Chapter 2
Vivado Design Tools

Sudipto Chakraborty

The Vivado suite of design tools contain services that support all phases of FPGA
designs —starting from design entry, simulation, synthesis, place and route, bitstream
generation, debugging, and verification as well as the development of software targeted
for these FPGAs.

You can interact with the Vivado environment in multiple ways. This includes a
GUI-based interface for interactive users, as well as a command-line interface if you
prefer to use batch mode. Vivado also supports a scripting interface with a rich set of
Tcl commands. These multiple modes of interaction can also be combined in different
ways to suit the exact needs of users. These are explained in detail below.

2.1 Project vs. Non-project Mode

There are two primary ways to invoke design flows in Vivado—using a project or a
non-project mode. In the first case, you start by creating a project to manage all your
design sources as well as output generated from executing design flows. When a
project is created, Vivado creates a predetermined directory structure on disk, which
contains folders for source files, your configurations, as well as output data. Once a
project has been created, you can enter and leave the Vivado environment as needed,
and each time you can start from where you left off, without having to start from
scratch each time. The project-based environment supports the notion of runs which
allow users to invoke design flows like synthesis and implementation. You are allowed
to customize the design environment in multiple ways, and these configurations are
also persisted in the project environment in the form of “metadata.”

S. Chakraborty (D<)
Xilinx, Longmont, CO, USA
e-mail: sudipto@xilinx.com

© Springer International Publishing Switzerland 2017 17
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_2

18 S. Chakraborty

The directory structure created for a project is as follows:

<project>/

<project>.xpr : the main project file in text format
<project>.srcs/ : directory for sources local to a project
<project>.ip user files/ : directory for user accessible IP files
<project>.runs/ : directory for output data from synth/impl
<project>.sim/ : directory for output data from simulation
<project>.hw/ : directory for hardware debug related data
<project>.cache/ : directory for locally cached data
<project>.ipdef/ : directory for local IP definitions

Not all of the above mentioned directories will always be created. For example,
a Vivado project supports referring to design sources remotely from their original
location or copying them locally inside the project directory structure, based on user
preference. The <project>.srcs directory is only created if there are such local cop-
ies of source files present.

In the non-project mode, you interact more directly with the Vivado environment
using lower level commands. This mode is called non-project because you do not
directly create a project to get your design flows to complete. However, it is important
to note that a project object does exist in this case also; it is created automatically to
manage certain aspects of the design flows. This project object exists only in mem-
ory while your session is active and does not create the on-disk structure described
above. Since there is no automatic persistence of data on disk, all data is maintained
only in memory and available only during the current session. Hence, you need to
make sure that all necessary output is generated before you exit the current non-
project session of Vivado.

One interesting note here is that the project mode of Vivado is actually built on
top of the non-project mode, as explained in Sect. 2.2.1.

2.2 GUI, Command Line, and Tcl

Vivado offers a fully interactive graphical user interface to allow you to more easily
manage your design sources and go through all phases of the design flow. Vivado
also supports doing all these operations in a non-GUI, command-line environment.
The common connection between these two interfaces is the Tcl commands that
drive Vivado. Almost all operations performed during the GUI mode end up issuing
a Tcl command to the core Vivado engine. These commands are shown in the Tcl
console in the GUI and are also captured in a journal file, which is typically located
where Vivado was started from, and the file is named vivado.jou. When working in
command-line mode, these Tcl commands can be issued directly without needing
the presence of a GUI.

2 Vivado Design Tools 19
2.2.1 Interaction with Project/Non-Project

While it is common for GUI-based users to typically use the project mode, it is also
possible to execute the flows in non-project mode while being in the GUI. Similarly,
command-line users can choose to use either project mode or non-project mode.

The Tcl commands supported for project mode are higher level, macro style com-
mands which perform many functionalities under a single command. The Tcl com-
mands for the non-project mode, on the other hand, are more granular WYSIWYG
(what you see is what you get) type of commands which only perform the specified
operation, no more no less. Some project mode commands actually use many
non-project commands internally to perform the desired operation. This explains the
comment in Sect. 2.1 that project mode in Vivado is actually built on top of the non-
project mode.

