
Chapter 2
Formal Design Flows for Embedded IoT
Hardware

Michael Dossis

2.1 Introduction

Embedded systems are usually relatively small/medium computing platforms that
are self-sufficient. Such systems consist of all the software and hardware compo-
nents which are “embedded” inside the system so that complete applications can
be implemented and run without the aid of other external components or resources.
Usually, embedded systems are found in portable computing products such as PDAs,
mobile, and smart phones as well as GPS receivers. Nevertheless, larger systems
such as microwave ovens and vehicle electronics contain embedded systems.
Nevertheless, here embedded systems are considered that can communicate with
each other by means of a wired or wireless communication protocol, such as Zigbee,
IEEE.802.11 standard, or any of its derivatives. Therefore, special attention is paid
here to embedded Internet-of-Things (IoT) hardware, its design methodology, and
implementation requirements.

An embedded platform with such communication features can be thought of as a
system that contains one or more general-purpose microprocessor or microprocessor
core, a number of standard peripherals, along with a number of customized,
special function co-processors, accelerators or special function engines on the same
electronic board or integrated inside the same system-on-chip (SoC). Already a
number of IoT manufacturers include hardware encryption and cryptography blocks
in order to increase the security capability of their devices. Normally, specific blocks
such as encryption/decryption and video processing engines can be attached on
the embedded system’s bus and offer hardware accelerated functionality to the
IoT module. An embedded and portable system that includes all of the above
hardware/software modules can be thought of as a complete, standalone IoT node.

M. Dossis (�)
TEI of Western Macedonia, Kastoria Campus, Fourka Area, Kastoria, 52100 Greece
e-mail: dossis@kastoria.teikoz.gr

© Springer International Publishing Switzerland 2017
G. Keramidas et al. (eds.), Components and Services for IoT Platforms,
DOI 10.1007/978-3-319-42304-3_2

27

mailto:dossis@kastoria.teikoz.gr

28 M. Dossis

Currently, such embedded systems are implemented using advanced field-
programmable gate arrays (FPGAs) or other types of programmable logic devices
(PLDs). Alternatively an embedded IoT node can be implemented with ASICCSoC
logic plus a microcontroller core, but this is financially viable only for large sale
volumes. For smaller volumes, or at least for designing the prototype, FPGA logic
is the best solution in terms of price/functionality yield. Nowadays, FPGAs offer
a very large integrated area, circuit performance, and low power capability. FPGA
implementations can be seamlessly and rapidly prototyped, and the FPGA can be
easily reconfigured when design updates or bug fixes are released.

Advances on chip integration technology have made possible such a complexity
of embedded and custom integrated circuits (ICs) that often their spec-to-product
time exceeds even their product lifetime in the market. This is particularly true for
commercial embedded electronics with product lifetimes compressed to less than
a quarter of a year sometimes. Of course this is expected to be true for current
and future IoT devices as well. This, in combination with the high design cost and
development effort of such products, they often even miss their market windows,
generating in turn, competitive disadvantages for the producing industries. The
current engineering practice for the development of such systems includes to a
large extent methodologies which are semi-manual, add hoc, segmented, not-fully
integrated, empirical, incompatible from one level of the design flow to the next,
and with a lot of design iterations caused by the discovery of functional and timing
bugs, as well as specification to implementation mismatches late in the development
flow.

This chapter reviews previous and existing work of HLS methodologies for
embedded systems. It also discusses the usability and benefits using the prototype
hardware compilation system which was developed by the author. Section 2.2
discusses related work and bibliography. Section 2.3 presents HLS problems related
to the low energy consumption which is particularly interesting for embedded
system design. The C-Cubed hardware compilation design flow is explained in
Sect. 2.4. Section 2.5 explains the formal nature of the prototype compiler’s
formal logic inference rules. In Sect. 2.6 the mechanism of the formal high-level
synthesis transformations of the back-end compiler is presented. Section 2.7 outlines
the structure and logic of the PARCS optimizing scheduler which is part of the
back-end compiler rules. Section 2.8 explains the options for generating target
FSMC datapath micro-architectures and the communication of the accelerators
with their computing environment. Section 2.9 outlines the execution environment
for the generated hardware modules as accelerators. Section 2.10 discusses exper-
iments with synthesizing hardware within the C-Cubed framework such as formal
synthesis and verification, and Sect. 2.11 draws useful conclusions and proposes
future work.

2 Formal Design Flows for Embedded IoT Hardware 29

2.2 Background and Existing Work

2.2.1 High-Level and Logic Synthesis

All of the issues reported in the introduction and elsewhere have motivated industry
and academia to invest in automated, integrated, and formal design automation
methodologies and tools for the design and development of embedded ICs and
systems. These methods are based on the idea of transforming a textual software-
program-code-like description into a netlist of logic gates. Nowadays, a higher
level of code abstraction of hardware description formats, such as VHDL and
Verilog, C, SystemC, and ADA, is pursued as input to automated high-level E-CAD
tools. Methodologies such as high-level synthesis (HLS) and electronic system level
(ESL) design employ established techniques, borrowed from the computer language
program compilers and established E-CAD tools as well as new algorithms such as
advanced operation scheduling, loop unrolling, and code motion heuristics.

Currently, the design of digital systems involves programming of the circuit’s
functionality at the register-transfer level (RTL) level in hardware description
languages such as VHDL and Verilog. However, for custom designs that are
larger than a hundred thousand logic gates, the use of RTL code for specification
and design usually results into years of design flow iterations and verification
simulations. Combined with the short lifetime of electronic products in the market,
this constitutes a great problem for the industry. Therefore, there has been a pressing
need for more abstracted input formats such as C, CCC, and ADA. However, the
programming style of the (hardware/software) specification code has an unavoidable
impact on the quality of the synthesized system. This is deteriorated by models
with hierarchical blocks, subprogram calls, as well as nested control constructs
(e.g., if-then-else and while loops). The complexity of the transformations that
are required for the synthesis tasks (compilation, algorithmic transformations,
scheduling, allocation and binding) of such high-level code models increases at an
exponential rate, for a linear increase in the design size.

During HLS, the input code (such as ANSI-C or ADA) is first transformed into
a control/dataflow graph (CDFG) by a front-end compilation stage. Then various
optimizing synthesis transformations are applied on the CDFG to generate the final
implementation. The most important HLS tasks of this process are scheduling,
allocation and binding. Scheduling makes an as-much-as-possible optimal order
of the operations in a number of control steps or states, parallelizing as many
operations as possible, so as to achieve shorter execution times of the generated
implementation. Allocation and binding assign operations onto functional units, and
variables and data structures onto registers, wires, or memory positions, available
from an implementation library.

A number of commercial HLS tools impose their own extensions or restrictions
on the programming language code that they accept as input, as well as various
shortcuts and heuristics on the HLS tasks that they execute. Such tools are the
CatapultC by Mentor Graphics, the Cynthesizer by Forte Design Systems, the

30 M. Dossis

Impulse CoDeveloper by Impulse Accelerated Technologies, the Synfony HLS by
Synopsys, the C-to-silicon by Cadence, the C to Verilog Compiler by C-to-Verilog,
the AutoPilot by AutoESL, the PICO by Synfora, and the CyberWorkBench by
NEC System Technologies Ltd. The analysis of these tools is not the purpose of
this work; however, they are tuned towards linear, dataflow dominated (e.g., stream-
based) applications, such as pipelined digital signal processing (DSP) and image
filtering.

In order to guarantee that the produced circuit implementations are correct-by-
construction (with regard to the input specification functionality) it is mandated
that the HLS tool’s transformation tasks (e.g., within the scheduler) are based on
formal techniques. In this way, repetitive execution of the design flow verification
process will be avoided and important time will be saved within the development
project. Correct-by-construction also means that by definition of the formal process,
the functionality of the implementation matches the functionality of the behavioral
specification model (the source code). In this way, the design will need to be verified
only at the behavioral level, without spending very long and time-consuming
simulations of the generated RTL, or even worse of the netlists generated by a
subsequent commercial RTL synthesizer.

