Chapter 1
Introduction to Hyperbolic Dynamics
and Ergodic Theory

Boris Hasselblatt

1.1 Introduction

1.1.1 Guided Tour

These are notes based on a minicourses given at the Centre International de
Rencontres Mathématiques, Marseille in November 2013, at the University of Tokyo
in June 2014, and the 2015 Houston Summer School on Dynamical Systems. They
owe much to these experiences, and I would like to thank the organizers of these
schools for their invitation and hospitality as well as the participants for their
engagement and their attentive comments on these notes.

While there are many good introductions to hyperbolic dynamical systems,' two
aspects of this one are of interest. On one hand, we implement an underappreciated
approach due to Bowen, Anosov and Katok [Bo75, Bo78, Ka81] to obtain the basic
topological dynamics of uniformly hyperbolic dynamical systems from shadowing
and expansivity; this is the content of Sect. 1.3.3. On the other hand, we use the
Hopf argument to obtain multiple mixing of hyperbolic dynamical systems—which
means that we can do so without any reference to entropy theory or results that use
it. Thus, pages 24—44 can be regarded as the principal novelty of these notes.

The lectures gave an introduction to some features of the topological and
measurable dynamics of hyperbolic systems, mainly in discrete time, and this is
an essentially self-contained account of these basics. The first half is devoted to

'Notably [Y095], which inspired Sect. 1.6, where we prove the Stable/Unstable Manifold Theorem
using the Perron—Irwin method. Altogether these notes owe much to [Co07, KaHa95, Yo95].
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2 B. Hasselblatt

hyperbolic dynamical systems, and the second half (Sect. 1.7) introduces ergodic
theory. While a central point is that these subjects interact deeply, the halves are
essentially independent, to the point of having some duplication (mainly between
Sects. 1.5 and 1.7). A common feature is that entropy theory is absent, and a novelty
is that multiple mixing properties are obtained without it.

The sections on hyperbolic dynamics are modular and can be read largely
independently. That is, each part can largely be read on its own or omitted on its
own. This is most evidently so for this section and the historical sketch in Sect. 1.2.
The remaining “hyperbolic” sections are related as follows.

Section 1.3 forms the centerpiece: basic and iconic features of a hyperbolic
dynamical system are derived from what thereby appears as the very core features of
hyperbolic dynamics: Expansivity and shadowing. The latter is that in a hyperbolic
system anything one can imagine approximately happening is, to good approxima-
tion, actually happening in the system. Sections 1.3.3-1.3.6 (pages 24-31) show
that the Shadowing Lemma produces the essential richness and rigidity of the
orbit structure of a hyperbolic dynamical system (expansivity, the Anosov Closing
Lemma, specification, spectral decomposition, topological stability). The stronger
Anosov Shadowing Theorem more easily yields structural stability and symbolic
descriptions. This whole development uses the Contraction-Mapping Principle (Pro-
position 1.6.3) but not the technical sections on invariant manifolds (Sects. 1.6.4 and
1.6.5), yet even with complete proofs it only occupies pages 24-37.

Section 1.5 can also be read independently of the preceding material, though
the examples in the present section will help. Based on ideas originally due to
Babillot and Coudene, it shows the Hopf argument to maximum advantage, which
is therefore presented by stating explicitly what is needed for the argument rather
than relying on context and background. While the Hopf argument was developed to
show ergodicity, we show that it can be used effectively to establish mixing with no
added effort, and in the right circumstances multiple mixing for even less effort. A
notable ingredient of independent interest is the ergodicity of the stable (or unstable)
foliation, which is rarely featured in introductions, and which results from a simple
argument.”

Section 1.6 provides the Contraction-Mapping Principle and the Hadamard-
Perron Stable/Unstable Manifold Theorem. The former is invoked in Sect. 1.3, and
we illustrate the major importance of the latter in the subject beyond the arguments
in Sect. 1.5 by using these invariant foliations to further the understanding of the
topological dynamics of a hyperbolic set. We prove this using the Perron—Irwin
method and provide the Hadamard method in a separate chapter in the form of
Hadamard’s original presentation [HaOl1], translated here into English, presumably
for the first time.

2Self-contained save for invoking absolute continuity, which can be found in [Br02, Chap. 6].
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Fig. 1.1 Example 1.1.1 (©Cambridge University Press, reprinted from [KaHa95] with permis-
sion)

The presentations in Sects. 1.3.3—-1.3.6 and 1.5 are to our knowledge new to
the expository literature.> Sections 1.3 and 1.4 implement an approach suggested
by Bowen, Anosov and Katok [Bo75, Bo78, Ka81]. The approach in Sect. 1.5
emphasizes the generality of the Hopf argument by using neither compactness nor
a smooth structure. In this respect we follow the lead of Babillot and Coudéne, and
this feature has enabled them to obtain new results.

1.1.2 Examples

The first example is an iconic model of hyperbolic dynamics.

Example 1.1.1 (Toral Automorphism) Since the matrix (? 1) has integer entries,

it induces a well-defined map F(2 1) of the 2-torus T> = R?/Z? (Fig. 1.1). Since
11
it has unit determinant, the same goes for the inverse, which means that it defines

a diffeomorphism (indeed, algebraic automorphism) of T?—which, furthermore,
preserves area. The eigenvalues are
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30ther than [Co16], which appeared around the time this minicourse was first given.
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V5-1

The eigenvectors for the first eigenvalue are on the line y = x. The

family of lines parallel to it is invariant, and distances on those lines are
expanded by a factor A;. Similarly, there is an invariant family of contracting
—V5-1
It is an interesting exercise to show that the collection of periodic points is exactly
the set of points with rational coordinates. Thus, periodic orbits are dense. But there
are also dense orbits, indeed, almost every orbit is dense.

linesy = x + const. This expansion and contraction define hyperbolicity.

Example 1.1.2 More generally, any A € GL(m,Z) induces an automorphism F4
of T™ that preserves Lebesgue measure. We say that it is hyperbolic if A has no
eigenvalues on the unit circle.

Example 1.1.3 (Walters) In like manner, an area-preserving automorphism of the
4-torus is induced by

000 —1
_|100 8
W= 010—6

001 8

The eigenvalues 2 — /3 =+ i\/ 4+/3 — 6 lie on the unit circle and the eigenvalues

Ar =24+ /3 &£ \/2(3+ 24/3) are real and satisfy 0 < A_ < 1 < Ay. This
automorphism is thus partially hyperbolic. The components of the corresponding
eigenvectors

vEi=(—2-V3+ \/2(3 +2v3),3F 2\/2(—3 +2v3), -6+ V3 £ \/2(3 +24/3),1)

are independent over the rationals, that is, the vector space over Q generated by

—2—/3+ \/2(3 +24/3),3— 2\/2(—3 +24/3), =6+ V3 + \/2(3 +2+/3), and
1 is 4-dimensional.

Example 1.1.4 (Horseshoe) Hyperbolic Cantor sets are ubiquitous, and an iconic
way in which they arise is via horseshoes: A map f of the plane (or sphere, or of
any surface) squeezes a rectangle A vertically, stretches it horizontally and folds
it over the original rectangle (Fig. 1.2). The set A := (),czf"(A) of points whose
orbits are in A is then a hyperbolic Cantor set with vertical contracting direction and
horizontal expanding direction. Nonlinear versions of this have the same qualitative
features—this is the content of the Structural Stability Theorem 1.4.6 below.

This situation arises whenever there are transverse homoclinic points as in
Fig. 1.3. When the stable and unstable curve of a hyperbolic fixed point intersect
transversely, they produce tangles (Fig. 1.4), and these in turn produce horseshoes
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Fig. 1.2 Horseshoe (Picture from https://en.wikipedia.org/wiki/Horseshoe_map)

Fig. 1.3 Transverse homoclinic point (©Cambridge University Press, reprinted from [KaHa95]
with permission)

Fig. 1.4 Homoclinic tangles (©Cambridge University Press, reprinted from [KaHa95] with
permission)
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Fig. 1.5 Horseshoes from tangles (©Cambridge University Press, reprinted from [KaHa95,
HaKa03] with permission)
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Fig. 1.6 Dispersing billiards (reprinted from [Yo98] with permission)

for an iterate of the map; this is the Birkhoff-Smale Theorem, illustrated in Fig. 1.5.
Because of their interest with respect to smooth ergodic theory we also present some
examples with singularities of various sorts.

Example 1.1.5 ([ChMa06, p. 67]) A billiard 2 < T? is said to be dispersing if
it is defined by reflection in the boundary of smooth strictly convex “scatterers.”*
If it has no corners or cusps, then Sinai’s Fundamental Theorem of the theory of
dispersing billiards [BuSi73, Si70], see also [ChMa06, Theorem 5.70], establishes
hyperbolic behavior of the billiard map (Fig. 1.6).

Example 1.1.6 (Fig. 1.7) Sinai’s Fundamental Theorem also applies to polygonal
billiards with pockets. These are noncircular billiards obtained from a convex
polygon as follows: for each vertex add a disk whose interior contains this vertex
and none other [ChTr98, Theorem 4.1]. One can furthermore add “bumps”, i.e.,
dispersing circle arcs in corners.

“One can allow corners at considerable expense of additional effort [ChMa06, p. 69].



1 Introduction to Hyperbolic Dynamics and Ergodic Theory 7

Fig. 1.7 Polygonal billiards
with pockets  (picture by
Serge Troubetzkoy from
[ChTr98], ©IOP Publishing
& London Mathematical
Society. Reproduced with
permission)

“Bump”

Example 1.1.7 The Katok map is a totally ergodic® area-preserving deformation

of F (2 1) obtained by “damping” the hyperbolicity of F (2 1) so as to make the
11 11
origin a nonhyperbolic fixed point. It is on the boundary of the set of Anosov

diffeomorphisms (hence not uniformly hyperbolic) and its stable and unstable
partitions are homeomorphic to those of F(z 1) [BaPel3, §1.3], [BaPe07, §6.3],
11

[Ka79, §2.2], [PeSeZh].

1.1.3 Hpyperbolic Dynamics

The primary distinction that sets apart smooth dynamics from general topological
dynamics is the availability of the linearization provided by the differential; one
can use the linear part of a map to draw conclusions about local behavior of the
map itself. Among the elliptic, parabolic, and hyperbolic situations the latter is the
one where linearization is most powerful. What makes hyperbolic dynamics distinct
from the other two classes is that for the linearization of a map eigenvalues off the
unit circle correspond to exponential behavior under iterates, and such behavior is
robust enough to produce analogous behavior for the map itself and to engender
structural stability.

This local aspect of hyperbolic dynamics combined with the recurrence arising
from compactness of the space provides for complex and interesting features of the
global structure. In accordance with the main dichotomy between topological and
measurable dynamics there are separate but related features of interest.

SThat is, all iterates are ergodic.
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In contrast to the individual instability of orbits, the complicated topological
dynamics of hyperbolic systems is distinguished by structural stability. Indeed,
hyperbolic dynamical systems are characterized by structural stability, and to a
remarkable degree a classification is possible. Furthermore, even though periodic
data give a large number of moduli of differentiable conjugacy, there are interesting
results about smooth conjugacy and rigidity.

On the side of measurable dynamics there is the important motivation that
Hamiltonian hyperbolic flows, in particular geodesic flows of negatively curved
manifolds, are ergodic (with respect to volume); this provides nontrivial classes of
examples satisfying Boltzmann’s Fundamental Postulate.

Altogether hyperbolic dynamical systems exhibit a remarkable combination of
phenomena: Maximally sensitive dependence of an orbit on initial conditions,
strong recurrence and mixing properties, many invariant measures, positive entropy,
intertwining of periodic and nonperiodic orbits, an abundance of periodic points
both in terms of exponential growth of their number as a function of the period
and density (topologically as well as in terms of density of their §-measures among
all invariant Borel probability measures), structural stability, and the existence of a
Markov model both topologically and measure-theoretically.

1.2 Historical Sketch

There are several intertwined strands of the history of hyperbolic dynamics:
Geodesic flows and statistical mechanics on one hand and hyperbolic phenomena
ultimately traceable to some application of dynamical systems. Geodesic flows
were studied, e.g., by Hadamard, Hedlund, Hopf (primarily either on surfaces or in
the case of constant curvature) and Anosov—Sinai (negatively curved surfaces and
higher-dimensional manifolds). Other hyperbolic phenomena appear in the work
of Poincaré (homoclinic tangles in celestial mechanics [P090]), Perron (differential
equations [Pe28]), Cartwright, Littlewood (relaxation oscillations in radio circuits
[Ca50, CaLi45, Li57]), Levinson (the van der Pol equation, [Le49]) and Smale
(horseshoes, [Sm65, Sm63]), as well as countless others in recent history. In looking
back, Smale [Sm98] breaks the study of hyperbolic phenomena into three strands:
Poincaré-Birkhoff, (Poincaré-) Cartwright-Littlewood—Levinson and Andronov—
Pontryagin—Lefschetz—Peixoto (structural stability and topology).

1.2.1 Homoclinic Tangles

The advent of complicated dynamics took place in the context of Newtonian
mechanics, according to which simple underlying rules governed the evolution of
the world in clockwork fashion. The successes of classical and especially celestial
mechanics in the eighteenth and nineteenth century were seemingly unlimited and
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Pierre Simon de Laplace felt justified in saying (in the opening passage he added to
[La9s, p. 2]):

Nous devons donc envisager 1’état présent de ’univers, comme I’effet de son état antérieur,
et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné,
connaitrait toutes les forces dont la nature est animée, et la situation respective des étres
qui la composent, si d’ailleurs elle était assez vaste pour soumettre ces données a I’analyse,
embrasserait dans la méme formule les mouvemens des plus grands corps de 1’univers et
ceux du plus léger atome: rien ne serait incertain pour elle, et I’avenir comme le passé, serait
présent 2 ses yeux.®

The enthusiasm in this passage is understandable and its forceful description
of (theoretical) determinism is a good anchor for an understanding of one of the
basic aspects of dynamical systems. Moreover, the titanic life’s work of Laplace
in celestial mechanics earned him the right to make such bold pronouncements.
Another bold pronouncement of his, that the solar system is stable, came under
renewed scrutiny later in the nineteenth century, and Henri Poincaré was expected
to win a competition to finally establish this fact. However, Poincaré came upon
hyperbolic phenomena in revising his prize memoir [Po90] on the three-body
problem before publication. He found that homoclinic tangles (which he had
initially overlooked) caused great difficulty and necessitated essentially a reversal of
the main thrust of that memoir [Ba97]. He perceived that there is a highly intricate
web of invariant curves and that this situation produces dynamics of unprecedented
complexity:

Que I’on cherche a se représenter la figure formée par ces deux courbes et leurs intersections

en nombre infini dont chacune correspond & une solution doublement asymptotique, ces

intersections forment une sorte de treillis, de tissu, de réseau a mailles infiniment serrées;

chacune des deux courbes ne doit jamais se recouper elle-méme, mais elle doit se replier
sur elle-méme d’une maniere trés complexe pour venir recouper une infinité de fois toutes

les mailles du réseau. On sera frappé de la complexité de cette figure, que je ne cherche
méme pas a tracer.’

This is often viewed as the moment chaotic dynamics was first noticed. He
concluded that in all likelihood the prize problem could not be solved as posed:
To find series expansions for the motions of the bodies in the solar system that

%We ought then to consider the present state of the universe as the effects of its previous state and
as the cause of that which is to follow. An intelligence that, at a given instant, could comprehend
all the forces by which nature is animated and the respective situation of the beings that make it
up, if moreover it were vast enough to submit these data to analysis, would encompass in the same
formula the movements of the greatest bodies of the universe and those of the lightest atoms. For
such an intelligence nothing would be uncertain, and the future, like the past, would be open to its
eyes.

If one tries to imagine the figure formed by these two curves with an infinite number of
intersections, each corresponding to a doubly asymptotic solution, these intersections form a kind
of trellis, a fabric, a network of infinitely tight mesh; each of the two curves must not cross itself
but it must fold on itself in a very complicated way to intersect all of the meshes of the fabric
infinitely many times. One will be struck by the complexity of this picture, which I will not even
attempt to draw.
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Fig. 1.8 Negatively curved surface (Reproduced from Hadamard [Ha98] ©1898 Elsevier Masson
SAS. All rights reserved)

converge uniformly for all time. Indeed, when Birkhoff picked up the study of this
situation in his prize memoir [Bi35] for the Papal Academy of Sciences, he noted
that and described how this implies complicated dynamics [Bi35, p. 184] (see also
Example 1.1.4):

Il parait donc que tout systetme dynamique non-intégrable qui admet une seule solution
homocline de cette espece, doit admettre une hiérarchie presque inconcevable de solutions
dans le voisinage étendu correspondant.®

1.2.2 Geodesic Flows

A major class of mathematical examples motivating the development of hyperbolic
dynamics is that of geodesic flows of Riemannian manifolds of negative sectional
curvature. Hadamard considered (noncompact) surfaces in R? of negative curvature
[Ha98] and found, with apparent delight, that if the unbounded parts are “large” (do
not pinch to arbitrarily small diameter as you go outward along them) then at any
point the initial directions of bounded geodesics form a Cantor set (Figs. 1.8 and
1.9).

8Tt thus appears that any nonintegrable dynamical system which admits a single homoclinic
solution of this kind must admit an almost inconceivable hierarchy of solutions in the extended
neighborhood.
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Fig. 1.9 Duhem’s bull (Picture from http://www.chaos-math.org/fr/chaos-v-billards)

La génération de ’ensemble E rappelle évidemment celle de ces ensembles rencontrés par
M. Poincaré, introduits plus explicitement dans la Science par M. Bendixson, puis étudiés
par M. Cantor et qui, tout en etant parfaits, ne sont condensés dans aucun intervalle. Les
angles A jouent ici le role des intervalles nommés (a,, b,) par M. Cantor.’

Since only countably many directions give geodesics that are periodic or
asymptotic to a periodic one, this also proves the existence of more complicated
bounded geodesics. Hadamard was fully aware of the connection to Cantor’s work
and to similar sets discovered by Poincaré, and he appreciated the relation between
the complicated dynamics in the two contexts. Hadamard also showed that each
homotopy class (except for the “waists” of cusps) contains a unique geodesic. A
classic by Duhem [Du91] seized upon this to eloquently describe the dynamics of a
geodesic flow in terms of what might now be called deterministic chaos: Duhem
used it to illustrate that determinism in classical mechanics does not imply any
practical long-term predictability.

Les recherches de M. J. Hadamard nous fournissent un exemple bien saisissant; il est
emprunté a I'un des problemes les plus simples qu’ait a traiter la moins compliquée des
théories physiques, la Mécanique.

