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Abstract In stationary condition, when a local gear fault occurs, both amplitude
and phase of the tooth meshing vibration are modulated. If the rotating speed of the
shaft is invariable, the gear-fault-induced modulation phenomenon manifest as
frequency sidebands equally spaced around the meshing frequency and its har-
monics in vibration spectra. However, under variable load and rotating speed of the
shaft, the meshing frequency and its harmonics and the sidebands vary with time
and hence the vibration signal becomes non-stationary. Using Fourier transform
doesn’t allow detecting the variation of the rotating machine and its harmonics
which reflect the gear fault. In this study, we propose to use the ensemble empirical
decomposition (EEMD) to decompose signals generated by the variation of load
and the size of the defect. This method is particularly suitable for processing non
stationary signals. By using EEMD the signal can be decomposed into a number of
IMFs which are mono component, we use also the spectrum and spectrogram of
each IMF to show and calculate the frequency defect.

Keywords Fault detection � Vibration � Ensemble empirical mode decomposition
(EEMD) � Gear � Rotating machines

1 Introduction

Gears are widely used in rotating machinery to transmit power. Gear defects are
inevitable and considered as one of the major sources of noise and vibration
(McFadden 1986) giving rise to abnormal operation and failure of the transmission.
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Vibration analysis is considered as one of the main tools to diagnose gear faults
since vibration signals can carry valuable information about the health status of
machines (McFadden 1986).

A local gear defect causes both amplitude and phase modulations of the tooth
meshing vibration signals (Capdessus 1992). For constant rotational speed, the
modulation phenomenon can be characterized in vibration spectra by sidebands
equally spaced around the meshing frequency and its harmonics. However, under
variable rotating speeds, meshing frequency and its harmonic and sidebands are
time varying leading to non-stationary signals (Wu et al. 2012).

The use of the conventional fault diagnosis methods such as the Fourier analysis
and the Hilbert transform do not provide valuable results. Methods based on the
decomposition of vibration signal into bands are more suitable in these situations.

Until now, many methods were applied to detect the fault at an early stage,
among these methods traditional ones including statistical analysis based on the
signal itself such as (root mean square, crest factor kurtosis, and so on) and the
frequency domain analyses based essentially on the Fourier transform. Therefore,
the Fourier analysis gives good results if the vibration signal is stationary and linear
and it is inapt to analyze the non stationary signal, which may lead to false
information about the mechanical faults (Cohen 1989). To solve this problem new
methods have been introduced. The time-frequency analysis methods such as
Wigner Ville decomposition (WVD) (Forrester 1989), short Fourier transform
(STFT) (Staszeweski 1997) and wavelet transform (WT) (Wang and Mcfadden
1997) seem to be the suitable tool to identify the frequency content and to provide
information about its variability. These methods are classified into linear time
frequency representation such as STFT and wavelet transform, and bilinear meth-
ods such as Wigner Ville distributions. The STFT is appropriate only to analyzing
signals with slow variation (Mallat 1998) and it is inefficient for non stationary
signals. The WT was widely applied because it’s a multiresolution analyses (Mallat
1998), able to detect transient features to extract impulses and denoising.
Nevertheless, the wavelet analysis is also a linear transform using functions named
wavelets as window function like the STFT. The window changes its width by
using a dilatation parameter. Then, at high frequency we have high time resolution
and a low frequency resolution. While, at low frequencies we have low time res-
olution and high frequency resolution. Then, we can’t have a good resolution for all
time-scale map due to the Heisenberg uncertainty principle (Staszewski 1997). In
addition, this method gives a time-scale representation which is difficult to interpret
as a time-frequency representation; we must have a relation between the scale and
the frequency to understand the obtained results and to identify the fault frequen-
cies. Another limitation of the WT is how to select the mother wavelet used in the
analyses of the signal, since different wavelets have different time frequency
structures, also, how to calculate the range scale used in the WT is another defi-
ciency of the transform (Liu et al. 2005). Many researchers demonstrated that the
use of the WT introduce border distortion and energy leakage.

