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Abstract Computerized algorithms and solutions in processing and diagnosis
mammography X-ray, cardiovascular CT/MRI scans, and microscopy image play an
important role in disease detection and computer-aided decision-making. Machine
learning techniques have powered many aspects in medical investigations and clini-
cal practice. Recently, deep learning is emerging a leading machine learning tool in
computer vision and begins attracting considerable attentions in medical imaging. In
this chapter, we provide a snapshot of this fast growing field specifically for mam-
mography, cardiovascular, and microscopy image analysis. We briefly explain the
popular deep neural networks and summarize current deep learning achievements in
various tasks such as detection, segmentation, and classification in these heteroge-
neous imaging modalities. In addition, we discuss the challenges and the potential
future trends for ongoing work.

2.1 Introduction on Deep Learning Methods
in Mammography

Breast cancer is one of the most common types of cancer affecting the lives of
women worldwide. Recent statistical data published by the World Health Organisa-
tion (WHO) estimates that 23% of cancer-related cases and 14% of cancer-related
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deaths among women are due to breast cancer [1]. The most effective tool to reduce
the burden associated with breast cancer consists of early detection in asymptomatic
women via breast cancer screening programs [2], which commonly use mammog-
raphy for breast imaging. Breast screening using mammography comprises several
steps, which include the detection and analysis of lesions, such as masses and calcifi-
cations, that are used in order to estimate the risk that the patient is developing breast
cancer. In clinical settings, this analysis is for the most part a manual process, which
is susceptible to the subjective assessment of a radiologist, resulting in a potentially
large variability in the final estimation. The effectiveness of this manual process can
be assessed by recent studies that show that this manual analysis has a sensitivity of
84% and a specificity of 91% [3]. Other studies show evidence that a second reading
of the same mammogram either from radiologists or from computer-aided diagnosis
(CAD) systems can improve this performance [3]. Therefore, given the potential
impact that second reading CAD systems can have in breast screening programs,
there is a great deal of interest in the development of such systems.

2.2 Deep Learning Methods in Mammography

A CAD system that can analyze breast lesions from mammograms usually com-
prises three steps [3]: (1) lesion detection, (2) lesion segmentation, and (3) lesion
classification. The main challenges involved in these steps are related to the low
signal-to-noise ratio present in the imaging of the lesion, and the lack of a consistent
location, shape, and appearance of lesions [4, 5]. Current methodologies for lesion
detection involve the identification of a large number of candidate regions, usually
based on the use of traditional filters, such as morphological operators or difference
of Gaussians [6–13]. These candidates are then processed by a second stage that
aims at removing false positives using machine learning approaches (e.g., region
classifier) [6–13]. The main challenges faced by lesion detection methods are that
they may generate a large number of false positives, while missing a good proportion
of true positives [4]; in addition, another issue is the poor alignment of the detected
lesion in terms of translation and scale within the candidate regions—this issue has
negative consequences for the subsequent lesion segmentation that depends on a rel-
atively precise alignment. Lesion segmentation is then addressed with global/local
energy minimisation models on a continuous or discrete space [14–16]. The major
roadblock faced by thesemethods is the limited availability of annotated datasets that
can be used in the training of the segmentation models. This is a particularly impor-
tant problem because, differently from the detection and classification of lesions,
the segmentation of lesions is not a common task performed by radiologists, which
imposes strong limitations in the annotation process and, as a consequence, in the
availability of annotated datasets. In fact, the main reason behind the need for a
lesion segmentation is the assumption that the lesion shape is an important feature in
the final stage of the analysis: lesion classification. This final stage usually involves
the extraction of manually or automatically designed features from the lesion image
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and shape and the use of those features with traditional machine learning classi-
fiers [17–19]. In this last stage, the main limitation is with respect to the features
being extracted for the classification because these features are usually hand-crafted,
which cannot guarantee optimality for this classification stage.

The successful use and development of deep learning methods in computer vision
problems (i.e., classification and segmentation) [20–24] have motivated the medical
image analysis community to investigate the applicability of suchmethods inmedical
imaging segmentation and classification problems. Compared to the more traditional
methods presented above (for the problem of mammogram analysis), deep learning
methods offer the following clear advantages: automated learning of features esti-
mated based on specific detection/segmentation/classification objective functions;
opportunity to build complete “end-to-end” systems that take an image, detect, seg-
ment, and classify visual objects (e.g., breast lesion) using a single model and a
unified training process. However, the main challenge faced by deep learning meth-
ods is the need for large annotated training sets given the scale of the parameter
space, usually in the order of 106 parameters. This problem is particularly important
in medical image analysis applications, where annotated training sets rarely have
more than a few thousand samples. Therefore, a great deal of research is focused on
the adaptation of deep learning methods to medical image analysis applications that
contain relatively small annotated training sets.