Une masse matérielle glisse sur une surface; aucune pesanteur, aucune force ne la
sollicite; aucun frottement ne géne son mouvement. Si la surface sur laquelle elle doit
demeurer est un plan, elle décrit une ligne droite avec une vitesse uniforme; si la surface est
une sphere, elle decrit un arc de grand cercle, également avec une vitesse uniforme. Si notre
point matériel se meut sur une surface quelconque, il décrit une ligne que les géometres
nomment une ligne géodésique de la surface considerée. Lorsqu’on se donne la position

9The manner in which these sets arise clearly recalls that of the sets encountered by Mr. Poincaré,
introduced more explicitly to the subject by Mr. Bendixson, then studied by Mr. Cantor and which,
while being perfect, are not dense in any interval. Here the angles A play the role of the intervals
called (ay, b,) by Mr. Cantor.
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initiale de notre point materiel et la direction de sa vitesse initiale, la géodésique qu’il doit
décrire est bien déterminée.

Les recherches de M. Hadamard ont porté, en particulier, sur les géodésiques des
surfaces a courbures opposées, a connexions multiples, qui présentent des nappes infinies
[Ha98]; sans nous attarder ici a définir géométriquement de semblables surfaces, bornons-
nous 2 en donner un exemple. '

10The research of J. Hadamard provides us with a very striking example of such a deduction that
can never be useful. It is borrowed from one of the simplest problems that the least complicated of
physical theories, mechanics, has to deal with.

A material mass slides on a surface; no weight and no force act on it; no friction interferes
with its motion. If the surface on which it is to remain is a plane, it describes a straight line with
uniform velocity; if the surface is a sphere, it describes the arc of a great circle, also with uniform
velocity. No matter what surface our material point moves on, it describes a line that geometers
call a “geodesic line” of the surface considered. When the initial position of our material point and
the direction of its initial velocity are given, the geodesic it should describe is well determined.

Hadamard’s research has dealt especially with geodesics of surfaces of negative curvature, with
multiple connections, and with infinite folds [Ha98]. Without stopping here to define such surfaces
geometrically, let us restrict ourselves to giving an illustration of one of them.

Imagine the forehead of a bull, with the protuberances from which the horns and ears start,
and with the little mountain passes between these protuberances; but elongate these horns and ears
without limit so that they extend to infinity; then you will have one of the surfaces we wish to
study.

On such a surface geodesics may show many different aspects.

There are, first of all, geodesics which close on themselves. There are some also which are
never infinitely distant from their starting point even though they never exactly pass through it
again; some turn continually around the right horn, others around the left horn, or right ear, or left
ear; others, more complicated, alternate, in accordance with certain rules, the turns they describe
around one horn with the turns they describe around the other horn, or around one of the ears.
Finally, on the forehead of our bull with his unlimited horns and ears there will be geodesics going
to infinity, some mounting the right horn, others mounting the left horn, and still others following
the right or left ear.

Despite this complication, if we know with complete accuracy the initial position of a material
point on this bull’s forehead and the direction of the initial velocity, the geodesic line that this point
will follow in its motion will be determined without any ambiguity. In particular, we shall know
whether the moving point will always remain at a finite distance from its starting point or whether
it will move away indefinitely so as never to return.

It will be quite a different matter if the initial conditions are not mathematically but practically
given: the initial position of our material point will no longer be a determinate point on the surface,
but some point taken inside a small spot; the direction of the initial velocity will no longer be
a straight line defined without ambiguity, but some one of the lines included in a narrow bundle
connected by the contour of the small spot; and our practically determined initial conditions will,
for the geometer, correspond to an infinite multiplicity of different initial conditions.

Let us imagine certain of these geometrical data corresponding to a geodesic line that does not
go to infinity, for example, a geodesic line that turns continually around the right horn. Geometry
permits us to assert the following: Among the innumerable mathematical data corresponding to the
same practical data, there are some which determine a geodesic moving indefinitely away from its
starting point; after turning a certain number of times around the right horn, this geodesic will go
to infinity on the right horn, or on the left horn, or on the right or left ear. More than that: despite
the narrow limits which restrict the geometrical data capable of representing the given practical
data, we can always take these geometrical data in such a way that the geodesic will go off on that
one of the infinite folds which we have chosen in advance.
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Imaginons le front d’un taureau, avec les éminences d’ou partent les cornes et les
oreilles, et les cols qui se creusent entre ces éminences; mais allongeons sans limite ces
cornes et ces oreilles, de telle fagon qu’elles s’étendent a I’infini; nous aurons une des
surfaces que nous voulons étudier.

Sur une telle surface, les géodésiques peuvent présenter bien des aspects différents.

Il est, d’abord, des géodésiques qui se ferment sur elles-mémes. Il en est aussi qui, sans
jamais repasser exactement par leur point de départ, ne s’en éloignent jamais infiniment; les
unes tournent sans cesse autour de la corne droite, les autres autour de la corne gauche, ou
de ’oreille droite, ou de I’oreille gauche; d’autres, plus compliquées, font alterner suivant
certaines regles les tours qu’elles décrivent autour d’une corne avec les tours qu’elles
décrivent autour de 1’autre corne, ou de 1’une des oreilles. Enfin, sur le front de notre taureau
aux cornes etaux oreilles illimitées, il y aura des géodésiques qui s’en iront a I’infini, les
unes en gravissant la corne droite, les autres en gravissant la corne gauche, d’autres encore
en suivant 1’oreille droite ou I’oreille gauche.

Malgré cette complication, si 1’on connait avec une entiére exactitude la position
initiale d’un point matériel sur ce front de taureau et la direction de la vitesse initiale, la
ligne géodésique que ce point suivra dans son mouvement sera déterminée sans aucune
ambiguité. On saura trés certainement, en particulier, si le mobile doit demeurer toujours a
distance finie ou s’il s’éloignera indéfiniment pour ne plus jamais revenir.

Il en sera tout autrement si les conditions initiales ne sont pas données mathématique-
ment, mais pratiquement; la position initiale de notre point matériel ne sera plus un point
déterminé sur la surface, mais un point quelconque pris a l'interieur d’une petite tache;
la direction de la vitesse initiale ne sera plus une droite définie sans ambiguité, mais
une quelconque des droites que comprend un étroit faisceau dont le contour de la petite
tache forme le lien; & nos données initiales pratiquement déterminées correspondra, pour le
géometre, une infinie multiplicité de données initiales différentes.

Imaginons que certaines de ces données géométriques correspondent a une ligne
géodésique qui ne s’éloigne pas a I’infini, par exemple, a une ligne géodésique qui tourne
sans cesse autour de la corne droite. La Géométrie nous permet d’affirmer ceci: Parmi les
données mathematiques innombrables qui correspondent aux mémes données pratiques, il
en est qui déterminent une géodésique s’éloignant indéfiniment de son point de départ;
apres avoir tourné un certain nombre de fois autour de la corne droite, cette géodésique
s’en ira a I’infini soit sur la corne droite, soit sur la corne gauche, soit sur I’oreille droite,
soit sur 1’oreille gauche. Il y a plus; malgré les limites étroites qui resserrent les données
géométriques capables de representer nos données pratiques, on peut toujours prendre ces
données géométriques de telle sorte que la géodésique s’éloigne sur celle des nappes infinies
qu’on aura choisie d’avance.

It will do no good to increase the precision with which the practical data are determined, to
diminish the spot where the initial position of the material point is, to tighten the bundle which
includes the initial direction of the velocity, for the geodesic which remains at a finite distance
while turning continually around the right born will not be able to get rid of those unfaithful
companions who, after turning like itself around the right horn, will go off indefinitely. The only
effect of this greater precision in the fixing of the initial data will be to oblige these geodesics to
describe a greater number of turns embracing the right horn before producing their infinite branch;
but this infinite branch will never be suppressed.

If, therefore, a material point is thrown on the surface studied starting from a geometrically
given position with a geometrically given velocity, mathematical deduction can determine the
trajectory of this point and tell whether this path goes to infinity or not. But, for the physicist,
this deduction is forever unusable. When, indeed, the data are no longer known geometrically, but
are determined by physical procedures as precise as we may suppose, the question put remains and
will always remain unanswered.
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On aura beau augmenter la précision avec laquelle sont déterminées les données
pratiques, rendre plus petite la tache ou se trouve la position initiale du point matériel,
resserrer le faisceau qui comprend la direction initiale de la vitesse, jamais la géodésique
qui demeure a distance finie en tournant sans cesse autour de la corne droite ne pourra
étre débarrassée de ces compagnes infideles qui, aprés avoir tournées comme elle autour
de la méme corne, s’écarteront indéfiniment. Le seul effet de cette plus grande précision
dans la fixation des données initiales sera d’obliger ces géodésiques a décrire un plus grand
nombre de tours embrassant la corne droite avant de produire leur branche infinie; mais
cette branche infinie ne pourra jamais étre supprimée.

Si donc un point matériel est lancé sur la surface étudiée a partir d’une position géométri-
quement donnée, avec une vitesse géométriquement donnée, la déduction mathématique
peut déterminer la trajectoirc de ce point et dire si cette trajectoire s’éloigne ou non a I’infini.
Mais, pour le physicien, cette déduction est a tout jamais inutilisable. Lorsqu’en effet les
données ne sont plus connues géométriquement, mais sont déterminées par des procédés
physiques, si précis qu’on les suppose, la question posée demeure et demeurera toujours
sans réponse.

To today’s reader his description amounts to a shrewd translation of symbolic
dynamics into everyday language. Indeed, several authors trace back symbolic
dynamics to this paper of Hadamard. Birkhoff is among them: In his proof of the
Birkhoff-Smale Theorem (see Example 1.1.4) symbolic sequences appear (as well
as a picture that resonates with Fig. 1.5), and he remarks [Bi35, p. 184]:

De tels symboles arithmétiques. .. ressemblent un peu aux symboles effectivement intro-

duits par Hadamard dans son étude remarquable des géodésiques sur certaines surfaces
ouvertes de courbure totale négative.!!

It appears, however, that only in 1944 did symbol spaces begin to be seen as
dynamical systems, rather than as a coding device [CoNi08].

1.2.3 Boltzmann’s Fundamental Postulate

Well before Poincaré’s work, James Clerk Maxwell (1831-1879) and Ludwig
Boltzmann (1844-1906) had aimed to give a rigorous formulation of the kinetic
theory of gases and statistical mechanics. A central ingredient was Boltzmann’s
Fundamental Postulate, which says that the time and space (phase or ensemble)
averages of an observable (a function on the phase space) agree. Apparently without
a basis, one often ascribes to him the so-called Ergodic Hypothesis:

The trajectory of the point representing the state of the system in phase space passes through
every point on the constant-energy hypersurface of the phase space.

Poincaré and many physicists doubted its validity since no example satisfying it
had been exhibited [Po94]. Accordingly, in 1912 Paul and Tatiana Ehrenfest [EhEh]
proposed the alternative Quasi-Ergodic Hypothesis:

Such arithmetic symbols. . . resemble a little the symbols effectively introduced by Hadamard in
his remarkable study of geodesics on certain open surfaces of negative curvature.
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The trajectory of the point representing the state of the system in phase space is dense on
the constant energy hypersurface of the phase space.

Indeed, within a year proofs (by Rosenthal and Plancherel) appeared that the
Ergodic Hypothesis fails [P113, Ro13]. (This is obvious today because a trajectory
has measure zero in an energy surface.) These difficulties led to the search for any
mechanical systems with this property. The motion of a single free particle (also
known as the geodesic flow) in a negatively curved space emerged as the first and
for a long time sole class of examples with this property. Emil Artin 1924:

Es sei gestattet, auf ein einfaches mechanisches System von zwei Freiheitsgraden mit
quasiergodischen Bahnen hinzuweisen, zu dem der Verfasser in einem Briefwechsel mit
Herrn G. Herglotz gekommen ist. . . !?

Daraus geht schon hervor, daf3 die “quasiergodischen Ketten” die Miéchtigkeit des
Kontinuums haben. Noch mehr! Nach Resultaten von Herrn Celestyn Burstin haben fast
alle Zahlen £ eine “quasiergodische” Kettenbruchentwicklung. Von den durch einen Punkt
der Fldche gehenden geoditischen Linien sind also fast alle quasiergodisch.

Es moge noch einiges iiber die physikalische Realisierbarkeit gesagt sein. Man
erhilt...die Rotationsfliche der Traktrix (Zuglinie) eines Fadens der Linge eins.
Bekanntlich hat auch sie das Kriimmungsmal K = —1, so daf} sich unsere Halbebene
teilweise auf diese Fliche abwickeln ldBt...Damit haben wir aber die physikalische
Realisierung ... Unser mechanisches System ldBt sich dann als die kriftefreie Bewegung
eines Massenpunktes. . . interpretieren (der Punkt sei gezwungen auf der Fldche zu bleiben).

Within a decade, the understanding of the problem led to the pertinent contempo-
rary notion, and this turned out to be probabilistic in nature (Fig. 1.10).'3 The 1931
Birkhoff Ergodic Theorem 1.7.20 (“time averages exist a.e.”)'* laid the foundation
for the definition of ergodicity now in use, which is: “No proper invariant set has
positive measure.”!

2May it be permitted to point to a simple mechanical system with 2 degrees of freedom and
quasiergodic orbits upon which the author came in the course of a correspondence with Mr. G.
Herglotz. ..

From this one already obtains that the “quasiergodic chains” have the cardinality of the
continuum. More! According to results of Mr. Celestyn Burstin almost all numbers £ have a
“quasiergodic” continued-fraction expansion. Therefore, almost all of the geodesic lines going
through a point of the surface are quasiergodic.

Let us remark on the physical realizability. One obtains. . . the surface of rotation of a tractrix
(curve of pursuit) of a string of length 1. It is known to have curvature K = —1, so our half-plane
can be partially developed onto this surface. . . But with that we have our physical realization. . . Our
mechanical system can be interpreted. . . as the force-free motion of a point particle (the point being
constrained to remain on the surface).
3This serves to point out that the earlier quote by Laplace about determinism comes from his
Philosophical essay on probabilities, where he goes on to say that we often do not have sufficiently
detailed initial data, and must hence resort to a probabilistic approach. The motion of a molecule
of air was a prominent instant he mentioned in that context.

“This was proved after the von Neumann Mean Ergodic Theorem 1.7.33 but published earlier
[Zu02].
15These two combine to give the Strong Law of Large Numbers.
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Fig. 1.10 The pseudosphere (©Cambridge University Press, reprinted from [KaHa95] with
permission)

If this is the case, then time averages agree with space averages—Boltzmann’s
Fundamental Postulate. Furthermore, almost every orbit is dense.

The 1930s saw a flurry of work in which Artin’s work was duly extended
to other manifolds of constant negative curvature. For constant curvature, finite
volume and finitely generated fundamental group the geodesic flow was shown to be
topologically transitive [Ko29, L029], topologically mixing [He36], ergodic [Ho36],
and mixing [He39a, Ho39]. (In the case of infinitely generated fundamental group
the geodesic flow may be topologically mixing without being ergodic [Se35]). If
the curvature is allowed to vary between two negative constants then finite volume
implies topological mixing [Gr39] (see also [GrLa09, p. 183]). But as Hedlund
noted in an address delivered before the New York meeting of the American
Mathematical Society on October 27, 1938 [He39b]:

Outstanding problems remain unsolved, a notable one being the problem of metric
transitivity [ergodicity] of the geodesic flow on a closed analytic surface of variable negative
curvature.

It so happens that Eberhard Hopf was just then working on this problem [Ho39]:
He considered compact surfaces of nonconstant (predominantly) negative curvature
and was able to show ergodicity of the Liouville measure (phase volume):

Erst die hier entwickelte geometrische Methode der asymptotischen Geoditischen fiihrt
wesentlich weiter. Bei ihrer Anwendung auf Fliachen mit variablem K < 0 sieht man, daf sie
an der wesentlichen Stelle, namlich der erwihnten Unstabilitit der Geoditischen, einsetzt.

‘Was nun Fldchen negativer Kriimmung K vor anderen Fldchen auszeichnet, ist vor allem die
starke Unstabilitét ihrer Geodatischen. Der Normalabstand » einer Geodétischen von einer
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infinitesimal benachbarten Geodatischen geniigt ldngs derselben der Variationsgleichung

d’n LK 0
n=0.
ds?

Verlduft K auf .# zwischen festen negativen Grenzen, so wichst n(s) in mindestens einer
Richtung wie eine Exponentialfunktion.'®

From Hopf’s work there was no progress in the direction of ergodicity of
geodesic flows (= free particle motion) for almost 30 years. Hopf’s argument had
shown roughly that Birkhoff averages of a continuous function must be constant
on almost every leaf of the horocycle foliation, and, since these foliations are
C!, the averages are constant a.e. He realized that much of the argument was
independent of the dimension of the manifold (indeed, he carried much of the
work out in arbitrary dimension), but could not verify the C' condition in higher
dimension. Anosov [An69] axiomatized Hopf’s instability, defining Anosov flows,
and he showed that differentiability may indeed fail in higher dimension, but that the
Hopf argument can still be used because the invariant laminations have an absolute
continuity property [An69, AnSi67, PuSh72, Ba95, Br02, BaPeO1]. This extension is
interesting because despite the ergodicity paradigm central to statistical mechanics,
Boltzmann’s Fundamental Postulate, there was a dearth of examples of ergodic
Hamiltonian systems. To this day the quintessential model for the Fundamental
Postulate, the gas of hard spheres, resists attempts to prove ergodicity.

The Hopf argument remains the main method for establishing ergodicity in
hyperbolic dynamical systems without an algebraic structure (the alternative tool
being the theory of equilibrium states, see [KaHa95, Theorem 20.4.1]).

1.2.4 Picking Up from Poincaré

Like Hadamard, several mathematicians had begun to pick up some of Poincaré’s
work during his lifetime. Birkhoff did so soon after Poincaré’s death. He addressed
issues that arose from the mathematical development of mechanics and celestial
mechanics such as Poincaré’s Last Geometric Theorem and the complex dynamics
necessitated by homoclinic tangles [Bi27, Sect. 9]. He was also important in the

10nly the geometric method of asymptotic geodesics that is developed here takes us significantly
further. When applying it to surfaces with variable K < 0 one sees that it homes in on the essential
point, namely the aforementioned instability of geodesics.