Behavioral verification (at the source code level) is orders of magnitude faster
than RTL or even more than gate-netlist simulations. Releasing an embedded
IoT product with bugs can be very expensive, when considering the cost of field
upgrades, recalls, and repairs. Another thing, less measurable, but very important
as well, is the damage done to the industry’s reputation and the consequent loss
of customer trust. However, many embedded products are indeed released without
all the testing that is necessary and/or desirable. Therefore, the quality of the
specification code and the formal techniques employed during transformations
(“compilations”) in order to deliver the hardware and software components of the
system are receiving increasing focus in IoT chip application development.

2.2.2 HLS Scheduling

The HLS scheduling task belongs into two major categories: time-constrained
scheduling and resource-constrained scheduling. Time-constrained scheduling aims
to result into the lowest area or number of functional units, when the task is
constrained by the max number of control steps (time constraint). Resource-
constrained scheduling aims to produce the fastest schedule (the minimum number
of control states) when the maximum number of hardware resources or hardware
area is constrained (resource constraint). Integer linear programming (ILP) solutions
have been proposed, however, their run time grows exponentially with the increase
of design size, which makes them impractical. Heuristic methods have also been
proposed to handle large designs and to provide sub-optimal but practical imple-
mentations. There are two heuristic scheduling approaches: constructive solutions

2 Formal Design Flows for Embedded IoT Hardware 31

and iterative refinement. As-soon-as-possible (ASAP) and the as-late-as-possible
(ALAP) scheduling both belong to the constructive approaches.

Operations that belong to the critical path of the design are not given any special
priority over other operations in both ASAP and ALAP algorithms. Thus, excessive
delay may result on the critical path, resulting into bad quality of the produced
circuit implementation. LIST scheduling utilizes a global priority function to select
the next operation to be scheduled. This global priority function can be either the
mobility of the operation [1], or its urgency [2]. Force-directed scheduling [3]
calculates the range of control steps for each operation between the operation’s
ASAP and ALAP state assignment. The algorithm then attempts to reduce the total
number of functional units, so as to evenly distribute the operations of the same type
into all of the available states of the range, producing better implementations against
the rest of the heuristics, with an increased run time, however.

Constructive scheduling doesn’t do any lookahead into future assignment of
operations into the same control step, and this may lead to sub-optimal implemen-
tations. After an initial schedule is done by any of the above scheduling algorithms,
then iteratively re-scheduling sequences of operations can maximally reduce the
cost functions [4]. This is suitable for dataflow-oriented designs with linear control.
For control-intensive designs, the use of loop pipelining [5] and loop folding [6]
have been reported as scheduling tasks in the bibliography.

2.2.3 Allocation and Binding Tasks

Allocation determines the type of resource storage and functional units, selected
from the library of components, to be assigned for each data object and operation
of the input program. Allocation also calculates the number of resources of each
type that are needed to implement every operation or data variable. Binding assigns
operations, data variables, data structures, and data transfers onto functional units,
storage elements (registers or memory blocks), and interconnections, respectively.
Also binding makes sure that the design’s functionality does not change by using
the selected library components.

There are three categories of solutions to the allocation problem: constructive
techniques, decomposition techniques, and iterative approaches. Constructive allo-
cation techniques start with an empty implementation and progressively build the
datapath and control parts of the implementation by adding more functional, storage,
and interconnection elements while they traverse the CDFG or any other inter-
nal graph/representation format. Decomposition techniques divide the allocation
problem into a sequence of well-defined independent sub-tasks. Each such sub-
task is a graph-based theoretical problem which is solved with any of the three
well-known graph methods: clique partitioning, the left-edge technique, and the
weighted bipartite-matching technique. The task of finding the minimum cliques
in the graph, which is the solution for the sub-tasks, is an NP-hard problem, so
heuristic approaches [7] are utilized for allocation.

32 M. Dossis

Because the conventional sub-task of storage allocation ignores the side-effects
between the storage and interconnections allocation, when using the clique par-
titioning technique, graph edges are enhanced with weights that represent the
effect on interconnection complexity. The left-edge algorithm is applied on the
storage allocation problem, and it allocates the minimum number of registers [8].
A weighted, bipartite-matching algorithm is used to solve both the storage and
functional unit allocation problems. First a bipartite graph is generated which
contains two disjoint sets, e.g., one for variables and one for registers, or one for
operations and one for functional units. An edge between one node of the one of
the sets and one node of the other represents an allocation of, e.g., a variable to a
register. The bipartite-matching algorithm considers the effect of register allocation
on the design’s interconnection elements, since the edges of the two sets of the
graph are weighted [9]. The generated datapaths are improved iteratively, a simple
assignment exchange, but using the pairwise exchange of the simulated annealing,
or by using a branch-and-bound approach. The latter reallocates groups of elements
of different types [10].

2.2.4 History of High-Level Synthesis Tools

HLS has been an active research field for about three decades. Early approaches
of experimental synthesis tools that synthesized small subsets of programming
constructs or proprietary modeling formats have emerged since the late 1980s.
As an example, an early tool that generated hardware structures from algorithmic
code, written in the PASCAL-like, digital system specification language (DSL) is
reported in [11]. This synthesis tool performs the circuit compilation in two steps:
first step is datapath synthesis which is followed by control synthesis. Examples of
other behavioral circuit specification languages of that time, apart from DSL, were
DAISY [12], ISPS [13], and MIMOLA [14].

In [15] the circuit to be synthesized is described with a combination of algo-
rithmic and structural level code and then the PARSIFAL tool synthesizes the code
into a bit-serial DSP circuit implementation. The PARSIFAL tool is part of a larger
E-CAD system called FACE and which included the FACE design representation
and design manager core. FACE and PARSIFAL were suitable for DSP pipelined
implementations, rather than for a more general behavioral hardware models with
hierarchy and complex control.

According to [16] scheduling first determines the propagation delay of each
operation and then it assigns all operations into control steps (states) of a finite state
machine. List scheduling uses a local priority function to postpone the assignment
of operations into states, when resource constraints are violated. On the contrary,
force-directed scheduling (FDS) tries to satisfy a global execution deadline (time
constraint) as it minimizes the utilized hardware resources (functional units, regis-
ters, and busses). The force-directed list scheduling (FDLS) algorithm attempts to
implement the fastest schedule while satisfying fixed hardware resource constraints.

2 Formal Design Flows for Embedded IoT Hardware 33

The main HLS tasks in [17] include allocation, scheduling, and binding. Accord-
ing to [18] scheduling is finding the sequence of operations to execute in a specific
order so as to produce a schedule of control steps with allocated operations in each
step of the schedule; allocation defines the required number of functional, storage,
and interconnect units; binding assigns operations to functional units, variables,
and values to storage elements and the interconnections amongst them to form a
complete working circuit that executes the functionality of the source behavioral
model.

The V compiler [19] translates sequential descriptions into RTL models using
parsing, scheduling, and resource allocation. The source sequential descriptions are
written in the V language which includes queues, asynchronous calls, and cycle
blocks and it is tuned to a kind of parallel hardware RTL implementations. The V
compiler utilizes percolation scheduling [20] in order to achieve the required degree
of parallelism by meeting time constraints.

A timing network is generated from the behavioral design in [21] and is annotated
with parameters for every different scheduling approach. The scheduling approach
in this work attempts to satisfy a given design cycle for a given set of resource
constraints, using the timing model parameters. This approach uses an integer linear
program (ILP) which minimizes a weighted sum of area and execution time of the
implementation. According to the authors, their Symphony tool delivers better area
and speed than ADPS [22]. This synthesis technique is suitable for dataflow designs
(e.g., DSP blocks) and not for more general complex control flow designs.

The CALLAS synthesis framework [23] transforms algorithmic, behavioral
VHDL models into VHDL RTL and gate netlists, under timing constraints. The
generated circuit is implemented using a Moore-type finite state machine (FSM),
which is consistent with the semantics of the VHDL subset used for the specification
code. Formal verification techniques such as equivalence checking, which checks
the equivalence between the original VHDL FSM and the synthesized FSM are used
in the CALLAS framework by using the symbolic verifier of the circuit verification
environment (CVE) system [24].

