
17© Springer International Publishing Switzerland 2017 
S. Churiwala (ed.), Designing with Xilinx® FPGAs, 
DOI 10.1007/978-3-319-42438-5_2

Chapter 2
Vivado Design Tools

Sudipto Chakraborty

The Vivado suite of design tools contain services that support all phases of FPGA 
designs—starting from design entry, simulation, synthesis, place and route, bitstream 
generation, debugging, and verification as well as the development of software targeted 
for these FPGAs.

You can interact with the Vivado environment in multiple ways. This includes a 
GUI-based interface for interactive users, as well as a command-line interface if you 
prefer to use batch mode. Vivado also supports a scripting interface with a rich set of 
Tcl commands. These multiple modes of interaction can also be combined in different 
ways to suit the exact needs of users. These are explained in detail below.

2.1  �Project vs. Non-project Mode

There are two primary ways to invoke design flows in Vivado—using a project or a 
non-project mode. In the first case, you start by creating a project to manage all your 
design sources as well as output generated from executing design flows. When a 
project is created, Vivado creates a predetermined directory structure on disk, which 
contains folders for source files, your configurations, as well as output data. Once a 
project has been created, you can enter and leave the Vivado environment as needed, 
and each time you can start from where you left off, without having to start from 
scratch each time. The project-based environment supports the notion of runs which 
allow users to invoke design flows like synthesis and implementation. You are allowed 
to customize the design environment in multiple ways, and these configurations are 
also persisted in the project environment in the form of “metadata.”

S. Chakraborty (*) 
Xilinx, Longmont, CO, USA
e-mail: sudipto@xilinx.com 



18

The directory structure created for a project is as follows:

<project>/
<project>.xpr	 : the main project file in text format
<project>.srcs/	 : directory for sources local to a project
<project>.ip_user_files/	 : directory for user accessible IP files
<project>.runs/	 : directory for output data from synth/impl
<project>.sim/	 : directory for output data from simulation
<project>.hw/	 : directory for hardware debug related data
<project>.cache/	 : directory for locally cached data
<project>.ipdef/	 : directory for local IP definitions

Not all of the above mentioned directories will always be created. For example, 
a Vivado project supports referring to design sources remotely from their original 
location or copying them locally inside the project directory structure, based on user 
preference. The <project>.srcs directory is only created if there are such local cop-
ies of source files present.

In the non-project mode, you interact more directly with the Vivado environment 
using lower level commands. This mode is called non-project because you do not 
directly create a project to get your design flows to complete. However, it is important 
to note that a project object does exist in this case also; it is created automatically to 
manage certain aspects of the design flows. This project object exists only in mem-
ory while your session is active and does not create the on-disk structure described 
above. Since there is no automatic persistence of data on disk, all data is maintained 
only in memory and available only during the current session. Hence, you need to 
make sure that all necessary output is generated before you exit the current non-
project session of Vivado.

One interesting note here is that the project mode of Vivado is actually built on 
top of the non-project mode, as explained in Sect. 2.2.1.

2.2  �GUI, Command Line, and Tcl

Vivado offers a fully interactive graphical user interface to allow you to more easily 
manage your design sources and go through all phases of the design flow. Vivado 
also supports doing all these operations in a non-GUI, command-line environment. 
The common connection between these two interfaces is the Tcl commands that 
drive Vivado. Almost all operations performed during the GUI mode end up issuing 
a Tcl command to the core Vivado engine. These commands are shown in the Tcl 
console in the GUI and are also captured in a journal file, which is typically located 
where Vivado was started from, and the file is named vivado.jou. When working in 
command-line mode, these Tcl commands can be issued directly without needing 
the presence of a GUI.

S. Chakraborty



19

2.2.1  �Interaction with Project/Non-Project

While it is common for GUI-based users to typically use the project mode, it is also 
possible to execute the flows in non-project mode while being in the GUI. Similarly, 
command-line users can choose to use either project mode or non-project mode.