There has been an increasing interest in the development of mammogram analy-
sis methodologies based on deep learning. For instance, the problem of breast mass
segmentation has been addressed with the use of a structured output model, where
several potential functions are based on deep learning models [25–27]. The assump-
tion here is that deep learning models alone cannot produce results that are accurate
enough due to the small training set size problemmentioned above, but if these mod-
els are combined with a structured output model that makes assumptions about the
appearance and shape of masses, then it is possible to have a breast mass segmenta-
tion that produces accurate results—in fact this method holds the best results in the
field in two publicly available datasets [19, 28]. Segmentation of breast tissue using
deep learning alone has been successfully implemented [29], but it is possible that
a similar structured output model could improve even more the accuracy obtained.
Dhungel et al. [30] also worked on a breast mass detection methodology that con-
sists of a cascade of classifiers based on the Region Convolutional Neural Network
(R-CNN) [23] approach. The interesting part is that the candidate regions produced
by the R-CNN contain too many false positives, so the authors had to include an
additional stage based on a classifier to eliminate those false positives. Alternatively,
Ertosun and Rubin [31] propose a deep learning-based mass detection method con-
sisting of a cascade of deep learning models trained with DDSM [28]—the main
reason that explains the succesful use of deep learning models here is the size of
DDSM, which contains thousands of annotated mammograms.

The classification of lesions using deep learning [32–34] has also been suc-
cessfully implemented in its simplest form: as a simple lesion classifier. Carneiro
et al. [35] have proposed a system that can classify the unregistered two views of a
mammography exam (cranial–caudal and mediolateral–oblique) and their respective
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segmented lesions and produce a classification of the whole exam. The importance
of this work lies in its ability to process multi-modal inputs (images and segmenta-
tion maps) that are not registered, in its way of performing transfer learning from
computer vision datasets to medical image analysis datasets, and also in its capa-
bility of producing high-level classification directly from mammograms. A similar
high-level classification using deep learning estimates the risk of developing breast
cancer by scoring breast density and texture [36, 37]. Another type of high-level
classification is the method proposed by Qiu et al. [38] that assesses the short-term
risk of developing breast cancer from a normal mammogram.

2.3 Summary on Deep Learning Methods
in Mammography

Based on the recent results presented above, it is clear that the use of deep learn-
ing is allowing accuracy improvements in terms of mass detection, segmentation,
and classification. All the studies above have been able to mitigate the training set
size issue with the use of regularization techniques or the combination of different
approaches that can compensate the relatively poor generalization of deep learning
methods trained with small annotated training sets. More importantly, deep learning
is also allowing the implementation of new applications that are more focused on
high-level classifications that do not depend on lesion segmentation. The annotation
for this higher level tasks is readily available from clinical datasets, which generally
contain millions of cases that can be used to train deep learning models in a more
robust manner. These new applications are introducing a paradigm shift in how the
field analyzes mammograms: from the classical three-stage process (detection, seg-
mentation, and classification of lesions) trained with small annotated datasets to a
one-stage process consisting of lesion detection and classification trained with large
annotated datasets.

2.4 Introduction on Deep Learning for Cardiological
Image Analysis

Cardiovascular disease is the number one cause of death in the developed countries
and it claims more lives each year than the next seven leading causes of death com-
bined [39]. The costs for addressing cardiovascular disease in the USA will triple
by 2030, from 273 billion to 818 billion (in 2008 dollars) [40]. With the capabil-
ity of generating images of a patient’s inside body non-invasively, medical imaging
is ubiquitously present in the current clinical practice. Various imaging modalities,
such as computed tomography (CT),magnetic resonance imaging (MRI), ultrasound,
and nuclear imaging, are widely available in clinical practice to generate images



2 Review of Deep Learning Methods … 15

of the heart, and different imaging modalities meet different clinical requirements.
For example, ultrasound is most widely used for cardiac function analysis (i.e., the
pumping of a cardiac chamber) due to its low cost and free of radiation dose; nuclear
imaging and MRI are used for myocardial perfusion imaging to measure viability
of the myocardium; CT reveals the most detailed cardiac anatomical structures and
is routinely used for coronary artery imaging; while fluoroscopy/angiography is the
workhorse imaging modality for cardiac interventions.

