
Chapter 2
Theoretical Preliminaries of Acoustics

In this chapter, we review some of the fundamentals of acoustics and introduce the
spherical harmonic expansion of a sound field, which is the basis for the spherical
harmonic processing framework used with spherical microphone arrays.

This chapter intends to introduce the key theory and equations required in the
rest of the book. For a more comprehensive introduction to acoustics, the reader is
referred to [2, 12], or [17, 20] for a thorough treatment of acoustics in spherical
coordinates.

2.1 Fundamentals of Acoustics

The propagation of acoustic waves through a material is described by a second-order
partial differential equation known as the wave equation. The homogeneous wave
equation describes the evolution of the sound pressure p as a function of time t and
position �r = (x, y, z) in a homogeneous, source-free medium.1 In three dimensions
it is given by [12, Eq. 1.5]

∇2p(�r, t) − 1

c2
∂2p(�r, t)

∂t2
= 0, (2.1)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(2.2)

1In this section, vectors in Cartesian coordinates are denoted with a corner mark � to distinguish
them from vectors in spherical coordinates, which will be introduced in Sect. 2.2.
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is the Laplace operator in Cartesian coordinates (x, y, z) and c denotes the speed
of sound. The separation of variables method is used to simplify the analysis. The
time-harmonic solution to the wave equation can then be written in the form

p(�r, t) = P(�r, k)eiωt, (2.3)

where i = √−1, and P(�r, k), to be defined later in this section, is a function of
the position �r and the wavenumber k. The wavenumber is related to the angular
frequency ω, ordinary frequency

ffl
and speed of sound c via the dispersion relation

k = ω

c
= 2π

ffl

c
. (2.4)

The acoustic waves are assumed to be propagating in a non-dispersive medium,
such that the propagation speed c is independent of the wavenumber k. Throughout
this book, the speed of sound is assumed to be constant; when a numerical value is
required, we will use c = 343 m/s, obtained when the medium is air at a temperature
of approximately 19 ◦C [12, Eq. 1.1].

The function P(�r, k)eiωt in (2.3) can be represented in the complex plane by a
rotating vector or a phasor. The time-independent vector, represented by the complex
number P(�r, k), is the complex amplitude. The complex amplitude is multiplied by
the unit vector eiωt rotating anti-clockwise at speed ω (in rad · s−1), which is the
angular frequency of the harmonic function.

Warning:
Throughout this book, eiωt represents the time dependence of a positive-
frequency wave; a convention that is commonly adopted in electrical and
mechanical engineering. InSect. 2.3,wewill summarize the effect of the choice
of convention on the key equations of this chapter.

The Fourier transform of a time-domain signal f (t) is defined as

F {f (t)} =
ˆ ∞

−∞
f (t)e−iωtdt. (2.5)

As a consequence, the eiωt term in the time-harmonic solution to the wave equation
(2.3) is eliminated when applying the Fourier transform. Using (2.5), the frequency-
domain homogeneous wave equation, also known as the homogeneous Helmholtz
equation, is obtained [12, Eq. 3.1]:

∇2P(�r, k) + k2P(�r, k) = 0, (2.6)

where P(�r, k) = F {p(�r, t)} denotes the temporal Fourier transform of p(�r, t).
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The homogeneous wave equation and Helmholtz equation assume a source-free
medium. If waves are being produced by a harmonic disturbance, a source function
of the form s(�r, t) = S(�r, k)eiωt is added to the right-hand side of the homogeneous
wave equation (2.1) to obtain the inhomogeneous wave equation

∇2p(�r, t) − 1

c2
∂2p(�r, t)

∂t2
= −s(�r, t), (2.7)

and by taking the temporal Fourier transform F , we obtain the inhomogeneous
Helmholtz equation

∇2P(�r, k) + k2P(�r, k) = −S(�r, k). (2.8)

In the presence of a unit-amplitude harmonic point source at a position �rs, the
solution to the wave equation is known as the Green’s function and is denoted by
G(�r|�rs, k). Alternatively it is termed an acoustic transfer function (ATF) from the
point �rs to the point �r. The frequency-domain source function is then given by
S(�r, k) = δ3(�r − �rs), where δ3(·) denotes the three dimensional Dirac delta func-
tion, and the Green’s function can be found by solving the following equation:

