Chapter 2
Existing Deduplication Techniques

Abstract Though various deduplication techniques have been proposed and used,
no single best solution has been developed to handle all types of redundancies.
Considering performance and overhead, each deduplication technique has been
developed with different designs considering the characteristics of data sets, system
capacity and deduplication time. For example, if the data sets to be handled have
many duplicate files, deduplication can compare files themselves without looking
at the file content for faster running time. However, if data sets have similar files
rather than identical files, deduplication should look inside the files to check what
parts of the contents are the same as previously saved data for better storage space
savings. Also, deduplication should consider different designs of system capacity.
High-capacity servers can handle considerable overhead for deduplication, but low-
capacity clients should have lightweight deduplication designs for fast performance.
Studies have been conducted to reduce redundancies at routers (or switches) within
a network. This approach requires the fast processing of data packets at the routers,
which is of crucial necessity for Internet service providers (ISPs). Meanwhile, if
a system removes redundancies directly in a write path within a confined storage
space, it is better to eliminate redundant data before storage. On the other hand,
if a system has residual (or idle) time or enough space to store data temporarily,
deduplication can be performed after the data are placed in temporary storage. In
this chapter, we classify existing deduplication techniques based on granularity,
place of deduplication and deduplication time. We start by explaining how to
efficiently detect redundancy using chunk index caches and bloom filters. Then we
describe how each deduplication technique works along with existing approaches
and elaborate on commercially and academically existing deduplication solutions.
All implementation codes are tested and run on Ubuntu 12.04 precise.

2.1 Deduplication Techniques Classification

Deduplication can be divided based on granularity (the unit of compared data),
deduplication place, and deduplication time (Table 2.1). The main components of
these three classification criteria are chunking, hashing and indexing. Chunking is
a process that generates the unit of compared data, called a chunk. To compare

© Springer International Publishing Switzerland 2017 23
D. Kim et al., Data Deduplication for Data Optimization for Storage
and Network Systems, DOI 10.1007/978-3-319-42280-0_2

24 2 Existing Deduplication Techniques

Table 2.1 Deduplication classification

Methods based on granularity Place Time
File-level deduplication Server-based deduplication | Inline deduplication
Fixed-size block deduplication Client-based deduplication | Offline deduplication

Variable-sized block deduplication Redundancy elimination
(end-to-end RE,
network-wide RE)

duplicate chunks, hash keys of chunks are computed and compared, and a hash key
is saved as an index for future comparison with other chunks.

Deduplication is classified based on granularity. The unit of compared data can be
at the file level or subfile level, which are further subdivided into fixed-size blocks,
variable-sized chunks, packet payload or byte streams in a packet payload. The
smaller the granularity used, the larger number of indexes created, but the more
redundant data are detected and removed.

For place of deduplication, deduplication is divided into server-based and
client-based deduplication for end-to-end systems. Server-based deduplication tra-
ditionally runs on high-capacity servers, whereas client-based deduplication runs
on clients that normally have limited capacity. Deduplication can occur on the
network side; this is known as redundancy elimination (RE). The main goal of RE
techniques is to save bandwidth and reduce latency by reducing repeating transfers
through the network links. RE is further subdivided into end-to-end RE, where
deduplication runs at end points on a network, and network-wide RE (or in-network
deduplication), where deduplication runs on network routers.

In terms of deduplication time, deduplication is divided into inline and offline
deduplication. With inline deduplication, deduplication is performed before data are
stored on disks, whereas offline deduplication involving performing deduplication
after data are stored. Thus, inline deduplication does not require extra storage space
but incurs latency overhead within a write path. Covnersely, offline deduplication
does not have latency overhead but requires extra storage space and more disk
bandwidth because data saved in temporary storage are loaded for deduplication
and deduplicated chunks are saved again to more permanent storage. Inline dedu-
plication mainly focuses on latency-sensitive primary workloads, whereas offline
deduplication concentrates on throughput-sensitive secondary workloads. Thus,
inline deduplication studies tend to show trade-offs between storage space savings
and fast running time.

First we explain chunk index caches and bloom filters that are used to identify
redundant data based on indexes and small arrays, respectively. We then go into
detail about classified deduplication techniques, discussing each one by one, in the
order of granularity, place and time. Note that a deduplication technique can belong
to multiple categories, such as a combination of variable-sized block deduplication,
server-based deduplication and inline deduplication.

2.2 Common Modules 25

2.2 Common Modules

2.2.1 Chunk Index Cache

Deduplication aims to find as many redundancies as possible while maintaining
processing time. To reduce processing time, one typical technique is to check
indexes of data in memory before accessing disks. If the data indexes are the same,
deduplication does not involve accessing the disks where the indexes are stored,
which would reduce processing time. An index represent essential metadata that are
used to compare data (or chunks). In this section, we show what can be indexed and
how indexes are computed, stored and used for comparisons.

2.2.1.1 Fundamentals

To compare redundant data, deduplication involves the computation of data indexes.
Thus, an index should be unique for all data with different content. To ensure the
uniqueness of an index, one-way hash functions, such as message digest 5 (MD5),
secure hash algorithm 1 (SHA-1), or secure hash algorithm 2 (SHA-2) are used.
These hash functions should not create the same index for different data. In other
words, an index is normally considered a hash key that represents data. Indexes
should be saved to permanent storage devices like a hard disk, but to speed up the
comparison of indexes, they are prefetched in memory. The indexes in memory
should provide temporal locality to reduce the number of evictions of indexes from
memory owing to filled memory as well as a decrease in the number of prefetches.
In the same sense, to prefetch related indexes, the indexes should be grouped by
spatial locality. That is, indexes of similar data are stored close to each other in
storage.

An index table is a place where indexes are temporarily located for fast
comparison. Such tables can be deployed using many different methods, but mainly
they are built using hash tables, which allows comparisons to be made very quickly
due to the time complexity of O(1) with the overhead of hash table size. In
the next section, we present a simple implementation of an index table using an
unordered_map container.

2.2.1.2 Implementation: Hash Computation

We show an implementation of an index computation using an SHA-1 hash function.
The whole code for this example is in Appendix A. The codes in the appendix
are written in C++. The unit of data can be a file or a byte stream data (like
chunk). Thus, we show codes to compute a SHA-1 hash key from a file and data.
We use the FIPS-180-1—-compliant SHA-1 implementation created by Paul Bakker.
We developed a wrapper class with two functions, such as getHashKeyOfFile(string

26 2 Existing Deduplication Techniques

filePath) and getHashKey(string data). Following are code snippets that use the two
functions.

string hashKey;
hashKey = shalWrapper. getHashKey (data);

string hashKey;
hashKey = shalWrapper.getHashKeyOfFile (fileName);

We provide a main function to test the computation of a hash key and a Makefile
to make compilation easy. In the main function, the first paragraph shows how to
compute a hash key of a file, and the second paragraph shows how to calculate a
hash key of a string block:

#ifdef SHA—1IWRAPPER_TEST
int main() {

ShalWrapper obj;
string filePath = "hello.dat";
string data = "hello_danny_how_are_you_??_

string hashKey;

// get hash key of a file

hashKey = obj.getHashKeyOfFile(filePath);

cout << "hashkey_of_" << filePath << "_:_" << hashKey << endl;
cout << endl;

// get hash key of data

cout << data << endl;

hashKey = obj.getHashKey (data);

cout << "hashkey_of_data_:_ " << hashKey << endl;

return 0;

}

#endif

make
all :
g++ —DSHAIWRAPPER_TEST —o SHA—1 shal.cc shalWrapper.cc

clean:
rm —f *.0 SHA—I

We compile and build an executable file to test SHA-1 as follows:

root@server :~/lib /SHA—1# make

g++ —DSHAIWRAPPER_TEST —o SHA—1 shal.cc shalWrapper.cc
root@server:~/lib/shal# Is —I

—rw—r—r— 1 root root 12 Jul 20 20:28 hello.dat
—rw—r—r— 1 root root 98 Jul 20 20:28 Makefile
—rwxr—xr—x 1 root root 37383 Jul 20 20:33 SHA—-1

2.2 Common Modules 27

—w—r—r1— 1 root root 20297 Jul 20 20:28 shal.cc
—rw—r—r1— 1 root root 4606 Jul 20 20:28 shal.h
—rw—r—r1— 1 root root 1187 Jul 20 20:28 shalWrapper.cc
—w—rt—r— 1 root root 522 Jul 20 20:28 shalWrapper.h

Following are the results of running a SHA-1 executable file. We retrieve an
index string with 40 characters created from 20 bytes; 1 byte is denoted by two
hexadecimals. Thus, the size of the index amounts to 40 bytes (40 characters). The
first hash key that starts with 49a32. .. is computed from a file (here, hello.dat). The
second hash key starting with €69927 is computed from a string “hello danny how
are you??”:
root@server :~/1lib/shal# SHA—I
hashkey of hello.dat : 49a32112d754917ca799d684895c5bbc4e25828b

hello danny how are you ??
hashkey of data : €69927¢c529b145fa7292e2664c07929853f59994

2.2.1.3 Implementation: Index Table

We show an implementation of an index table using an unordered_map. The imple-
mentation codes are in Appendix B. We compile and build a cache executable file.
To compile using an unordered_map, we need to add ‘-std=c++0x’ at compilation:

root@server:~/1lib/cache# make
g++ —DCACHE_TEST —o cache cache.cc —std=c++0x

root@server:~/1lib/cache# 1s —1

total 72

—rwxr—xr—x 1 root root 54227 Jul 20 21:34 cache
—rw—r—r— 1 root root 2235 Jul 20 20:28 cache.cc
—w—r—r— 1 root root 4079 Jul 20 20:28 cache.h
—rw—r—r— 1 root root 1278 Jul 20 20:28 cachelnterface.h
—w—r—r— 1 root root 91 Jul 20 21:34 Makefile

root@server:~/1lib/cache# cat Makefile
make
all :
g++ —DCACHE_TEST —o cache cache.cc —std=c++0x

clean:
rm —f *.0 cache

What follows shows how to test the implementation codes of an index table. First,
an index table is created with a pair consisting of a key and a value. ‘cache.empy()’
is used to check whether the index table is empty. To save an index to the table, we
use the set() method, for example, ‘cache.set(<key>, <value>). To obtain an index
from the table, we use ‘cache.get(<key>)’. ‘cache.size()’ retrieves the number of
indexes. To check whether an index with a key exists, the ‘cache.exist(<key>)’
function is used:

28 2 Existing Deduplication Techniques

UMapCache<string , string > cache;

string key = "1";
string value = "Danny";
string key2 = "2";
string value2 = "Kim";

string key3 = "3";

// check if cache is empty
cout << "s*kxx_current _cache_x**x" << endl;
if (cache.empty())
cout << "empty" << endl;
else
cout << "filled" << endl;
cout << endl;

// save an entry

cout << "skx*_save_entries_x**x" << endl;

cout << "<" << key << "," << value << ">" << endl;
cout << "<" << key2 << "," << value2 << ">" << endl;
cache.set(key, value);

cache.set(key2, value2);

cout << endl;

// check if cache is empty
cout << "k#***_current_cache_**x*x" << endl;
if (cache.empty())
cout << "empty" << endl;
else
cout << "filled" << endl;
cout << endl;

// get an entry

cout << "skx¥_get_an_entry x**x" << endl;
cout << "key =" << key << "_";

cout << cache.get(key) << endl;

cout << endl;

// get number of entries

cout << "*x#***_get_number_of_entries ****x" << endl;
cout << "size_: " << cache.size () << endl;

cout << endl;

// check if an entry with key exists
cout << "s*kxx_existence _of_a_key x**x" << endl;
string tmp = key2;
if (cache.exist(tmp))

cout << tmp << "_exists" << endl;
else

cout << tmp <<
cout << endl;

_doesn’t_exist" << endl;

To show all entries, ‘cache.showAll()’ is used. We determine the size of the
index table using various functions, such as °‘sizeOfAllEntries()’, ‘sizeOfAll-

2.2 Common Modules 29

EntriesDouble()’, ‘sizeOfKeys()’, ‘sizeOfKeysDouble()’ and ‘sizeOfValues()’.
That is, ‘cache.sizeOfAllEntriesDouble()’ shows the size of the index table,
including all pairs; ‘cache.sizeOfKeys()’ and ‘cache.sizeofValues()’ return the
size of keys or values in the index table respectively; ‘cache.sizeOfKeysDouble()’
and ‘cache.sizeOfValuesDouble’ return the size of double data type; and
‘cache.removeAll()’ removes all indexes in the index table.

// show all entries

cout << "kx#**xx_show_all_entries _****x" << endl;
cache.showAll ();

cout << endl;

// show size of all entries in bytes
cout << "size_of_all_entries _ (bytes) :_ " << cache.sizeOfAll
Entries () << endl;
cout << "size_of_all_entries (double_value)_ (bytes)_ : "
<< cache.sizeOfAllEntriesDouble () << endl;

// show size of keys of all entries in bytes

cout << "size_of_keys(bytes) : " << cache.sizeOfKeys ()
<< endl;

cout << "size_of_keys(double_value)(bytes) : "
<< cache.sizeOfKeysDouble () << endl;

// show size of values of all entries in bytes

cout << "size_of _values__ (bytes) : " << cache.sizeOfValues
O

<< endl;

cout << endl;

// remove all entries

cout << "s*xx_remove_all_entries_x**x" << endl;
cache.removeAll ();

cout << "size_of_all_entries_:
endl ;

cout << endl;

" << cache.sizeOfAllEntries () <<

The following code shows the results of running a ‘cache’ executable file. In the
following result, for the first time the index table is empty, and then two entries
are saved. The keys are ‘1’ and ‘2’, and the values are ‘Danny’ and ‘Kim’. There
are two entries. Keys occupy 2 bytes of two characters, and values have 8 bytes of
eight characters.

root@server:~/1lib/cache# cache
kk%x current cache skk%x
empty

kkkk save entries kxkksk
<1,Danny>
<2,Kim>

kk%x*x current cache skk*xx
filled

30 2 Existing Deduplication Techniques

*kkk get an entry kkkxk
key = 1 Danny

*x%*x get number of entries *kk*
size : 2

**kxx existence of a key x#*kx
2 exists

**%xx show all entries sk*x

1, Danny

2, Kim

size of all entries (bytes) : 10

size of all entries (double value) (bytes) : 10
size of keys (bytes) : 2

size of keys(double value)(bytes) : 2

size of values (bytes) : 8

**k%x remove all entries %k
size of all entries : 0

2.2.2 Bloom Filter

To prevent an index table occupying memory as the number of indexes grows in
the index table, a small summary vector, called a Bloom filter, is used to quickly
check whether data are unique using small sized metadata. In this section, we see
how Bloom filter codes are implemented.