Physicians review these images to determine the health of the heart and to diagnose
disease. Due to the large amount of information captured by the images, it is time
consuming for physicians to identify the target anatomy and to perform measure-
ments and quantification. For example, many 3D measurements (such as the volume
of a heart chamber, the heart ejection fraction, the thickness and the thickening of
the myocardium, or the strain and torsion of the myocardium) are very tedious to
calculate without help from an intelligent post-processing software system. Various
automatic or semi-automatic cardiac image analysis systems have been developed
and demonstrated to reduce the exam time (thereby increase the patient throughput),
increase consistency and reproducibility of the exam, and boost diagnosis accuracy
of physicians.

Cardiovascular structures are composed of the heart (e.g., cardiac chambers and
valves) and vessels (e.g., arteries and veins). A typical cardiac image analysis pipeline
is composed of the following tasks: detection, segmentation, motion tracking, quan-
tification, and disease diagnosis. For an anatomical structure, detection means deter-
mining the center, orientation, and size of the anatomy; while, for a vessel, it often
means extraction of the centerline since a vessel has a tubular shape [41]. Early work
on cardiac image analysis usually used non-learning-based data-driven approaches,
for example, fromsimple thresholding and region growing tomore advancedmethods
(like active contours, level sets, graph cuts, and random walker) for image segmen-
tation. In the past decade, machine learning has penetrated into almost all steps of
the cardiac image analysis pipeline [42, 43]. The success of a machine learning-
based approach is often determined by the effectiveness and efficiency of the image
features.

The recent advance of deep learning demonstrates that a deep neural network can
automatically learn hierarchical image representations, which often outperform the
most effective hand-crafted features developed after years of feature engineering.
Encouraged by the great success of deep learning on computer vision, researchers in
the medical imaging community quickly started to adapt deep learning for their own
tasks. The current applications of deep learning on cardiac image segmentation are
mainly focused on two topics: left/right ventricle segmentation [44–52] and retinal
vessel segmentation [53–60].Most of them areworking on 2D images as input; while
3D deep learning is still a challenging task. First, evaluating a deep network on a large
volumemay be too computationally expensive for a real clinical application. Second,
a network with a 3D patch as input requires more training data since a 3D patch
generates a much bigger input vector than a 2D patch. However, the medical imaging
community is often struggling with limited training samples (often in hundreds or
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thousands) due to the difficulty to generate and share patients’ images. Nevertheless,
we started to see a few promising attempts [61–63] to attack the challenging 3D deep
learning tasks.

2.5 Deep Learning-Based Methods for Heart Segmentation

Carneiro et al. [44] presented a method using a deep belief network (DBN) to detect
an oriented bounding box of the left ventricle (LV) on 2D ultrasound images of the
LV long-axis views. One advantage of the DBN is that it can be pre-trained layer by
layer using unlabeled data; therefore, good generalization capability can be achieved
with a small number of labeled training images. A 2D-oriented bounding box has five
pose parameters (two for translation, one for rotation, and two for anisotropic scal-
ing). Since an exhaustive searching in this five-dimensional pose parameter space
is time consuming, they proposed an efficient search strategy based on the first-
or second-order derivatives of the detection score, which accelerated the detection
speed by ten times. Furthermore, the DBN has also been applied to train a boundary
detector for segmentation refinement using an active shape model (ASM). The LV
detection/segmentation module can also be integrated in a particle filtering frame-
work to track the motion of the LV [44]. This work was later extended to segment
the right ventricle (RV) too [46]. In follow-up work [47], the DBN was applied to
segment the LV on short-axis cardiac MR images. Similarly, the LV bounding box is
detectedwith aDBN. Furthermore, anotherDBNwas trained to generate a pixel-wise
probability map of the LV. Instead of using the ASM as [44], the level set method is
applied on the probability map to generate the final segmentation.

Avendi et al. [50] proposed a convolutional network (CNN)-based method to
detect an LV bounding box on a short-axis cardiac MR image. Stacked autoencoder
was then applied to generate an initial segmentation of the LV, which was used to
initialize the level set function. Their level set function combines a length-based
energy term, a region-based term, and the prior shape. Instead of running level set
on the probability map as [44], it was applied on the initial image.

