sampling time. In [23, 36] there are extensive reviews
on this topic.

As it can be noticed, this kind of capabilities would be useful for problems related
with Model Predictive Control (MPC) where a new control value is obtained at each
sampling time taking into account new information of the process outputs.

Feature 7 Multi-modal Optimization

Multi-modal instances for controller tuning per se seem to be not usual; nevertheless
they may appear in multi-disciplinary optimization [83] statements, where besides
the tuning parameters, other design variables (as mechanical or geometrical) are
involved.
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In multi-modal optimization, different decision variable vectors could give the
same objective vector. In some instances, it could be desirable to retain such solutions
and perform, in the MCDM step, an analysis according with the decision space
region where those solutions belongs. This could be important in instances where,
for example, the decision variables have a physical meaning and it is convenient to
analyze the impact of using one over another. In a EMO framework, this information
could be added as additional objectives as noticed by [32]. For more details on
multi-modal optimization, the interested reader could refer to [26].

Feature 8 Robust Optimization

In a general frame and according to [7], robust optimization could refer not only to
the models used to measure the performance, but also with the sensitivity analysis on
the calculated solutions. That is, how much could be degraded the objective vector
under the presence of uncertainties. This sensibility analysis could be done by means
of deterministic measures and/or with direct search (as Montecarlo methods). This
kind of analysis could bring a different level of interpretability of the performance
due to uncertainties in the model used in the optimization. This problem statement
is related with reliability optimization, where a given performance must be assured
for a certain solution along different scenarios.

An example is provided in [124] where an evaluation of the American Control
Conference Benchmark [136] based on Montecarlo methods is done.

Feature 9 Computationally Expensive optimization

Computationally expensive optimization is related with line 8 of Algorithm 2.1.
Sometimes cost function evaluation requires a huge amount of computational
resources. Therefore stochastic approaches are a disadvantage, given the complexity
to evaluate the fitness (performance) of an individual (design alternative). Recent
solutions are mainly oriented to generate a surface on-the-fly of the objective space,
with lower computational effort. One popular technique is the use of Neural Net-
works, trained through an evolutionary process, but any kind of model or surface
approximation could be used. A review on the topic can be consulted in [117]. In
the field of control systems engineering, such type of instances would appear when
expensive calculations in complex simulations are needed to compute the objective
vector.

In other instances, such computational effort could be relative; that is, there are
limited computational resources to evaluate a cost function. To deal with this issue
compact evolutionary algorithms has been proposed, but such instance has not reach
yet the EMOapproach. Some examples are exposed in [50] and [92]. Instances where
this capabilities could be desirable include embedded solvers for optimization.

Feature 10 Large scale optimization

It refers to the capabilities of a given MOEA to deal with MOP with any number
of decision variables with reasonable computational resources. Sometimes a MOEA
can performwell for a relatively small number of decision variables, but it could be an
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impractical solution (according to the computational resources available) to solve a
problemwith a bigger number of decision variables.Whilst in expensive optimization
instances (Feature 9) the complexity is due to the performance measurement (line
8 in Algorithm 2.1), in large scale may be related to the algorithm’s mechanism
to approximate a new set of design alternatives (lines 7 and 9). In the former the
complexity is added by the problem, in the latter by the algorithm. A review on this
topic can be consulted in [74].

The aforementioned features could be desirable characteristics for a givenMOEA.
Afer all, it would depend on the designer’s preferences and the MOP statement at
hand.Afterwards, aMCDMstepmust be carried, in order to select themost preferable
solution. This step is commented below.

2.2.3 MultiCriteria Decision Making (MCDM)

Once the DM has been provided with a Pareto Front J∗
P, she/he will need to analyze

the trade-off between objectives and select the best solution according to her/his
preferences. A comprehensive compendium on MCDM techniques (and software)
for multi-dimensional data and decision analysis can be consulted in [41]. Assuming
that all preferences have been handled as much as possible in the optimization stage,
a final selection step must be taken with the approximated Pareto Front. Here we will
emphasize the trade-off visualization.

It is widely accepted that visualization tools are valuable and provide the DM
with a meaningful method to analyze the Pareto Front and make decisions [73].
Tools and/or methodologies are required for this final step to successfully embed
the DM into the solution refinement and selection process. It is useful if the DM
understands and appreciates the impact that a given trade-off in one sub-space could
have on others [9]. Even if an EMO process has been applied to a reduced objective
space, sometimes the DM needs to increase the space with additional metrics or
measurements to have confidence in her/his own decision [9]. Usually, analysis on
the Pareto Front may be related with design alternatives comparison and design
concepts comparison.