∇2G(�r|�rs, k) + k2G(�r|�rs, k) = −δ3(�r − �rs). (2.9)

The Green’s function must also satisfy a boundary condition at infinity, the
Sommerfeld radiation condition, which ensures that sources radiate energy instead
of absorbing it. It is given by [20, Eq. 8.28]

lim||�r−�rs||→∞ ||�r − �rs||
(

∂G(�r|�rs, k)

∂||�r − �rs|| − ikG(�r|�rs, k)

)
= 0, (2.10)

where || · || denotes the 2-norm (Euclidean norm).
For a source at a position �rs and a receiver at a position �r, a solution to the

inhomogeneous Helmholtz equation satisfying the Sommerfeld radiation condition
is given by the free-space Green’s function, where free-space indicates that the only
boundary condition that applies is the Sommerfeld radiation condition, that is, the
waves are not propagating within an enclosure. The free-space Green’s function is
given by [20, Eq. 8.5]

G(�r|�rs, k) = e−ik||�r−�rs||
4π||�r − �rs|| . (2.11)

From (2.11) it is clear that G(�r|�rs, k) = G(�rs|�r, k). This equality represents one of
the most fundamental examples of the principle of acoustic reciprocity because the
pressure at a receiver point is unchanged when exchanging the source and receiver
positions.
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2.2 Sound Field Representation Using Spherical Harmonic
Expansion

To describe the sound field on the surface of a sphere, we need to find the solutions
of the Helmholtz differential equation, as described in the previous section, on the
surface of the sphere. In the following, we introduce spherical harmonics, which are
a series of special functions defined on the surface of a sphere and are commonly
used to solve such differential equations. After introducing the spherical harmonics,
we introduce a spherical harmonic expansion of the free-space Green’s function that
underpins the spherical harmonic domain (SHD) processing in this book.

We adopt the spherical coordinate system used in [5, 13, 18, 20], which is illus-
trated in Fig. 2.1. The spherical coordinates are related to Cartesian coordinates x, y,
z via the expressions [20, Eq. 2.47]

x = r sin θ cosφ, (2.12a)

y = r sin θ sin φ, (2.12b)

z = r cos θ, (2.12c)

where r, θ and φ respectively denote the radius, inclination and azimuth. Conversely,
the spherical coordinates may be obtained from the Cartesian coordinates using

Fig. 2.1 Spherical
coordinate system used in
this book, defined relative to
Cartesian coordinates. The
radial distance r is the
distance between the
observation point and the
origin of the coordinate
system. The inclination angle
θ (a.k.a. co-latitude, polar
angle, or normal angle) is
measured from the positive
z-axis, and the azimuth angle
φ is measured in the xy-plane
from the positive x-axis.
Copyright c©Daniel Jarrett.
Used with permission
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r =
√

x2 + y2 + z2, (2.13a)

θ = arccos
( z

r

)
, (2.13b)

z = arctan
(y

x

)
, (2.13c)

where arctan is the four-quadrant inverse tangent (implemented using the function
atan2() in many computational environments including, for example, MATLAB).

We express the vectors �r and �rs in spherical coordinates as r = (r,Ω) = (r, θ,φ)

and rs = (r,Ωs). It is hereafter assumed that when the addition, scalar product and
2-norm operators are applied to vectors in spherical coordinates, these operations
will in fact be performed in the Cartesian space by first performing a conversion
from spherical to Cartesian coordinates using (2.12).

The spherical harmonic of order l ≥ 0 and degree or mode m (satisfying |m| < l)
is denoted by Ylm and defined as

Ylm(Ω) = Ylm(θ,φ) =
√

(2l + 1)

4π

(l − m)!
(l + m)!Plm(cos θ)eimφ, (2.14)

where Plm denotes the associated Legendre function of order2 l and degree m.
The spherical harmonics, derived in [1, 20], represent the angular component of

the solutions to the Helmholtz equation in spherical coordinates, and are involved
in solving many problems in spherical coordinates. A number of zero-, first- and
second-order spherical harmonics are plotted for illustrative purposes in Fig. 2.2.