2.2.2.1 Fundamentals

A Bloom filter is used to see whether duplicate chunks of data exist in storage. The
Bloom filter is a bit array of m bits initially set to 0. Given a set U, each element u
(u € U) of the set is hashed using k hash functions A, ..., h. Each hash function
h;(u) returns an array index in the bit array that ranges from 0 to m—1. Subsequently,
a bit of the index is set to 1. This Bloom filter is used to check whether an element
was already saved to a set. When an element attempts to be added to a set, if one of
the bits corresponding to the return values of hash functions Ay, . .., i is 0, then the
element is considered a new one in the set. If bits corresponding to return values of
hash functions are all 1, the element is considered to exist in the set.

Let us explain how the Bloom filter works in an example as shown in Fig. 2.1. The
Bloom filter initially has all O bits. When a chunk c1 is saved, the array indexes of
the Bloom filter are computed using three different hash functions (1, h2, h3). Here,
hl, h2 and h3 functions return the second, fourth and seventh indexes respectively.

2.2 Common Modules 31

Fig. 2.1 How the Bloom a
filter works. (a). Bloom filter Initial | 0 ‘ 0 ‘ 0 ‘ 0 l 0 ‘ 0 ‘ 0 l
after c1 chunk is saved. (b) bloom filter
Bloom filter when c2, a !
unique chunk, is compared. @
(¢) Bloom filter when ¢3, a ‘ 0 l 1 ‘ 0 ‘ l 0 ‘ 0 ‘ 1 l
unique chunk, is compared i [
(false positive). A unique
chunk is found to be h1
redundant
cl — h2
Chunk h3
b

aftercl ‘
bloom filter

[iTolilolo 1]

hl

c2 f—= h2

Unique h3
chunk

afterc2
bloomfilter

[2lafefsfofafa]

hl

Subsequently, the indexes of the Bloom filter are set to 1. Suppose the same chunk
cl is saved again. The chunk is found to be redundant because all three indexes by
hash functions are already set to 1. As shown in Fig. 2.1b, when a unique chunk (c2)
is saved, indexes by three hash functions are computed again. Now, the elements of
the three indexes are all 0. Thus, a chunk ¢2 is determined to be unique. However, in
Fig. 2.1c, the Bloom filter can have a false positive, that is, the Bloom filter says that
a chunk is redundant, but the chunk is actually unique. The array indexes for c3 are
the second, third and fourth indexes, which were set by other chunks. In this case,
we will lose a unique chunk without saving it. Thus, the Bloom filter guarantees
that a chunk is unique with one O index, but it does not guarantee that a chunk is
redundant with all three 1 indexes. Thus, in this case, the chunk index cache should
be checked after the Bloom filter is used.

32 2 Existing Deduplication Techniques

2.2.2.2 Implementation

We show the implementation of a Bloom filter using four hash functions. The size
of a Bloom filter bit array is calculated based on the SHA-1 hash key. The first step
in implementing a Bloom filter is to determine the size of the Bloom filter bit array.
Considering a 2 % false positive, we calculate the size of the Bloom filter bit array
as shown in [50]. m is the number of bits in a Bloom filter array, n is the number
of bits of a fingerprint (which means a hash key in this case), and k is the number
of hash functions. To achieve a 2 % false positive, the smallest size of the Bloom
filter is m=8 * n bits (m/n=38), and the number of hash functions is four. Thus, we
compute the size of the Bloom filter bit array (m) to 1280 bits as follows. We choose
1283 rather than 1280 for the size of the Bloom filter bit array because the prime
number shows a good uniform distribution, reducing the primary cluster as shown
in Weiss’ book [47] when the mod() function is used for the hash function:

160 bits (SHA—1 hash key)
8 x 160 = 1280 bits
4 (four hash functions)

n
m
k

The codes are compiled and built by typing ‘make’, and bf is the executable file
used to test the Bloom filter codes:

root@server :~/bf# make
gcc —DBF_TEST —DDEBUG —o bf bf.c

root@server :~/bf# 1s —1
—IWXI—XI—X root root 12861 Jul 21 08:59 bf

1
—w—r—r1— 1 root root 5627 Jul 21 00:39 bf.c
—rw—r—r— 1 root root 1585 Jul 21 00:38 bf.h
—w—r—r1— 1 root root 51 Jul 21 08:59 Makefile

Following are the results of the testing program of the Bloom filter codes. First,
we assign two fingerprints (which are considered to be hash keys). The Bloom filter
is initialized with a bit array with all Os in each bit. We use 11 bits for the Bloom
filter; readers can extend the size if needed. When data with the first hash key
(fingerptl) are saved, deduplication checks the Bloom filter. The bit indexes that
four hash functions compute are 2, 4, 7 and 8. Please note that the bit index starts at
0. The data are found to be unique because O is found among the bit values. Then
the values of the bit indexes (2, 4, 7, 8) are changed to 1, and the Bloom filter has
00101001100 bit arrays:

root@server :~/bf# bf
H##H#HHHHH R R R AR A H A S SRR HAH

Test : Input Data
HAHHHHHHHHHHEHEHEEHHH
[bloom filter] fingerptl : 4543863031426141731
[bloom filter] fingerpt2 : 4543863041425141743

HH###HEHHEHH AR AR SRR
[bloom filter] initialize
HH###HESHEHH B R R RS R

2.2 Common Modules 33

>>> Bloom Filter (11 bits)
000000O0O0OO0O0O

HAHHHAH AR AR HAH SRR AR AR AR AR AR B RS H

[bloom filter] insert : 4543863031426141731
HAHHHHH AR AR HAH AR R AR AR AR AR AR HSH

hashl () : fringerpt = 4543863031426141731
hashl () : temp = 454386303142614
hashl () : bf_index = 7

hash2 () : fringerpt = 4543863031426141731
hash2 () : temp = 45438630314261
hash2 () : bf_index = 8

hash3 () : fringerpt = 4543863031426141731
hash3 () : temp = 4543863031426
hash3 () : bf_index = 4

hash4 () : fringerpt = 4543863031426141731
hash4 () : temp = 454386303142
hash4 () : bf_index = 2

>>> Bloom Filter (11 bits)
00101001100

#H###HESHEHH AR AR RS RS H

[bloom filter] lookup : 4543863031426141731
H#H#H#HESH A H AR R RS

hashl () : fringerpt = 4543863031426141731
hashl () : temp = 454386303142614
hashl () : bf_index = 7

hash2 () : fringerpt = 4543863031426141731
hash2 () : temp = 45438630314261
hash2 () : bf_index = 8

hash3 () : fringerpt = 4543863031426141731
hash3 () : temp = 4543863031426
hash3 () : bf_index = 4

hash4 () : fringerpt = 4543863031426141731

hash4 () : temp = 454386303142
hash4 () : bf_index = 2
[bloom filter] exist : 4543863031426141731

HH###HESHEHH AR R R H R R

[bloom filter] lookup : 4543863041425141743
HH###HESHEHH AR R R H AR

hashl () : fringerpt = 4543863041425141743
hashl () : temp = 454386304142514
hashl () : bf_index 7

hash2 () : fringerpt 4543863041425141743
hash2 () : temp = 45438630414251
hash2 () : bf_index 8

hash3 () : fringerpt = 4543863041425141743
hash3 () : temp = 4543863041425
hash3 () : bf_index 4

hash4 () : fringerpt 4543863041425141743
hash4 () : temp = 454386304142
hash4 () : bf_index =1

34 2 Existing Deduplication Techniques

[bloom filter] doesn’t_exist_:_4543863041425141743

root@server :~/bf#

When data with the same hash key (fingerptl) are saved, four hash functions
compute the bit indexes, including 2, 4, 7 and 8, which were set to 1 already. Thus,
the Bloom filter finds the current data to exist and to be redundant. Now, when the
new data with a different hash key (fingerpt2) are saved, four hash functions again
calculate the 1, 4, 7 and 8 bit indexes. Though the bit values of the 4, 7, 8 indexes
are found to be 1, the bit values of the 1 bit index (second bit) is still 0. This means
the current data are unique. Therefore, the Bloom filter says the current data do not
exist in the previously saved data. Then the bit value of the 1 bit index (second bit)
is changed to 1.

2.3 Deduplication Techniques by Granularity

2.3.1 File-Level Deduplication

File-level deduplication uses file-level granularity, which is the most coarse-grained
granularity. File-level deduplication compares entire files based on a hash value of a
file, like SHA-1 [34], to avoid saving the same files. In this section, we demonstrate
how file-level deduplication works and its implementation.

2.3.1.1 Fundamentals

We begin by explaining how file-level deduplication works. As shown in Fig.2.2,
suppose we have two identical files. When we save the first file, deduplication
computes an index that is a hash value using a one-way hash function. If the index
is not found in the index table, the file is unique. In this case, the index and the file
are saved to the index table and storage respectively. For the second file, the index
of the file is found in the index table, so the corresponding file is not saved.
File-level deduplication has been used to remove redundancies of identical files
in storage, email systems and cloud-based storage systems. For storage, EMC
Corporation’s (EMC’s) Centera [17] uses file-level deduplication to reduce redun-
dancies in storage. For email systems, Microsoft Exchange 2003 [29] and 2007 [30]
use file-level deduplication, called the Single Instance storage (SIS) [S]. An email
with multiple recipients is copied to multiple mailboxes, resulting in multiple copies
of the email. In this case, SIS saves only one copy of an email in the recipient’s
mailbox and saves only the pointers of the email in other recipients’ mailboxes
without storing the email redundantly in the individual recipients’ mailboxes. Many
cloud-based storage services such as JustCloud [22] and Mozy [32] also use file-
level deduplication. One study [28] on corporate users’ file systems showed that

2.3 Deduplication Techniques by Granularity 35

storage --=+ control |

---» index -Unique
1T index Index
Jor table

_-dUplicate

-

---+ index

Fig. 2.2 File-level deduplication

simple file-level deduplication can achieve three-quarters of the space savings of
aggressive, expensive block deduplications (to be discussed in the next two sections)
at a lower cost in terms of performance and complexity.

2.3.1.2 Implementation

The first step of file-level deduplication is to compute an index (hash key) of a file,
and the hash key and data of the file are fed into a file-level deduplication function,
called the dedupFile(). The SHA-1 hash key is used as an index computed by the
getHashKey() with the data of the file:

FileOper fileOper;

ShalWrapper shalWrapper;

string data, hashKey;

data = fileOper.getData(filePath); // path of the file to be
saved
hashKey = shalWrapper.getHashKey (data);

dedupFile (hashKey, data);

getData() in FileOper class read a file and load the content to a string typed
variable. getData() is implemented using ifstream() as follows:

string
FileOper :: getData(string filePath) {

string result, line;

ifstream file ((charx)filePath.c_str());
if (file.is_open()) {
while (file.good()) {
getline (file ,line);
if (!file.eof())
result += line + "\n";
else
result += line;

36 2 Existing Deduplication Techniques

}

} else {
cout << "getData()_:_,
return

}

file .close ();

<< filePath << "_open_error " << endl;

nn o,
s

return result;

}

The dedupFile() function begins by comparing the hash key in arguments with
pre-existing indexes in a hash table, checking whether data corresponding to the
hash key are unique or duplicates. In code, we use a flag variable, called ‘isUnique’,
that has ‘false’ initially. File-level deduplication checks the Bloom filter with an
index (hash key). If the Bloom filter returns ‘true’, then we further check the chunk
index cache because there may be false positives. If the Bloom filter returns ‘false’,
the current data are determined to be unique with 100 % certainty, and ‘isUnique’ is
changed to ‘true”:
void
SDedup :: dedupFile (string fileHashKey , string data) {

boolean isUnique = false;
//

// check bloom filter

//

if (existInBloomFilter (fileHashKey)) ({
// due to false positive, we check chunk index subsequently.

//
// check chunk index cache
//
// duplicate data

if (!isDuplicateInCache (fileHashKey)) ({

isUnique = true;
}
} else {
isUnique = true;

}

if (isUnique) {
savelnCache (fileHashKey);

// save to storage
sm.setBufferedData (fileHashKey , data);
}
}

existInBloomFilter() is a wrapper function of bf_lookup(<bloom filter array>,
<index>) of the Bloom filter implementation; that is, the Boolean result of
bf_lookup() is forwarded to existInBloomFilter(). isDuplicateInCache() is a wrap-
per function of ‘cache.exist(key)’ in the index table implementation as follows:

2.3 Deduplication Techniques by Granularity 37

bool
SDedup :: isDuplicateInCache (string key) {
if (cache.exist(key))
return true;
else
return false;

}

void
SDedup :: savelnCache(string key) {
cache.set(key, "");

}

If the current data are determined to be unique by the Bloom filter or chunk index
cache, the index is saved to the chunk index cache using the saveInCache() function.
‘sm.setBufferedData(fileHashKey, data)’ buffers data contents, compresses the data,
and saves them to storage. ‘sm’ is an object of the ‘StoreManager’ class.

2.3.1.3 Existing Solutions

File-level deduplication is used for Microsoft Exchange 2003 and 2007 based on
a SIS [5]. SIS stores file contents to a ‘SIS Common Store’. In SIS, a user file
is managed by a SIS link that is a reference to a file called the ‘Common Store
File’. Whenever SIS detects duplicate files, SIS links are created automatically and
file contents are saved to the common store. SIS consists of a file system filter
library that implements links and a user-level service detecting duplicate files that
are replaced by links. SIS can find duplicate files but not large redundancies within
similar files. We address this issue by developing the Hybrid Email Deduplication
System (HEDS) [23].