Different to [44, 50], Chen et al. proposed to use a fully convolutional network
(FCN) to segment the LV on 2D long-axis ultrasound images [52]. In [44, 50],
deep learning was applied in one or two steps of the whole image analysis pipeline.
Differently, the FCN can be trained end-to-end without any preprocessing or post-
processing. It can generate a segmentation label for each pixel efficiently since the
convolution operation is applied once on the whole image. Due to the limited training
samples, a deep network often suffers from the over-fitting issue. There are multiple
canonical LV long-axis views, namely apical two-chamber (A2C), three-chamber
(A3C), four-chamber (A4C), and five-chamber (A5C) views. Instead of training an
LV segmentation network for each task, the problem was formulated as a multi-task
learning,where all tasks shared the low-level image representations.At the high level,
each taskhad its ownclassification layers. The segmentationwas refined iteratively by
focusingon theLVregiondetectedby the previous iteration.Experiments showed that
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the iterative cross-domain deep learning approach outperformed alternative single-
domain deep learning, especially for tasks with limited training samples.

Zhen et al. [49] presented an interesting method for direct estimation of a ven-
tricular volume from images without performing segmentation at all. They proposed
a new convolutional deep belief network. A DBN is composed of stacked restricted
Boltzman machine (RBM), where each layer is fully connected to the previous layer.
Due to the full connectivity, the network has more parameters than a CNN; therefore
it is more prone to over-fit. In [49], the first RBM layer was replaced with a multi-
scale convolutional layer. The convolutional DBN was trained without supervision
on unlabeled data and the trained network was used as an image feature extractor.
A random forest regressor was then trained on the DBN image features to directly
output an estimate of the LV area on each MR slice. Summing LV areas from all
images results in the final volume estimate.

Due to the difficulty of 3D deep learning, all the above-reviewed methods work
on 2D images, even though the input may be 3D. A 3D volume contains much
richer information than a 2D image. Therefore, an algorithm leveraging 3D image
informationmay bemore robust. For heart segmentation, we only found one example
using 3D deep learning, namely marginal space deep learning (MSDL) [62]. MSDL
is an extension of marginal space learning (MSL), which uses hand-crafted features
(i.e., Haar-like features and steerable features) and a boosting classifier. Here, the
hand-crafted features are replaced with automatically learned sparse features and a
deep network is exploited as the classifier. In [62], Ghesu et al. demonstrated the
efficiency and robustness of MSDL on aortic valve detection and segmentation in
3D ultrasound volumes. Without using GPU, the aortic valve can be successfully
segmented in less than one second with higher accuracy than the original MSL.
MSDL is a generic approach and it can be easily re-trained to detect/segment other
anatomies in a 3D volume.

2.6 Deep Learning-Based Methods for Vessel Segmentation

Early work on vessel segmentation used various hand-crafted vesselness measure-
ments to distinguish the tubular structure from background [64]. Recently, we saw
more and more work to automatically learn the most effective application-specific
vesselnessmeasurement froman expert-annotated dataset [65, 66].Deep learning has
potential to replace those classifiers to achieve better segmentation accuracy. How-
ever, the current applications of deep learning on vessel segmentation are mainly
focused on retinal vessels in fundus images [53–60]. We only found limited work on
other vessels, e.g., the coronary artery [62, 63] and carotid artery [61]. We suspect
that the main reason is that a fundus image is 2D; therefore, it is much easier to
apply an off-the-shelf deep learning package on this application. Other vessels in a
3D volume (e.g., CT or MR) are tortuous and we have to take the 3D context for a
reliable segmentation. With the recent development of 3D deep learning, we expect
to see more applications of deep learning on other vessels too.
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In most work, pixel-wise classification is performed by a trained deep network to
directly output the segmentation mask. For example, Wang et al. [53] applied a CNN
to retinal vessel segmentation. To further improve the accuracy, they also used the
CNN as a trainable feature extractor: activations of the network at different layers
are taken as features to train random forests (RF). State-of-the-art performance has
been achieved by an ensemble of RF classifiers on the public DRIVE and STARE
datasets. Li et al. [54] presented another method based on an FCN with three lay-
ers. They formulated the task as cross-modality data transformation from the input
image to vessel map. The first hidden layer was pre-trained using denoising autoen-
coder, while the other two hidden layers were randomly initialized. Different to [53]
(which generates a label of the central pixel of an input patch), Li et al. approach
outputs labels for all pixels in the patch. Since overlapping patches are extracted
during classification, a pixel appears on multiple patches. The final label of the pixel
is determined by majority voting to improve the classification accuracy. Fu et al. [60]
adapted a holistically nested edge detection (HED) method for retinal vessel seg-
mentation. HED is motivated by the FCN and deeply supervised network, where the
outputs of intermediate layers are also directly connected to the final classification
layer. After getting the the vessel probability map using HED, a conditional random
field is applied to further improve the segmentation accuracy.