For two-dimensional problems (and sometimes for three-dimensional ones) it is
usually straightforward to make an accurate graphical analysis of the Pareto Front
(see for example Fig. 2.9), but difficulty increases with the problem dimension. Tools
such as VIDEO [68] incorporate a color coding in three-dimensional graphs to ana-
lyze trade-offs for 4-dimensional Pareto fronts. In [73], a review on visualization
techniques includes techniques such as decision maps, star diagrams, value paths,
GAIA, and heatmap graphs. Possibly themost common choices for Pareto Front visu-
alization and analysis in control systems applications are: scatter diagrams, parallel
coordinates [60], and level diagrams [8, 109].
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θθ

θ

Fig. 2.9 3D Visualization of a 3-dimensional pareto front

Scatter diagram plots (SCp)8 are straightforward visualizations. They generate
an array of 2-D graphs to visualize each combination of a pair of objectives (see
Fig. 2.10). This type of visualization is enough for two dimensional problems. To
appreciate all the trade-offs of an m-dimensional Pareto Front, at least m(m−1)

2 com-
bination plots are required. For example, the Pareto Front of Fig. 2.9 is visualized
using SCp in Fig. 2.10. If the DM would like to see the trade-off for an objective and
a decision variable from the n-dimensional decision space, she/he will need n times
m additional plots.

Parallel coordinate (PAc) visualization strategy [60] plots an m-dimensional
objective vector in a two-dimensional graph.9 For each objective vector J(θ) =
[J1(θ), . . . , Jm(θ)] the ordered pairs (i, Ji(θ)), i ∈ [1, . . . ,m] are plotted and linked
with a line. This is a very compact way of presenting multidimensional information:
just one 2-D plot is required. Nevertheless, to entirely represent the trade-off surface
some axis relocation may be necessary. For example, in Fig. 2.11, it is possible to
appreciate the PAc visualization of the Pareto Front depicted in Fig. 2.9. To appreciate
tendencies with the decision space variable, an extended plot with n+m vertical axes
is required. An independent graph could be plotted, but some strategy (such as color
coding) will be needed to link an objective vector with its corresponding decision
vector in order to appreciate trade-off information from the objective space. This
kind of feature is incorporated in visualization tools such as TULIP from INRIA,10

8Tool available in Matlab©.
9Tool available in the statistics toolbox of Matlab©.
10Available at http://tulip.labri.fr/TulipDrupal/. Includes applications for multidimensional analy-
sis.

http://tulip.labri.fr/TulipDrupal/
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θ

θ

θ

Fig. 2.10 Scatter plot (SCp) visualization for pareto front of Fig. 2.9

which are also helpful for analyzing multidimensional data. Finally, a normalization
or y-axis re-scaling can be easily incorporated, if required, to facilitate the analysis.

The Level Diagrams (LD) visualization [8]11 is useful for analyzing m-objec-
tive Pareto Fronts [145, 146], as it is based on the classification of the approxi-
mation J∗

P obtained. Each objective Ji(θ) is normalized Ĵi(θ) with respect to its
minimum and maximum values. To each normalized objective vector Ĵ(θ) a p-norm
is applied to evaluate the distance to an ideal12 solution Jideal. The LD tool displays
a two dimensional graph for each objective and decision variable. The ordered pairs(
Ji(θ), ‖Ĵ(θ)‖p

)
in each objective sub-graph and

(
θl, ‖Ĵ(θ)‖p

)
in each decision

variable sub-graph are plotted (a total of n + m plots). Therefore, a given solution
will have the same y-value in all graphs (see Fig. 2.12). This correspondence will
help to evaluate general tendencies along the Pareto Front and to compare solutions
according to the selected norm. Also, with this correspondence, information from the
objective space is directly embedded in the decision space, since a decision vector
inherits its y-value from its corresponding objective vector.

11GUI for Matlab© is available at: http://www.mathworks.com/matlabcentral/fileexchange/24042.
12By default, minimum values for each objective in Ĵ(θ) could be used to build an ideal solution.

http://www.mathworks.com/matlabcentral/fileexchange/24042
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Fig. 2.11 Parallel coordinates plot (PAc) visualization for pareto front of Fig. 2.9
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Fig. 2.12 Level diagram (LD) visualization for pareto front of Fig. 2.9
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In any case, characteristics required for such a visualizationwere described in [73]:
simplicity (must be understandable); persistence (information must be remember-
able by theDM); and completeness (all relevant informationmust be depicted). Some
degree of interactivity with the visualization tool is also desirable (during and/or
before the optimization process) to successfully embed the DM into the selection
process.