What distinguishes surfaces of negative curvature K from other surfaces is primarily the strong
instability of its geodesics. The normal distance n between a geodesic and an infinitesimally close

one satisfies the variational equation
’ Ki 0
+ Kn =
ds?

along the geodesic. If K ranges between fixed negative bounds on .7, then n(s) grows exponentially
in at least one direction.
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development of ergodic theory (the Poincaré Recurrence Theorem 1.7.11 is proved
in Poincaré’s prize memoir [Po90]), notably by proving the Pointwise Ergodic
Theorem.

The work of Cartwright and Littlewood during World War II on relaxation
oscillations in radar circuits [CaLi45, Ca50, Li57] consciously built on Poincaré’s
work. Further study of the van der Pol equation by Levinson [Le49] contained the
first example of a structurally stable diffeomorphism with infinitely many periodic
points. (Structural stability originated in 1937 [AnPo37] but began to flourish only
20 years later.) This was brought to the attention of Smale. Inspired by Peixoto’s
work, which carried out such a program in dimension two [Pe62], Smale was after
a program of studying diffeomorphisms with a view to classification [Sm67]. Until
alerted by Levinson, Smale conjectured that only Morse—Smale systems (finitely
many periodic points with stable and unstable sets in general position) could
be structurally stable [Sm60]. He eventually extracted from Levinson’s work the
horseshoe [Sm65, Sm63]. Smale in turn was in contact with the Russian school,
where Anosov systems (then C- or U-systems) had been shown to be structurally
stable, and their ergodic properties were studied by way of further development of
the study of geodesic flows in negative curvature.

1.2.5 Modern Hyperbolic Dynamics

It is interesting to note that hyperbolic sets were sometimes said to constitute “a
Perron situation”, for example by Alekseev [Al68, Definition 12] (in which the
Smale horseshoe makes an appearance as well). Independently, Thom (unpublished)
studied hyperbolic toral automorphisms and their structural stability.!” The initial
development of the theory of hyperbolic systems in the 1960s was followed by the
founding of the theory of nonuniformly hyperbolic dynamical systems in the 1970s,
mostly by Pesin [Os68, Pe76] (during which time the hyperbolic theory continued
its development). One of the high points in the development of smooth dynamics is
the proof by Robbin, Robinson, Mafié and Hayashi that structural stability indeed
characterizes hyperbolic dynamical systems. For diffeomorphisms this was achieved
in the 1980s, for flows in the 1990s. Starting in the mid-eighties the field of

"The automorphism (3 }) of Example 1.1.1 is often called the “Arnold cat map” by physicists
after [ArAv68, Fig. 1.17]. Since there were typewritten notes by Avez, the existence of which was
pointed out to me by David Chillingworth, that preceded the joint book and included a similar
picture that used a bat, physicists should consider the term “Avez bat map.” There is a possibility
that a yet earlier paper by Arnold had the cat picture after all, so the safest way to cut the historical
knot is to note that this map also [is the square of that map that] gives the recursion for the Fibonacci
numbers, and could hence be called the Fibonacci rabbit map. However, due to Thom’s role (he
communicated this example to Smale in response to the short-lived conjecture that only systems
with finitely many periodic points are structurally stable), “auThomorphism” has an equal claim,
and “Thom cat” (due to Katok) fares fairly finely for faux feline faunetics.
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geometric and smooth rigidity came into being. At the same time topological and
stochastic properties of attractors began to be better understood with techniques that
nowadays blend ideas from hyperbolic and one-dimensional dynamics. Meanwhile,
the theory of partially hyperbolic dynamical systems, which goes back to seminal
works of Brin and Pesin in the 1970s, has seen explosive development since the last
years of the twentieth century, which in turn has entailed renewed interest in the
methods of uniformly hyperbolic dynamical systems and their possible extensions
to this new realm.

1.3 Hyperbolic Sets: Shadowing and Expansiveness

This section and the next develop the core dynamical features of hyperbolicity as
a consequence of the shadowing property, deemed by Bowen, Conley [Bo78, p.
vii], Anosov, Katok [Bo75, Ka81] and others to be the single most salient feature
to characterize hyperbolic dynamical systems. The present section illustrates the
array of consequences of the Shadowing Lemma, while the next section builds on
a stronger shadowing result that simplifies proofs which use shadowing of whole
families of orbits. For explicit comparison, we prove Theorem 1.3.52 both ways.

1.3.1 Definitions

We now describe the class of diffeomorphisms to which the examples in Sect. 1.1.2
belong. First define the conorm of a linear map A by |A] := inf{||Av] | |v|| = 1}.
This is complementary to the usual norm ||A|| := sup{||Av] | |[v]| = 1}.

Definition 1.3.1 (Hyperbolic, Anosov) If U C M is open, then an embedding
f:U — M is said to be hyperbolic on a compact set A if there exists a Riemannian
metric called a Lyapunov metric on U for which there are numbers
O<i<l<pu (1.1)
and a pairwise orthogonal invariant splitting into stable and unstable directions
T.M = E°(x) @ E"(x), D E"(x) =E*(f(x)), T =s,u
such that

1D o | = A <1<t = IDxsp gy I (1.2)

If, furthermore, A = M, then we say that f is an Anosov diffeomorphism.
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Remark 1.3.2 The usual definition requires that for any Riemannian metric there is
a constant C such that instead of (1.2) we have

1D} | <CA"and C”'u < | D}

xf [\Ex(x) f [\E“(X)J‘I

for all n € N (and omits “orthogonal”’—but see Corollary 1.3.8). It is then a theorem
[along the lines of (1.15)] that a Lyapunov metric such as in Definition 1.3.1 exists.
In this spirit we more generally define partial hyperbolicity by requiring that for
any Riemannian metric there are a constant C, numbers A < { < & < p with (1.1),
and an invariant splitting 7.M = E*(x) ® E°(x) @ E"(x) such that D, E*(x) =
E*(f(x)), T =s,c,uand

1D

n
xf rES(x) ” S CA s

1 n n n n
CC = ".Dxf rEC(x)J.l = ” xf rEC(X)” = C%‘ ’

1 n U
CI“L S ”_Dxf rElI(X)J]

forall n € N.

Example 1.3.3 Example 1.1.3 is partially hyperbolic in this sense.
It is useful to have a characterization of (partial) hyperbolicity in terms of the action
of the differential on vector fields.

Theorem 1.3.4 (Mather) Let M be a smooth manifold, U C M an open subset,
f:U — M a C' embedding, and A C U a compact f-invariant set. Denote by T,
the set of bounded vector fields on A and by I'. C I, the set of continuous vector
fields on A (these are sections of the bundle TAM := TM FA)’ and for a vector field

X on A define F(X) by

F(X)(f(x) := Df((X(x)).

Then for £~ < LT the following are equivalent:

1. There exist A < {~ and jn > LT such that A is (partially) hyperbolic with A, i
as above.

2.5p(F ) )N{zeC 0 <l =M} =2

3.p(Fp)N{zeC (T <l <tty=2.

Proof 1. = 2.: Check that the splitting I,(ToM) = I,(E*) & I',(E*) has the
desired properties.

2. = 3. Since I C [} is an invariant Banach subspace, sp(ﬁrrb) C
Sp(y [\Fb)'

3. = 1.: This involves two simple steps.
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Lemma 1.3.5 The projections n* that define the splitting I'. = & @ &" are
CO(A)-linear:

Amap L: . — T is said to be C°(A)-linear if L(¢X) = ¢-L(X) forall ¢ € C°(A).
This lets us apply a general fact about continuous maps of bundles.

Lemma 1.3.6 A C°(A)-linear map L: T. — T is pointwise defined, i.e., there is
a continuous family (Ly: T\M — TyM)yea of linear maps such that L(X)(x) =
L.(X(x)) forall x € A.

Now, Lemma 1.3.5 provides the hypotheses for Lemma 1.3.6 applied to 7%, so we
obtain fiberwise linear maps nf, and these are complementary projections since
7 * are (check that (7%)? = 7% and 7~ + 7 = Id imply the same for 7). This
gives continuous subbundles E* := 7 (T.M) and E{ := 7~ (T.M) with the desired
properties. O

Proof of Lemma 1.3.5 The main point is that the subspaces &* and &* are C°(A)-
closed: If X € &* and ¢: A — R is continuous (hence bounded), then pX € &*
because .Z"(¢X) = g of - . Z"(X). Thus I, = & @ &* as C°(A)-modules; since
7% is CO(A)-linear on & and &* (it is 0 or Id), the claim follows. O

Proof of Lemma 1.3.6 If X = 0 on an open set U then 7% (X) = 0 on U: Forx € U
take ¢ € C°(A) such that ¢(x) = 1 and X = 0 to get

X)) = 1- 75 (X)) = @) - 75X () = 77 (X)) = 7 (0)(x) = 0.

If X € I, and X(x) = O take X, — X with X;, = 0 on B(x, !/») and hence
(X)) (x) = lim 7% (X,)(x) = 0.

If (x,v) € TuM, X € I, and X(x) = v, then 7F(v) := 7F(X)(v) is thus
independent of such X. O
The following useful simple consequence of the definition does not use (1.1).

Proposition 1.3.7 Let A be a hyperbolic set for f:U — M. Then x — E} is
continuous for T = u, s, and the dimensions of these subspaces are locally constant.

Proof The inequalities ||Df"€|| < A"||€|| characterize E?, and by continuity of Df"
the set of (x,&) on which they hold is closed, so lim,_,, E* C Eﬁo. Similarly,
lim, ., EY C Ek. Then dimEY, 4+ dimE} = dimM = EY + E} implies that
neither inclusion is proper, so E)%O = lim,_y, Ei and Effo = limy_y, EX. |

Corollary 1.3.8 The subspaces Eﬁ and EY are uniformly transverse: there is oy >
0 such that for any x € A, the angle between £ € Eﬁ and n € EY is at least ay.

Proof The angle a(x) between £ € EY and n € Eﬁ is continuous by Proposi-
tion 1.3.7 and positive since Ey N Eﬁ = {0}, so has a positive minimum. O
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1.3.2 Invariant Cones

Verifying the conditions in the definition of hyperbolicity requires finding the two
invariant subbundles E¥, and it may in a concrete situation not be entirely clear how
to do so. Even if one perturbs a hyperbolic system, it is not clear how to find the
subbundles for the perturbation from those of the original system. We now present
a criterion that addresses both these issues by framing hyperbolicity in terms of
invariant cone fields.

We begin by defining cone fields.

Definition 1.3.9 If a normed vector bundle £ over a metric space A decomposes
into E' @ E?, then the standard horizontal y-cone field is defined by

H ={u+veE &E, |v|<vylul}

The standard vertical y-cone is

V= {u+ve B @B Jul <ylvl}.

Here, a cone field is a map that associates to every point p € R" a cone K, in T,R".
These cone fields are said to be bounded if there is a constant ¢ such that

llu+vll/e < flull + vl < cllu+ v

forallp € A,u € El,ve E[% For a given cone K, the dual cone K* is the closure
of the complement of K.

If A is an invariant set for a diffeomorphism f: M — M, then f naturally acts on
cone fields on E := T4 M by

(fK)p 2= Dfy=1() (Kp=1(p)-
We say that a cone family K is (strictly) invariant if
(fxK), C IntK, U {0};
we write
f+K € K.
Let us look at some examples to clarify the picture involved here. In dimension

n = 2 a horizontal cone is given by |x,| < y|x|, and its dual cone |x;| < |xz|/y is
a vertical cone. In dimension n = 3 the following is obviously a cone: Let u = xi,

v = (x2,x3), x% + x% < ylx1]. So is its dual cone, described by letting u =
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Fig. 1.11 A horizontal cone in R?; a vertical cone in R® (©Cambridge University Press,
reprinted from [KaHa95] with permission)

(x2,x3), v = x) and requiring |x;| < \/x% + x%/y. This is an example of a cone that
does not look like those designed to hold ice cream (Fig. 1.11).

Theorem 1.3.10 (Alekseyev Cone Field Criterion) A compact f-invariant set A
is partially hyperbolic (in the broad sense) if and only if there exist A < | such that
for every x € A there are

* adecomposition T.M = S, ® T, (in general, not Df invariant) and
* a family of horizontal cones H, D S, associated with that decomposition

for which

° dime = dime(X),
. fLHEH,
* Dfv|| = plvll for v € H, and

o DAl = A7 v for v € HY.

If furthermore A < 1 < u, then A is hyperbolic.

Proof “Only if” is an easy consequence of the definitions.
Since S, C H,,

— pf | J -
S = DfL_; (,Sr-ityy C Dfi—y o Hy-s0 = Hj.

For each §; take an ordered orthonormal basis and consider a subsequence such that
the sequences of basis elements all converge. Since the intersection of H; with the
unit sphere is compact it contains the basis consisting of the limits of the basis
elements. By the same token any sequence of vectors defined by a fixed set of
coefficients converges to a vector in H;. Hence the span S of the limiting basis
belongs to all H; and thus to the intersection. Indeed, S = E! because we can
write v € EY as v = vy + vy with vg € S and vy € T, to get

A' n
lorll < 21DF ™" (o)l = 27 1DF " (v = v)|| < (M) (o] + llosl)) ——>o.

Likewise one obtains E*. |
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While it follows directly from the definitions that every closed invariant subset of a
hyperbolic set for f is also a hyperbolic set, the cone field criterion implies that one
can sometimes envelop a given hyperbolic set by a larger one.

Proposition 1.3.11 Let A be a hyperbolic set for f: U — M. There exists an open
neighborhood V- > A such that for any g sufficiently close to f in C' topology the
invariant set

A} = ﬂg"V

n€zZ

is hyperbolic.

Remark 1.3.12 By construction A C A,Y . Often (e.g., for a hyperbolic periodic
orbit or for the “horseshoe”) A}/ = A if V is a sufficiently small neighborhood

of A. For g # f it is not obvious that A(‘g/ # &, and we will prove this
soon (Theorem 1.4.6).

Proof The inequalities and inclusions in Theorem 1.3.10 persist for continuous
extensions of the fields S, T, H, V from A to a neighborhood V| D A and for g in a
C'-neighborhood U of f. They then hold for g on AY, which is hence a hyperbolic
set for g by Theorem 1.3.10. O

Corollary 1.3.13 The set of Anosov diffeomorphisms is C'-open.

1.3.3 Shadowing, Expansiveness, Closing

Hyperbolicity is connected with sensitive dependence on initial conditions
and implies a complementary feature called shadowing: behavior that occurs
in approximate form does actually occur in the system. This is one of
two central underpinnings of the hyperbolic theory (the other being stable
and unstable manifolds as described in Sect.1.6), and it quickly yields the
main features of hyperbolic dynamics (by the time we get to page 37):
A rich and complex orbit structure with an abundance of periodic orbits,
topological and strong structural stability and a symbolic description (Theo-
rems 1.3.15,1.3.19, 1.3.20, 1.3.33, 1.3.36, 1.3.39, 1.3.45, 1.3.52, 1.4.6, 1. 4.11).

Here are formal notions to represent ‘“behavior that occurs in approximate form”
and “does actually occur in the system”:

Definition 1.3.14 Let (X, d) be a metric space, U C X open and f: U — X. For
a € ZU{—oo}and b € ZU {oo} a sequence {x, }s<n<p C U with d(x,41,f(x,)) < €
forall a < n < b is called an €-orbit or e-pseudo-orbit (or just pseudo-orbit) for f.
If —oo < a < b < o0, then it is also referred to as an e-chain (or just chain) from
X, to x,. We say that a pseudo-orbit (x,)q<n<p 18 8-shadowed by the orbit &(x) of
x e Uif d(x,,f"(x)) < §foralla <n < b.



1 Introduction to Hyperbolic Dynamics and Ergodic Theory 25

A point x € X is said to be chain-recurrent if for every € > 0 there is an e-chain
from x to x. The set Z(f) of these points is called the chain-recurrent set of f. A
point x € X is nonwandering with respect to the map f: X — X if for any open set
U > x there is an N > 0 such that f¥(U) N U # @. It is said to be wandering
otherwise. The set of all nonwandering points of f is denoted by NW(f). We say
that f is regionally recurrent if NW(f) = X. (See also Definition 1.7.65.)

We now obtain rather comprehensive information about the topological dynamics of
hyperbolic sets from the fact that behavior which occurs in approximate form does
actually occur in the system:

Theorem 1.3.15 (Shadowing Lemma) If A is a compact hyperbolic set for a
diffeomorphism f, then there is a neighborhood U of A and C > 0 such that any
€-orbit in U is Ce-shadowed by the orbit of some x € A’;for a Ce-neighborhood V

of U. For sufficiently small U and €, x is unique, and A{, is hyperbolic.

Remark 1.3.16 Rufus Bowen observed that much of the topological dynamics of
hyperbolic sets arises from this remarkable property. It may be well to note a
rather concrete consequence to get a sense of the nature of this statement. If
for a given hyperbolic dynamical systems one endeavors to compute a specific
orbit numerically, the exponential growth of any errors (due to roundoff and any
inaccuracy in representing the dynamical system) ensures that the computed results
quickly diverge from the actual orbit to such an extent as to lose any meaningful
connection between the computed and the actual orbit. However, the computed orbit
is a pseudo-orbit, and therefore the Shadowing Lemma ensures that it reflects, to
about the same accuracy as the computation error at every step, some actual orbit of
the dynamical system (whose initial point is near the intended starting point).'8
This suggests an exercise. Prove the Shadowing Lemma directly (e.g., by
stripping down the proof of the Shadowing Theorem) for the hyperbolic toral

automorphism F ( 5 1) in Example 1.1.1 and give, in this case, a plausibly optimal
11
value for the constant C in the Shadowing Lemma—the point being that this

constant is moderate.

Some applications of this property are more easily proved from a slightly
strengthened variant, the Shadowing Theorem 1.4.1 below, which asserts the
shadowing of entire families of pseudo-orbits in a continuous way. Therefore we
do not prove Theorem 1.3.15 here but instead note that it is obtained from the
Shadowing Theorem by specializing to shadowing of an individual pseudo-orbit: In
Theorem 1.4.1 take Y = (Z, discrete topology), g = f, €¢g = 0, and o(n) = n + 1,
i.e., replace o € C°(Y, V) by {x,},ez C V and “B € C°(Y, V) such that o = gB”
by {f"(x)}nez C V.

We note that the Anosov Shadowing Theorem 1.4.1 is not hard to prove either;
the proof fits on one page. We defer that result to focus attention on the fact that

18] est this be taken to be a stronger statement than it actually is, one should note that there is no
guarantee that the shadowing orbit is itself in any sense typical. That issue leads to the subject of
physical measures and the Sinai-Ruelle-Bowen measure.
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the better-known Shadowing Lemma suffices for the description of the topological
dynamics in the remainder of this section (from here to page 31).