Since pixel-wise classification is time consuming, Wu et al. [58] proposed to
combine pixel classification and vessel tracking to accelerate the segmentation speed.
Starting from a seed point, a vessel is traced in the generalized particle filtering frame-
work (which is a popular vessel tracing approach), while theweight of each particle is
set by the CNN classification score at the corresponding position. Since CNN classi-
fication is invoked only on a suspected vessel region during tracing, the segmentation
speed was accelerated by a fact of two. Besides retinal vessel segmentation, deep
learning has also been exploited to detect retinal vessel microaneurysms [56] and
diabetic retinopathy [57] from a fundus image.

Coronary artery analysis is the killer application of cardiac CT. Due to the tiny
size of a coronary artery, CT is currently the most widely used noninvasive imaging
modality for coronary artery disease diagnosis due to its superior image resolution
(around 0.2–0.3mm for a state-of-the-art CT scanner). Even with a quite amount of
published work on coronary artery segmentation in the literature [64], we only found
onework using deep learning [62] for coronary artery centerline extraction. Coronary
centerline extraction is still challenging task. To achieve a high detection sensitivity,
false positives are unavoidable. The false positives mainly happen on coronary veins
or other tubular structures; therefore, traditional methods cannot reliably distinguish
false positives from true coronary arteries. In [41], aCNN is exploited to train a classi-
fier which can distinguish leakages from good centerlines. Since the initial centerline
is given, the image information can be serialized as a 1D signal along the centerline.
Here, the input channels consist of various profiles sampled along the vessel such
as vessel scale, image intensity, centerline curvature, tubularity, intensity, and gradi-
ent statistics (mean, standard deviation) along and inside a cross-sectional circular
boundary, and distance to themost proximal point in the branch. Deep learning-based
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branch pruning increases the specificity from 50 to 90% with negligible degradation
of sensitivity.

Similar to heart segmentation reviewed in Sect. 2.5, almost all previous work on
deep learning for vessel segmentation was focused on 2D. Recently, Zheng et al. [61]
proposed an efficient 3D deep learning method for vascular landmark detection. A
two-step approach is exploited for efficient detection. A shallow network (with one
hidden layer) is used for the initial testing of all voxels to obtain a small number of
promising candidates, followed by more accurate classification with a deep network.
In addition, they proposed several techniques, i.e., separable filter decomposition
and network sparsification, to speed up the evaluation of a network. To mitigate the
over-fitting issue, thereby increasing detection robustness, small 3D patches from a
multi-resolution image pyramid are extracted as network input. The deeply learned
image features are further combined with Haar-like features to increase the detection
accuracy. The proposed method has been quantitatively evaluated for carotid artery
bifurcation detection on a head–neck CT dataset. Compared to the state-of-the-art,
the mean error is reduced by more than half, from 5.97 to 2.64mm, with a detection
speed of less than 1 s/volume without using GPU.

Wolterink et al. [63] presented an interesting method using a 2.5D or 3D CNN
for coronary calcium scoring in CT angiography. Normally, a standard cardiac CT
protocol includes a non-contrasted CT scan for coronary calcium scoring [67] and
a contracted scan (called CT angiography) for coronary artery analysis. If calcium
scoring can be performed on a contrasted scan, the dedicated non-contrasted scan
can be removed from the protocol to save radiation dose to a patient. However, cal-
cium scoring on CT angiography is more challenging due to the reduced intensity
gap between contrasted coronary lumen and calcium. In this work voxel-wise clas-
sification is performed to identify calcified coronary plaques. For each voxel, three
orthogonal 2D patches (the 2.5D approach) or a full 3D patch are used as input. A
CNN is trained to distinguish coronary calcium from other tissues.

2.7 Introduction to Microscopy Image Analysis

Microscopy image analysis can provide support for improved characterization of var-
ious diseases such as breast cancer, lung cancer, brain tumor, etc. Therefore, it plays a
critical role in computer-aided diagnosis in clinical practice and pathology research.
Due to the large amount of imagedata,which continue to increase nowadays, it is inef-
ficient or even impossible to manually evaluate the data. Computerized methods can
significantly improve the efficiency and the objectiveness, thereby attracting a great
deal of attention. In particular, machine learning techniques have been widely and
successfully applied to medical imaging and biology research [68, 69]. Compared
with non-learning or knowledge based methods that might not precisely translate
knowledge into rules, machine learning acquires their own knowledge from data
representations. However, conventional machine learning techniques usually do not
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directly deal with raw data but heavily rely on the data representations, which require
considerable domain expertise and sophisticated engineering [70].