A methodological approach of designing and developing mixed hardware and
software parts of a system known as hardware–software co-design has emerged
about the same time as early HLS tools in the 1990s. The most known examples
of this technology are reported in the following approaches.

The Ptolemy framework [25] allows for an integrated hardware–software co-
design methodology from the specification through to synthesis of hardware and
software components, simulation, and evaluation of the implementation. The tools
of Ptolemy can synthesize assembly code for a programmable DSP core (e.g., DSP
processor), which is built for a synthesis-oriented application. In Ptolemy, an initial
model of the entire system is partitioned into the software and hardware parts which
are synthesized in combination with their interface synthesis.

The COSYMA hardware–software co-synthesis framework [26] realizes an
iterative partitioning process, based on hardware extraction algorithm which is
driven by a cost function. The primary target in this work is to minimize customized
hardware within microcontrollers but the same time to allow for space exploration

34 M. Dossis

of large designs. The specialized co-processors of the embedded system can be
synthesized using HLS tools. The specification language is based on C with
various extensions. The generated hardware descriptions are in turn ported to the
Olympus HLS tool [27]. The presented work included tests and experimental results
based on a configuration of an embedded system, which is built around the Sparc
microprocessor.

Co-synthesis and hardware–software partitioning are executed in combination
with control parallelism transformations in [28]. The hardware–software partition
is defined by a set of application-level functions which are implemented with
application-specific hardware. The control parallelism is defined by the interaction
of the processes of the functional behavior of the specified system. The system
behavior is modeled using a set of communicating sequential processes [29]. Each
process is then assigned either to hardware or to software implementation.

A hardware–software co-design methodology, which employs synthesis of het-
erogeneous systems, is presented in [30]. The synthesis process is driven by timing
constraints which drive the mapping of tasks onto hardware or software parts so that
the performance requirements of the intended system are met. This method is based
on using modeling and synthesis of programs written in the HardwareC language.
An example application which was used to test the methodology in this work was
an Ethernet-based network co-processor.

2.2.5 Next Generation High-Level Synthesis Tools

More advanced methodologies appeared at the late 1990s and they featured
enhanced input code sets as well as improved scheduling and other optimization
algorithms. The CoWare hardware–software co-design environment [31] is based
on a data model that allows the user to specify, simulate, and produce heterogeneous
implementations from heterogeneous specification source models. This design
approach develops telecommunication systems that contain DSP, control loops, and
user interfaces. The synchronous dataflow (SDF) type of algorithms found in a
category of DSP applications are synthesized into hardware from languages such
as SILAGE [32], DFL [33], and LUSTRE [34]. In contrast to this, DDF algorithms
consume and produce tokens that are data-dependent, and thus they allow for
complex if-then-else and while loop control constructs. CAD systems that allow
for specifying both SDF and DDF algorithms and run scheduling are the DSP-
station from Mentor Graphics [35], PTOLEMY [36], GRAPE-II [37], COSSAP
from Synopsys, and SPW from the Alta group [38].

C programs that include dynamic memory allocation, pointers, and the functions
malloc and free are mapped onto hardware in [39]. The SpC tool which was
developed in this work resolves pointer variables at compile time and thus C
functional models are synthesized into Verilog hardware models. The synthesis
of functions in C, and therefore the resolution of pointers and malloc/free inside
of functions, is, however, not included yet in this work, but left as future work.

2 Formal Design Flows for Embedded IoT Hardware 35

The different techniques and optimizations described above have been implemented
using the SUIF compiler environment [40].

A heuristic for scheduling behavioral specifications that include a lot of con-
ditional control flow is presented in [41]. This heuristic is based on a powerful
intermediate design representation called hierarchical conditional dependency graph
(HCDG). HCDG allows chaining and multicycling, and it enables advanced tech-
niques such as conditional resource sharing and speculative execution, which are
suitable for scheduling conditional behaviors. The HLS techniques in this work were
implemented in a prototype graphical interactive tool called CODESIS which used
HCDG as its internal design representation. The tool generates VHDL or C code
from the HCDG, but no translation of standard programming language code into
HCDG is known so far.

A coordinated set of coarse-grain and fine-grain parallelizing HLS transfor-
mations on the input design model are discussed in [42]. These transformations
are executed in order to deliver synthesis results that don’t suffer from the
negative effects of complex control constructs in the specification code. All of the
HLS techniques in this work were implemented in the SPARK HLS tool, which
transforms specifications in a small subset of C into RTL VHDL hardware models.
SPARK utilizes both control/dataflow graphs (CDFGs) and an encapsulation of
basic design blocks inside hierarchical task graphs (HTGs), which enable coarse-
grain code restructuring such as loop transformations and an efficient way to move
operations across large pieces of code. Nevertheless, SPARK is not designed to
process conditional code where the iteration limits are not known at compile time,
such as while loops.

Typical HLS tasks such as scheduling, resource allocation, module binding,
module selection, register binding, and clock selection are executed simultaneously
in [43] so as to achieve better optimization in design energy, power, and area. The
scheduling algorithm utilized in this HLS methodology applies concurrent loop
optimization and multicycling and it is driven by resource constraints. The state
transition graph (STG) of the design is simulated in order to generate switched
capacitance matrices. These matrices are then used to estimate power/energy
consumption of the design’s datapath. Nevertheless, the input to the HLS tool is
not programming language code but a complex proprietary format representing an
enhanced CDFG as well as an RTL design library and resource constraints.

An incremental floorplanner is described in [44] which combines an incremental
behavioral and physical optimization into HLS. These techniques were integrated
into an existing interconnect-aware HLS tool called ISCALP [45]. The new com-
bination was named IFP-HLS (incremental floorplanner high-level synthesis) tool,
and it attempts to concurrently improve the design’s schedule, resource binding, and
floorplan, by integrating high-level and physical design algorithms.

Huang et al. [46] discuss a HLS methodology which is suitable for the design of
distributed logic and memory architectures. Beginning with a behavioral description
of the system in C, the methodology starts with behavioral profiling in order to
extract simulation statistics of computations and references of array data. Then array
data are distributed into different partitions. An industrial tool called Cyber [47]

36 M. Dossis

was developed which generates a distributed logic/memory micro-architecture RTL
model, which is synthesizable with existing RTL synthesizers, and which consists
of two or more partitions, depending on the clustering of operations that was applied
earlier.

A system specification containing communicating processes is synthesized in
[48]. The impact of the operation scheduling is considered globally in the system
critical path (as opposed to the individual process critical path), in this work. It is
argued by the authors in this work that this methodology allocates the resources
where they are mostly needed in the system, which is in the critical paths, and in
this way it improves the overall multi-process designed system performance.

The work in [49] contributes towards incorporating memory access management
within a HLS design flow. It mainly targets DSP applications but also other
streaming applications can be included along with specific performance constraints.
The synthesis process is performed on the extended dataflow graph (EDFG) which
is based on the signal flow graph. Mutually exclusive scheduling methods [50, 51]
are implemented with the EDFG. The graph which is processed by a number of
annotations and improvements is then given to the GAUT HLS tool [52] to perform
operator selection and allocation, scheduling and binding.

A combined execution of operation decomposition and pattern-matching tech-
niques is targeted to reduce the total circuit area in [53]. The datapath area is reduced
by decomposing multicycle operations, so that they are executed on monocycle
functional units (FUs that take one clock cycle to execute and deliver their results).
A simple formal model that relies on an FSM-based formalism for describing and
synthesizing on-chip communication protocols and protocol converters between
different bus-based protocols is discussed in [54]. The utilized FSM-based format is
at an abstraction level which is low enough so that it can be automatically translated
into HDL implementations. The generated HDL models are synthesizable with
commercial tools. Synchronous FSMs with bounded counters that communicate via
channels are used to model communication protocols. The model devised in this
work is validated with an example of communication protocol pairs which included
AMBA APB and ASB. These protocols are checked regarding their compatibility,
by using the formal model.