The Tcl commands supported for project mode are higher level, macro style com-
mands which perform many functionalities under a single command. The Tcl com-
mands for the non-project mode, on the other hand, are more granular WYSIWYG 
(what you see is what you get) type of commands which only perform the specified 
operation, no more no less. Some project mode commands actually use many 
non-project commands internally to perform the desired operation. This explains the 
comment in Sect. 2.1 that project mode in Vivado is actually built on top of the non-
project mode.

Scripts 1 and 2 are example scripts for project mode and non-project mode, 
which both perform the same operation, but the non-project script is more verbose 
since it uses more granular commands.

Script 1: Project mode example Tcl script
create_project project_1
add_files top.v child.v
launch_runs -to_step write_bitstream impl_1
close_project

Script 2: Non-Project Mode Tcl Script
read_verilog top.v
read_verilog child.v
synth_design -top top
opt_design
place_design
route_design
report_timing_summary
write_checkpoint top_routed.dcp
write_bitstream top.bit

2.2.2  �Runs Infrastructure

In the Script 1 and Script 2 examples, the launch_runs command is a macro command 
which is part of the Vivado runs infrastructure. This command internally creates a 
Tcl script which looks similar to the non-project example Script 2 and automatically 
launches this script with a new Vivado session to execute the flow.

2  Vivado Design Tools



20

Runs infrastructure allows managing the output products from design flow auto-
matically. It also maintains status of the flow execution, such that if a design source 
file changes, it automatically lets you know that the previously generated output 
product is now out-of-date and if you relaunch the end step of a run, it automatically 
determines which previous steps need to be performed first and executes them 
automatically.

The runs infrastructure also allows parallel execution of independent portions of 
the design flows to complete the overall flow quicker. These parallel runs can be 
executed on multiple processors in the same host machine, or if a compute farm like 
LSF or GRID is available, the multiple runs can be executed on different host 
machines in the compute farm.

2.3  �Overview of Vivado GUI

This section provides a high level overview of the Vivado GUI and some recom-
mendation for first-time users. Vivado is designed based on a concept of layered 
complexity. This means using the tool for common tasks and designs is made as 
automated and easy as possible without having to have detailed knowledge of the 
tool. However, once you get more familiarized with the tool and want to use 
advanced features to control your design flows in a customized manner, Vivado 
allows you with higher control with finer granularity.

Vivado GUI and project-based mode is highly recommended for first-time users 
or those who want to get quickly up and running. Using the GUI makes it easy to use 
the various wizards (like New Project wizard) to get started. First-time users can leave 
all settings at default and let the tool decide best automatic options. There are several 
example projects included with Vivado which you can readily open and use to try out 
the design flows. If you want to try your own design, the only two minimum required 
pieces of input are an HDL file to describe the design and a constraint file to specify 
the timing intent and pin mapping of the in/out signals to specific FPGA pins.

Figure 2.1 shows the screenshot of the Vivado GUI with some of the key areas 
highlighted:

	1.	 This area is called the Flow Navigator. It provides easy, single click access to the 
common design flow steps and configuration options.

	2.	 This area shows the sources in the design. The first tab here shows a graphical 
view of the sources with modules and instance relationships. The other tabs in 
this area show other key aspects of design sources.

	3.	 This area shows the properties of the items selected in the GUI.
	4.	 This area shows the Tcl console in the GUI as well as various reports and design 

run related details.
	5.	 This area shows the built-in text editor, information related to project summary, etc.
	6.	 This is a view of a design open in the GUI, which is key to all the design 

implementation steps.

S. Chakraborty



21

Starting in the GUI and following the wizards make it easy to get started with the 
Vivado design flow. At the same time, as the various operations are being performed 
in the GUI, Vivado generates equivalent Tcl commands for those operations in the 
Tcl console area, as well as in the journal file as mentioned in Sect. 2.2. Using these 
Tcl commands, you can later customize the flow or build other similar flows.

Fig. 2.1  Overall organization of Vivado GUI

2  Vivado Design Tools



http://www.springer.com/978-3-319-42437-8