Deep learning is one type of representation learning methods that directly process
raw data (e.g., RGB images) and automatically learns the representations, which can
be applied to detection, segmentation, or classification tasks. Compared with hand-
crafted features, learned representations require less human intervention and provide
much better performance [71]. Nowadays, deep learning techniques have made great
advantages in artificial intelligence, and successfully applied to computer vision,
natural language processing, image understanding, medical imaging, computational
biology, etc. [70, 72]. By automatically discovering hidden data structures, it has
beaten records in several computer vision tasks such as image classification [73] and
speech recognition [74], and won multiple competitions in medical image analysis
such as brain image segmentation [75] and mitosis detection [76]. Meanwhile, it has
provided very promising performance in other medical applications [77, 78].

Recently, deep learning is emerging as a powerful tool and will continue to
attract considerable interests in microscopy image analysis including nucleus detec-
tion, cell segmentation, extraction of regions of interest (ROIs), image classifica-
tion, etc. A very popular deep architecture is convolutional neural networks (CNNs)
[70, 79], which have obtained great success in various tasks in both computer vision
[73, 80–82] andmedical image analysis [83]. Given images and corresponding anno-
tations (or labels), a CNN model is learned to generate hierarchical data represen-
tations, which can be used for robust target classification [84]. On the other hand,
unsupervised learning can also be applied to neural networks for representation
learning [85–87]. Autoencoder is an unsupervised neural network commonly used
in microscopy image analysis, which has provided encouraging performance. One
of significant benefits of unsupervised feature learning is that it does not require
expensive human annotations, which are not easy to achieve in medical computing.

There exist a number of books and reviews explaining deep learning princi-
ples, historical survey, and applications in various research areas. Schmidhuber [88]
presents a historical overview of deep artificial neural networks by summarizing rele-
vantwork and tracing back the origins of deep learning ideas. LeCun et al. [70]mainly
review supervised learning in deep neural networks, especially CNNs and recurrent
neural networks, and their successful applications in object detection, recognition,
and nature language processing. The book [71] explains several established deep
learning algorithms and provides speculative ideas for future research, the mono-
graph [87] surveys general deep learning techniques and their applications (mainly)
in speech processing and computer vision, and the paper [83] reviews several recent
deep learning applications in medical image computing (very few in microscopy
imaging). Due to the emergence of deep learning and its impacts in a wide range of
disciplines, there exist many other documents introducing deep learning or relevant
concepts [74, 89–92].

In this chapter, we focus on deep learning in microscopy image analysis, which
covers various topics such as nucleus/cell/neuron detection, segmentation, and classi-
fication.Comparedwith other imagingmodalities (e.g.,magnetic resonance imaging,
computed tomography, and ultrasound), microscopy images exhibit unique com-
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(a) Breast cancer (b) Muscle

(c) Pancreatic neuroendocrine Tumor

Fig. 2.1 Sample images of breast cancer, muscle, and pancreatic neuroendocrine tumor using dif-
ferent tissues and stain preparations. Hematoxylin and eosin (H&E) staining is used for the first two,
while immunohistochemical staining is for the last. These image exhibit significant challenges such
as background clutter, touching nuclei, and weak nucleus boundaries, for automated nucleus/cell
detection and segmentation

plex characteristics. In digital histopathology, image data are usually generated
with a certain chemistry staining and presents significant challenges including back-
ground clutter, inhomogeneous intensity, touching or overlapping nuclei/cells, etc.
[72, 93–96], as shown in Fig. 2.1. We will not review all deep learning techniques in
this chapter, but instead introduce and interpret those deep learning-based methods
specifically designed for microscopy image analysis. We will explain the principles
of those approaches and discuss their advantages and disadvantages, and finally
conclude with some potential directions for future research at deep learning in
microscopy image analysis.