2.3 Related Work in Controller Tuning

As noticed in the previous chapter, multiobjective techniques might be useful for
controller tuning applications. This section will provide a brief listing on related
work over the last ten years (expanding and updating [115]), with a focus on four
controller structures (design concepts): PID-like, State space representation, fuzzy
control and model predictive control. While several works have dealt with MOP
(using an AOF for example), those where dominance and Pareto Front concepts
have been used actively for controller tuning purposes will be included.

Control engineers might select different design objectives in order to evaluate a
given controller performance in the feedback loop. According to the basic control
loop of Fig. 2.13, such design objectives are typically selected in order to have a
measure of:

• Tracking performance of the set point (reference) r(t).
• Rejection performance of load disturbance d(t).
• Robustness to measurement noise n(t).
• Robustness to model uncertainty.

Different measures are used for such purposes, typically in frequency and time
domains.

2.3.1 Basic Design Objectives in Frequency Domain

• Maximum value of the complementary sensitivity function.

JMp(θ) = ∥
∥P(s)C(s)(I + P(s)C(s))−1

∥
∥∞ (2.4)

Fig. 2.13 Basic control loop
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• Disturbance attenuation performance.

JW1(θ) = ∥
∥W (s) · (I + P(s)C(s))−1

∥
∥∞ < 1 (2.5)

• Maximum value of noise sensitivity function.

JMu(θ) = ∥
∥C(s)(I + P(s)C(s))−1

∥
∥∞ (2.6)

• Maximum value of the sensitivity function.

JMs(θ) = ∥
∥(I + P(s)C(s))−1

∥
∥∞ (2.7)

• Robust stability performance.

JW2(θ) = ∥
∥W (s) · (P(s)C(s)(I + P(s)C(s))−1)

∥
∥∞ < 1 (2.8)

where W (s) are weighting transfer functions commonly used in mixed sensitivity
techniques.

2.3.2 Basic Design Objectives in Time Domain

• Integral of the absolute error value.

JIAE(θ) =
tf∫

t=t0

|r(t) − y(t)| dt (2.9)

• Integral of the time weighted absolute error value.

JITAE(θ) =
tf∫

t=t0

t |r(t) − y(t)| dt (2.10)

• Integral of the squared error value.

JISE(θ) =
tf∫

t=t0

(r(t) − y(t))2 dt (2.11)

• Integral of the time weighted squared error value.

JITSE(θ) =
tf∫

t=t0

t (r(t) − y(t))2 dt (2.12)
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• Settling time: time elapsed from a step change input to the time at which y(t) is
within a specified error band of Δ%.

Jt(100−Δ)%(θ) (2.13)

• Overshoot (for a positive input change).

Jover(θ) = max

[

max

(
y(t) − r(t)

r(t)

)

, 0

]

, t ∈ [t0, tf ] (2.14)

• Maximum deviation (for a load disturbance).

Joverd(θ) = max

(∣
∣
∣
∣
y(t) − r(t)

r(t)

∣
∣
∣
∣

)

, t ∈ [t0, tf ] (2.15)

• Integral of the squared control action value.

JISU(θ) =
tf∫

t=t0

u(t)2dt (2.16)

• Integral of the absolute control action value.

JIAU(θ) =
tf∫

t=t0

|u(t)|dt (2.17)

• Total variation of control action.

JTV (θ) =
tf∫

t=t0

∣
∣
∣
∣
du

dt

∣
∣
∣
∣ dt (2.18)

• Maximum value of control action.

JmaxU(θ) = max(u(t)), t ∈ [t0, tf ] (2.19)

where r(t), y(t), u(t) are the set-point, controlled variable and manipulated variable
respectively in time t. Such objectives, for the sake of simplicity, have been stated in
a general sense.
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2.3.3 PI-PID Controller Design Concept

PID controllers are reliable control solutions thanks to their simplicity and efficacy
[3, 4]. They represent a common solution for industrial applications and therefore,
there is still ongoing research on new techniques for robust PID controller tun-
ing [135]. Any improvement in PID tuning is worthwhile, owing to the minimum
number of changes required for their incorporation into already operational control
loops [125, 130]. As expected, several works have focused on the PID performance
improvement.