Corollary 1.3.17 In this context NW(f) N A = Z(f) N A (Definition 1.3.14).
The uniqueness assertion in Theorem 1.3.15 implies 2 more fundamental facts,
expansivity and the Anosov Closing Lemma.

Definition 1.3.18 (Expansivity) A homeomorphism f:X — X is said to be
expansive if there exists a constant § > 0 such that if d(f"(x),f"(y)) < § for
all n € Z then x = y. (For continuous maps replace “n € Z” by “n € N.”)

Theorem 1.3.19 (Expansivity) The restriction of a diffeomorphism to a hyper-
bolic set is expansive: if A is a compact hyperbolic set for a C' diffeomorphism f,
then there are a neighborhood U of A and § > 0 such that

ifx,y € A]Z,, then x =y or sup d(f"(x),f"(y)) = 6.
n€7Z

Theorem 1.3.20 (Anosov Closing Lemma) Let A be a hyperbolic set forf: U —
M. Then there are a neighborhood V. O A and C, €y > 0 such that for € < €y any
periodic €-orbit (xo, . ..,xn) C V is Ce-shadowed by a pointy = f"(y) € A;J. In
particular, chain-recurrent points are approximated by periodic ones.

Here we call a sequence xg, xi,...,Xu—1, Xm = Xo a periodic €-orbit or periodic
pseudo-orbit if d(f(xx),xx+1) < € fork = 0,...,m — 1. For almost-closed orbit
segments, Corollary 1.6.41 gives additional information.

Corollary 1.3.21 Let A be a hyperbolic set for f:U — M and V a neighborhood
of A such that A]Y is hyperbolic. Then periodic points are dense in NW(f rA]Y ).

Proof For € > 0 sufficiently small denote by U, the €/(2C + 1)-neighborhood of
x € NW(f FAV) in AY, where C is as in the Closing Lemma. There exists N € N
' '

such that fN(U)NU, # @.Ify € fN(U)NU,, then d(fN(y),y) < 2¢/(2C+1), so

the Closing Lemma gives a z = fV(z) € A/ with d(f"(2)./"(y)) < 2Ce/(2C + 1)
for0 <n < N.Then d(x.2) < d(x.y) + d(y.2) < G H) = e. O
V and A}/ coincide in our examples (Remark 1.3.12), and this is useful.

Definition 1.3.22 (Local Maximality, Basic Set) A hyperbolic set A for f: U —
M is said to be locally maximal or isolated if there is a neighborhood V of A (an
isolating neighborhood) such that A = A}/ . If furthermore f M has a positive
semiorbit that is dense in A, then A is said to be a basic set.

Remark 1.3.23 If A is a basic set, then NW(f FA) = A.
If V is sufficiently small and A is locally maximal then the shadowing orbits in all
prior results are in A, so A has many periodic orbits:
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Corollary 1.3.24 If A is a locally maximal hyperbolic set for f: U — M, then
periodic points are dense in NW(f r A). In particular, periodic points are dense in
basic sets.

Before pressing on, we take a step back to inventory the dynamical features on
which the forthcoming developments are based, or, rather, to disaggregate properties
provided by Theorem 1.3.15.

Definition 1.3.25 (Shadowing Property) A map f:X — X of a metric space is
said to have the shadowing property if for all € > 0 there is a § > 0 such that any
8-orbit is e-shadowed by the orbit of some x € X. It is said to have the Lipschitz-
shadowing property if we can take § = ¢/C for some C € R.

Remark 1.3.26 Note that this notion does not include the uniqueness assertion from
Theorem 1.3.15; we noted that this uniqueness assertion implies expansivity, and
clearly it also follows from expansivity. (The Lipschitz-shadowing property is not
needed here.) Local maximality puts us in this context as follows.

Theorem 1.3.27 If A is a compact locally maximal hyperbolic set for a diffeomor-
phism f, then f Ma is expansive and has the shadowing property.
From Theorem 1.3.20 we thus obtain:

Theorem 1.3.28 (Anosov Closing Lemma) For an expansive homeomorphism
f:X — X with the shadowing property and any € > 0 there is a § > 0 such
that any periodic §-orbit is e-shadowed by a periodic point. In particular, periodic
points are dense in the chain-recurrent set, which coincides with the nonwandering
set. Thus, periodic points are dense in X if f is topologically transitive.

1.3.4 Specification

Theorems 1.3.15 and 1.3.20 can be significantly refined: one can prescribe the
evolution of an orbit to the extent of specifying a finite collection of arbitrarily
long orbit segments and any fixed precision: If one allows for enough time between
the specified segments one can find a (periodic) orbit approximating this itinerary.
We emphasize that the time between the segments depends only on the quality
of the approximation and not on the length of the specified segments. Bowen’s
Specification Theorem is a useful tool for the study of both the topological structure
of hyperbolic sets and statistical properties of orbits within such sets.

Definition 1.3.29 (Specification) Let f:X — X be a bijection of a set X. A
specification S = (t, P) consists of a finite collection T = {Iy,...,,} of finite
intervals /; = [a; b)) C Z and a map P:T(7) := | Ji-,I; — X such that for
1,1y € I € T wehave f2(P(t;)) = f" (P(2)). S is said to be n-spaced if a;y1 > bi+n
forall i € {1,...,m} and the minimal such n is called the spacing of S. We say that
S parameterizes the collection {P; I € t} of orbit segments of f.
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We let T(S) := T(r) and L(S) := L(t) := b,, — a;. If (X, d) is a metric space we
say that S is e-shadowed by x € X if d(f"(x), P(n)) < € foralln € T(S).
Thus a specification is a parameterized union of orbit segments P M of f.

If (X, d) is a metric space and f: X — X a homeomorphism then f is said to have
the weak specification property if for any € > 0 there exists an M = M, € N such
that for any finite collection C of orbit segments there is an M-spaced specification
S that parameterizes C and is e-shadowed by some x € X as well as by a periodic
orbit of period at most M + L(S).

If (X, d) is a metric space and f: X — X a homeomorphism then f is said to have
the specification property if for any € > 0 there exists an M = M, € N such that
any M-spaced specification S is e-shadowed by some x € X and such that moreover
for any ¢ > M + L(S) there is a period-g orbit e-shadowing S.

The difference between the weak and strong specification properties is that in the
former we do not have complete freedom in the choice of specification.

Definition 1.3.30 (Topological Transitivity) An invertible topological dynamical
system f: X — X is said to be topologically transitive if there exists a point x € X
such that its orbit Oy (x) := {f"(x)},ez is dense in X.

Proposition 1.3.31 (Topological Transitivity) If X is a perfect'® compact metric
space and f: X — X is continuous, then the following are equivalent:

1. f has a dense positive semiorbit.

2. f is topologically transitive, i.e., it has a dense orbit.

3. If @ # U,V C X are open, then there exists an n € 7 such that f*(U) NV # @.
4. If @ # U,V C X are open, then there exists an n € N such that f*(U)NV # @.

Remark 1.3.32 Item (3) can be strengthened. Since {B(x, €/2)xB(y,€/2 x,y € X}
has a finite subcover by compactness of X,

Ve > 03N e NVx,y e X In < N: f"(B(x,€)) N B(y,€) # @. (1.3)

Theorem 1.3.33 (Weak Specification Theorem) Ler A be a topologically tran-
sitive compact locally maximal hyperbolic set for an embedding f. Then f M has
the weak specification property. More generally, topologically transitive homeomor-
phisms with the shadowing property have the weak specification property.

Proof Interpolate the specification to a closed pseudo-orbit by orbit segments of
length bounded in terms of € by (1.3) and apply Theorem 1.3.15. O
This can be strengthened under the following condition.

Definition 1.3.34 A continuous map f of a topological space is topologically
mixing if for V, W open there is an M € N such that f"(V) N W # @ whenm > M.

191.e., without isolated points.
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Remark 1.3.35 Analogously to Remark 1.3.32 this implies a uniform property if X
is compact: Ve > 03AN e NVx,ye X, n > N: f"(B(x,€)) N B(y,¢€) # @.
Using this in the proof of Theorem 1.3.33 gives

Theorem 1.3.36 (Bowen Specification Theorem) Ler A be a topologically mix-
ing compact locally maximal hyperbolic set for an embedding f. Then f Ma has the
specification property. More generally, topologically mixing homeomorphisms with
the shadowing property have the specification property.

1.3.5 Spectral Decomposition

It is easy to show that the specification property implies that f Ma is topologically
mixing. Also, Theorem 1.3.33 can be strengthened a little by combining the Spectral
Decomposition Theorem 1.3.45 with Theorem 1.3.36; this is Theorem 1.3.50. To
this end we introduce the chain decomposition.

Proposition 1.3.37 If X is compact, f:X — X continuous and € > 0 then the
relation defined by x ~ vy if there are e-chains from x to y and from y to x is an
equivalence relation on Z(f), and each equivalence class is clopen® in Z(f).

Proof Symmetry of ~ is obvious, transitivity is easy to check, and reflexivity
follows from the definition of Z(f). Openness of the equivalence classes then
follows from the definition of an e-chain. Openness of the complement follows
because it is a union of equivalence classes. O

Definition 1.3.38 (Chain Components) If f: X — X continuous, then the equiva-
lence classes of ~ are called the chain(-transitive) components of Z(f). f is said to
be chain transitive if Z(f) = X and there is only one chain component.

For locally maximal hyperbolic sets Corollary 1.3.17 = NW(f \ A) = Z(f \ A).
Together with Theorem 1.3.15 and Proposition 1.3.37 this implies:

Theorem 1.3.39 (Chain Decomposition) Let M be a Riemannian manifold,
U C M open, f:U — M an embedding, A C U a compact locally maximal
hyperbolic set. Then there exist disjoint invariant closed sets Ay, ..., A, such that
NW(f FA) =L, A and f M, is @ basic set.

This can be refined to the spectlral decomposition, Theorem 1.3.45. To that end, let
GCD(f) denote the greatest common divisor of the periods of periodic points of
f:X — X. We say that f has incommensurable periods if GCD(f) = 1.

Theorem 1.3.40 If A is a basic set for an embedding f, v := GCD(f FA)’ and
U,V C A are open, then there is an N € N with fNT*(U) NV # & for all k € N.

20Meaning, closed and open.
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Proof There are finitely many x; = f7/(x;) € A and m; € Z such that 3 mjp; = y.
Let C, € be as in the Shadowing Lemma (Theorem 1.3.15) and such that U and V
contain Ce-balls B(x, Ce) and B(y, Ce), respectively. By chain-transitivity there is
an e-orbit segment from x to y that includes all x;. Denoting its length by L, we find
that taking N = L + Z,’ |m‘,~|pj2 and any k € N we can find / € N and i < min{p;}
with

N+ky=L+ IZ |m<,~|pj2 + iijpj =L+ Z(l|mj|pj + im;)p;.
J J

By inserting I|m;|p; 4 im; > O repeats of the orbits of the x;, the Shadowing Lemma
gives an orbit of length N + ky from U to V. O

Corollary 1.3.41 If y = 1 in Theorem 1.3.40, then f Ma is topologically mixing.
Here, the contrapositive of the Anosov Closing Lemma (Theorem 1.3.20) implies

Proposition 1.3.42 There is an € > 0 such that if n # m (mod GCD(f TA))’ then
d(f"(x),f™(x)) > € forall x € A.

In particular, A is not mixing if GCD(f) # 1, i.e.,

Proposition 1.3.43 If A is a basic set of an embedding f, then f Ma is topologically

mixing if and only if GCD(f) = 1 in Theorem 1.3.40.
A further consequence of Proposition 1.3.42 is

Corollary 1.3.44 If A is a basic set for an embedding f and the orbit of x € A is
dense, then the y := GCD(f FA) sets

Ai={fr"x) kelZj

are pairwise disjoint, invariant and topologically mixing for fV.
Together with Theorem 1.3.39, this implies

Theorem 1.3.45 (Spectral Decomposition) Let M be a Riemannian manifold,
U C M open, f:U — M a diffeomorphism, and A C U a compact locally
maximal hyperbolic set for f. Then there exist disjoint closed sets Ay, ..., A,, called
homoclinic classes and a permutation o of {1,...,m} such that NW(f FA) =
U™, Ai £(A) = Aoy, and when o* (i) = i then f* M, is topologically mixing.
The terminology “homoclinic classes” will be explaineld after Proposition 1.6.48.

Corollary 1.3.46 A diffeomorphism f restricted to a compact locally maximal
hyperbolic set is topologically transitive if and only if the permutation o from
Theorem 1.3.45 is cyclic.

Corollary 1.3.47 Let A be a connected compact locally maximal hyperbolic set for
a diffeomorphism f such that A = NW(f FA) (or equivalently periodic points are
dense in A). Then f Ma is topologically mixing.
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Proof The spectral decomposition must be trivial. O

Corollary 1.3.48 A regionally recurrent (Definition 1.3.14) Anosov diffeomor-
phism f: M — M of a compact connected manifold M is topologically mixing.

Remark 1.3.49 Since the suspension of an Anosov diffeomorphism is an Anosov
flow but not topologically mixing, Corollary 1.3.48 fails for flows.

It is not known whether Anosov diffeomorphisms are regionally recurrent.
However, Anosov flows need not be.
The spectral decomposition into mixing components (particularly Corollary 1.3.46)
plus Theorem 1.3.36 give the following strengthening of Theorem 1.3.33:

Theorem 1.3.50 Let A be a topologically transitive compact locally maximal
hyperbolic set for a diffeomorphism f. Then there exists N € N such that for
€ > 0 every finite collection of f-orbit segments is parameterized by an M-spaced
specification S whose spacing depends only on € and which is e-shadowed by a
point of A and €-shadowed by period-gN orbits for all ¢ > (M + L(S))/N.

The difference between the conclusion of this result and the specification property
is that here we do not have complete freedom in the choice of specification since the
periodicity of the permutation of mixing components may only allow transitions at
certain times.

1.3.6 Stability

Finally, we show that the shadowing property implies a robustness or persistence of
the entire orbit structure.

Definition 1.3.51 (Factor, Stability) A map g:N — N is a factor (or topological
factor) of f:M — M if there exists a surjective continuous map h:M — N such
that h o f = g o h. The map h is called a factor map, and a conjugacy if h is a
homeomorphism. A C” diffeomorphism is said to be fopologically stable if it is a
factor of any homeomorphism sufficiently close to it in the uniform (C°) topology.
A C" map f is said to be C" structurally stable (1 < m < r) if there exists a
neighborhood U of f in the C™ topology such that every map g € U is topologically
conjugate to f.

Theorem 1.3.52 (Bowen—Walters) Expansive homeomorphisms of compact met-
ric spaces with the shadowing property are topologically stable.

Proof Letf:X — X be an expansive homeomorphism with the shadowing property,
and denote by E an expansivity constant. For ¢ € (0,E/2) and ¢ < € choose
8 < € such as in the shadowing property. If g: X — X is a homeomorphism with
deo(f,g) < 8. Forevery y € X the §-pseudo-orbit n > g"(y is €’-shadowed by the
f-orbit of a (by expansivity unique) point x =: h(y) € X, i.e.,

d(f"(h(y)),g"(y)) < € foralln € Zandy € X. (1.4)
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In particular, d(h(y),y) < €, i.e., dco(h,1d) < €. Furthermore, f o h = h o g by
expansivity because (1.4) with y replaced by g(y) or n replaced by n + 1 gives

d(f"(h(g(»))).&"(g(»)) <€ and d(f"(f(h(1))).8"(8(»))) <€ foralln € Z.

Finally, to show continuity of & take n > 0 and note first that by expansivity there is
an N € N such that d(f"(x),f"(x")) < E for |n| < N = d(x,x’) < n. To apply this
with x = h(y) and X' = h(y’) note that by equicontinuity of {g" |n| < N} there
isay > Osuchthatd(y,y) <y = d(g"(y),g"(y)) < E —2¢€ for |n| < N and
hence

d(f"(h(»).f"((y))) = d(h(g" (), h(g"(})))
< d(h(g"(y)), g" ) +d(g" (), &" ') +d(g" ('), h(g"(H')))
<€ +(E—-2¢)+¢€ =E,

so d(h(y), h(y)) < n, as required. O

Remark 1.3.53 We have shown more than stated: 4 can be taken close to the identity
and is unique when so chosen. Moreover, if g is assumed expansive with expansivity
constant E' > 2¢’, then A is injective: h(x) = h(y) =

d(g" (), 8"(y) = d(g"(x). h(g" () +d(h(g"(x))). h(g"(¥))) + d(h(g"(¥)). &"(¥))
<e =d(f"(h(x))) /" (h(y)))=0 <€

<2 <E forne€Z,sox=y.

This presages structural stability (Theorem 1.4.6), where we obtain a conjugacy
rather than just a factor map.

The need to prove continuity at the end of the preceding argument is mirrored by
like needs in our next applications, and this motivates strengthening the Shadowing
Property to one that produces continuous families of orbits directly, the Shadowing
Theorem. We will prove it next, show how much it shortens the proof of the
preceding result, and give two further applications that could be derived from the
Shadowing Lemma [Wa78], [Bo78, p. 8] but follow more easily from the Shadowing
Theorem.

1.4 The Shadowing Theorem: Stability, Symbolic Models

1.4.1 The Shadowing Theorem

While the preceding section applied the Shadowing Lemma and its consequences,
we now present the stronger result from which it follows, and then applications
of that fact: we complement the result about topological stability by establishing
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structural stability, and we provide symbolic models for hyperbolic dynamical
systems.

Theorem 1.4.1 (Anosov Shadowing Theorem [Ka81, p. 57 “Theorem on fam-
ilies of e-trajectories”], [KaHa95, Theorem 18.1.3]) If M is a Riemannian
manifold, U C M open, f:U — M a C' embedding, then any compact hyperbolic
set A C U for f admits a neighborhood V and €y,8y),C > 0 such that if
gV —> M, do(f,g) < ey Yisatopological space, 6:Y — Y a homeomorphism,
a € C'(Y,V), and deo(ao, ga) := sup,ey d(ao(y), ga(y)) < € < €, then there is
ap e, A}) with Bo = g and deo(a, B) < Ce.
Moreover, B is locally unique: If dco(a, B) < 8o and Bo = gPB, then B = B.

To paraphrase, if g by is C%-close to a factor of o (by a), then g Maer) is actually a

factor of o by a B that is C%-close to .

Remark 1.4.2 As well as the Shadowing Lemma, the Anosov Closing Lemma (The-
orem 1.3.20) is a special case: take g = f, Y = Z/nZ,o(k) = k+ 1 (mod n).