File-level deduplication is used for popular cloud storage systems, such as
JustCloud [22] and Mozy [32], to reduce latency in a client. Cloud storage system
client applications run file-level deduplication that computes an index (hash key) of
each file and checks whether the index exists in a server. If the server has the index,
the client does not send the duplicate file. Running the file-level deduplication in the
client before sending data to a server allows cloud storage systems to consume less
storage space and bandwidth. One study [20] measured the performance of several
cloud storage systems including Mozy.

One study [28] evaluated the trade-off in space savings between file-level dedu-
plication and block-based (fixed-size and variable-size) deduplications, claiming
that file-level deduplication provided a simpler complexity and reduced more file
fragmentation than block-based deduplications. The study collected file system
contents from almost 1000 desktop computers in a corporation and measured file
redundancies and space savings. The authors showed that File-level deduplication
saves less space than block-level deduplication. Figure 2.3 shows the evaluation set-
up of the study. A file system scanner computes the indexes of blocks or chunks
by running fixed-size and variable-sized block deduplication with the minimum and

38 2 Existing Deduplication Techniques

Analyzed
Post-processing results

BloomFilter 1 BloomFilter 2 Index cache

indexes

indexes

FileScanner FileScanner
e e e e ! RN BT T !
if Indexl, ..., Index N i i Indexl, ..., Index N]i
i ! i !
i Fixed/Variable i i Fixed/Variable i
i dedup | ; dedup |
% _________ L ; _________ L.
Userl User N

Fig. 2.3 A study of practical deduplication: evaluation set-up

maximum chunk sizes, 4 KB and 128 KB respectively. The expected chunk size
ranges from 8 to 64 KB. The computed indexes are collected by a post-processing
module that checks the redundancies of indexes using two Bloom filters. The size
of each Bloom filter is 2 GB. The analysed results are saved to a database. The
computed total size of the files is 40 TB, and the number of files is 200 million.
File duplicates are found in post-processing by identifying files where all chunks
matched. This study also mentions that a semantic knowledge of file structures
would be useful to reduce redundancies with less overhead, and our Structure-Aware
File and Email Deduplication for Cloud-based Storage Systems (SAFE) approach
exploits the semantic information of file structures, as shown in Chap. 4.

2.3.2 Fixed-Size Block Deduplication

File-level deduplication can find redundancies of identical files but not redundancies
within similar files. To find redundancies in similar files, fixed-size block deduplica-
tion has been proposed and uses fixed-size blocks for the granularity. In this section,
we show how fixed-size block deduplication works and the implementation codes.

2.3 Deduplication Techniques by Granularity 39

File1 nice people, good papers, and good company are ...

: " " 1
1t i

T o

nice people, go] ‘ od papers, and ‘ | good company ar ‘ AAAAAA

Offset shifting problem

———————— -+

File2 welcome,lnice people, gooci bapers, and gooHi company are,]

No redundancies found

B S W S

welcome, nice p H eople, good pap | ‘ ers, and good ¢ ‘

different

Fig. 2.4 Fixed-size block deduplication

2.3.2.1 Fundamentals

Fixed-size block-level deduplication separates a file into the same sized blocks and
finds redundant blocks by comparing the indexes of the blocks. It runs fast because it
only relies on offsets in a file to separate a file into blocks. However, fixed-size block
deduplication has an issue when it comes to finding matching contents in similar
files when the content at the beginning of the files is changed. For example, as shown
in Fig.2.4, suppose deduplication uses a 15byte fixed-size block as granularity.
When we save an original file Filel, deduplication splits the file into 15 byte fixed-
size blocks. Likewise, when we save an updated file File2, in which we add the
small text ‘welcome’ at the beginning of the original file, deduplication again splits
the file into fixed-size blocks. However, blocks split from the updated second file
are totally different from blocks split from the original first file. This is because the
contents are shifted in the file; this is called the offset-shifting problem.

Fixed-size block deduplication has been used for archival storage systems like
Venti [39]. Venti uses fixed-size blocks as the granularity level and compares SHA-
1 hash keys of blocks with previously saved hash keys following an on-disk index
hierarchy. A popular cloud storage system, Dropbox [12], uses very large fixed-
size (4 MB) block deduplication. Dropbox reduces network redundant traffic and
redundant savings in the server by communicating with indexes between clients and
servers before sending the data. Detailed information on how Dropbox works is
explained in Chap. 4.

2.3.2.2 Implementation

Fixed-size block deduplication requires three arguments, including an index (a hash
key) of a file, the data (content of a file) and a block size based on which data are

40 2 Existing Deduplication Techniques

split into blocks. To retrieve an index, we can use the getHashKey() function in the
shal Wrapper class (Sect. 2.2.1.2):

hashKey = shalWrapper. getHashKey (data);
dedupBlock (hashKey, data, blkSize);

The following is an example of a fixed-size block deduplication function,
dedupBlock(). dedupBlock() has three parameters corresponding to the called
method, dedupBlock(). The first local variable block is a reference variable to
point to the array of blocks whose type is the string. We also need a variable,
‘numOfBlocks’, that shows the number of blocks in a file. The hashKey variable
indicates the index of each block. In this code, the Bloom filter is not shown, but
the checking of redundancy by the Bloom filter can be located before checking
using the isDuplicateInCache() function with ‘chunk index cache’.
void
SDedup :: dedupBlock (string fileHashKey, string data, int blkSize) {

string *blocks;
int numOfBlocks = 0;
string hashKey;

int i;
//
// check duplicate file
//
// *x%*%x A duplicate file does not need to be de—duplicated
to blocks
if (isDuplicateInCache (fileHashKey)) {
return ;
}
else {

savelnCache (fileHashKey);
}

//
// check duplicate blocks
//
// set block size

chunkWrapper.setAvgChunkSize (blkSize);

// get blocks from a data
blocks = chunkWrapper. getBlocks (data, numOfBlocks);

for (i=0; i < numOfBlocks; i++) {

// get hash key of a block
hashKey = shalWrapper.getHashKey (blocks[i]);

if (!isDuplicateInCache (hashKey)) {
// save an index of a block
savelnCache (hashKey);

2.3 Deduplication Techniques by Granularity 41

// save to storage
sm.setBufferedData (hashKey, blocks[i]);

}

// clear memory
delete [] blocks;

In pure fixed-size block deduplication, a file is directly split into blocks without
checking whether the file itself exists, causing redundant processing overhead and
memory overhead. Thus, the dedupBlock() function first checks whether there is
a duplicate file with an index of the current file. If a file is redundant, the file is
not separated into blocks. An index of the file is saved to the index table using the
savelnCache() function, and the dedupBlock() function ends.

If the current file is not a duplicate, there could be similar files with
the same blocks. First, the program sets the block size using chunkWrap-
per.setAvgChunkSize(blkSize). The chunkWrapper object maintains all environ-
ment variables related to chunking. We go into detail on the chunkWrapper class
in the next section. The getBlock() function in chunkWrapper() splits the data
(file) into blocks of string and returns the split blocks and the number of blocks
(numOfBlocks). Then, for each block, we check that the block is a duplicate based
on the index (or hash key) of the block on the index table. If the block is unique [that
is, if isDuplicateInCache(hashKey) returns ‘false’], the index of the block is saved
to the index table, and each block is filled into buffer so that buffered data are stored
when the buffer is full or when it reaches the time threshold. After deduplication is
done, the memory allocated for blocks is deleted (the memory was allocated as the
type of dynamic array).
string *

ChunkWrapper :: getBlocks (string data, int & numOfChunks) {

string *chunks;
int chunkIndex = 0;
size_t beginOffset = 0, endOffset = 0;

int chunkSize = getAvgChunkSize ();

// get number of fixed chunks
numOfChunks = (data.length() / chunkSize) + 1;

// get fixed chunks

chunks = new string [numOfChunks];
endOffset = beginOffset + (chunkSize — 1);
while (endOffset < data.length()) {

chunks[chunkIndex++] = data.substr(beginOffset, chunkSize);

beginOffset
endOffset

endOffset + 1;
beginOffset + (chunkSize — 1);

42 2 Existing Deduplication Techniques

}

// get fixed last chunk
chunks [chunkIndex] =
data.substr(beginOffset , data.length() — beginOffset);

return chunks;

The preceding code shows the getBlocks() function implementation. Please note
that chunk and block terms are used interchangeably. In getBlocks(), the number of
blocks is computed by dividing the size of the data by the block size (chunkSize).
We maintain beginOffset and endOffset for each block, and each block is split from
the data and ultimately contained in the string element of the chunk array using a
substr() function. After all blocks are contained in a chunk string array, the reference
variable of the chunks are returned.

2.3.2.3 Existing Solutions

Venti [39] is a fixed-size block deduplication system and uses a write-once policy,
preventing data being inconsistent or causing malicious data loss. The main idea
is that a file is divided into several blocks, and the index (hash key) of each block
is created by a SHA-1 hash function. If the index of the block is the same as a
previously saved index, the block is not saved. The index is arranged into a hash
tree for reconstructing a file that contains the block. To improve performance, Venti
uses three techniques: caching, striping and write buffering. The block and index are
cached. Venti shows the possibility of using a hash key to differentiate each block
in a file. Most deduplication applications that have been published split a file into
several blocks (or chunks) and save each block based on the index (hash key) of
each block.

Figure 2.5 shows how files are saved into the tree structure of Venti. A data block
is pointed to by an index (hash key) of the block, and the indexes are packed into
a pointer block with pointers. As shown in Fig.2.5a, Venti creates a hash key of
a pointer block P that is a root pointer block of filel. Venti creates new pointer
blocks Py and P, that subsequently point to Dy, D1, D, and Dj3. Thus, data blocks
of filel are retrieved following on the tree structure of pointer blocks starting from
Py. Figure 2.5b demonstrates how the tree structure is changed when a similar file
(file2) is saved. Suppose file2 has two identical data blocks (Dy and D), like filel,
but two unique data blocks (D4 and Ds). Venti does not change the pointer blocks
but instead creates new pointer blocks (P3 and Py) for file2. File2 can be retrieved
using pointer blocks P3, Py, and Py.

Dropbox [12] uses fixed-size block deduplication with a 4 MB fixed block
as its granularity. One study [11] discovered internal mechanisms of Dropbox
by measuring and analysing packet traces between clients and Dropbox servers.
Dropbox is accessed by Web UI (http://www.dropbox.com) or a Dropbox client.

http://www.dropbox.com

2.3 Deduplication Techniques by Granularity 43
a

Pl
Filel h(P,) — P, /'7
h(D,) D
h(Pl) 0. 0

h(Dy) [~ D,

h(P,) \a\\\\\x‘
p

v

2

h(D,) * D,
h©y) [~ |
b
p
Filel h(P) > P, T
h(P.) h(Do) " Do
1(F4)
-~ h(D
h(P) O o,
» P,
File2 h(P;) — P, h(D,) * D,
h(Py) h(Ds) I
h(P,)
h(Dy) D4

Fig. 2.5 Venti tree structure of data blocks [39]. (a) Tree structure of an original file (Filel). Filel
consists of four data blocks, including Dy, Dy, D,, and D;. (b) Tree structure of a similar file
(File2). File2 consists of four data blocks, including Dy, Dy, D4, and D5

We leverage SAFE into a Dropbox client to deduplicate structured files on the client
side. Dropbox consists of two type of servers, one a control server and the other
a storage server. Control servers hold metadata of files such as the hash value of
individual blocks and mapping between a file and its blocks. Storage servers contain
unique blocks in Amazon S3 [2]. Dropbox client synchronizes its own data and
indexes with Dropbox servers.

Figure 2.6 shows how Dropbox works. Circles with numbers represent the order
in which a file is saved. File-A is a file and Blk-X is a block that is separated from
a file. h(Blk-X) denotes the hash value of a block. Thick h(Blk-X) and Blk-X are
considered hash values and blocks that already existed before a file was saved.
The user device is a mobile phone, tablet, laptop or desktop. Dropbox goes through

44 2 Existing Deduplication Techniques

Dropbox
File-A | control servers
"

Fixed-size block-lgvel deduplication

'@l Compute hashes |
' ¥

h(Blk-4) | hElk-8)
v v

| Send hashes |®
| | sendblocks |®

h(Blk-A)
h(Blk-B)

Dropbox client Dropbox
st storage servers
user's device (in Amazon 53)

Fig. 2.6 Dropbox internal mechanism

the following steps to save a file. (1) As soon as a user saves File-A to a shared
folder in a Dropbox client, the fixed-size block deduplication of Dropbox splits the
file into blocks based on 4 MB granularity and computes hashes of the objects. If a
file is larger than 4 MB, then the file is the same as an object and a hash value of
the file is computed. Dropbox uses SHA256 [35] to compute a hash value. (2-4)
The Dropbox client sends all computed hash values of a file to a control server that
returns only unique hash values after checking previously saved hash values. In this
example, the hash key of Blk-B is returned to a client because the hash key of Blk-A
is found to be a duplicate. (5—6) The Dropbox client sends the blocks of returned
indexes to the storage server. Ultimately, storage servers have unique blocks across
all Dropbox clients. Note that storage saving occurs in a server (thanks to not saving
Blk-A again), and the incurred network load is reduced because only Blk-B is sent.

2.3.3 Variable-Sized Block Deduplication

Variable-sized block deduplication resolves the offset-shifting issue in fixed-size
block deduplication, finding more redundant data in similar files. variable-sized
block deduplication relies not on a fixed-size offset but on content-based chunking.
In this section, we show how variable-sized block deduplication works and present
the implementation codes.