In mechanical application, Yang et al. (2011) confirm that this method is highly
dependent on the rotational speed and pre-knowledge of the machine. To overcome
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the deficiencies of these methods empirical mode decomposition (EMD) was
proposed by Huang et al. (1998) for nonlinear and non-stationary signals and was
applied in fault diagnosis of rotating machinery (Liu et al. 2005; Mahgoun et al.
2010). It does not use a priori determined basis functions and can iteratively
decompose a complex signal into a finite number of zero mean oscillations named
intrinsic mode functions (IMFs). Each resulting elementary component (IMF) can
represent the local characteristic of the signal. However, one of the problems of
EMD is mode mixing as a result of intermittency (Huang et al. 2003; Rilling and
Flandrin 2008). Mode mixing occurs when different frequencies that should appear
separately in different IMFs are presented in one IMF. This problem gives a vague
physical significance of the IMF. EMD is unable to separate different frequencies in
separate IMFs. Also, the IMFs are not orthogonal each other, which produce end
effects. To solve the problem of mode mixing the ensemble empirical mode
decomposition EEMD method was proposed by Wu and Huang (2009) by adding
several realizations of Gaussian white noise to the signal, and then using the EMD
to decompose the noisy signal, multiple IMFs can be obtained and the added noise
is canceled by averaging the IMFs. The ensemble empirical mode decomposition
(EEMD) proposed by Huang et al. to analyze nonlinear and non-stationary signals.
The method was largely applied in fault diagnosis of rotating machinery (Wu et al.
2009; Mahgoun et al. 2012) because it does not use a priori determined basis
functions and can iteratively decompose a complex signal into a finite number of
intrinsic mode functions (IMFs). Each resulting elementary component IMF can
represent the local characteristic of the signal. But all these papers used the EEMD
to analyze signals collected from test bench which work under stationary condi-
tions, where the speed of the shaft is constant or slowly variable. The ensemble
empirical decomposition (EEMD) can be used for processing non stationary
signals.

In this work we analyze vibration signals given by a dynamic modeling of a gear
transmission in the case of non stationary load and speed with a variation in the
defect size. The spectrum of each IMF is also used to detect the fault frequency.

The structure of the paper is as follows: Sect. 2 introduces the basic of EMD and
EEMD. In Sect. 3, the method EEMD and the spectrum are applied for early faults
gearbox detection. In Sect. 4, a conclusion of this paper is given.

2 EMD and EEMD Algorithms

The EMD consists to decompose iteratively a complex signal into a finite number of
intrinsic mode functions (IMFs) which verify the two following conditions:

(a) The number of extrema and the number of zeros of an IMF must be equal or
differ at most by one.

(b) An IMF must be symmetric with respect to local zero mean.
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For a given signal xðtÞ the EMD algorithm used in this study is given in liter-
atures (Huang et al. 1998; Mahgoun et al. 2012).

To alleviate the mode mixing effect of EMD, the EEMD was used. The EEMD
decomposition algorithm of the original signal xðtÞ used in this work is summarized
in the following steps (Wu and Huang 2009):

1. Add a white noise nðtÞ with given amplitude bk to the original signal xðtÞ to
generate a new signal:

xkðtÞ ¼ x(t)þ bknðtÞ ð1Þ

2. Use the EMD to decompose the generated signals xkðtÞ into N IMFs
IMFnkðtÞ; n ¼ 1; . . .;N; where the nth IMF of the kth trial is IMFnkðtÞ.

3. Repeat steps (1) and (2) K times with different white noise series each time to
obtain an ensemble of IMFs: IMFnkðtÞ; k ¼ 1; . . .;K.

4. Determine the ensemble mean of the K trials for each IMF as the final result:

IMFnðtÞ ¼ lim
k!1

1
K

XK

k¼1

IMFnk tð Þ; n ¼ 1; . . .;N ð2Þ

3 Application

In this section we will put in evidence the efficiency of EEMD method through
simulations performed starting from a dynamic model of bevel gear transmission
which is subjected time varying operating conditions (speed and load). Previous
analysis of simulated vibration signals from gear models using Wigner Ville
(Chaari et al. 2013) or spectrogram (Chaari et al. 2013; Bartelmus et al. 2009) was
not able to provide clear information about the presence of local defect at an early
stage. This is mainly caused by the fact that impacts induced by this localized defect
are masked by the part of the signal with simultaneous amplitude and frequency
modulation induced by speed and load variation.

Let’s consider a bevel gear transmission model driven by a squirrel cage electric
motor and having the characteristics given in Mahgoun et al. (2016). The trans-
mission is loaded with a torque having sawtooth shape with frequency fL = 5 Hz as
presented in Fig. 1a.