The methodology of SystemCoDesigner [55] uses an actor-oriented approach
so as to integrate HLS into electronic system level (ESL) design space explo-
ration tools. The design starts with an executable SystemC system model. Then,
commercial synthesizers such as Forte’s Cynthesizer are used in order to generate
hardware implementations of actors from the behavioral model. This aids the design
space exploration in finding the best candidate architectures (mixtures of hardware
and software modules). After deciding on the chosen solution, the suitable target
platform is then synthesized with the implementations of the hardware and software
parts. The final step of this methodology is to generate the FPGA-based SoC
implementation from the chosen hardware/software solution. Based on the proposed
methodology, it seems that SystemCoDesigner method is suitable for stream-based
applications, found in areas such as DSP, image filtering, and communications.

2 Formal Design Flows for Embedded IoT Hardware 37

A formal approach is followed in [56] which is used to prove that every HLS
translation of a source code model produces an RTL model that is functionally
equivalent to the one in the behavioral input to the HLS tools. This technique is
called translation validation and it has been maturing via its use in the optimizing
software compilers. The validating system in this work is called SURYA, it is
using the Symplify theorem prover and it was used to validate the SPARK HLS
tool. This validation experiment with Symplify discovered two bugs in the SPARK
compilations.

The replacement of flip-flop registers with latches is proposed in [57] in order
to yield better timing in the implemented designs. The justification for this is
that latches are inherently more tolerant to process variations than flip-flops. The
related design techniques were integrated into a tool called HLS-1. HLS-1 translates
behavioral VHDL code into a synthesized netlist. Nevertheless, handling a design
where registers are implemented with latches instead of edge-triggered flip-flops is
generally considered to be cumbersome due to the complicated timing behavior of
latches.

2.3 Synthesis for Low Power

Many portable and embedded computing systems and applications such as mobile
(smart) phones, PDAs, etc., require design for low power and therefore synthesis for
low energy is becoming very important in the whole area of VLSI and embedded
system design. In any case, and particularly for IoT devices the majority of
custom functions that are implemented in special-purpose hardware imply that they
consume much less power than microcontroller equivalent programs. Therefore
it is mandatory that most of the special functions in IoT devices found in areas
of data compression, security, media playing, image/audio (de-)coding must be
implemented using advanced synthesis techniques into specialized hardware for low
power consumption and increased security gains.

During the last decade industry and academia invested on significant amounts
of research regarding VLSI techniques and HLS for low power design. In order
to achieve low energy in the results of HLS and system design, new techniques
that help to estimate power consumption at the high-level description level are
needed, and they will be a great aid in delivering systems with reduced power
consumption such as IoT devices running on batteries. In [58], switching activity
and power consumption are estimated at the RTL level taking also into account the
glitching activity on a number of signals of the datapath and the controller. The
spatial locality, the regularity, the operation count, and the ratio of critical path to
available time are identified in [59] with the aim to reduce the power consumption
of the interconnections. The HLS scheduling, allocation, and binding tasks consider
such algorithmic statistics and properties in order to reduce the fanins and fanouts of
the interconnect wires. This will result into reducing the complexity and the power
consumed on the capacitance of the interconnection buses [60].

38 M. Dossis

The effect of the controller on the power consumption of the datapath is
considered in [61]. Pipelining and module selection was proposed in [62] for low
power consumption. The activity of the functional units was reduced in [63] by
minimizing the transitions of the functional unit’s inputs. This was utilized in a
scheduling and resource binding algorithm, in order to reduce power consumption.
In [64] the DFG is simulated with profiling stimuli, provided by the user, in order to
measure the activity of operations and data carriers. Then, the switching activity is
reduced by selecting a special module set and schedule. Reducing supply voltage,
disabling the clock of idle elements, and architectural tradeoffs were utilized in [65]
in order to minimize power consumption within HLS.

The energy consumption of memory subsystem and the communication lines
within a multiprocessor system-on-a-chip (MPSoC) is addressed in [66]. This work
targets streaming applications such as image and video processing that have regular
memory access patterns. The way to realize optimal solutions for MPSoCs is to
execute the memory architecture definition and the connectivity synthesis in the
same step.

The above research approaches all attempt to target energy efficiency at the
device consumption level and improve architectural and device level techniques
for reducing it. It is absolutely necessary to transition from traditional RTL design
techniques into HLS-based development so that to automate the design and deliver
higher quality of implementations that are suitable for IoT embedded and battery-
running devices. Also, by using formal and integrated design and verification
techniques a great deal of project time is saved so that necessary focus can be shifted
from repetitive verification cycles into advanced (micro-)architectural issues of the
system, for improved performance and power consumption.

2.4 The C-Cubed Hardware Synthesis Flow

So far in this chapter related work in HLS methodologies for embedded IoT systems
was reviewed. From this section onwards, a particular, formal HLS methodology is
analyzed and explained, which is directly applicable on embedded system design,
and it has been developed by the author of this chapter. The techniques of this work
include the front-end compilers which are based on formal compiler generators, the
Formal Intermediate Format (FIF) which encapsulates in a formal way the attributes
of the input algorithms, and the back-end compiler which is built with formal logic
programming relations (or facts in the Prolog language terminology).

The FIF1 was invented and designed by the author of this chapter as a tool and
media for the design encapsulation and the HLS transformations in the C-Cubed

1The Formal Intermediate Format is patented with patent number: 1006354, 15/4/2009, from the
Greek Industrial Property Organization.

2 Formal Design Flows for Embedded IoT Hardware 39

front-end
compiler

input program
code

software compila-

FIF database

FIF compilation

back-end compiler
inference rules and
user parameters

FIF loading

hardware
implementa-

tion

high-level synthesis

Cycle-acc. testebench

verification

Fig. 2.1 The C-Cubed hardware synthesis flow and tools

(Custom Co-processor Compilation) hardware compilation tool.2 A near-complete
analysis of FIF syntax and semantics can be found in [67]. The formal methodology
discussed here is based on using predicate logic to describe the intermediate
representations and transformations of the compilation steps, and the resolution
of a set of transformation Horn clauses [68] is used, as the building blocks of the
prototype hardware compiler.

The front-end compiler translates the input program code into the FIF’s logic
statements (logic facts). The inference logic rules of the back-end compiler trans-
form the FIF facts into the hardware implementations. There is one-to-one cor-
respondence between the source specification’s subroutines and the generated
hardware modules. The source code subroutines can be hierarchical, and this
hierarchy is maintained in the generated hardware implementation. Each generated
hardware model is an FSM-controlled custom processor (or co-processor, or
accelerator), that executes a specific task, described in the source program code. This
hardware synthesis flow is depicted in Fig. 2.1. The generated hardware modules
specify a standalone function (e.g., DSP filter) and they are coded in the VHDL
or the Verilog HDL languages. For verification purposes, and for every hardware
module, a fast cycle-accurate testbench, coded in ANSI-C, is generated from the
same internal formal model of the FSM and the datapath of the co-processor.

Essentially the front-end compilation resembles software program compila-
tion and the back-end compilation executes formal transformation tasks that are

2This hardware compiler method is patented with patent number: 1005308, 5/10/2006, from the
Greek Industrial Property Organization.

40 M. Dossis

normally found in HLS tools. This whole compilation flow is a formal transfor-
mation process, which converts the source code programs into implementable RTL
VHDL hardware accelerator models. If there are function calls in the specification
code, then each subprogram call is transformed into an interface event in the gen-
erated hardware FSM. The interface event is used so that the “calling” accelerator
uses the “services” of the “called” accelerator, as it is depicted in the source code
hierarchy as well.

2.5 Back-End Compiler Inference Logic Rules

The back-end compiler consists of a very large number of logic rules. These logic
rules are coded with logic programming techniques, which are used to implement
the HLS transformations and other processes of the back-end compilation phase.
As an example, one of the latter processes reads and incorporates the FIF tables’
facts into the compiler’s internal inference engine of logic predicates and rules [68].
The back-end compiler rules are given as a great number of definite clauses of the
following equation:

A0 A1 ^ � � � ^ An .where n � 0/ (2.1)

where is the logical implication symbol (A B means that if B applies then A
applies), and A0, : : : , An are atomic formulas (logic facts) of the equation:

predicate_symbol .Var_1; Var_2; : : : ; Var_N/ (2.2)

where the positional parameters Var_1, : : : ,Var_N of the above predicate “pred-
icate_symbol” are either variable names (in the case of the back-end compiler
inference rules), or constants (in the case of the FIF table statements). The predicate
syntax in Eq. (2.2) is typical of the way of the FIF facts and other facts interact with
each other, they are organized and they are used internally in the inference engine.
Thus, the hardware descriptions are generated as “conclusions” of the inference
engine upon the FIF “facts.” This is done in a formal way from the input programs
by the back-end phase, which turns the overall transformation into a provably correct
compilation process. In essence, the FIF file consists of a number of such atomic
formulas, which are grouped in the FIF tables. Each such table contains a list of
homogeneous facts which describe a certain aspect of the compiled program. For
example, all prog_stmt facts for a given subprogram are grouped together in the
listing of the program statements table.