Proof By the Whitney Embedding Theorem, M C R” for suitable n, so M = R"
without loss of generality: If the result is known for R”, embed M < R”", augment
U C M to a tubular neighborhood U’ C R", extend f and a C'-close g to U’ by the
same contraction normal to M, and apply the result. It gives a § consisting of full
orbits of the extension of g, so B(Y) C M because g contracts normally to M and
indeed, B(Y) C V, hence B(Y) C A3, because B(Y) consists of orbits.

We seek a fixed point of F: C°(Y,V) — C°(Y,R"), B+ go B oo~'. Represent
B € C°(Y,R") by the vector field vg := —a (a section of the bundle {(y, Ty R") |
y € Y} over Y). Then fixed points of F correspond to fixed points of

Fvi>glaoo ' +voo )y —a=:(DF* + H)(v)

lo
orof  T:vr —((DF*), —1d)"'H(v).

Lemma 1.4.3 There are a neighborhoodV O A, €y, € > 0, and R > 0 independent
of Y, g, a with | (DF%), — Id)7Y < Rwhendei(f, g) < €, deo(ao, gar) < €.

Proof For § > 0 there are ¢y > 0, u < 1 and a neighborhood V O A to which the

splitting ToM = E* @ E* extends (maybe not invariantly). If dc1 (f, g) < €o, then

Dg = (a’“‘ a”‘)with respect to E* @ E* with ||au|l ™", lasll < i llasdls lawll <
aMS aS‘Y

821, With respect to the decomposition into unstable and stable vector fields

((DFa)og)(y) = Dg|a(g*1(},))g(0_l(y)) SplitS into (DFa)O — (Izuu i:m) ,

where dco(a, gao™") < € and dei(f, g) < € imply

1+u

1+
2 '

Auu ! <
42l ;

Al < gty NAusll < e, [|Agsll <
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O
To show that T contracts, we control H. If k;(t) := H;(v + th) (components with
respect to the canonical basis in R") then k;(1) — k;(0) = fol K;(7) dr gives

1 1
H(v+h) —H(v) = (/ DH(v +th)dt) h= (/ DF*|  —DF| dt) h.
0 0 v+th 0
(1.5)
F% is C! since g is, so there is a §y such that ||DF°‘|v+th - DF“|O|| < 21R for |jv]|,

lv + Al < 8o, € [0,1]. Thus f|vi |, [loall < 8o = [ T(v1) = T(2)|| < 5 llv1 = va.
With 8 = min(é, §p) and € < 8/(2R) as in Lemma 1.4.3, do (a0, go) < € gives

- _ 0
ITOI < RIH©O)|| = Rllgoaoo™ ~a| = Rdco(@, geo™") = Rdco (a0, ga) < 5

so [lv]l < do = T < ITO)]| + IT(w) = TO)|| < %/241/2[lv]| <8, and T is
a 1/2-contraction on the closed ball of vector fields with ||v| < §y. It has a unique
fixed point vg by Proposition 1.6.3. This yields the desired 8. O

Remark 1.4.4 A slight variation of the argument would be to apply the Hyperbolic
Fixed-Point Theorem (Theorem 1.6.5) to F* [using Lemma 1.4.3 and (1.5)].

1.4.2 Stability

We now turn to Anosov diffeomorphisms to give our first application of the
Shadowing Theorem. Here local maximality is automatic. First we note that
Theorem 1.3.52 is much easier to prove from the Shadowing Theorem than from
the Shadowing Lemma:

Theorem 1.4.5 Anosov diffeomorphisms are topologically stable.

Proof An Anosov diffeomorphismf: M — M is a topological factor (via i := f8) of
a sufficiently C°-close homeomorphism g by Theorem 1.4.1 with A = U =V =
Y = M, 0 = g and o = Id. Note that § is close to the identity and unique among
such maps (i.e., g > B is Lipschitz-continuous at f in the C°-topology). O
If we could apply the same reasoning to g to get a factor map the other way around,
we would expect it to be the inverse of the % in this result, which would then be
a homeomorphism. This works if g is hyperbolic, which requires C!-closeness and
gives a profound strengthening of Proposition 1.3.11:

Theorem 1.4.6 (Strong C' Structural Stability of Hyperbolic Sets) Suppose A
is a compact hyperbolic set for a C' embedding f: U — M. Then there are

* a C'-neighborhood U of f,
* a C%-neighborhood V of the inclusion i of A in M (viewed as the identity)
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s amap h:U — C(A, M), g > hy with deo(hg, i) < Cdeo(f, g)*!
such that for each g € U

1. hg is a continuous embedding,
2. hg is the unigue map in'V for which g o hy = hgo f Mo
3. Ag:=hy(A) is a hyperbolic set for g.

Definition 1.4.7 The map g — A, is called the continuation of A.

Proof We use symmetry and uniqueness by applying the existence part of the
Shadowing Theorem 1.4.1 twice and the uniqueness part once.

The Shadowing Theorem with 0 < € < §p/2, Y = A,0 =f,a =1d Moo gives
a unique h, := B: A — V §p-near i with B o f = g o B which depends Lipschitz-
continuously on g. By Proposition 1.3.11 A" := B(A) is hyperbolic for g.

With € as before, Y = A, o’ =1d My interchange f and g (which we can do if
¢ is small enough) to obtain 8’ with 8’ o g = f o 8’ from the Shadowing Theorem.

B: A — A, is a homeomorphismsince k1= f' o f = a =1d e kof =fok,
while

d(a.k) = d(1d, B'o ) < d(1d,1d o) +d(Id 0B, B’ 0 ) = d(Id, B) +d(1d, B') < &

and « o f = f o «, so uniqueness in the Shadowing Theorem implies k = «. O

Corollary 1.4.8 Anosov diffeomorphisms are structurally stable. The conjugacy is
unique when chosen near the identity.

Remark 1.4.9 This proof of structural stability rests on the contraction principle
because so does that of the Shadowing Theorem. The fixed point of a contraction
depends smoothly on the contraction when this is meaningful in a given application,
and accordingly, the conjugacy given by structural stability of a hyperbolic C**!
embedding depends C* on the perturbation (in the C° topology for conjugacies). We
lost one derivative because the composition operator 8 — g o 8 o 0! in the proof
of the Shadowing Theorem is C¥ if the maps in question are C**!,

1.4.3 Markov Models

The final application of the Shadowing Theorem reflects the fact that symbolic
descriptions are an effective tool in hyperbolic dynamics. Specifically, we obtain
Markov approximations (and Markov partitions of hyperbolic Cantor sets).

21 The proof shows that g > (h,)~': A, — A is also Lipschitz-continuous in the C°-topology.
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Definition 1.4.10 The standard topology on the space
Qyv:=Nt:={0,... N—- 1} ={w = (®)icz wi €{0,....N—1}}

of two-sided sequences of N symbols is the product topology arising from the
discrete topology on {0, 1,...,N — 1}, i.e., generated by the cylinders

Coa ={lwey o, =afori=1,...k} (1.6)
for integers ny < ny < --- < n and numbers &y, ..., € {0,1,...,N — 1}. (kis
the rank of the cylinder.) Thus, 2y is a Cantor set.

The left shift
oN: 2y > 2y, oy(w) =0 =(...,0 .0, 0,...),

where @] = w,+1, is a one-to-one map and takes cylinders into cylinders. Thus it is
a homeomorphism of 2.

LetA = (a,;i)ﬁ\"].—:l() € {0, 1}{0-N=1* be an N x N matrix with binary entries a;;.
(We call this a 0-1 matrix.) Let

Qi ={w € 2y aww,y, = 1forneZ}.
The restriction
OoN [\QA =:0a

is called the fopological Markov chain determined by A or a subshift of finite type.
One-sided shifts of and of (or again just oy and 0,) are defined analogously on
QR :=NV:=1{0,...,N — 1} and are not invertible.

Theorem 1.4.11 (Markov Approximation) A compact locally maximal hyper-
bolic set A for a diffeomorphism f is a factor of a topological Markov chain oy4.
Furthermore for n > 0 one can choose A such that the images of the basic cylinders
Qi := 24 N C? under the semiconjugacy h: 24 — M have diameter less than 1.

Remark 1.4.12 One can easily arrange for the symbolic model to represent to any
desired accuracy the complexity of the orbit structure in a quantitative sense.’”
The definitive tool of this nature is Markov partitions; these provide symbolic
representations that represent the dynamical complexity of a hyperbolic dynamical
system precisely rather than arbitrarily closely.

Proof For C,e > 0 as in the Shadowing Theorem let o = {X,,...,Xy—1} be
an open cover of A with diam(X;) < €/2 and diam(f(X;)) < €/2 for all i. For

22That is, hiep(04) < o (f FA) + 7, see [KaHa95, Theorem 18.2.5].
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i,j€{0,...,N—1} define A; = 1if f(X;) N X; # @ and A;; = 0 otherwise. Pick
pi € X;. Then a: 24 — A, w — p,, is locally constant, hence continuous.

deo(aoy, fa) < e: the choice of p; and X; yields x € f(X,,) N X, and hence
d(@(04(@)).f@(@))) = d(Poyf(Pn)) < d(Puysx) + d(x.f (Pan)) < €/2 + €/2.

By the Shadowing Theorem the e-orbits e (o (w)) = p, are Ce-shadowed by
B(w) where B € C°(£24, A) and Bos = fB.

B is surjective: If x € A take @ € £24 such that f'(x) € X,,. Then x and B(w)
both Ce-shadow (& (0} (»)));ez and hence coincide by uniqueness.

Since d(B, ) < Ce, the images of the basic cylinders 2, = a~'(p;) under the
semiconjugacy B have diameter less than 2Ce. O

Remark 1.4.13 If B: 24 — A is injective then it is a homeomorphism (invariance
of domain), so A is a Cantor set. This holds for horseshoes but not for Anosov
diffeomorphisms. Indeed, in the context of Example 1.1.4 the preceding argument
gives a Markov partition when <7 is chosen to be an open partition. More generally:

Proposition 1.4.14 For hyperbolic Cantor sets A, the proof of Theorem 1.4.11
using an open partition .7 of A gives a Markov partition of A.

1.5 Basic Ergodic Theory of Hyperbolic Sets

1.5.1 Ergodicity and Related Notions

An f-invariant probability measure u is said to be ergodic (or f is said to be ergodic
with respect to p) if every f-invariant measurable set is either a null set or the
complement of one (Definition 1.7.36). Equivalently, every bounded measurable
f-invariant function ¢ is constant a.e. (Proposition 1.7.38): ¢ of = ¢ = ¢ = const.
If this holds for all iterates f”, then f is said to be fotally ergodic.

Since the time-averages or Birkhoff averages 1/n Z;:é @ of' converge a.e. (Birk-
hoff Ergodic Theorem 1.7.20) and in L?* (von Neumann Ergodic Theorem 1.7.33),
ergodicity is equivalent to time averages coinciding with space averages (/[ ¢),
Boltzmann’s Fundamental Postulate. The motivation is that such functions ¢
represent observables by associating to each state of the system (each point in
the domain of the dynamical system) a number that might be the result of an
experimental measurement. We note that in this context we can use all L” spaces
(p € [1, o0]) interchangeably. Also, if one takes the probabilistic point of view, then
random variable is the prevailing term for a real-valued function, since we study
probability spaces.

A simple nontrivial example of an ergodic transformation is x — x + «o
(mod 1) on S' = R/Z for irrational o (Kronecker—Weyl Equidistribution Theorem,
Proposition 1.7.68). The preceding examples are also ergodic (with respect to the
area measure), but unlike an irrational circle rotation, they have stronger stochastic
properties, and we aim to show the mechanisms for this. A colloquial motivation for
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these stronger properties is that if ¢ represents the sugar concentration in a cup with
a lump of sugar, then rotation of the cup does little to mix (and dissolve) the sugar.

Definition 1.5.1 An f-invariant probability measure is said to be mixing (Defini-
tion 1.7.118) if two observables become asymptotically independent or uncorrelated
when viewed as random variables:

/wof"¢—>/<p/¢ forall ¢,y e L2 (1.7)
n—>oo
Equivalently (see also Proposition 1.7.140),

pof” T const. for all ¢ el (1.8)

With test function ¥ = 1 in (1.7), the left-hand side is independent of n, so the
constant on the right-hand side of (1.8) is f Q.

Definition 1.5.2 We say that p is N-mixing or multiply mixing if (with ny := 0)

N L2-weakly N
H@i o f™ n/%dﬂ for ¢; € L™.
i=1 i=1

ni—nj—1—>00

Made explicit with test function ¢y, this means that N + 1 observables become
asymptotically independent. Here, the left-hand side is parametrized by Z", and
the assertion can be checked by considering sequences ¥, = ]_[fv=1 @; o f" with

weakl:
ni(n) — nj—1(n) —— oo and ¥, = Y; then ¥ is an accumulation point, and
n—>oo

. . . weakly oo
we describe these as “weak accumulation points ¥, — i of ]_[f\’: L @i o f" with

n; — ni—; — 00.” N-mixing means that for ¢; € L* there is only one weak
n—>o0

. . weakly N . . ..
accumulation point ¥, — ¥ of ]_[i=1 @; o f" with n; — nj_; —— 00, and it is
n—>o0

[TL, [ eidp.

Proposition 1.5.3 An f-invariant probability measure p is N-mixing if and only if
weakly

given any ¢; € L*(j), any weak accumulation point W, — ¥ of ]_[fv=1 @; o fM
(with n; — nj_y ———> 00) is constant.
n—>oo

Proof “Only if” is clear. To get “if”, we recursively verify that the constant is
correct.

First, take ¢; = 1 for i # 1, including taking the test function ¢y = 1. Then the
weak-accumulation statement becomes

/<P1 = /901 oft-1— const./l = const.,
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weakl:
so the constant is [ ¢, for each such subsequence, and thus ¢; o /" = f ¢1. By
weakl. weakl.
symmetry, ¢; o f" — [ ¢; for all i. In particular, g o f>™" ——— [y,
ny—n1—>00

Supposing next that ¢; = 1 for i ¢ {1, 2}, this implies

/‘/’1 of grof™-1 =/<!’2°f"2_"1 2 E— (/<P2)<,01 =/<P1/<,02,

weakly

SO @2 0 f™ @ o f™ p—— J @1 [ ¢ with like statements for any pair of the ;.

This can be continued. O
Irrational rotations have none of these mixing properties, but the toral automor-
phisms above do, and the Hopf argument yields them.
Hyperbolic dynamical systems enjoy even stronger stochastic properties, such
as the Kolmogorov property and being a Bernoulli system [Ka94, Theorem 3.6],
[OrWe98] (Definition 1.7.116). We limit ourselves here to showing how these
mixing properties can be established with the Hopf argument.

1.5.2 The Hopf Argument

This section presents the Hopf argument for ergodicity, and we will see that it yields
mixing. In fairly broad generality it can indeed establish multiple mixing, though
that requires additional steps. For example, in the case of volume-preserving Anosov
diffeomorphisms, these would be to use the Hopf argument to establish mixing,
deduce that the stable partition is ergodic, then apply the one-sided Hopf argument
to obtain multiple mixing. While it is useful to keep these steps in mind, we can
summarize them in a single theorem (using notations and notions introduced below).

Theorem 1.5.4 If (X, i) is a metric Borel probability space, |u positive on open
sets, f: X — X a continuous invertible j-preserving transformation such that W* is
absolutely continuous, W* and W* define a local product structure, and

@ € L*(w) f-invariant, W*-subordinate and W*-subordinate = ¢ = const.

Then f is multiply mixing.
The stable partition of f is defined by

W) =lyeX d(f"(0)./" () ——0}. (1.9)

Definition 1.5.5 ¢:X — R is subordinate to W* or W*-saturated if there is a set
G C X with u(G) = 1 such thatx,y € G and y € W*(x) imply ¢(x) = ¢(y).
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Theorem 1.5.6 ([Co07, Theorem 2], [Co16, Exercise 4.6]) If X is a metric space,
f:X — X, 4 an f-invariant Borel probability measure, ¢; € L*(1), then any weak

weakl:
accumulation point \, = v oof ]_[f\;l @; o f is W*-subordinate.
Proposition 1.5.3 gives a strong immediate consequence of Theorem 1.5.6:

Corollary 1.5.7 f is multiply mixing if every W*-subordinate ¢ € L?* is constant
a.e.

Lz—wcmkly

Proof of Theorem 1.5.6 (Coudene) By the Banach—Saks Lemma v, —— i has
n—>oo

. - 2 .
a subsequence for which | ZZ:%) V¥, —> Y. Note that we gave up a little by
n—>oQo
passing to a subsequence and to a Birkhoff average rather than a limit but gained 1.>-
L L
convergence rather than weak convergence. Furthermore, ¥, —— ¥ implies that
n—>oo
. . a.e. 23 . . . .
there is a subsequence with ¥, H—og Y.~ Again, we give up a little by passing to a

subsequence but “upgrade” to pointwise convergence. Thus, we have subsequences
my, n;, With

1 m—1
a.e
¥ :m E %lk oo 14
I =0

We passed to pointwise convergence because this is W*-subordinate for bounded
uniformly continuous ¢;: prfj = @i(f"(x;)) forj = 1,2 with x, € W¥(x;), then

N N N
[ [ _ l(pl _ l) / 0
Pix Pin = Pio\Pyr — Pa P Y
i=1 i=1 =1 i<t —0 i>{
I—oc0
bounded bounded

Finally, L?-approximate bounded L? functions ¢? by bounded uniformly continuous
functions ¢f within 1/k and this time let pfj := ¢} o f")1 10 find that weak limits (of
subsequences if necessary) satisfy

N N
ly = v | < tim | ][k — [ Pbl
=00 i i=1

IA

N
[ [ 1 1
2 [ TIpidles 1Pt = piolla x [ TIPiglloo ——— 0

(=1 i<t —>0 i>{
k—>00

bounded bounded

IA

Jj—1
BIfn; > nj—y and n > n; = ||y, — Y|l < 21/, then ¥, = ¥, + Zl Vi — Wn; converges a.e.
=
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s0, passing to a subsequence, Y = Y, which is hence W*-subordinate. O
If f is invertible, then we can define

Wex) :={yeX d(F@).f7(y) i 05,

and together with a like conclusion about W”-subordination, Theorem 1.5.6 yields
mixing. Getting W*-subordination requires a slightly subtle argument.

Theorem 1.5.8 ([Co07, Theorem 3]) If X is a metric space, f: X — X invertible,
W an f-invariant Borel probability measure and ¢ € L*(n), then any weak
accumulation point of U]’Z(qo) (see Definition 1.7.31) is subordinate to W* and to
w.