Given a process modelP(s), the following general description for a PID controller
of two-degree-of-freedom is used (see Fig. 2.14):

C(s) = Kc

(

b + 1

Tisλ
+ c

Td · sμ
Td
N sμ + 1

)

R(s)

− Kc

(

1 + 1

Tisλ
+ Td · sμ

Td
N sμ + 1

)

Y(s) (2.20)

where Kc is the proportional gain, Ti the integral time, Td the derivative time, N the
derivative filter, a, b the set-point weighting for proportional and derivative actions;
λ andμ are used to represent a PID controller with fractional order [103]. Therefore,
the following design concepts (controllers)with their decision variables can be stated:

PI: θPI = [Kc,Ti]. b = 1,Td = 0, λ = 1.
PD: θPD = [Kc,Td]. b = c = 1, 1

N = 0, 1
Ti

= 0, μ = 1.

PID: θPID = [Kc,Ti,Td]. b = c = 1, 1
N = 0, λ = 1, μ = 1.

PID/N: θPID/N = [Kc,Ti,Td,N]. b = c = λ = μ = 1.
PI1: θPI1 = [Kc,Ti, b]. Td = 0, λ = 1.
PID2: θPID2 = [Kc,Ti,Td, b, c]. 1

N = 0, λ = μ = 1.
PID2/N: θPID2/N = [Kc,Ti,Td,N, b, c]. , λ = μ = 1.
PIλDμ: θFOPID = [Kc,Ti,Td, λ, μ]. b = c = 1, 1

N = 0.

In Table2.1 a summary of contributions using these design concepts is provided.
Brief remarks on MOP, EMO and MCDM for each work are given. Regarding the
MOP, it is important to notice that there are more works focusing on controller tuning
for SISO loops; besides, there is also an equilibrium with MOP problems dealing

Fig. 2.14 Control loop with a two-degree-of-freedom PID (2DOF-PID) controller
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with 2–3 objectives versus many-objectives optimization. Regarding the optimizer,
MOEAs based on GA seem to be more popular for such design concept. In the
MCDM stage while a design alternatives comparison is in general performed, the
design concepts comparison seems to be more popular when dealing with fractional
PID controllers. This is done in order to justify increasing the complexity of the
controller. Finally, in the MCDM, classical approaches for visualization based on
SCp and 3D representation are the most used, despite the number of objectives
managed.

2.3.4 Fuzzy Controller Design Concept

Fuzzy systems have beenwidely and successfully used in control system applications
as referenced in [40]. Similar to the use of PID as design concept, theMOOD is useful
for analyzing the trade-off between conflicting objectives. In this case, the fuzzy
controller is more complex to tune, given its nonlinearity and the major number of
variables involved in fuzzyfication, inference anddefuzzification steps (seeFig. 2.15).

A comprehensive compendium on the synergy between fuzzy tools and MOEAs
is given in [39]. This book will focus on controller implementations. In general,

decision variables consider θ = [Λ,Υ,Λ,Υ ,μ], where:
Λ: is the membership function shape.

Λ: is the number of membership functions.
Υ : is the fuzzy rule structure.

Υ : is the number of fuzzy rules.
μ: are the weights of the fuzzy inference system.

In Table2.2 a summary on these applications is provided. The difference in the
quantity of theworks dedicated to fuzzy controllers and PID controllers is noticeable.

Fig. 2.15 Control loop with a fuzzy controller
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Table 2.2 Summary of MOOD procedures for Fuzzy design concept. MOP refers to the number
of design objectives; EMO to the algorithm implemented (or used as basis for a new one) in the
optimization process. MCDM to the visualization and selection process used

Process(es) References MOP EMO MCDM

Aeronautical [12] 9 GA PAc Constraint violation
analysis; fine tuning

DC motor
(HiL)

[127] 4 GA None According
performance

Geological [66] 4 NSGA-II SCp Design alternatives
comparison

Bio-medical [37] 2 SPEA based 2D Design
alternatives/concepts
comparison with other
controllers. Selection by
norm-2 criteria

Mechanical [80] 3 PSO 3D Design alternatives
comparison

HVAC system [46] 2 SPEA based 2D Design alternatives
comparison at two levels:
different controllers and
different MOEAs

Wall following
robot

[56] 4 SPEA based 2D with an AFO

With regard to MOP definition, it seems that EMO has been popular to simul-
taneously optimize objectives related with performance and interpretation of the
fuzzy inference system. Nevertheless, as noticed in [39] scalability issue is a prob-
lem worthwhile to address such a design concept. Finally, in the MCDM step, SCp
tools have been sufficient for Pareto Front visualization and analysis, due to the low
number of objectives stated in the MOP.