2.3 Deduplication Techniques by Granularity 45

(48B) gjide
Window py 1B
File1 My
S — —J 1
Fingerprint) End of file
Pre-defined il ki g “-. Chunks
value 1234565- 1234567 It‘ same I """"" """"""""""""
. = bound . unique
67 boundary, boundary] e

File2 - ‘

B - /N

Fig. 2.7 Variable-sized block deduplication

2.3.3.1 Fundamentals

Variable-sized block deduplication has been proposed to solve the offser-shifting
problem of fixed-size block deduplication. Variable-sized block deduplication relies
on contents rather than a fixed offset. Figure 2.7 illustrates how variable-sized block
deduplication works. Suppose we have two files. Filel is an original file and File2 is
an updated file in which we add brief texts in the middle of the file. When we save
Filel, deduplication slides a small window from the beginning of the file. While the
window is sliding byte by byte, a fingerprint [40] of each window is computed and
the two lowest digits are compared with a pre-defined value. If they are the same,
the window is set to a chunk boundary. Then the contents ranging from the previous
chunk boundary to the current chunk boundary is treated as a chunk. The window
keeps sliding and finding chunk boundaries in the same manner. As a result, three
unique chunks (C1, C2, C3) and the corresponding indexes are saved. When we
save the updated second file, deduplication again slides a window and finds chunks.
C4 is found to be unique, and C/ and C3 are found to be redundant. Here, we see
that chunk boundaries are maintained, though the contents are shifted in a file. Thus,
content-based variable-sized block deduplication can find more redundancies than
offset-based fixed-size block deduplication.

Since variable-sized block deduplication provides fine-granularity chunking
techniques to achieve high storage space savings, it has been used for backup [10,
13, 19, 26, 48, 50] or file systems [6, 42]. However, to speed up the processing
time by reducing the number of disk accesses, this approach, like the DDFS [50],
exploits efficient caching schemes, like the Bloom filter and the chunk index cache,
and locality-based disk layout.

46 2 Existing Deduplication Techniques

2.3.3.2 Implementation: dedupChunk()

We show the dedupChunk() function where variable-sized deduplication is used.
Like fixed-size block deduplication, the Bloom filter is not shown, but it can
run before an index is checked in the index table using the isDuplicateInCache()
function. The dedupChunk() function is almost the same as the dedupBlock()
function, except that dedupChunk() uses chunkWrapper.getChunks() rather than
chunkWrapper.getBlocks(). The getChunks() function is explained in more detail
in Sect. 2.3.3.5. Overall, the unique chunk is passed to a buffer where the buffered
data are saved in storage.

void
SDedup :: dedupChunk (string fileHashKey, string data, int avgChunk
Size ,

int minChunkSize, int maxChunkSize) {

string *chunks;

int numOfChunks = 0;
int i;

string hashKey;
string filePath;

//
// check duplicate file
//
// *x*% A duplicate file does not need to be de—duplicated to
blocks
if (isDuplicateInCache (fileHashKey)) {
return;
}
else {
savelnCache (fileHashKey);

}

//
// check duplicate chunks
//

// get chunks from a data
chunks = chunkWrapper.getChunks(data, numOfChunks,
avgChunkSize , minChunkSize , maxChunkSize);

for (i=0; i < numOfChunks; i++) {
// get hash key of a block
hashKey = shalWrapper.getHashKey (chunks[i]);

if (!isDuplicateInCache (hashKey)) ({
savelnCache (hashKey);
sm. setBufferedData (hashKey, chunks[i]);
}
1
}

// clear memory
delete [] chunks;

2.3 Deduplication Techniques by Granularity 47

2.3.3.3 Implementation: Rabin Fingerprint

The Rabin fingerprint [40] is used to find chunk boundaries, resulting in the
identification of a chunk. The Rabin fingerprint is a 64 bit key. When we compute
fingerprints in data (byte stream using sliding windows), a fingerprint of each win-
dow can be computed quickly based on the previous fingerprints using the following
equation. Detailed information can be found in [43]. The full implementation codes
are in Appendix D:

RF(ti4; ... l,g_H) = (RF(s... lﬁ+i_]) — 1 Xpﬂ) + tp+i modM . 2.1)

We can compile and build a test program to compute the Rabin fingerprint by
typing ‘make’. The results from running the executable file, rabin, show a fingerprint
(with long integer type) for the ‘hello tom danny’ string.

root@server :~/rabin# make
g++ —o rabin rabinpoly.cc rabinpoly_main.cc

root@server:~/rabin# Is —1

total 40

—rw—r—r1— 1 root root 83 Jul 24 16:47 Makefile
—rwxr—xr—x 1 root root 13503 Jul 24 16:47 rabin

—w—t—r— 1 root root 9662 Jul 24 16:46 rabinpoly.cc
—rw—r—r1— 1 root root 2756 Jul 24 16:46 rabinpoly.h
—w—t—rt— 1 root root 1399 Jul 24 16:47 rabinpoly_main.cc

root@server:~/rabin# rabin

rabinpoly_main : input data

hello tom danny

rabinpoly_main : fingerpt = 379718595532164463

2.3.3.4 Implementation: Chunking Core

Chunking is the first of three steps in deduplication (the other steps are hashing
and indexing). The snippet codes for chunking are found in Appendix E. The
core function in chunking is process_chunk in chunk_sub.cc. The process_chunk()
function slides a small window byte by byte on the data, finds the chunk boundaries,
and saves the beginning and ending indexes for all chunks to the ‘begin_indexes’ and
‘end_indexes’ integer arrays respectively. That is, the goal of the process_chunk()
function is to identify the boundaries of the chunks. Based on the boundaries, the
chunking Wrapper class, as shown in Appendix F, splits the data into chunks.

The following code is the function call to process_chunk(), where ‘buf’ and
‘size’ are the data and the size of the data to be separated, num_of_breakpoints
is the number of break points, BOUNDARY_SIZE, defined in rabinpoly.h, is
48 bytes and the size of the sliding windows avg_chunk_size, min_chunk_size and
max_chunk_size are average, minimum and maximum chunk size respectively.

48 2 Existing Deduplication Techniques

num_of_chunks is literally the number of chunks. begin_indexes and end_indexes
are integer arrays, where the beginning and ending indexes of all chunks are to be
held after the breakpoints are found.

process_chunk (buf, size, &num_of_breakpoints, BOUNDARY_SIZE,
avg_chunk_size, min_chunk_size, max_chunk_size,
&num_of_chunks, begin_indexes, end_indexes);

The entire code of process_chunk() is in chunk_sub.cc of Appendix E.3. We
explain how process_chunk() works using snippet codes. The first for loop slides a
window by one byte based on cur_pos. At STEP1, b_region means each window,
and at STEP2, fingerpt is computed for each b_region using the fingerprint()
function in rabinpoly.cc. Readers should note that they can further optimize the
running time not by copying window to the b_region char array but by using the
offset of window in data. At STEP3, low-order bits are calculated as the remainder
of fingerpt divided by avg_chunk_size. At STEPS, the low-order bits of fingerpt are
compared with BREAKMARK_VALUE, which is defined at 0x78 in chunk.h. If
they are the same, then the current window is determined to be a chunk boundary.
The beginning (chunk_b_pos) and ending (chunk_e_pos) indexes of the chunk
are saved to begin_indexes and end_indexes integer arrays by the set_breakpoint()
function. Note that if the chunk size is less than the predetermined min_chunk_size
(“if (cur_chunk_size < min_chunk_size)’), process_chunk() continues to slide a
window to find the next chunk boundaries. Also, as at STEP4, if the window keeps
sliding without finding chunk boundaries and the size of a chunk is supposed to be
larger than max_chunk_size, process_chunk() forcibly sets a chunk boundary (break
mark) and creates a chunk.

for (cur_pos=0; cur_pos < data_size; cur_pos += ONE BYTE)
{

//

// STEPI. get boundary region

//

// allocate boundary region

b_region = (unsigned char *)malloc(sizeof(unsigned char)x*
b_size);

memset(b_region, ’\0’, b_size);

// get boundary region
strncpy (b_region, data + cur_pos, b_size);

b_region[b_size] = ’\0’;

//

// STEP2 compute rabin fingerprint

//

fingerpt = fingerprint(b_region, strlen(b_region), FINGER
PRINT_PT);

//

2.3 Deduplication Techniques by Granularity 49

// STEP3. compare to breakpoint value

// to extract chunk

//

// fingerpt % K(avg_chunk_size) == BREAKMARK VALUE
//

low_order_bits = fingerpt % avg_chunk_size;

//

// STEP4. chunk size is larger than maximum chunk size
//

cur_chunk_size = get_chunk_size (chunk_b_pos, cur_pos,
b_size);

if (cur_chunk_size >= max_chunk_size)

{

// get chunk_b_pos and chunk_e_pos
set_breakpoint(num_of_breakpoints , &chunk_b_pos,
&chunk_e_pos, &cur_pos,
(char *)"MAX_CHUNK SIZE", b_size , data_size ,
num_of_chunks, begin_indexes, end_indexes);

// set position for the next chunk
chunk_b_pos = chunk_e_pos + 1;

cur_pos = chunk_b_pos;
}
//
// STEP5 chunk size is less than minimum chunk size or
// is in between minimum chunk size and maximum chunk
size
//
// (f(A) mod K == x)
// (chunk size is less than miminum or
// is in range of minimum and maximum chunk size)
//
// f(A) —> fingerprint
// —> expected average chunk size
// X —> BREAKMARK_VALUE
//
if (low_order_bits == BREAKMARK VALUE)

{

if (cur_chunk_size < min_chunk_size)

{
// do not set breakpoint
}
else if ((cur_chunk_size >= min_chunk_size)
&& (cur_chunk_size < max_chunk_size))

{

// get chunk_b_pos and chunk_e_pos
set_breakpoint(num_of_breakpoints , &chunk_b_pos,
&chunk_e_pos, &cur_pos,
(char x) "BREAKMARK" , b_size , data_size ,
num_of_chunks, begin_indexes, end_indexes);

50 2 Existing Deduplication Techniques

// set position for the next chunk
chunk_b_pos = chunk_e_pos + 1;
cur_pos = chunk_b_pos;

}
}
}

To compile and build a ‘chunk’ executable, we type ‘make’. Following are the
results of running the ‘chunk’ executable. ‘body’ is data that are split into chunks.
The chunking core computes 14 boundaries from the body data. The beginning and
ending indexes of each chunk are shown in the results. For example, the second
chunk has the 3493rd byte as the beginning index and 12,427th byte as the ending
index.

root@server:~/1lib/chunk/chunk_lib# make
g++ —o chunk chunk_main.cc chunk_sub.cc rabinpoly.cc util.cc

root@server :~/1ib/chunk/chunk_ lib# 1s —1

total 356

—w—rt—r— 1 root root 106342 Jul 20 20:29 body
—rwxr—xr—x 1 root root 24070 Jul 25 13:49 chunk
—rw—r—r— 1 root root 5417 Jul 20 20:29 chunk.h
—rw—r—r— 1 root root 4592 Jul 20 20:29 chunk_main.cc
—rw—r—r— 1 root root 30079 Jul 20 20:29 chunk_sub.cc
—w—r—r1— 1 root root 409 Jul 20 20:29 common.h
—rw—r—r— 1 root root 209 Jul 20 20:29 Makefile
—rwxr—xr—x 1 root root 13503 Jul 24 17:36 rabin
—tw—r—r— 1 root root 9662 Jul 20 20:29 rabinpoly.cc
—rw—r—r1— 1 root root 2756 Jul 20 20:29 rabinpoly.h
—w—r—r— 1 root root 1399 Jul 24 17:36 rabinpoly_main.cc
—TrwXr—xr—x 1 root root 8845 Jul 24 17:30 util
—rw—r—r— 1 root root 3088 Jul 20 20:29 util.cc

root@server: ~/11b/chunk/chunk lib# chunk body 8192 2048 65535

set_breakpoint [1] : size(3493) : 0 ~ 3492, BREAKMARK

set_breakpoint [2] : size(8935) : 3493 ~ 12427, BREAKMARK
set_breakpoint [3] : size(23575) : 12428 ~ 36002, BREAKMARK
set_breakpoint [4] : size(5917) : 36003 ~ 41919, BREAKMARK
set_breakpoint [5] : size(9126) : 41920 ~ 51045, BREAKMARK
set_breakpoint [6] : size(3076) : 51046 ~ 54121, BREAKMARK
set_breakpoint [7] : size(4246) : 54122 ~ 58367, BREAKMARK
set_breakpoint [8] : size(8408) : 58368 ~ 66775, BREAKMARK
set_breakpoint [9] : size(18804) : 66776 ~ 85579, BREAKMARK
set_breakpoint [10] : size(2109) : 85580 ~ 87688, BREAKMARK
set_breakpoint [11] : size(11416) : 87689 ~ 99104, BREAKMARK
set_breakpoint [12] : size(2180) : 99105 ~ 101284, BREAKMARK
set_breakpoint [13] : size(4326) : 101285 ~ 105610, BREAKMARK
set_breakpoint [13] : size(731) : 105611 ~ 106341, LAST CHUNK

2.3 Deduplication Techniques by Granularity 51

2.3.3.5 Implementation: Chunking Wrapper

The chunkWrapper class defines functions [getChunks()] to separate data into
variable-sized chunks based on beginning and ending indexes computed by the
chunking core class. The chunkWrapper class also defines functions to obtain fixed-
size blocks [getBlocks()]. The chunkWrapper class requires other libraries, includ-
ing the chunking core class (Sect.2.3.3.4), Rabin fingerprint class (Sect.2.3.3.3)
and SHA-1 hashing (Sect.2.2.1.2). The chunkWrapper class also requires a file
operation class based on the C++ Boost library. The file operation class is not shown
in this book owing to the large code size.