The variation of load leads to a fluctuation in the rotational speed (Fig. 1b) and
consequently to variation of the mesh frequency. The mean value of the motor
rotational speed is nr = 1320 rpm which corresponds to a mean mesh frequency
fgm = 308 Hz. A crack on one pinion tooth is considered leading to defect fre-
quency of 22 Hz and a period of 0.045 s.
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The sampling frequency is 30,800 Hz for all signals. A crack is simulated by a
decrease in the gear mesh stiffness function when the defected tooth meshes. In this
work we propose to study acceleration signals on pinion bearing for different loads
(constant load, load fluctuation of 10 % and load fluctuation of 50 %). We have
considered also different severities of crack defect as following:

(a) Healthy gear
(b) gear with an incipient defect (1 % loss in mesh stiffness)
(c) gear with a medium defect (5 % loss in mesh stiffness)
(d) gear with an important defect (10 % loss in mesh stiffness).

So, we will have twelve signals that are decomposed by using the EEMD
method.

The acceleration signals for healthy gear and faulty gear for early and advanced
stage for a fluctuation of load 50 % are given in Fig. 2.

From literature the spectrum of a gear transmission running under constant
loading conditions is dominated only by the gear mesh frequency and its harmonics
with eventual sidebands induced by the presence of defects (Capdessus et al. 1992).
For non-stationary conditions, family of sidebands will be noticed around the mesh
frequency fgm and its harmonics induced by the non uniformity of the gear mesh
period (Fig. 3) and this can be thought to be a frequency modulation of the gear
mesh stiffness.

The zoom around the mesh frequency for the defect cases (Fig. 3b–d) shows
many asymmetric sidebands around this frequency, which indicate a frequency
modulation.
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Fig. 1 a Evolution of the applied load, b evolution of the instantaneous rotational speed
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Fig. 2 Acceleration signals for 50 % of load a healthy gear, b–d faulty gear
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Fig. 3 Spectrum of the signals for 50 % of load a healthy gear, b–d faulty gear
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From the presented zoomed spectrum (Fig. 3a) for healthy case, we can observe
also presence of sidebands which may cause confusion with the defected case when
diagnosing the transmission.

In order to overcome this difficulty, we propose to use EEMD to analyze such
signals. The objective is to look at the efficiency of this method and its limits
especially in the presence of an excessive load variation.

Figure 4 presents the first IMF of four signals in the case of a constant load.
From this figure we can clearly observe for the case of faulty gear the position of
impacts starting from 5 % of severity.

Figure 5 presents the first IMF of four studied signals in the case of a load
fluctuation of 10 %. From this figure we can observe the impulses due to the defect
if the severity is greater than 5 %.

Figure 6 presents the first IMF of four studied signals in the case of a load
fluctuation is 50 %. From this figure we can observe the position of the variation of
the load which can hide the impulsions due to the defect and precisely at early stage
(1 and 5 % defect). It is possible to observe the impulses due to defect if the
severity is greater than 5 %. The period between two impulses is 0.045 s which is
equivalent to the frequency defect.

The spectrogram of this IMF gives an idea on the variation of the load (Figs. 7
and 8) and gives also information of the position of the maximum load. It shows
clearly the position of the impulses due to the fault. The periodicity of the defect
can be clearly observed for 5 % of defect better than 1 % of defect.
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Fig. 4 IMF1 of signal regular load a healthy gear, b–d faulty gear
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Fig. 5 IMF1 of signal for 10 % of load a healthy gear, b–d faulty gear
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Fig. 6 IMF1 of signal for 50 % of load a healthy gear, b–d faulty gear
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4 Conclusion

In this study we have used the EEMD method to analyze non-stationary signals that
give information about the variable conditions such as variable speed and load.
The EEMD method achieves good modes separation. To detect the fault masked by
simultaneous variation of load and presence of defect, EEMD showed successful
separation of the different modes that correspond to the variation of load and the
effect of fault. We have also used the spectrogram to detect the period of the
impulses due to the fault, and we have observed that the huge load (50 %) cover
information if the defect is less than 5 % in severity.
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Fig. 7 Spectrogram of the first IMF for 1 % of defect and 50 % of load
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Fig. 8 Spectrogram of the first IMF for 5 % of defect and 50 % of load
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