2.8 Deep Learning Methods

Deep learning is a kind of machine learning methods involving multi-level repre-
sentation learning, which starts from raw data input and gradually moves to more
abstract levels via nonlinear transformations. With enough training data and suffi-
ciently deep architectures, neural networks can learn very complex functions and
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discover intricate structures in the data [70]. One significant advantage is that deep
learning does not require much engineering work, which is not easy to achieve in
some specific domains. Deep learning has been successfully applied to pattern recog-
nition and prediction, and outperforms traditional machine learningmethods inmany
domains including medical image computing [83]. More specifically, deep learning
exhibits its great power in microscopy image analysis. To our knowledge, up to now
there are mainly four commonly used deep networks in microscopy image analysis:
CNNs, fully convolutional networks (FCNs), recurrent neural networks (RNNs), and
stacked autoencoders (SAEs). More details related to optimization and algorithms
can be found in [71, 89].

2.9 Microscopy Image Analysis Applications

In microscopy image analysis, deep neural networks are often used as classifiers
or feature extractors to resolve various tasks in microscopy image analysis, such
as target detection, segmentation, and classification. For the usage of a classifier, a
deep neural network assigns a hard or soft label to each pixel of the input image
in pixel-wise classification or a single label to the entire input image in image-level
classification. CNNs are the most popular networks in this type of applications and
their last layers are usually chosen as a multi-way softmax function corresponding to
the number of target classes. For the usage of a feature extractor, a network generates
a transformed representation of each input image, which can be applied to subsequent
data analysis, such as feature selection or target classification. In supervised learning,
usually the representation before the last layer of a CNN is extracted, but those from
middle layers or even lower layers are also helpful to object recognition [111, 112].
To deal with limited data in medical imaging, it might be necessary to apply pretrain
and fine-tune to the neural network. Tables2.1 and 2.2 summarize the current deep
learning achievements in microscopy image analysis.

2.10 Discussions and Conclusion on Deep Learning
for Microscopy Image Analysis

Deep learning is a rapidly growingfield and is emerging as a leadingmachine learning
tool in computer vision and image analysis. It has exhibited great power in medical
image computing with producing improved accuracy of detection, segmentation, or
recognition tasks [83].Most of works presented in this paper use CNNs or one type of
the variants, FCNs, to solve problems in microscopy image analysis. Our conjecture
is that CNNs provide consistent improved performance across a large variety of
computer vision tasks and thus it might be straightforward to apply convolutional
networks tomicroscopy image computing.More recently, FCNshave attracted a great
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Table 2.1 Summary of current deep learning achievements in microscopy image analysis.
SSAE= stacked sparse autoencoder, P=precision, R= recall, F1 = F1-score, AUC=area under
curve, and ROC=Receiver operating characteristic

Network Usage Topic Data Evaluation metric

[97] CNN Pixel
classification

Mitosis detection Breast cancer
images

P, R, F1

[98] CNN Pixel
classification

Nucleus
detection

Brain tumor,
NET, breast
cancer images

P, R, F1

[99] CNN Pixel
classification

Cell detection Breast cancer
images

P, R

[100] CNN Pixel
classification,
feature extraction

Neutrophils
identification

Human
squamous cell
carcinoma
images

P, R

[101] CNN Pixel
classification

Cell detection Larval zebrafish
brain images

P, R, F1

[102] CNN Patch
classification

Mitosis detection NIH3T3 scratch
assay culture
images

Sensitivity,
specificity, F1,
AUC

[103] CNN Patch scoring Cell detection NET, lung cancer
images

P, R, F1

[104] CNN Regression Cell, nucleus
detection

Breast cancer,
NET, HeLa
images

P, R, F1

[105] CNN Regression Nucleus
detection,
classification

Colon cancer
images

P, R, F1, AUC

[106] FCN Regression Cell counting Retinal pigment
epithelial and
precursor T Cell
lymphoblastic
lymphoma
images

Counting
difference

[107] CNN Voting Nucleus
detection

NET images P, R, F1

[108] CNN Pixel
classification

Mitosis detection Breast cancer
images

P, R, F1, AUC,
ROC, relative
changes

[109] CNN Pixel
classification

Hemorrhage
detection

Color fundus
images

ROC

[110] SSAE Feature
extraction

Nucleus
detection

Breast cancer
images

P, R, F1, average
precision



24 G. Carneiro et al.

Table 2.2 Summary of current deep learning achievements in microscopy image analysis.
FCNN= fully connected neural network, DSC=dice similarity coefficient, PPV=positive pre-
dictive value, NPV=negative predictive value, IOU= intersection over union, MCA=mean class
accuracy, ACA=average classification accuracy, and BAC=balanced accuracy

Network Usage Topic Data Evaluation metric

[113] CNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[114] CNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[115] CNN Pixel clas-
sification