root@server:~/1ib/chunk# make

g++ —DCHUNK_WRAPPER TEST —o chunk chunkWrapper.cc
chunkWrapperTest .cc

fileOper/fileOper.cc chunk_lib/chunk_sub.cc chunk_lib/rabinpoly
- @@

chunk_lib/util .cc —I. —Iboost_1_58_0 —L/usr/local/lib

—lboost_filesystem —IfileOper —LfileOper —Ichunk_lib —Lchunk_lib

—Ishal —Lshal shal/shal.cc shal/shalWrapper.cc

root@server:~/1ib/chunk# 1s —1

drwx 9 501 staff 4096 Jul 25 15:37 boost_1_58_0
—rw—r—r1— 1 root root 83581760 Apr 16 03:58 boost_1_58_0.tar.gz
—rwxr—xr—x 1 root root 198084 Jul 25 16:01 chunk
—rw—r—r— 1 root root 1355 Jul 20 20:28 chunkInterface.h
drwxr—xr—x 2 root root 4096 Jul 25 13:49 chunk_lib
—rw—r—r1— 1 root root 4162 Jul 20 20:28 chunkWrapper.cc
—rw—rt—r— 1 root root 915 Jul 20 20:28 chunkWrapper.h
—rw—r—r1— 1 root root 2536 Jul 20 20:28 chunkWrapperTest.cc
—rw—r—r— 1 root root 18666 Jul 20 20:28 document.xml
.changed
drwxr—xr—x 2 root root 4096 Jul 25 16:01 fileOper
—rw—r—r— 1 root root 934 Jul 25 16:01 Makefile
—rw—r—r— 1 root root 1509 Jul 20 20:28 readme
drwxr—xr—x 2 root root 4096 Jul 25 16:01 SHA—1

root@server:~/1ib/chunk# 1s —1 chunk_lib

—tw—t—r— 1 root root 106342 Jul 20 20:29 body
—rwxr—xr—x 1 root root 24070 Jul 25 13:49 chunk
—rw—r—r— 1 root root 5417 Jul 20 20:29 chunk.h
—rw—r—r— 1 root root 4592 Jul 20 20:29 chunk_main.cc
—rw—r—r— 1 root root 30079 Jul 20 20:29 chunk_sub.cc
—w—r—r1— 1 root root 409 Jul 20 20:29 common.h
—rw—r—r— 1 root root 209 Jul 20 20:29 Makefile
—rwxr—xr—x 1 root root 13503 Jul 24 17:36 rabin
—tw—r—r— 1 root root 9662 Jul 20 20:29 rabinpoly.cc
—rw—r—r1— 1 root root 2756 Jul 20 20:29 rabinpoly.h
—rw—r—r1— 1 root root 1399 Jul 24 17:36 rabinpoly_main.cc
—rwXr—xr—x 1 root root 8845 Jul 24 17:30 util
—rw—r—r— 1 root root 3088 Jul 20 20:29 wutil.cc

root@server:~/1lib/chunk# 1s —1 SHA—I1

52

—w—r—r1— 1 root
—TrwXr—xr—x 1 root
—w—r—r1— 1 root
—w—r—r— 1 root
—w—r—r1— 1 root
—rw—r—r— 1 root
—w—r—r1— 1 root

root
root
root
root
root
root
root

37383
20297

98 Jul
Jul
Jul
Jul
Jul
Jul

Jul

25
25
25
25
25
25
25

4606
1908
1187

522

16:
16:
16:
16:
16:
16:
16:

Existing Deduplication Techniques

01
01
01
01
01
01
01

Makefile

SHA—1

shal .cc

shal .h

shal _test.cc
shalWrapper.cc
shalWrapper.h

root@server :~/1lib/chunk# 1s —1 fileOper

—rw—r—r— 1 root

root 52812 Jul 25 16:01
—w—r—r1— 1 root root 22577 Jul 25 16:01

fileOper.cc
fileOper.h

We show three results obtained from running the program. The first variable-
sized chunking extracts 14 chunks based on 8 KB (8192 bytes) average chunk size.
Lines show the chunk boundaries and the chunk sizes after showing the boundaries.
The second variable-sized chunking extracts 45 chunks from the same data. This is
because an average chunk size (2 KB) that is smaller than the first chunking is used.
The smaller the average chunk size used, the more chunks are created. The third
result shows blocks extracted by getBlocks(), which means fixed-size blocks.

root@server:~/1ib/chunk# chunk

kkkkkkkk variable
average chunk size
minimum chunk size
maximum chunk size
set_breakpoint
set_breakpoint
set_breakpoint
set_breakpoint
set_breakpoint
set_breakpoint
set_breakpoint
chunk [0] 3493
chunk 8935
chunk 23575
chunk 5917
chunk 9126

chunk
chunk
chunk

[11] 2180
[12] 4326
[13] 731

kkskkkkkk variable
average chunk size
minimum chunk size
maximum chunk size
set_breakpoint
set_breakpoint
set_breakpoint
set_breakpoint

sized chunking sskskskskskskskskskskk
= 8192

2048

= 65535

[1]
[2]
[3]
[4]

[12]
[13]
[13]

size (3493)
size (8935)
size (23575)
size (5917)

size (2180)
size (4326)
size (731)

0 ~ 3492, BREAKMARK

3493 ~ 12427, BREAKMARK
12428 ~ 36002, BREAKMARK
36003 ~ 41919, BREAKMARK

99105 ~ 101284, BREAKMARK
101285 ~ 105610, BREAKMARK
105611 ~ 106341, LAST CHUNK

sized chunking (with parameters) sksksskskksksxskskk

[1]
[2]
[3]
[4]

2048
512
65535

size (1329)
size (2164)
size (3284)
size (2974)

0 ~ 1328, BREAKMARK

1329 ~ 3492, BREAKMARK
3493 ~ 6776, BREAKMARK
6777 ~ 9750, BREAKMARK

2.3 Deduplication Techniques by Granularity 53

set_breakpoint [41] : size(2180) : 99105 ~ 101284, BREAKMARK
set_breakpoint [42] : size(609) : 101285 ~ 101893, BREAKMARK
set_breakpoint [43] : size(1674) : 101894 ~ 103567, BREAKMARK
set_breakpoint [44] : size(1623) : 103568 ~ 105190, BREAKMARK
set_breakpoint [44] : size(1151) : 105191 ~ 106341,
LAST_CHUNK

chunk [0] 1329

chunk [1] 2164
chunk [2] 3284
1 2974

chunk [3

chunk [40] 2180
chunk [41] 609
chunk [42] 1674
chunk [43] 1623
chunk [44] 1151

kkkkkokkk fixed sized chunking sksskskskokkskkskk
chunk [0] 8192
chunk [1] 8192
chunk [2] 8192

chunk [8] 8192
chunk [9] 8192
chunk [10] 8192
chunk [11] 8192
chunk [12] 8038

2.3.3.6 Existing Solutions

Variable-sized block deduplication involves expensive chunking and indexing for
finding large redundancies, requiring an efficient in-memory cache and on-disk
layout on high-capacity servers. DDFS [50] exploits three techniques to relieve a
disk bottleneck, reducing processing time. A summary vector, which is a compact
in-memory data structure, is used to find new data. Stream-informed segment layout,
on-disk layout, is used to improve spatial locality for both data and indexes. The idea
of a stream-informed segment layout is that a segment tends to reappear in similar
sequences with other segments. This spatial locality is called segment duplicate
locality. Locality-preserved caching uses segment duplicate locality to acquire a
high hit ratio in the memory cache. The study removes 99 % of disk accesses and
achieves 100 MB/s and 210 MB/s for single-stream throughput and multi-stream
throughput respectively.

Sparse indexing [26] uses sampling and a sparse index to reduce the number
of indexes, decreasing RAM requirements. Sparse indexing chooses small portions
of chunks in the byte stream as a sample and avoids full chunk indexes, unlike
DDFS. This approach employs chunk locality, the tendency of chunks in backup
data streams to reoccur together. Figure 2.8 shows the deduplication process of
sparse indexing. In sparse indexing, a segment is the unit of storage and retrieval and

54 2 Existing Deduplication Techniques

byte stream
l Chunker ‘
chunks
l Segmenter ‘
segments —l
hooks
Champion MM Sparse
PEE—
chooser manifests Index
champion pointers
. new
\ pointers| ;
- entries
l Deduplicator ‘
champion new manifests new chunks
‘ Manifeststore | Containerstore l

Disk store

Fig. 2.8 Sparse indexing: deduplication process [26]

a sequence of chunks. A byte stream is split into chunks by Chunker using variable-
sized chunking, and a sequence of chunks becomes a segment by Segmenter.
Two segments are similar if they share a number of chunks. The Champion
chooser chooses sampled segments, called champion, from a sparse index (in-
memory index). Deduplicator compares chunks in incoming segments with chunks
in champions (selected segments). Unique segments are saved to the sparse index
for future comparison, and new chunks are saved to the Container store.

2.3.4 Hybrid Deduplication

Hybrid approaches have been proposed by adaptively using variable-sized block-
level deduplication and file-level deduplication, based on either a fixed policy or
dynamically changed file information [23, 31]. Min et al. [31] employed context-
aware chunking using a file-level deduplication for multimedia content, compressed
files or encrypted content and uses variable-sized block-level deduplication for

2.3 Deduplication Techniques by Granularity 55

text files. Our approach, HEDS [23], first separates the message body and individual
attachments and performs a variable-sized block-level deduplication if the object
size exceeds a predefined threshold. Otherwise, a file-level deduplication is used.

2.3.5 Object-Level Deduplication

Fixed-size block deduplication and variable-sized block deduplication can be used
for all types of files because they rely on the physical byte-string format of a
file. However, for specific file formats, they may be inefficient owing to expensive
chunking. Thus, object-level deduplication that splits a file based on the semantic
(or logical) format of a file has been proposed. A few structure-aware data
deduplication techniques [24, 25, 27, 49] have been proposed to simplify the
chunking mechanism by using objects. Our approach, SAFE [24], splits structure
files, including compressed files, document files (docx, pptx and pdf) and emails,
based on files’ structured formats. ADMAD [27] separates a file into variable-sized
semantic segments, called meaningful chunks (MCs), based on the metadata of each
file. Although the idea of ADMAD decomposing a file into objects according to
the object structure is similar to that of SAFE, ADMAD is limited to a specific
file format. For example, ADMAD does not deal with document file types such
as docx, pptx and pdf. In addition, ADMAD does not handle emails with multiple
attachments. Similar concepts involving the deduplication of structured objects are
presented in [25] and [49].

2.3.6 Comparison of Deduplications by Granularity

Overall, as shown in Fig.2.9, the deduplication ratio indicates how many redun-
dancies are removed, and variable-sized block deduplication is much better than
others. In terms of processing time, variable-sized block deduplication is the worst
owing to expensive chunking. In terms of index overhead, fixed-size and variable-
sized block deduplication is much worse than file-level deduplication, and the index
overhead of fixed-size and variable-sized block deduplication changes depending
on the block or chunk size. Thus, variable-sized block deduplication is good for the
deduplication of updated files or server-based deduplication because high-capacity
servers can handle excessive processing time and index overhead. On the other hand,
file-level deduplication is good for the deduplication of copied files or client-based
deduplication given low-capacity clients.

56 2 Existing Deduplication Techniques

Good for client-based Good for server-based
Or copied files Or updated files

Deduplication || FEijle-level

= | < Fixedsize << Variable size
= ratio

better

1
Processing |iFile-level
time

< Fixedsize <<<< ! Variablesize
worse

Index
@ overhead File-level} <<Fixedsize = i Variable size
| worse !

Fig. 2.9 Comparisons of deduplications

2.4 Deduplication Techniques by Place

2.4.1 Server-Based Deduplication

Server-based deduplication has emerged as a disk-based substitute for tape storage
and backs up large amounts of data at fast speeds using high-performance and
dedicated backup systems. There are many commercial products [18, 36, 45] that
can be used for this type of deduplication.

In this approach, clients send backup data to servers where data are deduplicated.
Clients have lightweight backup through which data are sent to servers, avoiding
large CPU computation and memory overhead of sources for backup purposes.
Figure 2.10 shows how server-based deduplication works. A file is transferred to
a server through a client application. On the server, the file is separated into chunks
typically using variable-sized block deduplication. Indexes of chunks are computed
and compared with indexes previously saved using a Bloom filter or a chunk index
cache. Suppose a chunk c/ is redundant and a chunk c2 is unique in this example.
Then, chunk ¢2 and its corresponding index are saved to storage.

Server-based deduplication finds significant redundancies but incurs excessive
redundant data traffic because duplicate data are delivered to servers to be dedupli-
cated. What is worse, servers have large CPU computation and memory overhead
for chunking and indexing of all backup data. To handle backup quickly with this
overhead within a limited backup window, efficient in-memory and on-disk layout
is required, such as in DDFS [50].

2.4 Deduplication Techniques by Place 57

5 Chunks Indexes Bloomfilter,
N P Chunkindex cache

c2 e .I
.) e T
: o—]
Client
application e
Client Server

Fig. 2.10 Server-based deduplication

Chunks Indexes
I ! & h(c1), h(c2)

&. h(c2

Bloomfilter, Chunkindexcache

c2

Client Server

Fig. 2.11 Client-based deduplication: cl and c2 are chunks. h(cl) and h(c2) are hash keys
(indexes) of chunks

2.4.2 Client-Based Deduplication

In client-based deduplication, clients can keep indexes of deduplicated data or have
a backup agent to check indexes that exist on servers. In either case, clients check
the uniqueness of data in local indexes or in remote indexes through a backup agent.
Only unique data are then delivered to servers. Client-based deduplication [16, 46]
removes excessive redundant network traffic by performing deduplication at the
client before data are transmitted. However, clients incur CPU computation and
memory overhead for backup.

Pure client-based deduplication, where a client removes redundant data before
sending data to a server, does not collaborate with a server (or servers); redundant
data among clients are transferred to a server, which increases data traffic on the
network. Thus, client-based deduplication typically communicates with a server,
and Fig.2.11 illustrates how client-based deduplication works with the help of a
server. The client splits a file into chunks (c/ and ¢2) and computes indexes (h(cl),
h(c2)). Then the client sends all the indexes of the file to a server, which then returns
indexes (i(c2)) of unique chunks that have not yet been saved. In this way, the client
then can send only unique chunks (c2).