For positive degreesm, the associated Legendre functions are related to the Legen-
dre polynomials Pl(x) by the formula

Plm(x) = (−1)m (1 − x2)m/2 dm

d xm
Pl(x), (2.15)

where the factor (−1)m is known as the Condon-Shortley phase. For negative degrees
m, the associated Legendre functions can be obtained from

Pl(−m)(x) = (−1)m (l − m)!
(l + m)! Plm(x), (2.16)

2In this book, for consistency with spherical array processing literature, we refer to l as the order
and m as the degree of the spherical harmonics and associated Legendre functions (or polynomials).
However, it should be noted that in other fields, l is referred to as the degree, and m as the order.
This reflects the fact that the words degree and order are used interchangeably when referring to
polynomials.
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Fig. 2.2 Magnitude |Ylm(θ,φ)| of the complex spherical harmonics for {l ∈ Z|0 ≤ l ≤ 2}, {m ∈
Z|0 ≤ m ≤ l}. The plots for m < 0 are omitted as they are identical to those for m > 0. Copyright
c©Daniel Jarrett. Used with permission

where m > 0. From (2.16) it follows that the spherical harmonics for corresponding
negative degrees m can be computed using

Yl(−m)(Ω) = (−1)m Y∗
lm(Ω), (2.17)

where m > 0.
The spherical harmonics constitute an orthonormal set of solutions to the

Helmholtz equation in spherical coordinates, that is [20, Eq. 6.45]:
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ˆ

Ω∈S2
Ylm(Ω)Y∗

l′m′(Ω)dΩ = δl,l′δm,m′ , (2.18)

where the notation
´

Ω∈S2 dΩ is used to denote compactly the solid angle3
´ 2π

φ=0

´ π

θ=0
sin θdθdφ, and the Kronecker delta δi,j is defined as

δi,j =
{
1, if i = j;
0, if i 
= j.

(2.19)

In addition, they constitute a complete set of solutions, or equivalently they satisfy
the completeness relation [20, Eq. 6.47]

∞∑
l=0

l∑
m=−l

Ylm(θ,φ)Y∗
lm(θ′,φ′) = δ(cos θ − cos θ′)δ(φ − φ′), (2.20)

where δ denotes the Dirac delta function. As a result, any function on a sphere can
be represented using a spherical harmonic expansion (SHE).

In particular, the free-space Green’s function (2.11) can be expanded using the
following SHE [20, Eqs. 8.22 and 8.76]:

G(r|rs, k) = e−ik||r−rs||

4π||r − rs|| (2.21)

=
∞∑

l=0

l∑
m=−l

−i k jl(kr) h(2)
l (krs)Y

∗
lm(Ωs)︸ ︷︷ ︸

expansion coefficients

Ylm(Ω), (2.22)

where (·)∗ denotes the complex conjugate, jl is the spherical Bessel function of order
l, and h(2)

l is the spherical Hankel function of the second kind and of order l. The
spherical Bessel function forms the real part of the Hankel function, and the spherical
Neumann function forms its imaginary part. The spherical Hankel function of the first
kind h(1)

l , used in Sect. 2.3, is the complex conjugate of h(2)
l . The spherical Bessel and

Neumann functions represent the radial component of the solutions to the Helmholtz
equation in spherical coordinates.

In many cases it is convenient to remove the sum over all degrees m in (2.22)
using the spherical harmonic addition theorem [1], which states that

l∑
m=−l

Y∗
lm(Ωs)Ylm(Ω) = 2l + 1

4π
Pl

(
r · rs
rrs

)
(2.23a)

= 2l + 1

4π
Pl(cosΘ), (2.23b)

3The factor sin θ compensates for the denser sampling near the poles (θ = 0 and θ = π).
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where r · rs denotes the scalar product4 of the vectors r and rs, Pl is the Legendre
polynomial of order l and Θ is the angle between r and rs. Using (2.23), the SHE of
the free-space Green’s function (2.22) then becomes

G(r|rs, k) = − ik

4π

∞∑
l=0

jl(kr)h(2)
l (krs)(2l + 1)Pl (cosΘ) . (2.24)

Under farfield conditions, when rs → ∞, the spherical wave represented by the
free-space Green’s functions (2.21) and (2.24) can be approximated as a plane wave.
Although plane waves are only an approximation of spherical waves in the far field,
plane waves are actually of utmost importance, since any complex wavefield can be
represented as a superposition of plane waves [12, Chap.1].