2.3.5 State Space Feedback Controller Design Concept

The state space representation has shown to be a remarkable tool for controller
design. Several advanced control techniques use this representation to calculate a
controller (in the same representation) with a desired performance. In this case, the
decision variables are the gains of thematrixK (see Fig. 2.16). Classical optimization
approaches in a MOOD framework have been used in [85] with good results. In
several instances, it seems that the MOOD procedure has been used to compare
classical approaches with the EMO approach, as presented below.

In Table2.3 a summary on these applications is provided. There are still fewworks
focusing on this design concept.
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Fig. 2.16 Control loop with a state space controller

Table 2.3 Summary of MOOD procedures for state space representation design concept. MOP
refers to the number of design objectives; EMO to the algorithm implemented (or used as basis for
a new one) in the optimization process. MCDM to the visualization and selection process used

Process(es) References MOP EMO MCDM

SISO, MIMO [54] 3 GA SCp Concepts comparison
with LMI design

SISO [94] 3 GA 2D Concepts comparison
with LMI

Mechanical [62] 4 GA SCp Design alternatives
comparison

Networked
Predictive
control,
various
examples

[25] 2 NSGA-II with
LMIs

2D Design alternatives
analysis on examples

Biped robot [76] 2 MOPSO and
NSGA-II

2D Design alternatives
analysis on examples

Twin Rotor
MIMO system

[110] 18 DE LD Design concepts
comparison with a PID
controller; design
alternatives comparison

2.3.6 Predictive Control Design Concept

On-line applications forMOODare not straightforward, since theMCDMstagemust
be carried out, in some instances, automatically. As a result, analysis that relies on
the DMmust be codified to become an automatic process. Approaches using EMO in
the MOOD procedure are presented below; where decision variables θ is conformed
by the control action u through the control horizon, see Fig. 2.17.



50 2 Background on Multiobjective Optimization for Controller Tuning

Fig. 2.17 Control loop with a predictive controller

Table 2.4 Summary of MOOD procedures for predictive control design concept. MOP refers to
the number of design objectives; EMO to the algorithm implemented (or used as basis for a new
one) in the optimization process. MCDM to the visualization and selection process used

Process(es) References MOP EMO MCDM

Mechanical [47] 2 GA Fuzzy inference
system is used

Chemical [13] 8 NSGA-II Successive
ordering
according to
feasibility

Subway
ventilation
system

[72] 2 NSGA-II Decision rule

Smart energy
efficient buildings

[118] 2 GA Decision rule

In Table2.4 a summary on these applications is provided. Predictive control seems
to be an opportunity to apply the MOOD approach, due to the few works dedicated
to this control design alternative. Nevertheless, it can also be seen that the problem
relies on tracking the Pareto Front each sampling time.

2.4 Conclusions on This Chapter

In this chapter, fundamental concepts regarding multiobjective optimization were
introduced. Besides, some notions and remarks on the fundamental steps of a holistic
MOOD procedure were commented: the MOP definition, the EMO process and the
MCDM stage.

Furthermore, related work on controller tuning applications using such MOOD
techniques was revisited including works were dominance and Pareto Front concepts
were used actively for controller tuning purposes. Design concepts (controller struc-
tures) listed were PID-like controllers, fuzzy structures, state space representation
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and model predictive control. Even focusing on contributions using EMO, there are
also examples solving MOPs with other (deterministic) techniques, for example:

• PID-like: [71, 121].
• State space representation: [137].
• Predictive control: [6, 97, 105, 133].
• Optimal control: [132, 134].

As commented in the previous chapter, MOOD procedures might be a useful tool
for controller tuning purposes.With such techniques, it is possible appreciating trade-
off between conflictive control objectives (performance and robustness for instance).
Which is important to remember is the fundamental question for such techniques:

• What kind of problems are worth to address with MOOD?

That question leads to others:

• Is it difficult to find a controller with a reasonable trade-off among design objec-
tives?

• Is it worthwhile analysing the trade-off among controllers (design alternatives)?

If the answer is yes to both questions, then the MOOD procedure could be an
appropriate tool for the problem at hand. Otherwise, other tuning techniques or AOF
approaches could be enough.

During the remaining chapters a set of tools and algorithms for EMO andMCDM
stage will be presented, in order to provide to the readers an introductory toolbox for
MOOD procedures.
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