In the back-end compiler “conclussions” the correct-by-construction hardware
implementations and the cycle-accurate testbench are included, as custom hardware
micro-architectures. This along with other features makes the C-Cubed tool very
suitable for designing custom hardware blocks of IoT embedded devices and
peripherals. Experiments with the tool have shown that it is very suitable for

2 Formal Design Flows for Embedded IoT Hardware 41

small and big data coding, secure functions and cryptography, DSP and computer
graphics, as well as other mathematical blocks, all of which are used in today’s
embedded systems.

2.6 Inference Logic and Back-End Transformations

The inference engine of the back-end compiler consists of a great number of logic
rules (like the one in Eq. (2.1)) which conclude on a number of input logic predicate
facts and produce another set of logic facts and so on. Eventually, the inference
logic rules produce the logic predicates that encapsulate the writing of RTL VHDL
hardware co-processor models. These hardware models are directly implementable
to any hardware (e.g., ASIC or FPGA) technology, since they are technology
and platform-independent. For example, generated RTL models produced in this
way from the prototype compiler were synthesized successfully into hardware
implementations using the Synopsys DC Ultra, the Xilinx ISE, and the Mentor
Graphics Precision software without the need of any manual alterations of the
produced RTL VHDL code. In the following Eq. (2.3) an example of such an
inference rule is shown:

dont_schedule .Operation1; Operation2/
examine .Operation1; Operation2/ ;

predecessor .Operation1; Operation2/ :
(2.3)

The meaning of this rule that combines two input logic predicate facts to produce
another logic relation (dont_schedule) is that when two operations (Operation1 and
Operation2) are examined and the first is a predecessor of the second (in terms of
data and control dependencies), then don’t schedule them in the same control step.
This rule is part of a parallelizing optimizer which is called “PARCS” (meaning:
Parallel, Abstract Resource—Constrained Scheduler).

The way that the inference engine rules (predicates relations–productions) work
is depicted in Fig. 2.2. The last produced (from its rule) predicate fact is the VHDL
RTL writing predicate at the top of the diagram. Right below level 0 of predicate
production rule there is a rule at the �1 level, then level �2, and so on. The first
predicates that are fed into this engine of production rules belong to level –K, as
shown in this figure. Level –K predicate facts include of course the FIF facts that
are loaded into the inference engine along with the other predicates of this level.

In this way, the back-end compiler works with inference logic on the basis of
predicate relation rules and, therefore, this process is a formal transformation of
the FIF source program definitions into the hardware accelerator (implementable)
models. Of course in the case of the prototype compiler, there is a very large number
of predicates and their relation rules that are defined inside the implementation code
of the back-end compiler, but the whole concept of implementing this phase is as
shown in Fig. 2.2. The user of the back-end compiler can select certain environment

42 M. Dossis

RTL writer predicate rule

VHDL writing predi-

level -1
predicate fact

level -1
predicate fact

level -1
predicate fact

level -1 predicate rule for

level -2
predicate fact

level -2
predicate fact

level -2
predicate fact

level -2 predicate rule for

level –K
predicate fact

level -K
predicate fact

level -K
predicate fact

Fig. 2.2 The back-end inference logic rules structure

command list options as well as build an external memory port parameter file as well
as drive the compiler’s optimizer with specific resource constraints of the available
hardware operators.

The most important of the back-end compilation stages can be seen in Fig. 2.3.
The compilation process starts with the loading of the FIF facts into the inference
rule engine. After the FIF database is analyzed, the local data object, operation,
and initial state lists are built. Then the environment options are read and the
temporary lists are updated with the special (communication) operations as well as
the predecessor and successor dependency relation lists. After the complete initial
schedule is built and concluded, the PARCS optimizer is run on it, and the optimized

2 Formal Design Flows for Embedded IoT Hardware 43

Building of local data and states lists

External FIF database (produced by the front-end)

Processing of multi-dimensional objects (e.g. arrays)
and environment interface events

FIF loading and analysis

Scheduled hardware FSM model in implementable RTL HDL
code

Building of addressing and protocols for communi-
cation with external (shared) memories

Environ-
ment parame-

ters

FSM state optimizations (PARCS)

FSM and datapath micro-architecture generation

Fig. 2.3 The processing stages of the back-end compiler

schedule is delivered to the micro-architecture generator. The transformation is
concluded with the formation of the FSM and datapath implementation and the
writing of the RTL VHDL model for each accelerator that is defined in each
subprogram of the source code program.

A separate hardware accelerator model is generated from each subprogram
in the system model code. All of the generated hardware models are directly
implementable into hardware using commercial CAD tools, such as the Synopsys
DC-ultra, the Xilinx ISE, and the Mentor Graphics Precision RTL synthesizers.
Also the hierarchy of the source program modules (subprograms) is maintained and
the generated accelerators may be hierarchical. This means that an accelerator can
invoke the services of another accelerator from within its processing states, and that
other accelerator may use the services of yet another accelerator, and so on. In this
way, a subprogram call in the source code is translated into an external co-processor
interface event of the corresponding hardware accelerator.

44 M. Dossis

2.7 The PARCS Optimizer

The PARCS scheduler aggressively attempts to schedule as many as possible
operations in the same control step. The only limits to this are the data and control
dependencies as well as the optional resource (operator) constraints, which are
provided by the user.

The pseudo-code for the main procedures of the PARCS scheduler is shown in
Fig. 2.4. All of the predicate rules (like the one in Eq. (2.1)) of PARCS are part of
the inference engine of the back-end compiler. A new design to be synthesized is
loaded via its FIF into the back-end compiler’s inference engine. Hence, the FIF’s
facts as well as the newly created predicate facts from the so far logic processing
“drive” the logic rules of the back-end compiler which generate provably correct
hardware architectures. It is worthy to note that although the HLS transformations
are implemented with logic predicate rules, the PARCS optimizer is very efficient
and fast. In most of benchmark cases that were run through the prototype hardware
compiler flow, compilation did not exceed 1–10 min of run time and the results of
the compilation were very efficient as explained below.

2.8 Generated Hardware Architectures

The back-end stage of micro-architecture generation can be driven by command-line
options. One of the options, e.g., is to generate massively parallel architectures. The
results of this option are shown in Fig. 2.5. This option generates a single process—
FSM VHDL or Verilog description with all the data operations being dependent on

1. start with the initial schedule (including the special external port operations)
2. Current PARCS state <- 1
3. Get the 1st state and make it the current state
4. Get the next state
5. Examine the next state’s operations to find out if there are any dependencies
with the current state
6. If there are no dependencies then absorb the next state’s operations into the
current PARCS state; If there are dependencies then finalize the so far absorbed
operations into the current PARCS state, store the current PARCS state, PARCS
state <- PARCS state + 1; make next state the current state; store the new state’s
operations into the current PARCS state
7. If next state is of conditional type (it is enabled by guarding conditions) then
call the conditional (true/false branch) processing predicates, else continue
8. If there are more states to process then go to step 4, otherwise finalize the so
far operations of the current PARCS state and terminate

Fig. 2.4 Pseudo-code of the PARCS scheduling algorithm

2 Formal Design Flows for Embedded IoT Hardware 45

Fig. 2.5 Massively parallel
micro-architecture generation
option

Cloud of
state regis-

ters and next
state encod-

ing logic

START

DONE

operator (FU) 1

operator (FU) k

operator (FU) m

operator (FU) n

state 1

state L

data in

data out

lll

lll

lll

lll

different machine states. This implies that every operator is enabled by single wire
activation commands that are driven by different state register values. This in turn
means that there is a redundancy in the generated hardware, in a way that during part
of execution time, a number of state-dedicated operators remain idle. However, this
redundancy is balanced by the fact that this option achieves the fastest clock cycle,
since the state command encoder, as well as the data multiplexers are replaced by
single wire commands which don’t exhibit any additional delay, and this option is
very suitable to implement on large ASICs with plenty of resources.