To obtain a far-field approximation of the Green’s function given by (2.21), the
denominator ||r − rs|| is first approximated by rs. The phase term cannot be approx-
imated so simply since it oscillates with respect to ||r − rs||. Instead, this term is
approximated as [18, Eq. 2.29]

||r − rs|| ≈ rs − r · rs
rs

(2.25a)

≈ rs − r cosΘ. (2.25b)

Applying these approximations to (2.21) then yields

G(r|rs, k) = e−ik||r−rs||

4π||r − rs||
≈ e−ikrs

4πrs
e+ikr cosΘ. (2.26)

A farfield approximation for the SHE of the Green’s function given by (2.24) can
be obtained by making use of the large argument approximation of the spherical
Hankel function [20, Eqs. 6.68 and 6.58]:

h(2)
l (krs) ≈ il+1 e−ikrs

krs
for krs � 1 (2.27)

Applying this approximation to the free-space Green’s function (2.24), we obtain

G(r|rs, k) ≈ e−ikrs

4πrs

∞∑
l=0

iljl(kr)(2l + 1)Pl (cosΘ) . (2.28)

4As noted earlier in the chapter, the scalar product of vectors in spherical coordinates is applied
after these vectors have been converted to Cartesian coordinates using (2.12).
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The second term in (2.28) is equal to e+ikr cosΘ [20, Eq. 6.174], that is,

e+ikr cosΘ =
∞∑

l=0

iljl(kr)(2l + 1)Pl (cosΘ) . (2.29)

This is the expression for the pressuremeasured at a position r due to a unit-amplitude
plane wave incident from a direction Ωs, which we will use on multiple occasions
later in this book.

2.3 Sign Convention

As mentioned in Sect. 2.1 the way the time dependence of a positive-frequency wave
is defined affects many of the equations in this chapter, such as (2.3). In order to avoid
any confusion, we have listed the key equations under each convention in Table2.1.

Table 2.1 Keyequations under the two sign conventions: one common in the acoustics literature and
the other common in the engineering literature. The engineering convention is adopted in this book

Acoustics convention Engineering convention

Temporal Fourier transform

F {f (t)} =
ˆ ∞

−∞
f (t)e+iωtdt F {f (t)} =

ˆ ∞

−∞
f (t)e−iωtdt

Free-space Green’s function

G(r|rs, k) = e+ik||r−rs||

4π||r − rs|| G(r|rs, k) = e−ik||r−rs||

4π||r − rs||
Free-space Green’s function (expansion)

G(r|rs, k) = ik

4π

∞∑
l=0

jl(kr)h(1)
l (krs)

×(2l + 1)Pl(cosΘ)

G(r|rs, k) = −ik

4π

∞∑
l=0

jl(kr)h(2)
l (krs)

×(2l + 1)Pl(cosΘ)

Farfield approximation for the free-space Green’s function

G(r|rs, k) ≈ e+ikrs

4πrs
e−ikr cosΘ G(r|rs, k) ≈ e−ikrs

4πrs
e+ikr cosΘ

Farfield approximation for the free-space Green’s function (expansion)

G(r|rs, k) ≈ e+ikrs

4πrs

∞∑
l=0

(−i)l jl(kr)

×(2l + 1)Pl(cosΘ)

G(r|rs, k) ≈ e−ikrs

4πrs

∞∑
l=0

il jl(kr)

×(2l + 1)Pl(cosΘ)

Plane wave

e−ikr cosΘ =
∞∑

l=0

(−i)l jl(kr)(2l + 1)

×Pl(cosΘ)

e+ikr cosΘ =
∞∑

l=0

il jl(kr)(2l + 1)

×Pl(cosΘ)
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The engineering convention is adopted in this book. A more detailed discussion of
sign conventions in spherical microphone array processing and, in particular, the
effects of inconsistent use of sign conventions, can be found in [19].

2.4 Sound Intensity

In acoustic signal processing, the signals of interest are usually sound pressure sig-
nals, the sound pressure being the physical quantity that is perceived by the ear.
However, a sound field can also be analyzed in terms of the acoustic energy that
is radiated, transmitted and absorbed [4], allowing sound sources to be located and
their power to be determined.