Proof (Babillot—Coudeéne) If ¢ 1 I C L?(u), the (closed) subspace of functions

subordinate to W, and U]'Z"go e ¥, then Theorem 1.5.6 applied to f~!

i—00
. . —n; weakl
gives a subsequence n;,, — oo with Ufn“lp =y e I so (Yyy) =

k—00
limk_,oo(U;"‘w,l//) = limg 0@, Uf_n"‘W) = {p,¥') = 0,ie, ¥ = 0, so
weakly
Uip — 0.
! n—»00

weakly

For an arbitrary ¢ = ¢; + ¢+ € I @ I+ = L? we then have U;‘qol — 0, s0
n—o0
the accumulation points of Uf¢ are accumulation points of U7, € I. O

Corollary 1.5.9 Suppose X is a metric space, f: X — X invertible, | an f-invariant
Borel probability measure. If

¢ € L*(w) f-invariant, W*-subordinate and W"-subordinate = ¢ = const.,

then f is mixing.

1.5.3 Mixing from the Hopf Argument

We begin with a “traditional” use of the Hopf argument by applying it to the
hyperbolic toral automorphisms of Examples 1.1.1 and 1.1.2 and using both
foliations in the process. This reflects the classical use of the Hopf argument to
get ergodicity, except that Corollary 1.5.9 yields mixing instead.

Proposition 1.5.10 If A € GL(m, Z) is hyperbolic, then the induced automorphism
F4 of T™ is mixing with respect to Lebesgue measure (cf. Proposition 1.7.95).

Proof For g € T the stable subspace W*(q) at g in (1.9) is W*(q) = n(E~ + q),
where E~ is the contracting subspace of A and n:R"™ — T™ is the projection.
Likewise, W'(q) = n(E1 + q).
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To apply Corollary 1.5.9 consider a ¢ € L? for which there is a set G C T" of
measure 1 with x,y € G,y € W*(x) = ¢(x) = ¢(y) andx,y € G,y € W"(x) =
@(x) = ¢(y). If we can conclude that ¢ = const., then Corollary 1.5.9 implies
mixing.

Let D* C E* be small disks and ¢ € T™. Then ¢ has a neighborhood that is up
to rotation and translation of the form D~ x D1, and

C:=GN (D~ xD")

has full Lebesgue measure in D™ x D, i.e., if u* denotes the normalized Lebesgue
measure on D* and u = u”xu ™, then fD_ «p+ Xc dp = 1.By the Fubini Theorem

n-ae

1=/ Xcdu=/ / xedutdu, so/ yelu,ydut == 1.
D—xDt p— Jp+ D+

Fix such a ug € D™, and note that by construction C~ := D~ x (C N ({ug} x DT))
has full Lebesgue measure. If (u, v), (', v') € C~ N C, a set of full measure, then

@@, v) = @(ug, v) = @(uo,v') = (', v").

This applies to any such neighborhood of an arbitrary g € T", so ¢ = const. O
This is how Hopf proved ergodicity of geodesic flows of surfaces of negative
curvature. The method was extended to geodesic flows of higher-dimensional
manifolds by Anosov. The pertinent discrete-time counterpart are Anosov diffeo-
morphisms, which include the F4 above. As the preceding argument shows, higher-
dimensionality does not directly affect the intrinsic difficulty of the argument.
The formidable barrier that Hopf faced and Anosov overcame is related to the
use of the Fubini Theorem above—except in Hopf’s context, where local product
neighborhoods are indeed diffeomorphic to euclidean patches, one needs to establish
the absolute continuity of the invariant foliations to apply the Fubini argument
[Br02, Chap. 6]. It yields

Proposition 1.5.11 Volume-preserving Anosov diffeomorphisms are mixing.

1.5.4 Multiple Mixing from the One-Sided Hopf Argument

The contracting lines in Example 1.1.1 have irrational slope, so each intersects the
circle S' x{0} C S'xS§' = T? at irrational intervals; the intersections are the orbit of
an irrational rotation. Ergodicity of irrational rotations (Proposition 1.7.68) implies
that the stable partition W* is ergodic, and the “one-sided” Corollary 1.5.7 gives

Proposition 1.5.12 The map of T? induced by (? i) is multiply mixing.
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Remark 1.5.13 Simple Fourier analysis also establishes this (see Proposi-
tion 1.7.95), but while linearity is helpful for the Hopf argument, it is indispensable
for using Fourier analysis. Indeed, the stable partition of volume-preserving Anosov
diffeomorphisms is ergodic [An69, Theorem 11], so volume is multiply mixing by
Corollary 1.5.7. Likewise, the stable partition for a hyperbolic diffeomorphism is
ergodic for the Margulis measure of maximal entropy [Ma70, Theorem 2], so this
measure is also multiply mixing. These results follow from those in this section.>*
Our final simple application uses that the contracting lines of the partially hyperbolic
automorphism in Example 1.1.3 form an ergodic partition because they are gener-
ated by a vector whose components are rationally independent. The flow generated
by this vector is ergodic analogously to the way an irrational circle rotation is, and
its orbits are the stable sets. Therefore, Corollary 1.5.7 applies here as well:

Proposition 1.5.14 The automorphism in Example 1.1.3 is multiply mixing.

The strong conclusion of Corollary 1.5.7 can be obtained in reasonable generality.
It turns out that in the original context (of uniformly hyperbolic dynamical systems)
in which the Hopf argument applies in the manner shown in Sect. 1.5.3, one can,
in fact, apply Corollary 1.5.7. This requires a careful description of the needed
properties of W* and W*.

Definition 1.5.15 Let X be a metric space, f: X — X invertible, and p an f-invariant
ergodic Borel probability measure. We say that V is a product set if

* there are ry, r, > O such thatx,y € V = #(W; (x) N W} (y)) = 1, where

W, () :=1{y e W) d(f"(x).f"(y) <rsforre N},
Wi () :={ye W'x) d(f"x).f"(y) = ruforr € No},

* sup,cy diamf™"(W} (x)) —= 0, where diam(E) := sup{d(x,y) x,y € E}.

In this case we denote by [x, y] the unique element of W} (x) N W} (y).
We say that W* is absolutely continuous on V (with respect to w) if for each
x € V there are measures 1 on W} (x) and p; on W} (x) such that u(N) = 0 =

(N = 0and [ o = [y ) [y o ¢ A dpi(x) for g € L ().

Theorem 1.5.16 ([CoHaTr]) Let X be a metric space, f:X — X invertible, and
an f-invariant ergodic Borel probability measure. If W* is absolutely continuous on
a product set V with u(f~'(V) N'V) > 0, then W* is ergodic.

Corollary 1.5.17 Let X be a metric space, . a Borel probability measure, f: X —
X p-preserving invertible, " ergodic for all n € N, W* absolutely continuous on a
product set V with u(V) > 0. Then f is multiply mixing.

241 the case of volume, once one establishes absolute continuity; this is automatic for the Margulis
measure.
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Proof The Poincaré Recurrence Theorem 1.7.11 produces an N € N such that
w(f~N(V) N V) > 0. Apply Theorem 1.5.16 to £V, then Corollary 1.5.7 to f. O

Remark 1.5.18 This applies to volume-preserving Anosov diffeomorphisms [Br02,
Chap. 6] but does not use exponential behavior, differentiability or compactness.

Corollary 1.5.19 Volume-preserving Anosov diffeomorphisms are multiply mixing.

Theorem 1.5.20 The Liouville measure for dispersing billiards (Example 1.1.5)
and for polygonal billiards with pockets (Example 1.1.6) is multiply mixing.

Proof For dispersing billiards, Sinai’s Fundamental Theorem of the theory of
dispersing billiards [ChMa06, Theorem 5.70] provides product sets [ChMa06,
Proposition 7.81] with absolutely continuous holonomies [ChMa06, Theorem 5.42],
which implies the absolute continuity property we use. Corollary 1.5.9 then
establishes mixing and hence total ergodicity, which by Corollary 1.5.17 implies
multiple mixing. This also works for polygonal billiards with pockets [ChTr98,
Theorem 4.1]. |

Theorem 1.5.21 The Katok map (Example 1.1.7) is multiply mixing.

Proof 1Tt is totally ergodic and the stable and unstable partitions are homeomorphic

to those of F (2 1) (Example 1.1.7), so there is a product neighborhood, which hence
11
has positive measure. Absolute continuity on this neighborhood follows from Pesin

theory, so we can apply Corollary 1.5.17. O
The first step towards proving Theorem 1.5.16 is the following.

Lemma 1.5.22 Absolute continuity of W' on Vs := f~1(V) NV implies absolute
continuity of T: Vy — X, x = T(x) := [f(x),x], i.e., Tupt < L.

Proof If N C Vy and w(N) = 0, then there is a W} -saturated null set Ny such
that for z ¢ Ny we have fo“(z) xv du* = 0 as well as, by f-invariance of y and

absolute continuity, [} (o XT(v) dps* = 0. Then

oM = [ [ o dutaudeo + [ grondu =0,
Wi @) ~Nw J Wig. (x) Nw

=/ xrv dp - —
0
Next, we adapt an idea of Thouvenot [Co16, Exercise 4.7]: d(f " (x),f (T (x))) —
0 pointwise on Vy N T~'V;, hence by the Egorov Theorem uniformly on some U C

f_n oT Ofn Onf_"(U) pointwise

Ve N T~V with u(U) > 0. Then T, := { —— Id, and

Id elsewhere 7~
dT, drT.
T,, has Radon—-Nikodym derivative g, := [ P *,u] = [ d*u] of" on f~(U) (and
2 2

1 elsewhere); this is uniformly integrable, i.e., sup / gndp — 0.
neN J{g,>M} M—o0
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Lemma 1.5.23 Let X be a metric space with probability measure ju, T,,: X — X
dT,
such that T, — Id a.e., Tyupt < WU, and g, := [ J *M] is uniformly integrable.
"

Then || o T, — ¢||1 —— Oforall ¢ € L*. (|| - ||, denotes the LP-norm.)
n—o0

Proof If ¢ is continuous with | ¥/ ||cc < ||¢||lco, then

leoTh—¢li <l —v)oTuli + IV o Th =¥l + ¥ — ¢l

and || o T, — ¥|li — O by the Bounded Convergence Theorem. Take € > O,
M € R with f{gn>M} gndpt < €/4||¢|loo (uniform integrability), ¥ such that

IV — ol < &2 Then (¢ — ) o Tl = /w — glgud < M|y — ol +
2¢lloo / andii. .
gn>M

Proof of Theorem 1.5.16 Let ¢ € L® be Wi-saturated. We show ¢ is f-invariant. If
€ > 0, then T, (x) € Wi(f(x)) for all x € f~"(U) implies that

w(F @ ndlgor ol > ) = n(rW N {lpo Tu— ¢l > €}) >0

=B
(1.10)
by Lemma 1.5.23. The Mean Ergodic Theorem and ergodicity of f imply
1 n—1 ) 2 1 n—1 ) 2
Z xuof<—— u(U), hence Z xuof< xg —— u(U) xs,
n =0 n—00 n —o n—>o00

n—1
.10 1 n
00 e u(f W Nn{lgoT,—g| > 6’}) — > u(U) u(B), and

n—00
k=0

w(B) = 0 because u(U) > 0. Since € is arbitrary, ¢ is f-invariant, hence constant
a.e. O

1.6 Contractions and Invariant Manifolds

1.6.1 The Contraction-Mapping Principle

The dynamics of contractions is untypically simple for hyperbolic dynamical
systems but useful as a device in auxiliary spaces. Here, a map f: X — X is said
to be contracting if there exists A < 1 such that for any x,y € X

d(f().f(y) = Ad(x.y). (1.11)
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These maps exhibit both stability of equilibria in the sense of ordinary differential
equations and in the sense of persistence under perturbation of the dynamical
system. All orbits tend to a fixed point, and changing the contracting map slightly
does not move the fixed point much. Some pertinent observations are cast in terms
of a regularity notion that extends the one of Lipschitz continuity in a natural way.

Definition 1.6.1 (Lipschitz and Holder Regularity) Let (X,d), (Y, d) be metric
spaces. A map f: X — Y is said to be Lipschitz (continuous) if there exists C > 0
such that d(x,y) < € implies d(f(x),f(y)) < C(d(x,y)), in which case f is said to
be C-Lipschitz, and the Lipschitz constant L(f) (or Lip(f)) of f is defined by

(). ()
L = .
D= )

We say that f is bi-Lipschitz if it is Lipschitz and has a Lipschitz inverse.

A map f: X — Y is said to be Holder-continuous with exponent o, or a-Holder,
if there exist C, € > 0 such that d(x,y) < € implies d(f(x),f(y)) < C(d(x,y))*. A
Holder-continuous map with Holder-continuous inverse is said to be bi-Holder.

Remark 1.6.2 This notion is both natural and useful in the context of hyperbolic
dynamical systems because it corresponds to saying that if d(x,y) tends to O
exponentially (as a function of some parameter) then so does d(f(x),f(y)).

Proposition 1.6.3 (Contraction-Mapping Principle) Let X be a complete metric
space andf: X — X a contracting map. Then f has a unique fixed point ¢, and under
the action of iterates of f all points converge exponentially to ¢.

Indeed, the error at any step can be estimated in terms of the size of the step:

dp) < L dfw). (1.12)

Suppose X, Y are metric spaces, X complete, f:X x Y — X, A € (0, 1) such that
d(f,(x),f,(x)) < Ad(x,x') forall x,x' € X,y € Y. Denote the unique fixed point of
fy by @y. Then

L d(gy. o) < |1, d(fy (0y) S (0y).

2. If f is continuous then so is y — @,.

3. If a € (0, 1] and f is a-Holder-continuous in y,> then so is ¢.

4. If X,Y are open subsets of Banach spaces and f is C', then so is y — @y, with
derivative

S —1
a Df|(}’s‘ﬂy)) ODXfI(y,%)’

where the superscript denotes the differential in the respective space.

SUniformly in x, i.e., 3 C € Rsuch that d(f;(x),fy(x)) < Cd(y,y)* forallx € X,y,y €Y.
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5. If A €(0,1) and

d(f (). fr () = Amax{d(x,x'), d(y.y)}

forallx,x' € X, y,y' €Y, then d(py, py) < Ad(y,y).

Proof {f"(x)}nen is a Cauchy sequence because if m > n then

m—n—1 A”
d(f" @, @) < Y A0 < T A, — 0.

k=0 <A A(f(x).0)
(1.13)

Then ¢ := lim f"(x) = lim f""(x) = lim f(f"(x)) = f(lim /")) = f(p)
exists since X is complete. (1.11) implies uniqueness,”® and letting m — oo in (1.13)
gives

AV!
@) = A,

This proves exponential convergence and for n = 0 gives (1.12).

1.: Apply (1.12) with x = @y = fyy (¢y).

2. and 3. follow from 1., and 4. from the Implicit-Function Theorem.

To obtain 5., take x = ¢, = f;(¢,) and x’ = ¢y = f/(¢y) in the assumption and
note that the maximum on the right-hand side must be d(y,y’). O

Remark 1.6.4 This in particular implies continuous dependence of the fixed point
on the contraction when one makes C'-perturbations.

The robustness of the asymptotic behavior of contractions in Proposition 1.6.3 has a
counterpart for hyperbolic maps, even when they are perturbed so as to be nonlinear.

Theorem 1.6.5 (Hyperbolic Fixed-Point Theorem) If A:E — E is a bounded
linear map of a Banach space E and 1d —A is invertible, then a continuous map
F:E — E has a unique fixed point ¢ if A\:=L(F—A)|(Id—A)~"|| < 1. Furthermore,
¢ depends continuously on F, and ||¢|| < 111 HIF©O)].

Remark 1.6.6 Boundedness of (Id—A)~! follows from the Open-Mapping Theo-
rem.

Proof ¢ is a solution of (F — A)(x) = x — A(x) = (Id —A)x, hence a fixed point of
the A-contraction (F — A)(Id —A)~'. Apply (1.12) with x = 0. O
This is analogous to the persistence of the fixed point of a contraction under pertur-
bations, but a hyperbolic fixed point is harder to find: The fixed point of a contraction
is the limit of the forward orbit of any initial condition. Proposition 1.6.25 shows
that this fails for hyperbolic maps except with a lucky starting point.

f() =x=y=uxory#f(y).
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1.6.2 The Spectrum of a Linear Map

If a linear transformation of a finite-dimensional vector space has no eigenvalues
on the unit circle, then the space is the direct sum of an expanding subspace (the
sum of the generalized eigenspaces for eigenvalues outside of the unit circle) and a
contracting subspace (the sum of the generalized eigenspaces for eigenvalues inside
of the unit circle). The purpose of this subsection and the next is to prove the same
for transformations of Banach spaces (Theorem 1.6.20 below).

While this involves interesting functional analysis that a dynamicist may not
otherwise encounter frequently, it is also a good option for the reader to take this
conclusion of Theorem 1.6.20 as a definition of hyperbolicity and skip ahead to
Sect. 1.6.4.

We now look at a similarly general context that combines contraction and
expansion. Here a linear structure helps separate the two, so the natural generality
in which this is effective is a Banach space.

It is convenient to consider Banach spaces over the complex numbers. The results
we obtain in this context can be used for real Banach spaces E by passing to the
complexification Ec (i.e., the space E ® C obtained by allowing complex scalars)
and then suitably restricting attention to the real part.

B(z, r) denotes the ball of radius r around z in C, and S(z, r) its boundary.

Definition 1.6.7 Let E be a Banach space and A: E — E be a bounded linear map,
i.e., the norm [|A|| :=supy,=; [|Av]| of A is finite. The resolvent set R(A) of A is the
setof A € C for which A Id —A has bounded inverse R4 (1), called the resolvent of A.
The spectral radius r(A) of A is defined by r(A) :=sup{|A| A € spA:=C~R(A)}.
We call sp A the spectrum of A.

e The point spectrum consists of the eigenvalues of A (ker(A — A1Id) is the
corresponding eigenspace).

* The continuous spectrumis {A € spA A—AId is injective and (A—AId)(E) =
E}.

* The residual spectrumis {A € spA A—AId is injective and (A—A Id)(E) # E}.

Remark 1.6.8 If E is finite-dimensional, then sp A is the set of eigenvalues: these
are those A for which A — A 1d is not injective, which is also the set of A for which
A — A1d is not surjective. Invertibility is the only issue in this context because all
linear maps between finite-dimensional spaces are bounded. By the Open Mapping
Theorem a bounded linear bijection between Banach spaces has bounded inverse,
)

spA={L€C AlId—Aisnotinjective} U{AL € C AId—A is not surjective}.