58 2 Existing Deduplication Techniques

WAN

1 2' B ' é Server
Chen :(;)-flcz) _@E@ HENARY) :
Q .. h(c1),h(c2) l_:}. A E

h(c1)h(c2) N

f
2 RE RE

Fig. 2.12 End-to-end RE: c1 and c2 are chunks; h(c1) and h(c2) are hash keys (indexes) of chunks

A low-bandwidth network file system (LBFS) [33] improves space savings by
adding a communication protocol that sends indexes to a server before sending a
real data chunk. However, it introduces latency to run the protocol. Overall, a client-
based deduplication system has difficulties associated with the limited capacity of
clients to carry out an expensive deduplication process.

2.4.3 End-to-End Redundancy Elimination

End-to-end RE, like WAN optimizers [7, 8, 41], removes redundant network traffic
at two end points (e.g. branch to headquarter and data centre to data centre).
Figure 2.12 illustrates how end-to-end RE works. An end-to-end RE device, like
a WAN optimizer, is located just before an ingress router (sending side) and just
after an egress router (receiving side). Suppose clients send the same files (f/ and
f2) to a server. When a unique file f7 is transferred, the file is split into chunks
(here ¢l and c2) and corresponding indexes (h(cl) and h(c2)) are saved to the
cache; subsequently, chunks and indexes are saved to disk (shown here). The file is
compressed and delivered to the server side, where chunks and indexes of the
received file are saved to the cache.

Now, when another client sends the same file (f2), chunks of f2 are split and
indexes of the chunks are compared with previously saved indexes. The file {2 is
found to be a duplicate because the same indexes h(c/) and h(c2) are found in the
cache. Thus, the contents of the file are replaced (or encoded) by small indexes h(cl)
and h(c2), which reduces packet size. When an encoded packet arrives at the server
side, a file f2 is reassembled with chunks c/ and c2 based on indexes in the packet.
The reassembled file is directed to a specific server.

A LBFS [33] reduces latency and network bandwidth through the collaboration
of the client and server. That is, LBFS avoids sending data over the network when
the same data can already be found in the server’s file system or the client’s cache. To
reduce the bandwidth requirement, LBFS exploits cross-file similarities. As shown
in Fig.2.13a, a LBFS consists of a LBFS client and server, and both sides maintain
chunk indexes in a chunk database.

2.4 Deduplication Techniques by Place 59

a
Chunk LBFS TCP LBFS Chunk
-+ B EE—— —l
index client server index
xfs NFS
client server
b Client Server

User closes file
Pick fd
Break file into chunks

Send SHA-1 hashes to server

Create tmp file

Shal exists in database
(write datainto tmp file)

Server hasshal
Sha2 notin database

Server needs sha2, send data
Server has all, commmit

Put sha2 into database
(write datainto tmp file)

No error, copy data from temp file
into target file

File closed, return to user

Fig. 2.13 Low-bandwidth file system (LBFS) [33]. (a) LBFS implementation. (b) LBFS: write
a file

Figure 2.13b shows how a LBFS works when a file is written to a server from
a client. When a user closes a file, a client chooses a file descriptor and calls
MKTMPFILE RPC; subsequently, a server creates a temporary file. A client splits
a file into chunks (chunkl and chunk2), computes the hash keys of the chunks
and calls CONDWRITE RPCs with hash keys. Suppose the server has SHA-1
(hash key for chunkl) but not SHA-2 (hash key for chunk2). The server returns
HASHNOTFOUND for the SHA-2 request; that is, the server does not have chunk?2.
The client sends only chunk? to the server, and the server creates a file with chunk1
(previously saved chunk) and chunk2 (chunk received by TMPWRITE RPC). A
LBFS can be considered client-based deduplication because the client splits the file

60 2 Existing Deduplication Techniques

into chunks and saves the indexes. Also, LBFS can be considered end-to-end RE
because the client and the server hold the same chunks and indexes, and only unique
chunks are transferred through the network, with both sides (client and server)
maintaining chunks for unique and redundant files.

2.4.4 Network-Wide Redundancy Elimination

Network-wide RE runs deduplication at routers on the network rather than running
it at a host (either a client or a server). The unit of deduplication becomes a payload
of the packet or byte string on the payload, which is generally smaller than a file
(or block or chunk) used for storage data deduplication. This section shows how
network-wide RE works and implementation code. For implementation, the first
step in the deduplication of a payload of a packet or a byte stream of the payload is
to capture a packet on the fly in a router (or at network end points in a router). We
show how to intercept a packet using a user space library called libnetfilter_queue.
We also show how to intercept a packet using a kernel-level module, libnetfilter, to
achieve better performance.

2.4.4.1 Fundamentals

Network-wide RE [3, 4, 43] eliminates repeating network traffic across network
elements such as routers and switches. Network-wide RE computes indexes [40]
for the incoming packet payload and eliminates redundant packets by comparing
indexes with the packets saved previously. Redundant payload is encoded by small
shims and decoded before exiting the network. However, this approach suffers from
high processing time owing to sliding fingerprinting on routers and high memory
overhead for saving packets and indexes.

The goal of network-wide RE is to remove redundancies of packet payloads, and
the granularity is byte strings in a payload. Figure 2.14 shows how network-wide
RE works. In network-wide RE, there are special routers (or switches) called RE
devices. When an RE device receives a packet, it slides a small window on the
payload and computes the fingerprints of all windows. Then some fingerprints are
compared with fingerprints in the local cache. If they are the same, the indicated
byte regions are expanded to the left and to the right while being compared with
a packet in the local cache. The expanded byte region is replaced by a small shim
header with a fingerprint and byte offsets. These processes are encoding processes.
The encoded payload is reconstructed by a RE device on a path, called decoding.
Decoded packets are delivered to a server.

As we see here, network-work RE saves bandwidth in links between an encoder
and a decoder. However, as shown in Fig.2.15, sliding fingerprinting requires
excessive processing time, and packets that are saved in cache increase memory
requirements. More importantly, redundancies removed in the network are restored

2.4 Deduplication Techniques by Place 61
)
E’(] RE device
[7] unique packet _ lsalidles
64B i
n Redundant packet S R
payload = -
L1 N L1
[E] [E] E
3]] fp, fp, = fp = fp,
bt n encodlng decodlng D &
______ ym——— 4

]
Remove

redundancies

';" compare
>

fe

cache

<RE device>

Fig. 2.14 Network-wide redundancy elimination

Client

(7

Processingtime
-fingerprinting

Finger
printing

Server

£.
Run deduplicationagain to
remove redundanciesusing

expensive chunking

Fig. 2.15 Network-wide redundancy elimination: issue

in a decoder before reaching the server. Thus, the server should run deduplication
again to remove redundancies using expensive chunking. That is, there are redun-
dant deduplication operations in the network as well as on the server. We address
this issue by developing SoftDance in Chap. 5.

62 2 Existing Deduplication Techniques

&

—— ethl eth2

sender bridge receiver

Fig. 2.16 Example deployment — Linux Bridge

2.4.4.2 Implementation: Linux Bridge

To deduplicate payloads in packets, a packet should be captured on a router, and the
redundant payload (or byte strings in the payload) is (are) replaced by small indexes.
The current router itself does not support these processes, so we need to use different
types of router, like software-defined switches or middlebox based on a generic
server. We show that a middlebox acts as a router and performs deduplication. In
this example of implementation, we use a Linux system as a middlebox. To capture
a packet, we set up a Linux bridge in a Linux system, capture an incoming packet
and check whether the payload is redundant based on the index of the payload of
packets that have been passed. This section shows how to set up a Linux bridge.
Figure 2.16 shows a basic Linux bridge that forwards a packet in Layer 2.
A bridge is not a router. A sender and a receiver are in the same network. We
show how to deploy a Linux bridge. The deployed environment is one in which
there are three Linux computers. One has two network interface cards (NICs) for
a bridge and one NIC for Internet access on which ‘bretl’ is installed. The two
other computers have just one NIC. This example deployment is based on Ubuntu
12.04 LTS. The IP address of the bridge is 192.168.2.4, and those of the other two
computers (a sender and a receiver) are 192.168.2.11 and 192.168.2.5 respectively.
In this example deployment, we set an IP address on a bridge. However, if we do
not have to access the bridge, it is okay not to set the IP address on the bridge. The
first step is to install ‘brctl’” on a computer to be used as a Linux bridge as follows.

root@bridge:~# apt—get update
root@bridge:~# apt—get install bridge—utils

root@bridge:~# brctl show
bridge name bridge id STP enabled interfaces

The next step is to create and configure a bridge, called br0, on the Linux
computer, and connect two ports to the new bridge. That is, two ports communicate
through the bridge. One port acts as an incoming or outgoing port interchangeably.
After tying two ports to a bridge (br0), the bridge is set up with an IP address.

2.4 Deduplication Techniques by Place 63

We enable promiscuous mode for two ports (ethl and eht2). By typing ‘bretl show’,
we find that a bridge (br0) is bound to two ports such as ethl and eth?2.

root@bridge:~# brctl addbr br0

root@bridge:~# brctl show

bridge name bridge id STP enabled interfaces
br0 8000.000000000000 no

// <— we create a bridge (br0)

root@bridge:~# brctl addif br0 ethl

root@bridge:~# brctl addif brO eth2

root@bridge:~# ifconfig brO0 192.168.2.4 netmask 255.255.255.0 up
root@bridge:~# ifconfig ethl 0 promisc up

root@bridge:~# ifconfig eth2 0 promisc up

root@bridge:~# brctl show

bridge name bridge id STP enabled interfaces
br0 8000.001018076b3d no ethl
eth2

The next step is to set a Linux parameter to forward traffic as follows. We change
ip_forward under the ‘/proc/sys/net/ipv4/’ directory from O to 1.

root@bridge:~# cat /proc/sys/net/ipv4d/ip_forward

0

root@bridge:~# echo 1 > /proc/sys/net/ipv4/ip_forward
root@bridge:~# cat /proc/sys/net/ipv4/ip_forward

1

What follows is the result showing that all connections work properly. First, it
shows a connection from a bridge to both end systems (a sender and a receiver).
Second, we check whether a bridge is working properly by pinging from a sender
to a receiver, and vice versa.

// Connection test to both ends

— bridge —> receiver

root@bridge:~# ping 192.168.2.5

PING 192.168.2.5 (192.168.2.5) 56(84) bytes of data.

64 bytes from 192.168.2.5: icmp_req=1 ttl=64 time=0.678 ms
64 bytes from 192.168.2.5: icmp_req=2 ttl=64 time=0.369 ms
— 192.168.2.5 ping statistics
2 packets transmitted , 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.369/0.523/0.678/0.156 ms

— bridge —> sender

root@bridge:~# ping 192.168.2.11

PING 192.168.2.11 (192.168.2.11) 56(84) bytes of data.

64 bytes from 192.168.2.11: icmp_req=1 ttl=64 time=254 ms
64 bytes from 192.168.2.11: icmp_req=2 ttl=64 time=1.46 ms
— 192.168.2.11 ping statistics
2 packets transmitted , 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 1.467/127.972/254.478/126.506 ms

// check if a brige works

64 2 Existing Deduplication Techniques

— sender —> receiver

[root@sender ~]# ping 192.168.2.5

PING 192.168.2.5 (192.168.2.5) 56(84) bytes of data.

64 bytes from 192.168.2.5: icmp_seq=1 ttl=64 time=83.9 ms
64 bytes from 192.168.2.5: icmp_seq=2 ttl=64 time=2.17 ms
64 bytes from 192.168.2.5: icmp_seq=3 ttl=64 time=1.57 ms

— receiver —> sender

root@receiver:~# ping 192.168.2.11

PING 192.168.2.11 (192.168.2.11) 56(84) bytes of data.

64 bytes from 192.168.2.11: icmp_req=1 ttl=64 time=126 ms
64 bytes from 192.168.2.11: icmp_req=2 ttl=64 time=2.32 ms
64 bytes from 192.168.2.11: icmp_req=3 ttl=64 time=1.47 ms

2.4.4.3 Implementation: Packet Flow in Netfilter

After we deploy a Linux bridge, the next question is how and where to capture
a packet. For this purpose, we need to understand packet flow in Netfilter within
the Linux network stack. As shown in Fig.2.17, an incoming packet flows through
Netfilter modules in the Linux operating system. Each rectangle means a process
for a packet. For example, a rectangle with ‘filter’ (upper part of the rectangle) and
‘forward’ (lower part of the rectangle) means that a packet is processed in a forward
chain based on the iptable rule (‘filter’). Thus, to capture (intercept) a forwarding
packet, we add an iptable rule of the forward chain as follows:

iptables —I FORWARD —p tcp —j NFQUEUE —queue—num 0

-I selects a chain among INPUT, FORWARD, and OUTPUT chains. -p indicates
a protocol by which a packet is delivered. -j means a target at which a packet is
intercepted; in this case, a packet is forwarded to NFQUEUE where packets are
buffered before being forwarded to a packet processing application. —queue-num
means the number of the NFQUEUE. The valid queue numbers are 0 to 65536, and
NFQUEUE 0 indicates the first NFQUEUE.

Fig. 2.17 Packet flow in Netfilter [37]

2.4 Deduplication Techniques by Place 65

Sender Linux Bridge Receiver

g
b
& "| range |
a Callback |*ev —
g function 4z [Index |
pm
|
o packet
(%]
[}
x
T packet NFQUEUE
=
E Kernel packet filter
y

=
o
3
2 P TCP s P TCP Hash
= header | header header | header | Key

Packet before Deduplication Deduplicated packet

Fig. 2.18 NFQUEUE in Linux bridge

Figure 2.18 illustrates a Linux bridge intercepting an incoming packet. An
incoming packet is intercepted from Netfilter (forward chain) and forwarded to
NFQUEUE. The packet in NFQUEUE is sent to a call-back function (explained
in the next section, libnetfilter_queue) which changes the duplicate payload of a
packet to a small index (or changes duplicate byte strings in the payload to small
indexes). Then, a deduplicated packet is sent out through an outgoing interface to a
receiver.