The sound intensity vector describes the magnitude and direction of the flow of
acoustic energy per unit area, and has units of watts per square metre. The instanta-
neous sound intensity vector at a position r and time t is defined as [12, Eq. 1.26]

I(r, t) = p(r, t)v(r, t), (2.30)

where p(r, t) and v(r, t) respectively denote the sound pressure and particle velocity
vector at a position r.

The time-averaged intensity vector has been found to be of more practical signif-
icance [4], and is defined as [4, 20]

I(r) = 〈 p(r, t)v(r, t) 〉 , (2.31)

where 〈 · 〉 denotes the time-averaging operation. The time-average of the net flow
of energy out of a closed surface S is zero unless power is generated (or dissipated)
within this surface [4], in which case it is equal to the power Psrc of the sound source
enclosed, or equivalently [4, Eq. 5]

˛

S
I · dS = Psrc, (2.32)

where dS denotes the differential surface area vector normal to S.
For a simple harmonic sound field with constant angular frequency ω, the time-

averaged sound intensity vector can be expressed in complex notation as [4, 20]

I(r,ω) = 1

2
� {

p(r,ω)v∗(r,ω)
}
, (2.33)

where p(r,ω) and v(r,ω) are complex exponential quantities, and � {·} denotes the
real part of a complex number.

In general, there is no simple relationship between the intensity vector and sound
pressure [7]. Nevertheless, for a plane progressive wave, the sound pressure p is
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related to the particle velocity v via the relationship [14–16]

v(r, t) = −p(r, t)

ρ0 c
u(r, t), (2.34)

where ρ0 and c respectively denote the ambient density of the medium and speed of
sound, and u is a unit vector pointing from r towards the source. In this case, the
direction of arrival of a sound source can be determined as the direction opposite to
that of the intensity vector I .

Point sources produce spherical waves, but when sufficiently far from these
sources, in the farfield, these waves can be considered as plane waves so that p
and v are in phase. In contrast, in the nearfield, p and v are out of phase [4]. This
phase relationship can be described by next introducing the concept of active and
reactive sound fields. All time-stationary fields can be split into two components,
described by [6]:

• An active intensity vector, given by the product of the pressure p and the in-phase
component of the particle velocity vector v, which is the intensity vector we have
described thus far. The active intensity vector has a non-zero time average [8],
computed using (2.33).

• A reactive intensity vector, given by the product of the pressure p and the out-
of-phase component of the particle velocity vector v, which measures the energy
stored in a sound field. The time-average of the reactive intensity vector is zero;
to quote Fahy: there is “local oscillatory transport of energy” [6].

In the nearfield, the reactive field is stronger than the active field [4, 11]. In an
anechoic environment, where there are no reflections, the strength of the reactive
field decreases rapidly as the distance from the source increases [4, 11], such that in
the farfield the sound field is essentially an active field. In Chap. 5, we will also take
advantage of the fact that in a diffuse sound field, often used to model reverberation,
the time-averaged active intensity vector is zero [9].

In practice,measurement of the intensity vector is difficult: typically it ismeasured
with two closely-spaced matched pressure microphones using a finite-difference
approximation of the pressure gradient (the p–p method [10]), although this method
is very sensitive to mismatches in the phase response of the two microphones. The
alternative (the p-u method [10]) is to combine a pressure transducer and a particle
velocity transducer; this can be done using the Microflown [3]. In Sect. 5.1.3, we
will see that the intensity vector can also be measured using a spherical microphone
array.

2.5 Chapter Summary

The main aim of this chapter has been to introduce some of the relevant elements of
the fundamentals of acoustics. The chapter reviewed the key equations that govern
the propagation of sound waves in a medium, more specifically, the wave equation,

http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_5
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Helmholtz equation, and free-space Green’s function. We also presented the SHE
of the Green’s function; the SHE forms the basis of a processing framework that
advantageously exploits the spherical symmetry of spherical microphone arrays.
Finally, we introduced the sound intensity vector, which describes the magnitude
and direction of the flow of acoustic energy. In Chap.5, it will be seen that the
intensity vector can be employed in the estimation of two acoustic parameters: the
direction of arrival (DOA) of a sound source, and the diffuseness of a sound field.
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