Accordingly, the three items in Definition 1.6.7 are a decomposition of sp A.
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o0 .

Lemma 1.6.9 r(A) < |[A[: |A[>]AlI=A ¢ spA.Ra(V) = Y %, (Laurent
=0

series).

n—l1 n—l A1+l A"
Proof (\1d A)ZAJrl th e ==l ——d O
The spectral rad1us pr0v1des an asymptotlcally sharp bound in a sense made explicit
in Proposition 1.6.11. This follows from a widely useful elementary fact.

Proposition 1.6.10 (Subadditive Sequences) Ifthere exist k € Ny and L > 0 such
that Gytn < ap + aptx + L for allm,n € N then lim, oo " € R U {—00} exists.

Proof Let L' :=ay +2L. Then apyty < ap+ antx +L < ay+a, + L. In particular,
< amtatl om0 gy forn € NLIfb > lim,_ oo @ and
6 > 0 take l > 2L /€ such that “’ <b.Ifn= zl + r > max (l Zmax,<1a,/e) with
0<r<I then ” < ’“‘+“;+’L 5 “Up 4 < btes0limne® <b+e O
Proposition 1.6.11 (Gelfand Spectral Radius Formula) r(A)=lim,_ o ||A"]"/".

Proof Since a, := log ||A"|| is subadditive, the limit exists by Proposition 1.6.10.
By Lemma 1.6.9 the domain of convergence of the Laurent series Y o) A'/A™! of
RA(:) is {|A| > r(A)} while by the root test it is {|A| > lim,_ oo ||A”]|'/"}. O

Lemma 1.6.12 If A is a bounded linear operator, then R(A) is the natural domain
of analyticity of Rs(:). Thus, R(A) is open, and sp A is compact by Lemma 1.6.9.

Proof We show analyticity on R(A) and that d(A,spA) > ||[(Ra(A)|| " on R(A); this

implies openness and ||[R4(1)|| T 00, hence the claim.

If A € RA) and [u| < [[RaM)]7, then [uRa(M)| < 1, so T(n) :=

Z ' (Ra(X))™! (Neumann series for the inverse of (A — ) [d—A = (AId—A) —

i=0

1 1d) converges. Then

(A= @) d=A)T() = Ad=A)T() — uT(R) =) _(LRA(V)) — (R4 (1) = 1d
i=0

shows that A — u € R(A) and Ry (A — ) = T(u) is analytic at u = 0. O

Remark 1.6.13 (Resolvent Equation) For pu, A € R(A), multiplying

(n1d—A)(AId—=A)[Rs(A) = Ra(w)] = (n1d—A) — (A1d—A) = (n — A)1d
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by Ra(A)Ra(u) gives the resolvent equation

Ra(A) — Ra(p) = (1 — MRA(A)Ra (). (1.14)

Proposition 1.6.14 spA # & unless E = {0}.

Proof 1f spA = @, then R, is entire. It is bounded on B(0, 2||A||) by compactness,
and ||[R4(A)|| < ||IA||7! for |A| > 2||A| because

A 1
1A 1d=A)v]f = JAdd — o]l = 2[|A] - [lv]].

Being bounded and entire, Ry is constant by the Liouville Theorem, which implies
that Id = 0, hence E = {0}. O
The Liouville Theorem applies to this situation by noticing that for a bounded linear
functional f € E*, f o R4 is an entire bounded scalar function and hence constant.
If A is diagonal, then clearly ||A|| = r(A). The following fact is useful for
understanding the dynamics of linear maps even if they cannot be diagonalized.

Proposition 1.6.15 For every § > 0 there exists an equivalent norm on E with
respect to which ||A|| < r(A) + 8. This is called an adapted or Lyapunov norm.
n—1
Proof Take n such that ||A"|| < (r(A) 4 6)" and |v|:= Z |A"v||(r(A) 4 8) . Then
i=0

3 Al A )1
Av] ; AT [ (r(A) + §) B (r(A)+8)[1 LAl o) +8)7 ”v”]
o= o n—1 i P
vl Zl |Aiv]||(r(A) + 8)~F > imo 1A |I(r(A) + 6)
i=0 <1

|

Remark 1.6.16 One can conclude from this that for any equivalent norm and for
every € > 0 there exists C, such that [|[A"v] < Cc(r(A) + €)"||v| for any v € R™.

Corollary 1.6.17 If sp(A) C B(0, 1), then there is an equivalent norm on E such
that A is a contraction with respect to the metric generated by that norm.

Proof r(A) < 1 by compactness; apply Proposition 1.6.15 with0 < § < 1 —r(A).O
The concept of exponential convergence does not depend on a particular choice of
a norm. Thus Proposition 1.6.3 and Corollary 1.6.17 imply

Corollary 1.6.18 If sp(A) C B(0, 1), then the positive iterates of every point
converge exponentially to the origin. If in addition A is invertible map, then negative
iterates of every point go to infinity exponentially.
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1.6.3 Hpyperbolic Linear Maps

Next, we look at fixed point where one sees contraction and expansion.

Definition 1.6.19 A bounded linear map A of a Banach space E is said to be
hyperbolic if spA N S(0,1) = @. Itis said to be (£, £T)-hyperbolic if 0 < £~ <
l<{TandspAN{zeC { <|7<{t}=a.

Theorem 1.6.20 If E is a Banach space, A: E — E continuous linear, y:=S(0,r) C
R(A), then there are 0 < £~ < r < ¥ suchthat {z € C £~ < |z| < £t} C R(A),
AA) :=r(A7) < £ and u(A) :=1/r(A™! rE+) > {1 (notation as in (2) below),
ie, (A7) = OA™) and ||(AN)™|| = O(u™). In particular; if A is hyperbolic
(r=1), then there are 0 < {~ < 1 < £ such that A is ({~, £LT)-hyperbolic.

If y C Cis a smooth curve bounding a topological disk D and spA Ny = @,
then there are linear subspaces E~ and E of E such that

l. E=E ®ET,
2. AE~ C E~ (with equality if 0 ¢ spA), AEY = E*; we write A* ::AF .
E

3. spA” =sp  A:=spAND,spAT =spT A:=spA~D.
Remark 1.6.21 We used “big O” notation: f(n) = O(g(n)) : < ];Y:l; is bounded.

Remark 1.6.22 1f £~ < 1 < {7, then these conditions in turn imply that A is
hyperbolic, so this is a characterization of hyperbolicity.

If ET are both nontrivial, then the spectrum is contained in 2 annuli. This result
readily generalizes to larger numbers of annuli; for instance, if 0 < r; < r, and
spA N S(0,r;) = @, then spA lies in the union of 3 annuli; the corresponding
subspaces are E_, Ejl' NE_,and E;'; . Linear maps for which all three subspaces in
this decomposition are nontrivial are said to be partially hyperbolicif ry <1 < r;.

As in Corollary 1.6.17, there is an adapted norm (or Lyapunov norm) associated
with such (£7,£"), i.e., anorm | - | equivalent to the given one and such that

JAT] < €5 1A < 1/¢% and [v™ + vF| = max([v”|, [vt]) for vE € EE
(1.15)

(Take Lyapunov norms | - | for A* and [v™ 4 v*|:=max(jv™|, |[vF]) forvE € EE))

Definition 1.6.23 If {~ < 1 < {1, then E~ is called the contracting subspace and
E™ the expanding subspace.

Remark 1.6.24 The expanding subspace is not characterized by the fact that vectors
in it expand under iterates of the map—all vectors outside the contracting subspace
are expanded by a sufficiently large iterate of the map. The characterization of E*
is given by the description of Remark 1.6.22, namely that preimages contract.

Proof of Theorem 1.6.20 Compactness of spA implies the first assertions and the
existence of a smooth Jordan curve y’ with y inside it and sp A ~ D outside it.
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1 1
Claim ™~ := ,/RA(/\) dA = / R4 (M) dA is a projection.
2wi J, 2mi J,r

1 1 1 if A is insid
proof [T =0 R o e gyyso
2wi Jo p—A 0 if A is outside ¢

1 1
L / Ry(ydr- / Ra(w) de
27 y 27l v

- <271n')2/y/y, Ra(M)Ra(p) dpedr

_ RA(A;:I)?LA(M) by (1.14)

= (2;)2[/VRA()L)/V/M1A(1M dA—/y/RA(u)/VMiAdA du]

=2mi since A€y inside y’ =0 since 1€y’ outside y
1 —
2mi J,

|

—

nt :=1d —n~ is then also a projection; take E* := 7% (E).

2. A(ET) = A(n*(E)) = n*(A(E)) C n*(E) = E* because A commutes with
R4(-) and hence with 7%. AET = E* because below we show that 0 ¢ spA™.

3. E=E @E" andA(E*) C E* givespA = spA~ @At =spA~ UspAT,so

we show spA~ C Dand spAT ND = @.

1 1
IfR4(A) := ori / 5 MRA(M) du then (1.14) gives
¥

1 1d T if A is outside y,
mmmwmz./mw— du =1y _ e
27i J, H—A 7 —Id=—nT ifAisinsidey.

If A ¢ DU yp, then Ry(A)(AId—A) e = Id Mg SO AId—A~ is invertible, and
A ¢ spA~, hence spA~ C D.If A € D, restrict to E* to get spA*T N D = @, hence

3. O
We now describe the asymptotic behavior of iterates of a hyperbolic linear map.

Proposition 1.6.25 If E is a Banach space, A: E — E hyperbolic linear, then

1. For every v € E™, the positive iterates A"v converge to the origin with
exponential speed as n — oo and if A is invertible then the negative iterates
A"v go to infinity with exponential speed as n — —o0.

2. For every v € ET the positive iterates of v go to infinity exponentially and if A
is invertible then the negative iterates converge exponentially to the origin.
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3. For everyv € E~ (E~ U E™") the iterates A™v go to infinity exponentially as
n — oo and if A is invertible also as n — —o0.

Proof This is mainly a restatement of Theorem 1.6.20 and Remark 1.6.22. If v €
R*~ (ETUET) writev = v~ 4+ vt where v™ € E- ~{0},v"T € ET ~ {0} to get

IA™]l = A" (™ + o) = AT = AT = Aello ™| = A7 o] = A",

for large positive n, where A > 1 and ¢, ¢/, ¢” > 0 do not depend on n.
The argument for negative iterates is the same with v* and v~ exchanged. 0O

Remark 1.6.26 With the present notations one can recast Theorem 1.6.5 as follows.
Suppose A is a (A, p)-hyperbolic bounded linear map of a Banach space and F: E —
Eissuchthat £:=L(F—A) < e:=min(1 —A, 1 —pu~") (see Definition 1.6.1). Then
F has a unique fixed point ¢ € E, and |¢| < |F(0)|/(e — £), where | - | is an adapted
norm. ¢ depends continuously on F. The advantage of this version is that it is more
explicit about the closeness assumption in terms of known parameters. On the other
hand, it uses hyperbolicity rather than just 1 € R(A).

To prove this, write £ = E~ X ET, 7T E — E*, x > xT for the projections,
Ft:=n*oF and prove F(x):= (F~(x),xT + (AT) "' xT—F*(x))) isa (1 +£—e)-
contraction.

Remark 1.6.27 The generality of the present context is motivated by its utility
when applied in auxiliary spaces. We immediately show one instance of this:
Theorem 1.6.5 can be greatly amplified by applying the very same result in a suitable
infinite-dimensional space to show that the dynamics of the almost-linear map f in
Theorem 1.6.5 does not only match that of the linear map in that there is a unique
fixed point, but that the entire orbit structure of f is the same as that of A.

Theorem 1.6.28 Let A be a (A, u)-hyperbolic bounded linear map of a Banach
space and f1, > Lipschitz-continuous maps with Af; := f; — A bounded and
0:=max L(Af}) < e:=min(1 — A, 1 —p~ ", JA7Y7H. (1.16)
Then there is a unique continuous map h = hy, p,: E — E such thatfi oh = ho f,
and Ah:=h —1d € & := Cy(E, E) (bounded continuous maps with the sup norm).
Proof The f; are invertible: fi(x) = y <& x = A~!(y — Afi(x)), and the right-hand
side is an £||A~!||-contraction, so there is a unique such x.
We can thus rewrite the desired conclusion as fj o i o fz_l =hor
A+ Af)o(Id+Ah)of;' =1d+Ah  or
F(Ah):=Ao Ahofy '+ Afio Id+Ah) ofy ' +Aofs ' —1d = Ah € &,

=:of (AN)EE = AF(Ah)EE

a fixed-point problem for .# = & + AZ. o is hyperbolic: & = & @ &7,
where &% := C,(E,EY) = o/(&%), |&/|| < A, and |(&F)7"|| < 1/u. Since
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L(AZ) < L(Afi) < €, Theorem 1.6.5 provides the desired unique fixed point
Ah € &, and h :=1d 4+ Ah is the required continuous map. O
This does not quite produce what we promised; for the orbit structures of the maps
to be the same, # must be a homeomorphism. This is an easy consequence.

Corollary 1.6.29 (Hartman-Grobman) Let A be a (A, t)-hyperbolic bounded
linear map of a Banach space, f: E — E Lipschitz with Af := f — A bounded, € as
in (1.16), and € := L(Af) < €. Then there is a unique homeomorphism h:E — E
depending continuously on f with h —1d bounded and ho A = f o h.

Proof We show that the continuous map in Theorem 1.6.28 is a homeomorphism.
We have fi o hy, r, = hy, 5, o f> and (by symmetry) f> o hy, ; = hy, 5, © f1, hence

faolhppohppl =hppofiohyy =hyyp ohyplof,
fiolhnpohpnl =hnpofrohyn = Ilhyp 0hpplofi

and uniqueness in Theorem 1.6.28 gives hy, f, o hy p, = Id = hy 5, 0 hp, 7. o
We now describe a localization procedure that connects the global picture in a linear
space (such as in Corollary 1.6.29) with local analysis on a manifold.

On a smooth compact manifold M we can choose a Riemannian metric, and then
there is an open set B C TM such that 0 € B, := BN TyM and exp,: By — M is an
embedding of B, with exp,(0) = x.

Theorem 1.6.30 If f is a C'-diffeomorphism of M with a compact invariant set A,
take €y > 0 and a C'-neighborhood U of f such that g(exp,(v)) € eXPyy) (Br) for
ge U xe A |v| < 2e. If p:R — [0, 1] is smooth, p([0,1]) = {1}, p([2, 00)) =
{0}, and € < €y and U are sufficiently small, then the localization

Gx(v) 1= Dys(v) + p(l|v]l/€)(expy) 08 0 exp,(v) — Dy (v))

of g € U by is arbitrarily uniformly C'-close to Dy;.
Proof The main observation is that expf_(}() og o exp, is C'-close to D,y when O

Remark 1.6.31 The point of this is that the continuous map G:TpM — T,M :=
™ M defined by G Mo = G, fibers over f, i.e., G(T:M) C TyyM, and satisfies

G(v) = Dyf(v) when [[v]| > 2e
€XPr(y) G(v) = g(exp,(v)) when |v] <e.

Corollary 1.6.29 immediately translates to the following.

Theorem 1.6.32 (Hartman—-Grobman Theorem) Let U C R” be open, f: U —
R" continuously differentiable, and O € U a hyperbolic fixed point of f, i.e., Dof is
a hyperbolic linear map. Then there exist neighborhoods Uy, U,, V1, V, of O and a
homeomorphism h: Uy U Uy — V1 U V5 such that f = hlo Dfyohon Uy, i.e., the
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following diagram commutes:

1.6.4 Stable and Unstable Manifolds of a Fixed Point

Theorem 1.6.33 (Stable Manifold) If E is a Banach space, f:E — E, n > 0, then

W,(f):={x€E sup n " f )] < 00} D F(Wy (). (1.17)

Suppose

e A:E — E is bounded,
* spAN{zeC A<z =zuj=9,
o |- | is an adapted norm (Remark 1.6.22) and
s A<np< .
Then W;(A) = E~ (Theorem 1.6.20) and indeed lim,—oo n™"|A"x| = 0 for all
xeE™.
If in this case f- E — E is a Lipschitz-continuous map such that f(0) = 0 and

L:=L(f—A) <e:=min(n — A, u—1n),

then Wf](f) is the graph of a contraction g:E~ — EY1 (Theorem 1.6.20) with
g(0) = 0. Moreover, L(f Myps ) <L+ A < 1 50 limy—eo | f"(x)| = 0 for
n

all x € W (f).
Finally, if n < 1 and f is C" then so is g.

(0))

Proof The first two assertions are clear.

W, (f) can (when 1 < 1) be described as the union of bounded forward orbits,
i.e., from among all forward orbits it selects the bounded ones. The proof idea is
to think instead about selecting from all bounded suitable sequences those that are
actually forward orbits. To this end we define a contraction .% on sequences that
depends on a parameter in £~ and whose fixed points are orbits.

Letn*:E = E- xET — E*, x> x* (projections), AT :=A - JEi=atof,

and y((xn)neNo) = (¥, Jnen, (yr_:_)neNo)a where

Vo1 =F ()

(1.18)
)’:— = x;:— + (A+)_l(x;:—+1 _f+(-xn))-
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This is in effect Newton’s method for finding fixed points, and these are orbits:

fG) =X41 &= X, =y, andx =yt (1.19)

We next show that % is a contraction. If x > y, X —y, then

|yr7+l _’5};1_-‘,-1' < (A + E)lxn _7n|

b _ N (1.20)
|yn — W | = (1/M) (lxn-f—l _xn+l| + £|xn _xnl)-

If we introduce the Banach spaces

&= {(x; Jnen | x, €E” and [|(x; Jnen |- := sup n~"|x; | < oo} with norm || - ||,
neN

1= {5 ner, | T €ET and [|(5])peny |+ 1= sup n7"|x;| < oo} with norm || - ||+,
n€Ny

then (1.18) implies that
F(E”x 7 x & max{]- |, |- - - 1+3) = (67 x & max{]| - |- || - |1+})
because .# (0) = 0 and (1.20) give

" g < 7+ Ol
"y < (1/ @) (0 + ©)|x].

By (1.20), . is amax{n~' (A + £), (1/1)(n + £)}-contraction, so for each s € E~,
Fyi=F (5., ) xET - E xEF

has a unique fixed point p; = ((p, (s))nen, (P, (5))nen,), and s — pg is a
contraction by Proposition 1.6.3. Hence so is g := p(')": E~ — E™T, and (1.19) tells
us that Wy (f) is the graph of g: (s, g(s)) € W;(f), and it is the only point (s, ) for
which this is so. Since F(0) = 0 we also have py = 0 and hence g(0) = 0.