2.4.4.4 Implementation: Packet Capture: libnetfilter_queue

libnetfilter_queue is a user space library providing an API to packets that have
been queued to a kernel packet filter. We can implement a network deduplication
program using the libnetfilter_queue library. In this section, we show how to install
the libnetfilter_queue library and then how to run a simple network deduplication
program based on the library. This installation is done with Ubuntu 12.04.

First, we need to install prerequisite packages such as nfnetlink and libmnl for
libnetfilter_queue. To install an nfnetlink, ‘apt-get install’ is used with the package
name, libnfnetlink-dev. For the libmnl package, libmnl higher than 1.0.3 is needed
for libnetfilter_queue. (In default, Ubuntu 12.04 has a lower version of libmnl
than 1.0.3.) Thus, we download libmnl_1.0.3 source codes and install by typing
‘/configure’, ‘make’ and ‘make install’ in that order. To extract the bzip2 file, ‘tar
-xjvf <file name>" is used.

66 2 Existing Deduplication Techniques

root@server:~# apt—get install libnfnetlink —dev

Unpacking libnfnetlink —dev
Setting up libnfnetlink —dev (1.0.0—1)
root@server:~#

root@server:~# wget https://launchpad.net/ubuntu/+archive/
primary/+ files /libmnl_1.0.3. orig. tar.bz2

Length: 337375 (329K) [application/octet—stream]
Saving to: ‘libmnl_1.0.3.o0rig.tar.bz2’

100%[>]
‘libmnl_1.0.3.orig.tar.bz2’ saved [337375/337375]
root@server:~# 1s

libmnl_1.0.3.orig. tar.bz2

root@server:~# tar —xjvf libmnl_1.0.3.orig.tar.bz2
libmnl —1.0.3/

libmnl —1.0.3/examples/rtnl/rtnl —route —dump.c
root@server:~# ls
libmnl —1.0.3

root@server:~# cd libmnl —1.0.3
root@server :~/libmnl —1.0.3# ./configure
root@server :~/libmnl —1.0.3# make
root@server:~/libmnl —1.0.3# make install

We install libnetfilter_queue library. We download the source code of the library
using the ‘wget’” command. The latest version is 1.0.2. To extract the downloaded
compressed file with bzip2, ‘tar -xjvf <file name>" is used. We type ‘./configure’,
‘make’ and ‘make install’ to compile and build libnetfilter_queue library. The final
step is to set ‘LD_LIBRARY_PATH’ to the ‘/ust/local/lib’ directory where shared
library files are located.

root@server:~# wget http://www. netfilter.org/projects/
libnetfilter_queue/files/libnetfilter_queue —1.0.2.tar.bz2

root@server:~# s
libnetfilter_queue —1.0.2. tar.bz2

root@server:~# tar —xjvf libnetfilter_queue *.bz2
libnetfilter_queue —1.0.2/

root@server:~# Is
libnetfilter_queue —1.0.2

2.4 Deduplication Techniques by Place 67

root@server:~# cd libnetfilter_queue —1.0.2
root@server:~/libnetfilter_queue —1.0.2# ./configure
root@server :~/libnetfilter_queue —1.0.2# make
root@server:~/libnetfilter_queue —1.0.2# make install

// set up LD_LIBRARY PATH
root@server :~/nfqueue# export LD _LIBRARY PATH=/usr/local/lib

root@server :~/nfqueue# env | grep LD_LIBRARY_PATH
LD_LIBRARY_PATH=/usr/local/lib

2.4.4.5 Implementation: Network dedup Sample Program Using
libnetfilter_queue

Network deduplication sample programs using the libnetfilter_queue library are in
Appendix G. The sample program works as a call back function. In this section, we
show how to compile and build an executable file for the sample program. Then we
demonstrate testing of this program to intercept and process a packet. The process
is to change the lowercase letters of a payload in a packet to uppercase letters. To
compile and build, we type ‘make’. Then an executable file, nd, is created.

root@server :~/nfqueue# make
g++ —DNDEDUP_TEST —o nd ndedup_main.cc ndedup.cc —lnetfilter _queue
—Infnetlink

Prepare Testing For testing, we add a rule in iptable using the ‘INPUT’ chain
as follows. ‘—dport 50000’ means that a packet only destined to the 50000 port is
captured. In this example, we use the ‘INPUT’ chain for a receiver, but we can
change the ‘INPUT’ chain to a ‘FORWARD’ chain for a forwarder. In either case,
packets are intercepted and forwarded to the sample program through NFQUEUE.
To check whether a rule has been added, we type ‘iptables -L -n’. We see there is a
rule starting from ‘NFQUEUE tcp ...’. Then we run the sample program by typing
the executable file ‘nd’.

iptables —I INPUT —p tcp —j NFQUEUE —dport 50000 —queue—num 0
—queue—bypass

root@server :~/nfqueue# iptables —L —n

Chain INPUT (policy ACCEPT)

target prot opt source destination

NFQUEUE tcp — 0.0.0.0/0 0.0.0.0/0 tcp dpt:50000 NFQUEUE
num O bypass

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

68 2 Existing Deduplication Techniques

root@server :~/nfqueue# nd
opening library handle
unbinding existing nf_queue handler for AF_INET (if any)
binding nfnetlink_queue as nf_queue handler for AF_INET
binding this socket to queue ’0’
setting copy_packet mode

// <— network dedup module is waiting for packets.

Initial Connection As an example, we open two terminals. One terminal is used
for a sender, and the other terminal is used for a receiver. Please note that we need
three terminals: one for a sender, another for a receiver and the last one for a network
deduplication sample program. We run a TCP server with port 50000 using ‘nc -1
50000’ at a receiver. We also run a TCP client connecting to a receiver in a localhost.
// receiver

root@server:~# nc —1 50000
// waiting to receive a message

// sender
root@server:~# nc localhost 50000
// waiting to send a message

The following shows standard output that is printed by the network deduplication
sample program when a sender and a receiver are connected through an initial
TCP connection. The output contains an IP header and a TCP header. The IP
header information includes the IP version, header length, total packet length,
IP identification number, TTL, protocol (TCP), checksum, source IP address and
destination IP address. The TCP header information contains the port numbers of the
sender and receiver, sequence number, acknowledgement of sequence number, TCP
header length, flags (urgent, ack, push, rst, syn, fin), window size and checksum.
As we see, when a sender is connected to a receiver, two packets are transferred
to each other: one is a SYN packet from a sender to a receiver, and the other is an
acknowledge (ACK) packet from a receiver to a sender.

// output by network deduplication sample program
pkt received

xkkk [P header skksksk

version 4

header length : 20 (byte)
total length : 60 (byte)

id : 14648

ttl : 64
protocol : 6
checksum : 0x382
source : 127.0.0.1
destination : 127.0.0.1
xx TCP header *xx

sport : 55492
dport : 50000

seq : 2993819844
ack seq 0

header length : 40 (byte)

2.4 Deduplication Techniques by Place

flag
flag
flag
flag

(urgent)
(ack)

(push)
(rst)

flag (syn)

flag (fin)
window size
checksum :
entering callback

pkt received

-0 O o O

0
43690 (byte)
0x1301

kkkx [P header sokskxk

version
header length
total length
id

ttl

protocol
checksum
source
destination

4

20 (byte)
52 (byte)
14649

64

6

0x389
127.0.0.1
127.0.0.1

kkxx TCP header k*kx

sport

dport

seq

ack seq
header length
flag (urgent)
flag (ack)
flag (push)
flag (rst)
flag (syn)
flag (fin)
window size
checksum
entering callback

Packet Payload Change by Sample Program After a connection between sender
and receiver is established, we send a message with ‘hello deduplication’ from a
The following results show that a sender sends the ‘hello
deduplication’ message (which has all lowercase letters) to a receiver. Then a
receiver receives a ‘HELLO DEDUPLICATION’ message (with all uppercase
letters) that was changed by the network deduplication sample program in a Linux

sender to a receiver.

bridge.

// sender side

root@server:~# nc localhost

55492
50000
2993819845
1922593124
32 (byte)
0

1
0
0
0
0

342 (byte)
Oxce56

hello deduplication

// receiver side

root@server:~# nc —1 50000
HELLO DEDUPLICATION

50000

70 2 Existing Deduplication Techniques

// output by network deduplication sample program
pkt received

**%xx [P header *¥x*x

version : 4

header length : 20 (byte)

total length : 72 (byte)

id : 14650

ttl : 64
protocol 6

checksum . 0x374
source : 127.0.0.1
destination : 127.0.0.1
xx TCP header *xx

sport : 55492
dport : 50000

seq : 2993819845
ack seq : 1922593124

header length : 32 (byte)
flag (urgent) : O

flag (ack) 1

flag (push) 1

flag (rst) 0

flag (syn) 0

flag (fin) 0
window size : 342 (byte)
checksum : 0x681d
*kkxx Block sk

begin offset 1 52
end offset 71
size : 20

#*x**% nf_payload (IP header + TCP header + TCP data) s**x*
>>> before modification

ip checksum = 0x374

tcp checksum = 0x681d

45000048393 A4000400603747F0000017F000001D8C4C350B27210C
57298716480180156681 D00000101080A08E6708E08E629FC68656C
6C6F2064656475706C69636174696F6E0A

HELLO DEDUPLICATION

>>> after modification

ip checksum = 0x374

tcp checksum = 0Oxa9le

45000048393 A4000400603747F0000017F000001D8C4C350B27210C
57298716480180156 A91E00000101080A08E6708E08E629FC48454C
4C4F2044454455504C49434154494F4E0A

entering callback

The output of the sample program shows the information of a payload (shown
as a block) including ‘begin offset’, ‘end offset’ and ‘size’. ‘begin offset’ and ‘end
offset’ are literally the beginning and ending offsets of a packet. ‘size’ is the size of
the payload (‘hello deduplication’ including a newline character), which is 20 bytes.
After the “**** Block **** gection, it shows some useful information, including
the change of checksum after modification of the payload. IP checksum (0x374)
is not changed because the size of the payload is not changed, which means no

2.5 Deduplication Techniques by Time 71

change is made to the IP header. However, TCP checksum (0x681d —— > Oxa9le)
is changed owing to the change in payload. The output also shows hexa codes of a
packet before modification and after modification.

2.4.4.6 Existing Solution

One study [3] proposes the network-wide deployment of RE technology. Authors
assume that the routers have the ability to detect and encode redundant content from
network packets on the fly by comparing packet contents that were stored in a cache
previously. In this approach, unique packets and the corresponding fingerprints of
bytes in the packet payload are saved to a packet store and fingerprint store. When
a packet arrives at a router, a small window slides on the payload in a packet,
and fingerprints are computed for all windows. From among all the fingerprints
representative ones are selected randomly. If the same fingerprints are found in the
cache, the matched region from the pointed byte regions on a payload are expanded
both to the left and to the right while comparing the two packets (incoming packet
and packet in cache). The expanded region is replaced by a small shim header.

Figure 2.19 illustrates how many redundant packets are removed. Figure 2.19a
shows the traditional shortest path routing where 18 packets are transferred from
a sender to two destinations, D; and D,. Using RE on the routers, packet P; on
each link is removed, as shown in Fig. 2.19b, which is a 33 % reduction of the total
packets. This study proposes redundancy-aware routes based on the redundancy
profile (which explains how often content is replicated across different destinations)
for intra- and inter-domain routing. Figure 2.19c¢ supports the idea that redundancies
are further reduced using redundancy-aware routing, which amounts to a 44 %
reduction of the total packets.

2.5 Deduplication Techniques by Time

2.5.1 |Inline Deduplication

Inline deduplication is a deduplication technique that removes redundancies before
data are stored on disk. Inline deduplication can be applied to primary workloads
like email, user directories, databases and secondary workloads like archives
and backups. Figure 2.20 elaborates how inline deduplication works for primary
workloads (latency sensitive) as well as secondary workloads (throughput sensitive).
For primary workloads, as shown in Fig.2.20a, deduplication runs on a direct
write and read path. When a user or client writes data, deduplication intercepts
the data and checks for redundancies. Only unique data and indexes are saved to
storage along with cache. Applications using primary workloads are highly latency
sensitive; thus, deduplication typically uses in-memory cache to reduce disk I/O

72 2 Existing Deduplication Techniques

a Sender b

Sender

Fig. 2.19 Redundant traffic elimination with packet caches on routers. (a) No RE. (b) RE. (¢) RE
with redundancy-aware routing

requests. Figure 2.20b shows how deduplication works for secondary workloads.
In these workloads, deduplication runs when data are archived or backed up on a
backup server. The backup server does not maintain additional storage.

Inline deduplication has been proposed to remove redundancies for the primary
workload [14, 44] and secondary workload [9, 26, 36, 50] without incurring extra
space overhead or requiring more disk bandwidth. However, this approach requires
latency overhead in a write path. iDedup [44] exploits temporal locality and spatial
locality to maintain fast processing times in a write path. Content address storage
(CAS) systems [17, 39] run inline deduplication because blocks are addressed by
their fingerprints. A few file systems [6, 42] use inline deduplication for primary
storage.

Inline deduplication [9, 13] runs deduplication before data are saved to disk stor-
age. iDedup [44] has been proposed for inline deduplication for a primary workload.

2.5 Deduplication Techniques by Time 73

Write
User >

e

- “ Dedup [Write, Read

Client Rasd

or

A4

Local computer or applicationserver

b
Write
User ‘ — [
|ﬁLogic 1 Write, B [:
B¢ Read (— | Backup T
:]._of._. Dedup ;. Write, Read
Client | Read (== REsHe L.rj:__)]

Local computer Backup server
or
application server

Fig. 2.20 Inline deduplication. (a) Inline deduplication for primary workloads. (b) Inline dedupli-
cation for secondary workloads

iDedup exploits spatial locality and temporal locality to achieve high performance
(running time). For spatial locality, iDedup performs selective deduplication and
mitigates the extra seek time for sequentially read files. For this purpose, iDedup
examines blocks at write time and deduplicates full sequences of file blocks if and
only if the sequences of blocks are (1) sequential in the file and (2) have duplicates
that are sequential on disk. For temporal locality, iDedup maintains dedup-metadata
as a Least Recently Used (LRU) cache by which iDedup avoids dedup-metadata I/O.