Nucleus, cell
segmentation

Developing C.
elegans embryos
images

Pixel-wise error
rate

[116] CNN Pixel clas-
sification

Nucleus, cytoplasm
segmentation

Cervical images DSC, PPV, NPV,
overlapping ratio,
pixel error

[117] FCN Pixel clas-
sification

Neuronal
membrane and cell
segmentation

Ventral nerve cord
images of a
Drosophila larva,
Glioblastoma-
astrocytoma U373
cell and HeLa cell
images

Rand, warping,
pixel errors, IOU

[118] FCN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[119] RNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[120] SDAE Patch
reconsti-
tution

Nucleus
segmentation

Brain tumor, lung
cancer images

P, R, F1

[121] CNN Image
classifica-
tion

Image classification Human Epithelial-2
(HEp-2) cell
images

MCA, ACA

[122] FCNN Cell clas-
sification

Cell classification Optical phase and
loss images

ROC

[123] CNN Feature
extraction

Image classification Glioblastoma
multiforme and low
grade glioma
images

F1, accuracy

[124] CNN Feature
extraction

Image classification Colon cancer
images

Accuracy

(continued)
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Table 2.2 (continued)

Network Usage Topic Data Evaluation metric

[125] Autoencoder Feature
extraction

Image
classification

Basal-cell
carcinoma cancer
images

Accuracy, P, R,
F1, specificity,
BAC

[126] SPSD Feature
extraction

Image
classification

Glioblastoma
multiforme and
kidney clear cell
carcinoma,
tumorigenic breast
cancer, and
control cell line
images

Accuracy

deal of interest due to the end-to-end training design and efficient fully convolutional
inference for image semantic segmentation. FCNs begin to enter in microscopy
imaging and are expected to become more popular in the future.

Model training in deep learning is usually computationally expensive and often
needs programming with graphics processing units (GPUs) to reduce running time.
There are several publicly available frameworks supporting deep learning. Caffe
[127] is mainly written with C++ programming languages and supports command
line, Python, and MATLAB interfaces. It uses Google protocol buffers to serialize
data and has powered many aspects of the communities of computer vision and
medical imaging. Theano [128] is a Python library that allows efficient definition,
optimization, and evaluation of mathematical expressions. It is very flexible and has
supported many scientific investigations. TensorFlow [129] uses data flow graphs
for numerical computation and allows automatic differentiation, while Torch [130]
is developed with Lua language and it is flexible as well. Another commonly used
deep learning library in medical imaging is MatConvnet [131], which is a Matlab
toolbox for CNNs and FCNs. It is simple and easy to use. There exist some other
libraries supporting deep learning, and more information can be found in [132, 133].

Although unsupervised deep learning is applied to microscopy image analysis,
the majority of the works are using supervised learning. However, deep learning with
supervision usually require a large set of annotated training data, which might be
prohibitively expensive in the medical domain [83]. One way to address this problem
is to view a pre-trained model that is learned with other datasets, either natural or
medical images, as a fixed feature extractor, and use generated features to train a
target classifier for pixel-wise or image-level prediction. If the target data size is
sufficiently large, it might be beneficial to initialize the network with a pre-trained
model and then fine-tune it toward the target task. The initialization can be conducted
in the first several or all layers depending on the data size and properties. On the other
hand, semi-supervised or unsupervised learning might be a potential alternative if
annotated training data are not sufficient or unavailable.
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Another potential challenge of applying deep learning to microscopy image com-
puting is to improve the network scalability, thereby adapting to high resolution
images. In pathology imaging informatics, usually it is necessary to conduct quan-
titative analysis on whole-slide images (WSI) [134] instead of manually selected
regions, since it can reduce biases of observers and provide complete information
that is helpful to decision-making in diagnosis. The resolution of aWSI image is often
over 50000× 50000, and has tens of thousands or millions of object of interest (e.g.,
nuclei or cells). Currently, pixel-wise prediction with CNNs is mainly conducted in
a sliding-window manner, and clearly this will be extremely computationally expen-
sive when dealing with WSI images. FCNs are designed for efficient inference and
might be a good choice for computation improvement.

This paper provides a survey of deep learning in microscopy image analysis,
which is a fast evolving field. Specifically, it briefly introduces the popular deep
neural networks in the domain, summarizes current research efforts, and explains
the challenges as well as the potential future trends. Deep learning has benefitted
the microscopy imaging domain and we expect that it will play a more important
role in the future. New learning algorithms in artificial intelligence can accelerate the
process of transferring deep learning techniques from natural toward medical images
and enhance its achievements.
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