Scripts 1 and 2 are example scripts for project mode and non-project mode,
which both perform the same operation, but the non-project script is more verbose
since it uses more granular commands.

Script 1: Project mode example Tcl script
create project project 1
add files top.v child.v
launch runs -to step write bitstream impl 1
close project

Script 2: Non-Project Mode Tcl Script
read verilog top.v
read verilog child.v
synth design -top top
opt design
place design
route design
report timing summary
write checkpoint top routed.dcp
write bitstream top.bit

2.2.2 Runs Infrastructure

In the Script 1 and Script 2 examples, the launch_runs command is a macro command
which is part of the Vivado runs infrastructure. This command internally creates a
Tel script which looks similar to the non-project example Script 2 and automatically
launches this script with a new Vivado session to execute the flow.

20 S. Chakraborty

Runs infrastructure allows managing the output products from design flow auto-
matically. It also maintains status of the flow execution, such that if a design source
file changes, it automatically lets you know that the previously generated output
product is now out-of-date and if you relaunch the end step of a run, it automatically
determines which previous steps need to be performed first and executes them
automatically.

The runs infrastructure also allows parallel execution of independent portions of
the design flows to complete the overall flow quicker. These parallel runs can be
executed on multiple processors in the same host machine, or if a compute farm like
LSF or GRID is available, the multiple runs can be executed on different host
machines in the compute farm.

2.3 Overview of Vivado GUI

This section provides a high level overview of the Vivado GUI and some recom-
mendation for first-time users. Vivado is designed based on a concept of layered
complexity. This means using the tool for common tasks and designs is made as
automated and easy as possible without having to have detailed knowledge of the
tool. However, once you get more familiarized with the tool and want to use
advanced features to control your design flows in a customized manner, Vivado
allows you with higher control with finer granularity.

Vivado GUI and project-based mode is highly recommended for first-time users
or those who want to get quickly up and running. Using the GUI makes it easy to use
the various wizards (like New Project wizard) to get started. First-time users can leave
all settings at default and let the tool decide best automatic options. There are several
example projects included with Vivado which you can readily open and use to try out
the design flows. If you want to try your own design, the only two minimum required
pieces of input are an HDL file to describe the design and a constraint file to specify
the timing intent and pin mapping of the in/out signals to specific FPGA pins.

Figure 2.1 shows the screenshot of the Vivado GUI with some of the key areas
highlighted:

1. This area is called the Flow Navigator. It provides easy, single click access to the

common design flow steps and configuration options.

2. This area shows the sources in the design. The first tab here shows a graphical
view of the sources with modules and instance relationships. The other tabs in
this area show other key aspects of design sources.

. This area shows the properties of the items selected in the GUIL

4. This area shows the Tcl console in the GUI as well as various reports and design
run related details.

. This area shows the built-in text editor, information related to project summary, etc.

6. This is a view of a design open in the GUI, which is key to all the design

implementation steps.

[O]

|91

2 Vivado Design Tools

o f Fon lok Wedw Lok Yew Hep

¥ project 1 [Cnalproect Vproject_Lipr] - Vvado 0154

PERT XY e

B Simthescadvosin

pre—
@ trokmertaron Settrss
D Fun nglmesation

5 1ol Console

Wesoges | Gl | 3 Repors

) Deson uns

Fig. 2.1 Overall organization of Vivado GUI

Starting in the GUI and following the wizards make it easy to get started with the
Vivado design flow. At the same time, as the various operations are being performed
in the GUI, Vivado generates equivalent Tcl commands for those operations in the
Tcl console area, as well as in the journal file as mentioned in Sect. 2.2. Using these
Tcl commands, you can later customize the flow or build other similar flows.

2 Springer
http://www.springer.com/978-3-319-42437-8

Designing with Xilink® FPGAs

Using Vivado

Churiwala, S. (Ed.)

2017, X, 260 p. 141 illus., 3illus. in color., Hardcowver
ISEM: 978-3-319-42437-8