2.5.2 Offline Deduplication

Offline deduplication [1, 15, 21] runs deduplication after data are stored on disk;
thus, it does not involve latency overhead in a write path but requires extra storage
space. As shown in Fig.2.21, data are saved to storage without deduplication.
Offline deduplication runs out of a critical write and read path using already
saved data, which does not hurt latency to write and read data. However, offline
deduplication has several drawbacks: (1) extra disk space is needed to hold data

74 2 Existing Deduplication Techniques

Write
User >

e 1
or Read
. « Dedup
Client | Read

Local computer or applicationserver

Fig. 2.21 Offline deduplication

temporarily before deduplication, (2) deduplication runs on system idle time, so
deduplication can be very delayed if the system is running almost all the time,
and (3) data on disk are loaded to memory for deduplication, so disk bandwidth
is unnecessarily consumed.

ChunkStash [9] is a flash-assisted inline deduplication system where chunk
metadata (with chunk index as key, and with chunk location and length as value) are
saved to flash memory rather than disk. Considering that flash memory is 50 times
faster than disk, ChunkStash reduces the penalty of index lookup misses in RAM,
which increases inline deduplication throughput. ChunkStash also uses in-memory
hash tables using the variant of cuckoo hashing [38], and compact key signatures
rather than full keys are stored in the hash table, which reduces RAM size.

HYDRAstor [13] is a grid of storage nodes. It works based on a distributed
hash table (DHT) to save blocks to distributed storages. HYDRAstor uses inline
deduplication based on immutable and content-addressed and variable-sized blocks,
data resilience by erasure coding, load balancing, and preservation of locality of
data streams by prefetching. HYDRAstor achieves scalability (by DHT), efficient
utilization (by deduplication), fault tolerance (by data resiliency) and system
performance (by load balancing, locality and prefetching).

2.6 Summary

In this chapter, we showed techniques for deduplication. We classified deduplication
techniques based on various criteria, including granularity, deduplication place and
deduplication time. We explained fundamental deduplication components, including
chunk index cache and Bloom filters, along with implemented codes. Based on these
criteria, we illustrated deduplication techniques such as file-level deduplication,
fixed-size block deduplication, variable-sized block deduplication, server-based
deduplication, client-based deduplication, end-to-end RE, network-wide RE, inline
deduplication and offline deduplication.

References 75

References

1.

2.
3.

oo

10.

11.

12.
13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

Alvarez, C.: Netapp deduplication for FAS and v-series deployment and implementation guide
(TR-3505). http://www.netapp.com/us/media/tr-3505.pdf (2011)

Amazon: Amazon simple storage service. http://aws.amazon.com/s3/

Anand, A., Gupta, A., Akella, A., Seshan, S., Shenker, S.: Packet caches on routers:
the implications of universal redundant traffic elimination. In: Proceedings of the ACM
SIGCOMM 2009 Conference on Data Communication (2008)

. Anand, A., Sekar, V., Akella, A.: SmartRE: an architecture for coordinated network-wide

redundancy elimination. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (2009)

. Bolosky, W., Corbin, S., Goebel, D., Douceur, J.: Single instance storage in Windows 2000.

In: Proceedings of the 4th USENIX Windows Systems Symposium (2000)

. Bonwick, J.: ZFS deduplication. https://blogs.oracle.com/bonwick/entry/zfs_dedup (2009)
. Cisco: Wide area application services. http://www.cisco.com/c/en/us/products/routers/wide-

area-application-services/index.html

. Citrix: Cloudbridge. http://www.citrix.com/products/cloudbridge/overview.html
. Debnath, B., Sengupta, S., Li, J.: ChunkStash: speeding up inline storage deduplication using

flash memory. In: USENIX Annual Technical Conference (2010)

Dong, W., Douglis, F., Li, K., Patterson, R.H., Reddy, S., Shilane, P.: Tradeoffs in scalable data
routing for deduplication clusters. In: Proceedings of the USENIX Conference on File and
Storage Technologies (FAST) (2011)

Drago, I., Mellia, M., Munafo, M., Sperotto, A., Sadre, R., Pras, A.: Inside dropbox:
understanding personal cloud storage services. In: Proceedings of the 2012 ACM Conference
on Internet Measurement Conference (IMC), pp. 481-494 (2012)

Dropbox: http://www.dropbox.com

Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P., Szczepkowski,
J., Ungureanu, C., Welnicki, M.: HYDRAstor: a scalable secondary storage. In: Proceedings
of the USENIX Conference on File and Storage Technologies (FAST) (2009)

ElShimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., Sengupta, S.: Primary data
deduplication-large scale study and system design. In: USENIX Annual Technical Conference
(2012)

EMC: Achieving storage efficiency through EMC celerra data deduplication. http://china.
emc.com/collateral/hardware/white-papers/h6265-achieving-storage-efficiency-celerra-wp.
pdf (2009)

EMC: Avamar. http://www.emc.com/backup-and-recovery/avamar/avamar.htm

EMC: Centera: Content Addresses Storage System, Data Sheet. http://www.emc.com/
collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf

EMC: Networker. http://www.emc.com/domains/legato/index.htm

Guo, F., Efstathopoulos, P.: Building a high-performance deduplication system. In: USENIX
Annual Technical Conference (2011)

Hu, W., Yang, T., Matthews, J.N.: The good, the bad and the ugly of consumer cloud storage.
ACM SIGOPS Oper. Syst. Rev. 44(3), 110-115 (2010)

IBM: IBM white paper: IBM storage tank - a distributed storage system. https://www.usenix.
org/legacy/events/fast02/wips/pease.pdf (2002)

JustCloud: http://www.justcloud.com/

Kim, D., Choi, B.Y.: HEDS: hybrid deduplication approach for email servers. In: 2012 Fourth
International Conference on Ubiquitous and Future Networks (ICUFN) (2012)

Kim, D., Song, S., Choi, B.Y.: SAFE: structure-aware file and email deduplication for cloud-
based storage systems. In: Proceedings of the 2nd IEEE International Conference on Cloud
Networking (2013)

Li, J., He, L.W., Sengupta, S., Aiyer, A.: Multimodal object de-duplication. ~Microsoft
Corporation (2009). Patent

http://www.netapp.com/us/media/tr-3505.pdf
http://aws.amazon.com/s3/
https://blogs.oracle.com/bonwick/entry/zfs_dedup
http://www.cisco.com/c/en/us/products/routers/wide-area-application-services/index.html
http://www.cisco.com/c/en/us/products/routers/wide-area-application-services/index.html
http://www.citrix.com/products/cloudbridge/overview.html
http://www.dropbox.com
http://china.emc.com/collateral/hardware/white-papers/h6265-achieving-storage-efficiency-celerra-wp.pdf
http://china.emc.com/collateral/hardware/white-papers/h6265-achieving-storage-efficiency-celerra-wp.pdf
http://china.emc.com/collateral/hardware/white-papers/h6265-achieving-storage-efficiency-celerra-wp.pdf
http://www.emc.com/backup-and-recovery/ avamar/avamar.htm
http://www.emc.com/collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf
http://www.emc.com/collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf
http://www.emc.com/domains/legato/index.htm
https://www.usenix.org/legacy/events/fast02/wips/pease.pdf
https://www.usenix.org/legacy/events/fast02/wips/pease.pdf
http://www.justcloud.com/

76

26.

217.

28.
29.
30.
31.

32.
. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file system. In: SOSP

34.
35.

36.
37.

38.
39.
40.
41.
42.
43.

44,

45.
46.
47.

48.

49.
50.

2 Existing Deduplication Techniques

Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.: Sparse
indexing: large scale, inline deduplication using sampling and locality. In: Proceedings of
the USENIX Conference on File and Storage Technologies (FAST) (2009)

Liu, C.,Lu, Y., Shi, C, Lu, G., Du, D., Wang, D.: ADMAD: Application-driven metadata aware
de-duplication archival storage system. In: Fifth IEEE International Workshop on Storage
Network Architecture and Parallel I/Os (SNAPI) , pp. 29-35 (2008)

Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. In: Proceedings of the USENIX
Conference on File and Storage Technologies (FAST) (2011)

Microsoft: Exchange server 2003. http://technet.microsoft.com/en-us/library/bb123872
%28EXCHG.65%29.aspx

Microsoft: Exchange server 2007. http://www.microsoft.com/exchange/en-us/exchange-2007-
overview.aspx

Min, J., Yoon, D., Won, Y.: Efficient deduplication techniques for modern backup operation.
IEEE Trans. Comput. 60, 824-840 (2011)

Mozy: http://mozy.com/

(2001)

National Institute of Standards and Technology (NIST): Secure Hash Standard 1 (SHA-1).
http://csrc.nist.gov/publications/fips/fips 180-4/fips- 180-4.pdf (2015)

National Institute of Standards and Technology (NIST): Secure hash standard 256 (sha256).
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

NEC: Hydrastor. https://www.necam.com/hydrastor/

Netfilter: Packet Flow. https://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-
packet-flow.svg

Pagh, R., Rodler, FF.: Cuckoo hashing. J. Algorithms 51(2), 122-144 (2004).
doi:10.1016/j.jalgor.2003.12.002. http://dx.doi.org/10.1016/j.jalgor.2003.12.002

Quinlan, S., Dorward, S.: Venti: a new approach to archival storage. In: Proceedings of the
USENIX Conference on File and Storage Technologies (FAST) (2002)

Rabin, M.O.: Fingerprinting by random polynomials. Tech. Rep. Report TR-15-81, Harvard
University (1981)

Riverbed: Steelhead for wan optimization. http://www.riverbed.com/products/wan-
optimization/

Silverberg, S.: SDFS. http://opendedup.org

Spring, N.T., Wetherall, D.: A protocol-independent technique for eliminating redundant
network traffic. In: Proceedings of the ACM SIGCOMM 2000 Conference on Data Com-
munication (2000)

Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: iDedup: latency-aware, inline data
deduplication for primary storage. In: Proceedings of the Tenth USENIX Conference on File
and Storage Technologies (FAST) (2012)

Symantec: Netbackup. http://www.symantec.com/netbackup

Symantec: Puredisk. http://www.symantec.com/netbackup-puredisk

Weiss, M.A.: Data Structures and Algorithm Analysis in C++, 3rd edn. Addison Wesley,
Reading, MA (2005)

Xia, W., Jiang, H., Feng, D., Hua, Y.: SiLo: a similarity-locality based near-exact deduplication
scheme with low RAM overhead and high throughput. In: USENIX Annual Technical
Conference (2011)

Yan, F,, Tan, Y.: A method of object-based de-duplication. J. Netw. 6(12), 1705-1712 (2011)

Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication
file system. In: Proceedings of the USENIX Conference on File and Storage Technologies
(FAST) (2008)

http://technet.microsoft.com/en-us/library/bb123872%28EXCHG.65%29.aspx
http://technet.microsoft.com/en-us/library/bb123872%28EXCHG.65%29.aspx
http://www.microsoft.com/exchange/en-us/exchange-2007-overview.aspx
http://www.microsoft.com/exchange/en-us/exchange-2007-overview.aspx
http://mozy.com/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://www.necam.com/hydrastor/
https://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg
https://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://www.riverbed.com/ products/wan-optimization/
http://www.riverbed.com/ products/wan-optimization/
http://opendedup.org
http://www.symantec.com/netbackup
http://www.symantec.com/netbackup-puredisk

2 Springer
http://www.springer.com/978-3-319-42278-7

Data Deduplication for Data Optimization for Storage
and Metwork Systems

Kim, D.; Song, 5.; Choi, B.-Y.

2017, XN, 262 p. 89 illus., 61 illus. in color., Hardcowver
ISBN: 978-3-319-42278-7

	Part I Traditional Deduplication Techniques and Solutions
	2 Existing Deduplication Techniques
	2.1 Deduplication Techniques Classification
	2.2 Common Modules
	2.2.1 Chunk Index Cache
	2.2.1.1 Fundamentals
	2.2.1.2 Implementation: Hash Computation
	2.2.1.3 Implementation: Index Table

	2.2.2 Bloom Filter
	2.2.2.1 Fundamentals
	2.2.2.2 Implementation

	2.3 Deduplication Techniques by Granularity
	2.3.1 File-Level Deduplication
	2.3.1.1 Fundamentals
	2.3.1.2 Implementation
	2.3.1.3 Existing Solutions

	2.3.2 Fixed-Size Block Deduplication
	2.3.2.1 Fundamentals
	2.3.2.2 Implementation
	2.3.2.3 Existing Solutions

	2.3.3 Variable-Sized Block Deduplication
	2.3.3.1 Fundamentals
	2.3.3.2 Implementation: dedupChunk()
	2.3.3.3 Implementation: Rabin Fingerprint
	2.3.3.4 Implementation: Chunking Core
	2.3.3.5 Implementation: Chunking Wrapper
	2.3.3.6 Existing Solutions

	2.3.4 Hybrid Deduplication
	2.3.5 Object-Level Deduplication
	2.3.6 Comparison of Deduplications by Granularity

	2.4 Deduplication Techniques by Place
	2.4.1 Server-Based Deduplication
	2.4.2 Client-Based Deduplication
	2.4.3 End-to-End Redundancy Elimination
	2.4.4 Network-Wide Redundancy Elimination
	2.4.4.1 Fundamentals
	2.4.4.2 Implementation: Linux Bridge
	2.4.4.3 Implementation: Packet Flow in Netfilter
	2.4.4.4 Implementation: Packet Capture: libnetfilter_queue
	2.4.4.5 Implementation: Network dedup Sample Program Using libnetfilter_queue
	2.4.4.6 Existing Solution

	2.5 Deduplication Techniques by Time
	2.5.1 Inline Deduplication
	2.5.2 Offline Deduplication

	2.6 Summary
	References