Another micro-architecture option is the generation of traditional FSMC datapath-
based VHDL/Verilog models. The results of this option are shown in Fig. 2.6.
With this option activated the generated VHDL/Verilog models of the hardware
accelerators include a next state process as well as signal assignments with
multiplexing which correspond to the input data multiplexers of the activated
operators. Although this option produces smaller hardware structures (than the
massively parallel option), it can exceed the target clock period due to larger delays
through the data multiplexers that are used in the datapath of the accelerator.

Using the above micro-architecture options, the user of the CCC HLS tool can
select various solutions between the fastest and larger massively parallel micro-
architecture, which may be suitable for richer technologies in terms of operators
such as large ASICs, and smaller and more economic (in terms of available
resources) technologies such as smaller FPGAs.

As it can be seen in Figs. 2.5 and 2.6, the produced co-processors (accelerators)
are initiated with the input command signal START. Upon receiving this command
the co-processors respond to the controlling environment using the handshake
output signal BUSY and right after this, they start processing the input data in
order to produce the results. This process may take a number of clock cycles

46 M. Dossis

Fig. 2.6 The traditional
FSMC datapath generated
micro-architecture option

Cloud of
state regis-

ters and
next state
encoding

logic

START

DONE

operator (FU)

operator (FU)

state vector

data in

data out

data
multiplexer

data

lll

multiplexer

and it is controlled by a set of states (discrete control steps). When the co-
processors complete their processing, they notify their environment with the output
signal DONE. In order to conclude the handshake the controlling environment
(e.g., a controlling central processing unit) responds with the handshake input
RESULTS_READ, to notify the accelerator that the processed result data have
been read by the environment. This handshake protocol is also followed when one
(higher-level) co-processor calls the services of another (lower-level) co-processor.
The handshake is implemented between any number of accelerators (in pairs) using
the START/BUSY and DONE/RESULTS_READ signals. Therefore, the set of
executing co-processors can also be hierarchical in this way.

Other environment options, passed to the back-end compiler, control the way that
the data object resources are used, such as registers and memories. Using a memory
port configuration file, the user can determine that certain multi-dimensional data
objects, such as arrays and array aggregates, are implemented in external (e.g.,
central, shared) memories (e.g., system RAM). Otherwise, the default option
remains that all data objects are allocated to hardware (e.g., on-chip) registers.
All of the related memory communication protocols and hardware ports/signals are
automatically generated by the back-end synthesizer, and without the need for any
manual editing of the RTL code by the user. Both synchronous and asynchronous
memory communication protocol generation are supported.

2 Formal Design Flows for Embedded IoT Hardware 47

2.9 Generated Hardware Execution Platform

The generated hardware modules can be placed inside the computing environment
that they accelerate or can be executed standalone. For every subprogram in the
source specification code one co-processor is generated to speed up (accelerate)
or just execute the particular system task. The whole system (both hardware and
software models) is modeled in algorithmic ADA or C code which can be compiled
and executed with the host compiler and linker to run and verify the operation of
the whole system at the program code level. In this way, extremely fast verification
can be achieved at the algorithmic level. It is evident that such behavioral (high-
level) compilation and execution is orders of magnitude faster than conventional
RTL simulations. Moreover, now C-Cubed automatically generates cycle-accurate
C testbenches from exactly the same FSM information that generates the HDL code.
Therefore, using compile and execute these testbenches can be executed on the host
computer in a rapid and correct manner.

After the required co-processors are specified, coded in ADA, generated with the
prototype hardware compiler, and implemented with commercial back-end tools,
they can be downloaded into the target computing system (if the target system
includes FPGAs) and executed to accelerate certain system tasks. This process is
shown in Fig. 2.7. The accelerators can communicate with each other and with the
host computing environment using synchronous handshake signals and connections
with the system’s handshake logic.

2.10 Experimental Results and Conclusions

There have been a great deal of design and verification experiments with the C-
Cubed framework. In all the experiments it was found that the quality of the
generated HDL modules is very high with increased readability of the code. Among
the many experiments, three small benchmarks are analyzed in this paragraph: a
computer graphics algorithm, a DSP FIR (finite impulse response) filter, and the
classical high-level synthesis benchmark, the second order differential equation
approximation solver. Moreover, the statistics of two more benchmarks, an RSA
crypto-processor and a complex MPEG engine, are included in the discussion of
this chapter.

Table 2.1 shows state reduction statistics with the C-Cubed’s optimizer, PARCS.
Impressive state reduction is achieved, up to 41 %, even with a complex conditional
structure which is found in the line-drawing design (computer graphics benchmark).
Due to the formal nature of the C-Cubed synthesizer only high-level source code—
level compile and execute verifications are needed. However, in order to prove our
argument in practice all synthesized RTL modules were simulated and their behavior
matched, as expected, the behavior of the source code programs. Figure 2.8 shows
a snapshot of the RTL simulation of the computer graphics hardware module, near
the time where the line’s pixels are written into the external memory.

48 M. Dossis

Prototype hardware compiler co-design method

Program code model for mixed HW/SW, special purpose,
customised architecture (verified) model

Host processor(s)

Accelerator 1 (+
local memory)

SW implementation with
host compiler and linker

HW implementation with proto-
type hardware compiler

Accelerator 2 (+
local memory)

Accelerator K (+
local memory)

•••

Main
(shared)
memory

Interface and
handshake logic and
other computing en-

vironment

Fig. 2.7 Host computing environment and hardware execution configuration

Table 2.1 FSM state statistics before and after optimization with PARCS

Module name Initial schedule states PARCS states
State reduction
percentage (%)

DSP FIR filter processor 17 10 41
RSA crypto-processor 16 11 31
Computer graphics design 17 10 41
MPEG top routine (with
external memory)

462 343 26

Differential equation solver 20 13 35

The verification flow in the C-Cubed framework is formal and integrated with
the synthesis flow. The fact that the input to the tools is executable allows us to
compile the source ADA or C and co-simulate with the testbench. Also, we can
include commands in the high-level testbench in order to automatically and formally
compare simulation outputs of the high-level code with that of the RTL code. The
structure and flow of this cross-checking verification is shown in Fig. 2.9.

2 Formal Design Flows for Embedded IoT Hardware 49

Fig. 2.8 RTL simulation snapshot of the line-drawing benchmark output

ADA/C CCC system to be designed

GNU ADA/C testbench

ADA
GNU co m-
pile, debug
and execute
tools and
test-vector

Memory models

VHDL/Verilog testbench

HDL
simulator
and test-
vector file -
io

CCC VHDL/Verilog RTL code

Fig. 2.9 ADA to VHDL cross-verification flow

50 M. Dossis

Apart from the high-level behavioral testbench (at the source code level) the C-
Cubed framework recently offered a formal verification option, by compiling and
rapidly executing the FSM by means of a cycle-accurate testbench (FSM model) in
the C language which is automatically generated by the back-end compiler using
the same internal intelligent FSM models of the optimized hardware modules. The
cycle-accurate testbench allows for setting up inputs, reading outputs and registers,
resetting the engine, and moving to the next state by pressing corresponding buttons
on the keyboard. Thus it is very easy to use and it can increase the confidence of
the provably correctness of the generated FSM (co-processor or standalone custom
logic).

As an example Fig. 2.10 shown the execution screen of the high-level testbench
of the differential equation solver benchmark.

Figure 2.11 shows the RTL simulation of the same benchmark (the result is
obviously the same as with the high-level testbench).

The start of the cycle-accurate testbench simulation of this benchmark is shown
in Fig. 2.12, where the circuit’s inputs are set. After going through the FSM’s states
the screen in Fig. 2.13 shows reading of the outputs which give the same results as
the other verification runs for this test (as it was expected).

The same flow was confirmed for all of this work’s benchmarks, but due to
limitations in paper length they are omitted.

Fig. 2.10 High-level testbench execution of the differential equation solver

Fig. 2.11 RTL simulation of the differential equation solver

2 Formal Design Flows for Embedded IoT Hardware 51

Fig. 2.12 Setting the inputs of the cycle-accurate diff.eq.solver benchmark

Fig. 2.13 Reading the outputs of the cycle-accurate diff.eq.solver benchmark

2.11 Conclusions and Future Work

The major contribution of this work is an integrated, formal, rapid, and automated
methodology and set of tools for the automatic synthesis of custom hardware,
which can be used in embedded IoT devices. All of the above characteristics of
the presented method make it suitable for short project time and limited project
budget for designing custom circuit blocks. It is expected that the IoT industry will
be benefited the most by adopting and using such HLS methods, which will make it
competitive to the hard international economy.

Due to the nature of the C-Cubed tools implementation they are particularly
suitable for future extensions and experiments such as low power design, SystemC
testbench generation, and other language input/output interfaces. Also, continuous
improvements of the PARCS scheduler and the associated synthesis transformations
are envisaged and they are planned for the future.

References

1. B. Pangrle, D. Gajski, Design tools for intelligent silicon compilation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 6(6), 1098–1112 (1987)

52 M. Dossis

2. E. Girczyc, R. Buhr, J. Knight, Applicability of a subset of Ada as an algorithmic hardware
description language for graph-based hardware compilation. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 4(2), 134–142 (1985)

3. P. Paulin, J. Knight, Algorithms for high-level synthesis. IEEE Des. Test Comput. 6(6), 18–31
(1989)

4. I. Park, C. Kyung, Fast and near optimal scheduling in automatic data path synthesis, in
Proceedings of the Design Automation Conference (DAC), pp. 680–685, San Francisco, CA,
1991

5. N. Park, A. Parker, Sehwa: a software package for synthesis of pipelined data path from
behavioral specification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(3), 356–370
(1988)

6. E. Girczyc, Loop winding—a data flow approach to functional pipelining, in Proceedings of
the International Symposium on Circuits and Systems, pp. 382–385, Philadelphia, PA, May
1987

7. C. Tseng, D. Siewiorek, Automatic synthesis of data path on digital systems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 5(3), 379–395 (1986)

8. F. Kurdahi, A. Parker, REAL: a program for register allocation, in Proceedings of the Design
Automation Conference (DAC), pp. 210–215, Miami Beach, FL, June 1987

9. C. Huang, Y. Chen, Y. Lin, Y. Hsu, Data path allocation based on bipartite weighted matching,
in Proceedings of the Design Automation Conference (DAC), pp. 499–504, Orlando, FL, June
1990

10. F. Tsay, Y. Hsu, Data path construction and refinement, in Digest of Technical Papers,
International Conference on Computer-Aided Design (ICCAD), pp. 308–311, Santa Clara, CA,
November 1990

11. R. Camposano, W. Rosenstiel, Synthesizing circuits from behavioral descriptions. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 8(2), 171–180 (1989)

12. S. Johnson, Synthesis of Digital Designs from Recursion Equations (MIT Press, Cambridge,
MA, 1984)

13. M. Barbacci, G. Barnes, R. Cattell, D. Siewiorek, The ISPS computer description language.
Report CMU-CS-79-137, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, 1979

14. P. Marwedel, The MIMOLA design system: tools for the design of digital processors, in
Proceedings of the 21st Design Automation Conference (DAC), pp. 587–593, IEEE Press,
Piscataway, NJ, 1984

15. A. Casavant, M. D’Abreu, M. Dragomirecky, D. Duff, J. Jasica, M. Hartman, K. Hwang, W.
Smith, A synthesis environment for designing DSP systems. IEEE Des. Test Comput. 6(2),
35–44 (1989)

16. P. Paulin, J. Knight, Force-directed scheduling for the behavioral synthesis of ASICs. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 8(6), 661–679 (1989)

17. D. Gajski, L. Ramachandran, Introduction to high-level synthesis. IEEE Des. Test Comput.
11(4), 44–54 (1994)

18. R. Walker, S. Chaudhuri, Introduction to the scheduling problem. IEEE Des. Test Comput.
12(2), 60–69 (1995)

19. V. Berstis, The V compiler: automatic hardware design. IEEE Des. Test Comput. 6(2), 8–17
(1989)

20. J. Fisher, Trace Scheduling: a technique for global microcode compaction. IEEE Trans.
Comput. C-30(7), 478–490 (1981)

21. A. Kuehlmann, R. Bergamaschi, Timing analysis in high-level synthesis, in Proceedings of
the 1992 IEEE/ACM International Conference on Computer-Aided Design (ICCAD ‘92), pp.
349–354, Los Alamitos, CA, 1992

22. C. Papachristou, H. Konuk, A linear program driven scheduling and allocation method
followed by an interconnect optimization algorithm, in Proceedings of the 27th ACM/IEEE
Design Automation Conference (DAC), Orlando, Florida, USA, pp. 77–83, June 1990

2 Formal Design Flows for Embedded IoT Hardware 53

23. J. Biesenack, M. Koster, A. Langmaier, S. Ledeux, S. Marz, M. Payer, M. Pilsl, S. Rumler, H.
Soukup, N. Wehn, P. Duzy, The Siemens high-level synthesis system CALLAS. IEEE Trans.
Very Large Scale Integr. Syst. 1(3), 244–253 (1993)

24. T. Filkorn, A method for symbolic verification of synchronous circuits, in Proceedings of the
Comp Hardware Descr Lang and Their Application (CHDL 91), pp. 229–239, Marseille, 1991

25. A. Kalavade, E. Lee, A hardware-software codesign methodology for DSP applications. IEEE
Des. Test Comput. 10(3), 16–28 (1993)

26. R. Ernst, J. Henkel, T. Benner, Hardware-software cosynthesis for microcontrollers. IEEE Des.
Test Comput. 10(4), 64–75 (1993)

27. G. De Micheli, D. Ku, F. Mailhot, T. Truong, The Olympus synthesis system. IEEE Des. Test
Comput. 7(5), 37–53 (1990)

28. D. Thomas, J. Adams, H. Schmit, A model and methodology for hardware-software codesign.
IEEE Des. Test Comput. 10(3), 6–15 (1993)

29. C. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985)
30. R. Gupta, G. De Micheli, Hardware-software cosynthesis for digital systems. IEEE Des. Test

Comput. 10(3), 29–41 (1993)
31. I. Bolsens, H. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, D. Verkest, Hardware/soft-

ware co-design of digital telecommunication systems. Proc. IEEE 85(3), 391–418 (1997)
32. D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, H. De Man, DSP specification using the SILAGE

language, in Proceedings of the International Conference on Acoustics Speech Signal Process,
pp. 1056–1060, Albuquerque, NM, 3–6 April 1990

33. P. Willekens et al., Algorithm specification in DSP station using data flow language. DSP Appl.
3(1), 8–16 (1994)

34. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous dataflow programming
language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

35. M. Van Canneyt, Specification, simulation and implementation of a GSM speech codec with
DSP station. DSP Multimed. Technol. 3(5), 6–15 (1994)

36. J. Buck, S. Ha, E. Lee, D. Messerschmitt, PTOLEMY: a framework for simulating and
prototyping heterogeneous systems. Int. J. Comput. Simul. 4, 1–34 (1992)

37. R. Lauwereins, M. Engels, M. Ade, J. Peperstraete, GRAPE-II: a system level prototyping
environment for DSP applications. IEEE Comput. 28(2), 35–43 (1995)

38. M. Rafie et al., Rapid design and prototyping of a direct sequence spread-spectrum ASIC over
a wireless link. DSP Multimed. Technol. 3(6), 6–12 (1994)

39. L. Semeria, K. Sato, G. De Micheli, Synthesis of hardware models in C with pointers and
complex data structures. IEEE Trans. VLSI Syst. 9(6), 743–756 (2001)

40. R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W. Liao, C.-W.
Tseng, M. Hall, M. Lam, J. Hennessy, Suif: an infrastructure for research on parallelizing and
optimizing compilers. ACM SIPLAN Notices 28(9), 67–70 (1994)

41. A. Kountouris, C. Wolinski, Efficient scheduling of conditional behaviors for high-level
synthesis. ACM Trans. Des. Autom. Electron. Syst. 7(3), 380–412 (2002)

42. S. Gupta, R. Gupta, N. Dutt, A. Nikolau, Coordinated parallelizing compiler optimizations and
high-level synthesis. ACM Trans. Des. Autom. Electron. Syst. 9(4), 441–470 (2004)

43. W. Wang, A. Raghunathan, N. Jha, S. Dey, High-level synthesis of multi-process behavioral
descriptions, in Proceedings of the 16th IEEE International Conference on VLSI Design
(VLSI’03), ISBN: 0-7695-1868-0, pp. 467–473, 4–8 January 2003

44. Z. Gu, J. Wang, R. Dick, H. Zhou, Incremental exploration of the combined physical and
behavioral design space, in Proceedings of the 42nd Annual Conference on Design. Automation
DAC ‘05, pp. 208–213, Anaheim, CA, 13–17 June 2005

45. L. Zhong, N. Jha, Interconnect-aware high-level synthesis for low power, in Proceedings of
the IEEE/ACM International Conference Computer-Aided Design, ISBN: 0-7803-7607-2, pp.
110–117, November 2002

46. C. Huang, S. Ravi, A. Raghunathan, N. Jha, Generation of heterogeneous distributed architec-
tures for memory-intensive applications through high-level synthesis. IEEE Trans. Very Large
Scale Integr. 15(11), 1191–1204 (2007)

54 M. Dossis

47. K. Wakabayashi, C-based synthesis experiences with a behavior synthesizer, “Cyber”, in
Proceedings of the Design Automation and Test in Europe Conference, ISBN: 0-7695-0078-1,
pp. 390–393, Munich, 9–12 March 1999

48. W. Wang, T. Tan, J. Luo, Y. Fei, L. Shang, K. Vallerio, L. Zhong, A. Raghunathan, N.
Jha, A comprehensive high-level synthesis system for control-flow intensive behaviors, in
Proceedings of the 13th ACM Great Lakes Symposium on VLSI GLSVLSI ‘03, ISBN:1-58113-
677-3, pp. 11–14, Washington, DC, 28–29 April 2003

49. B. Gal, E. Casseau, S. Huet, Dynamic memory access management for high-performance DSP
applications using high-level synthesis. IEEE Trans. Very Large Scale Integr. 16(11), 1454–
1464 (2008)

50. S. Gupta, R. Gupta, N. Dutt, A. Nicolau, Dynamically increasing the scope of code motions
during the high-level synthesis of digital circuits, in Proceedings of the IEEE Conference
Computers and Digital Techniques, ISSN: 1350–2387, vol. 150, no. 5, pp. 330–337, 22
September 2003

51. K. Wakabayashi, H. Tanaka, Global scheduling independent of control dependencies based
on condition vectors, in Proceedings of the 29th ACM/IEEE Design Automation Conference
(DAC), ISBN: 0-8186-2822-7, pp. 112–115, Anaheim, CA, 8–12 June 1992

52. E. Martin, O. Santieys, J. Philippe, GAUT, an architecture synthesis tool for dedicated signal
processors, in Proceedings of the IEEE International European Design Automation Conference
(Euro-DAC), pp. 14–19, Hamburg, September 1993

53. M. Molina, R. Ruiz-Sautua, P. Garcia-Repetto, R. Hermida, Frequent-pattern-guided multilevel
decomposition of behavioral specifications. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 28(1), 60–73 (2009)

54. K. Avnit, V. D’Silva, A. Sowmya, S. Ramesh, S. Parameswaran, Provably correct on-chip
communication: a formal approach to automatic protocol converter synthesis. ACM Trans.
Des. Autom. Electron. Syst. 14(2), 19 (2009)

55. J. Keinert, M. Streubuhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Meredith,
SystemCoDesigner—an automatic ESL synthesis approach by design space exploration and
behavioral synthesis for streaming applications. ACM Trans. Des. Autom. Electron. Syst.
14(1), 1 (2009)

56. S. Kundu, S. Lerner, R. Gupta, Translation validation of high-level synthesis. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 29(4), 566–579 (2010)

57. S. Paik, I. Shin, T. Kim, Y. Shin, HLS-l: a high-level synthesis framework for latch-based
architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(5), 657–670 (2010)

58. A. Raghunathan, S. Dey, N. Jha, Register-transfer level estimation techniques for switching
activity and power consumption, in Digest of Technical Papers, International Conference on
Computer-Aided Design (ICCAD), ISBN: 0-8186-7597-7, pp. 158–165, San Jose, CA, 10–14
November 1996

59. J. Rabaey, L. Guerra, R. Mehra, Design guidance in the power dimension, in Proceedings of the
1995 International Conference on Acoustics, Speech, and Signal Processing, ISBN: 0-7803-
2431-5, pp. 2837–2840, Detroit, MI, 9–12 May 1995

60. R. Mehra, J. Rabaey, Exploiting regularity for low-power design, in Digest of Technical Papers,
International Conference on Computer-Aided Design (ICCAD), ISBN: 0-8186-7597-7, pp.
166–172, San Jose, CA, November 1996

61. A. Raghunathan, N. Jha, Behavioral synthesis for low power, in Proceedings of the Inter-
national Conference on Computer Design (ICCD), ISBN: 0-8186-6565-3, pp. 318–322,
Cambridge, MA, 10–12 October 1994

62. L. Goodby, A. Orailoglu, P. Chau, Microarchitecture synthesis of performance-constrained
low-power VLSI designs, in Proceedings of the International Conference on Computer Design
(ICCD), ISBN: 0-8186-6565-3, pp. 323–326, Cambridge, MA, 10–12 October 1994

63. E. Musoll, J. Cortadella, Scheduling and resource binding for low power, in Proceedings of the
Eighth Symposium on System Synthesis, ISBN: 0-8186-7076-2, pp. 104–109, Cannes, 13–15
September 1995

2 Formal Design Flows for Embedded IoT Hardware 55

64. N. Kumar, S. Katkoori, L. Rader, R. Vemuri, Profile-driven behavioral synthesis for low-power
VLSI systems. IEEE Des. Test Comput. 12(3), 70–84 (1995)

65. R. Martin, J. Knight, Power-profiler: optimizing ASICs power consumption at the behavioral
level, in Proceedings of the Design Automation Conference (DAC), ISBN: 0-89791-725-1, pp.
42–47, San Francisco, CA, 1995

66. I. Issenin, E. Brockmeyer, B. Durinck, N.D. Dutt, Data-reuse-driven energy-aware cosynthesis
of scratch pad memory and hierarchical bus-based communication architecture for multipro-
cessor streaming applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(8),
1439–1452 (2008)

67. M. Dossis, Intermediate Predicate Format for design automation tools. J. Next Gener. Inform.
Technol. 1(1), 100–117 (2010)

68. U. Nilsson, J. Maluszynski, Logic Programming and Prolog, 2nd edn. (John Wiley & Sons
Ltd., Chichester, 1995)

http://www.springer.com/978-3-319-42302-9

	2 Formal Design Flows for Embedded IoT Hardware
	2.1 Introduction
	2.2 Background and Existing Work
	2.2.1 High-Level and Logic Synthesis
	2.2.2 HLS Scheduling
	2.2.3 Allocation and Binding Tasks
	2.2.4 History of High-Level Synthesis Tools
	2.2.5 Next Generation High-Level Synthesis Tools

	2.3 Synthesis for Low Power
	2.4 The C-Cubed Hardware Synthesis Flow
	2.5 Back-End Compiler Inference Logic Rules
	2.6 Inference Logic and Back-End Transformations
	2.7 The PARCS Optimizer
	2.8 Generated Hardware Architectures
	2.9 Generated Hardware Execution Platform
	2.10 Experimental Results and Conclusions
	2.11 Conclusions and Future Work
	References