To see that L(f fo(f)) <€+ A, consider x = (s,8(s)), X = (5.8(5)) € W, (/).
Then |£() — f@)| = |/~ =/~ @ = (A + Olx =T by (1.20) since g is a
contraction and | - | takes the maximum of the component norms.

Finally, suppose n < 1 and f € C". We show that

F:6 — &:={x= (Xnen, *u €E, ||x|| := sup |x,|/n < o0},

neNy

(Xn)neNy F> (f (xn) ) nen,-
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is C". Then so is .% and hence g (Proposition 1.6.3). To see that F has an rth-order
Taylor expansion reduces to controlling the expansion of f at x,, uniformly in n. For
X, Ax = (Ax,)nen,) € & and n € Ny denote by Dy, f the kth total derivative of f
at x, 4 tAx,. For k < r the Taylor expansion of f is

(o + Axy) = f(xn) +Z Dinaf (Axi..... Axy) + Ry

[ times

with remainder

Ri = (k—l)'/ (Dinaf = Dinaf)(Axp, . .., Ax,)(1 —1)F " dr.

The desired uniform control is the observation that the multilinear map
((Ax)nengs - - -+ (Axneng) = (Dino(Axy, ..., Ax;))neN()

maps &' into & and has norm at most D; := SUP,e(o.1]nen, |Pindf| < 00 (sincen < 1
implies lim,— o |X,| = lim,— | Ax,| = 0). O

Remark 1.6.34 This proof is attributed to Perron and Irwin. The only other general
technique for obtaining this theorem is the Hadamard method [HaO1].

1.6.5 Stable and Unstable Foliations

Theorem 1.6.35 (Stable and Unstable Foliations) Let A be an invariant set for
a C" embedding f: V — M (with r > 1) on which (1.2) holds. Then for each x € A
there is an embedded C" disk W*(x) (resp. W"(x)) called the local stable manifold
(resp. local unstable manifold) of x and depending continuously on x, such that

1. T,W¥(x) = E_ (resp. TW"(x) = ET);

2. f(W*(x)) € W (f(x)) (resp. f~ (W (x)) € W*(f~ (0));
3. for every § > 0 there exists C(8) such that forn € N

d(f"@).f"(y) < C(O)(A 4 8)" d(x.y) Jory e W(x).
(resp. d(f™"(x).f7"(y) < CE)(w—8)""d(x.y)  forye W'(x)):

4. there exists § > 0 and a family of neighborhoods O, containing the ball around
x € A of radius B such that

W) ={y f"(y) € O forn € N}, Wix) ={y f7"(y) € Op=n(x) forn € N}.
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W) :={y d(f"(»).f"(x) <e  forneNj,
Let Then complementary

Wi =1y d(f7"().f/T"(x) <e forneNj.
such leaves intersect in exactly one point: Since ET and E~ are continuous on A
and uniformly transverse (Corollary 1.3.8) the smoothness of W*(x) and W*(x) and
the continuity assertion in Theorem 1.6.35 imply

Proposition 1.6.36 There exists an € > 0 such that for any x,y € A the intersection
W:(x) N W¥(y) consists of at most one point [x,y], called the Bowen bracket of x
and y, and there is a § > 0 such that whenever d(x,y) < § for some x,y € A then
Wi (x) N W¥(y) # @. Furthermore, |-, -] is continuous.

Proof of Theorem 1.6.35 We reduce this to the Stable Manifold Theorem 1.6.33 for
a fixed point via the Localization Theorem 1.6.30; the point is to see how a stable
manifold for the action on vector fields gives stable manifolds as asserted here. In
particular, we prove the assertions about stable manifolds; those about unstable ones
are obtained by considering the inverse.

We assume that the norm is adapted to f. Take n € (A, min(1, u)) and denote
by A: I, — I, and #:I}, — I} the actions of Df and the localization F of
f (Theorem 1.6.30), respectively, on bounded vector fields. We can ensure that the
Lipschitz constant £ := Lip(.# — A) of F — A satisfies £ < e :=min(n— A, u —n).
Keeping in mind that the hyperbolic splitting of A is

I, =T,(E7) @ IL(ET),

we can apply the Stable Manifold Theorem 1.6.33 to .% to conclude that W, (%)

[see (1.17)] is the graph of a contraction 4: I',(E~) — I,(E™). We will show that
therefore local stable leaves

W3 (F,x) 1= Wi (F) N T.M,

where W (F) := {x € TAM  sup,cyn"|F"(x)| < oo}, are graphs of contractions
g E; — E} that depend continuously on x. The connection is provided by
associating to a vector v € T, M the bounded vector field I, given by

v ify=x
Iy(y) = .
0 otherwise
because ||v|| = |1} and F#"(Iy) = [Fr(y) for n € N imply that
v e Wi(F) & I, € Wi(P). (1.21)

This allows us to define g,(v™) = v :=%(I,-)(x) forx € A, v € E_:
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Claim W;(F,x) is the graph of g..

Proof One one hand, v~ + g.(v™) € W)(F,x) by (1.21) since I',- + Y () €
Wi (F). Also, if v = v~ +v' € W(F,x) with v’ € Ef, then I, = I~ +
FU/Wf](ﬁz), SO

v =Ty () = Ge(I-)(x) = g(v7).

That g, is contracting (and C”) follows from the fact that ¢ is.
Claim g, depends continuously on x.

Proof We establish that x > g.(I"(x)) =: I' " (x) is continuous for any continuous
stable vector field I"~. Applying the Stable Manifold Theorem 1.6.33 on I rather
than I, gives a corresponding map %,: I'.(E~) — I'.(E") for which

I'™ +9.(I')(x) € Wy(F,x)

forall x € A, so necessarily I'™ = 4.(I'") € I.(E™). ]
We produced nonlinear objects for a nonlinear map on T4 M by localization, which
uses exponential maps. Thus, the desired embeddings of disks are

wiiE” 3 B(0,8) > M, V —exp, (v + g:(v)).

The desired properties follow from the preceding arguments and the Stable Manifold
Theorem 1.6.33. O
Global stable and unstable manifolds

W) = mr @), e = JrorsT )
n=0 n=0

are defined independently of a particular choice of local stable and unstable
manifolds and can be characterized topologically:

W) ={yeU d(f"®).f"(y)) =0, n— oo},
W) ={yeU d(f"@.f"(») =0, n— oo}

Remark 1.6.37 The literature often denotes by Wi, the local leaves introduced as
W in Theorem 1.6.35, and then uses W instead of W for the global manifolds.
The Shadowing Lemma (Theorem 1.3.15) implies
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Theorem 1.6.38 (In-Phase Theorem) If A is a compact locally maximal hyper-
bolic set for f-U — M, then

WH(A):={yeU|w(y C A} =W,

X€EA

W' (A):={ye Ula(y c A} = | W @.

XEA

Remark 1.6.39 Here “D” is obvious from the definition, and “C” says that a point
asymptotic to A approaches A in a way that is “in phase” with an orbit of A.

Proof If y € W*(A) and > 0, then there is an N € N such that for all n > N
we have an x; € A with d(f/(y),x;) < n.If € > 0 and § is as in the Shadowing
Lemma (Theorem 1.3.15), then by uniform continuity of f we can choose 7 such
that

d(f (i), xi+1) = d(FO). S D) + AT (), xig1) <6,

and (x;);>n is e-shadowed by some x € A. Fori > N we then have

d(ff().f1 ) = d(f (9, x) + d(xi f'(0) < 8 + e,

soy € W(x). O

1.6.6 Applications: Livschitz Theory and Local Product
Structure

The presence of stable and unstable manifolds (and our methods for obtaining them)
is not only essential for the ergodic theory of hyperbolic sets but also provides the
basis for a thorough understanding of the global topological dynamics of hyperbolic
sets far beyond the applications of the Shadowing Theorem 1.4.1. We only give
a few basic instances of this and in particular omit an important one to which
we referred in the context of Markov approximations, the existence of Markov
partitions, which establishes an essentially exact correspondence with a symbolic
system.

1.6.6.1 Exponential Closing
The first among these refinements pertains to the shadowing and closing of orbits.

This is the contrapositive of a general property of exponential instability of orbits
on and near a hyperbolic set.
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Proposition 1.6.40 Let A be a hyperbolic set for f:U — M and A, as in
Definition 1.3.1. Then for any n > max(A, u~") there exist § > 0 and C > 0
such thatif x € A,y € U and d(f*(y).f*(x)) <8 fork =0,...,n then in fact

d(f“ (). f4(0) < C' (" d(x.y) + 1" d(" ). (1))
< C ™0 (d(x,y) + A" @), () -

Proof d(f(x).f*(») = d(f*G)./* (. yD) + d(f“(bx. yD. /(). o
The Anosov Closing Lemma implies that near any point in a hyperbolic set whose
orbit nearly returns to the point there is a periodic orbit that closely follows the
almost-returning segment. This can now be considerably strengthened.

Corollary 1.6.41 Let A be a hyperbolic set for f:U — M and A, as in
Definition 1.3.1. Then for any n > max(A, u~") there exists a neighborhood U D A,
and Cy, €9 > 0 such that if f*(x) € Ufork = 0,...,nand d(f*(x),x) < € then
there exists a periodic point y such that f"(y) =y and

d(f“(y).f4 () < o™ =0 d( " (x), ).

Proof Apply Theorem 1.3.20 first to obtain the periodic point y. By Proposi-
tion 1.3.11 one can assume that y € A. Then Proposition 1.6.40 gives the
statement. O
This refinement is crucial in some applications because it implies that the distance
or “error” between the orbit segments is summable uniformly in the length of the
segments (because a geometric series provides an upper bound). To illustrate this,
we next give an important such application.

1.6.6.2 The Livschitz Theorem

The Anosov Closing Lemma (Theorem 1.3.20) implies density of periodic orbits,
and we now use Proposition 1.6.40 to show that they determine global information
in nontrivial ways. One application of this is a sharp criterion for volume-
preservation.

Theorem 1.6.42 (Livschitz Theorem) Let M be a Riemannian manifold, U C
M open, f:U — M a smooth embedding, A C U a topologically transitive
compact locally maximal hyperbolic set, and ¢: A — R a-Holder-continuous with
Z:’;é o(fi(x)) = 0if f*(x) = x € A. Then there is a continuous ®: A — R that
solves the cohomological equation ¢ = @ o f — @. Moreover D is unique up to an
additive constant and a-Holder-continuous.

Proof Since f Ma is topologically transitive there exists a point xo € A such that the
orbit O (xy) = {f"(x0)}nez is dense in A. Once we choose a value @(xy) € R we
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must have @(f"(xo)) = @ (x0) + ¢(n, xo), where ¢(n, x) is given by

n—1 -1
e(n.x) =Y @(f'(x) forn > 0and p(n.x) = = > _ ¢(f'(x)) forn < 0.
i=0 i=n

Lemma 1.6.43 The function ® thus defined on O'(xy) is o-Holder-continuous.

Proof Suppose n,m € N are such that € := d(f"(xo),f" (x0)) is small enough to
apply Proposition 1.6.40. Then we obtain C > 0, n € (0,1), and f*"(y) = y €
A such that d(f"(x0),f (y)) < Cen™inim=n=D Since ¢ is a-Holder-continuous
there exists M > 0 such that |@(x;) — ¢(x2)| < M d(x;,x2)* whenever d(xy,xy) is
small enough. Consequently

m—n—1

D(f" () — D" )] = | D (" (x0))|

m—n—1 m—n—1
= | (w(f”*i(xo)) —o(f )+ D_e(fF ]
= i=0
=0
m—n—1

<D le( o)) — e(f ()]

i=0 <MC9e nu min(i,m—n—i)

m—n—1
. 1
< 2MC%e* Y < 2MC%e®
_2Mc m o
= AU G0 )

O
In particular, @ is uniformly continuous on &'(xy) and hence extends uniquely to
a continuous function @ on A, which is uniquely determined by ®(x()>’ and has
the same Holder exponent. Since ¢ = @ o f — @ on a dense set, they coincide by
continuity, so @ solves the cohomological equation. O
There is a C! version of the Livschitz Theorem 1.6.42 as well:

Theorem 1.6.44 Let M be a Riemannian manifold, f: U — M a smooth embedding

with a compact topologically transmve hyperbolic set, and ¢: A SN R. Suppose
that if f"(x) = x € M, then ZF o(fi(x)) = 0. Then there is a C' function
D: A — Rsuchthat p = @ of — @ and D is unique up to an additive constant.

Y0r: @of —® =Wof— W = ®— W is continuous and constant on a dense set.
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Proof Theorem 1.6.42 gives a Lipschitz-continuous solution @. To show that it is
C' we show that the derivatives of @ along stable and unstable leaves exist and are
continuous. If x and y are nearby points of a stable leaf then

D(y) = P(x) = lim (- Y @ (M) = e(F1@)) + D" () — (1))

i=0

=Y (@(f'(») = (f 0))).

i=0

Keeping x fixed and differentiating with respect to y = x + fv at t = 0 gives by the
chain rule D, @ (x) = — Y2 Dy, (£ (x)) Dy (f7)(x), where v; = Df'v. Since v is a
stable vector, D, (f?) is exponentially small. So is D,,¢ since ¢ is C' and the v; are
exponentially small. Thus the series on the right converges uniformly and hence to a
well-defined and continuous function which is thus the left-hand side. Likewise one
obtains differentiability of @ in the unstable direction, so @ has continuous partial
derivatives. By Lemma 1.6.45 this implies that @ is C!. O

Lemma 1.6.45 Suppose ¢:R" — R is C' along the leaves of two continuous
transverse foliations W* and W* in R". Then ¢ is C".

Proof We imitate the argument proving that continuity of partial derivatives implies
that a function is C'. Given x, y we show that ¢(y) — @(x) = L(y — x) up to higher-
order terms in |y — x| for some linear map L. Since ¢ is C' along the leaves of W*
and W*, for z € W*(x) N W*(y) we have

P(y) — o) = o(y) —9(2) + ¢(2) —p(x) = Ly —2) + Li(z —x)

up to higher order for two linear maps L* and L* depending continuously on the
base-point. But then L] — L] as z — x, hence as y — x, i.e., Li}(y —z) = Li(y —2)
up to higher order, so we can take L = L* @ L* on TW"(x) @ TW*(x) = T.M. O

1.6.6.3 Smooth Invariant Measures for Anosov Diffeomorphisms

The obviously necessary condition in Theorem 1.6.46(2) below for existence
of a smooth invariant measure is sufficient for topologically transitive Anosov
diffeomorphisms. This is an application of the Livschitz Theorem and hence of
exponential closing, which was obtained using stable and unstable manifolds. Here,
Jf (-) denotes the Jacobian of a differentiable map with respect to an ambient volume
form.

Theorem 1.6.46 Let M be a manifold with volume §2 and f:M — M a topologi-
cally transitive C*> Anosov diffeomorphism. Then the following are equivalent:
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1. There is an f-invariant measure with bounded density that is bounded away
from 0.

2. Jf"(x) = 1 whenever f"(x) = x.

3. There is an f-invariant measure with positive C' density.

Proof Clearly (3) implies (1). (1) implies (2) because ¢ 2 is f-invariant if and only

if @(x) — (f7'(x)) = ¢(x) := —log Jf (x):

- ) i X
0= (f*e?R2)— (?2), = ®V" D Qi (DF (), ..., DF () —e®W 2,
=) 2e=er® 2,

= (PUT D p _ 200

Jf € C', so (2) and Theorem 1.6.44 give a C' solution and hence (3). |

1.6.6.4 Local Product Structure

An important technical property that follows from local maximality is the presence
of a local product structure:

Definition 1.6.47 We say that a hyperbolic set A has local product structure if for
sufficiently small € > 0 the intersection points provided by Proposition 1.6.36 are
always contained in A. Equivalently, for such € and any x € A, the Bowen bracket
[-,+] defines a homeomorphism (a local product parametrization) between W?(x) x
W¥(x) and a neighborhood in A of x.

Proposition 1.6.48 A compact locally maximal hyperbolic set has local product
structure.

Proof Take € such that the e-neighborhood V of A satisfies A = Af;,. Then all
points [x, y] from Proposition 1.6.36 and their orbits are in V, hence in A. O

Second Proof of Theorem 1.3.45 Define a relation on Per(f \ ) (which is dense in
NW(f TA) by Corollary 1.3.21) by x ~ y if and only if W*(x) N W*(y) N A #
z # W(x) N W*(y) N A with both intersections transverse in at least one point.
We show that this is an equivalence relation and obtain each A; as the closure of an
equivalence class. These closures are called homoclinic classes.

Note that ~ is trivially reflexive and symmetric. To check transitivity suppose
x.y,z € Fix(f* b,) and that p € W(x) N W*(y) N A, g € W'(y) N W () N A
are transverse intersection points. By continuity of unstable leaves the images of a
ball around p in W*(p) = W"(x) = f*(W*(x)) accumulate on W*(y) so W¥*(x) and
W*(z) have a transverse intersection in A.
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By Proposition 1.6.48 each equivalence class is open, so by compactness there
are finitely many equivalence classes with (pairwise disjoint) closures Ay, ..., A,.
These are permuted by f with permutation o, ie., f(A;) = Asq. By Corol-
lary 1.3.21 NW(fFA) C Per(frA) since A is locally maximal, so | Ji_, A; =
NW(fy -

To show that f* M,

ifp e Ajand g ~ p’ are periodic, then there is by definition a heteroclinic point
z € W(p) N W¥(g) N A. If N is the common period then continuity of W*(-) shows
that W*( p) accumulates on g. So W*(p) N A is dense in A; N Per(f FA)’ hence its
closure A;. To simplify notations assume k = 1, A = A;.

For open V and W in A we will find M € N with f(V) N W # & for all
m > M (Definition 1.3.34). Density of periodic points implies the existence of
f*(p) = p € V. Since V is open it contains a neighborhood W§(p) of p in
Wi (p) N A. Since W*(p) N A = |JZ, f™(Wi(p)) is dense there exists my € N
such that W N JI2, f™ (Wi (p)) # @. Sincefk(Wg(p)) is a neighborhood of f*( p)
in W*(f*(p)) N A there are my, ..., m,—; € Nwith W N % F<H(W¥(p)) # 2.
If m > M :=maxi(n+ 1)my, then WN /L, f (Wi (p)) # &, so WNf"(V) # @.0
This proof gives a new point of view:

is topologically mixing, where k is the order of o, note that

Corollary 1.6.49 If a compact locally maximal hyperbolic set A is topologically
mixing then periodic points are dense in A and the unstable manifold of every
periodic point is dense in A.

Proof The spectral decomposition must be trivial. O

1.7 Ergodic Theory

Whereas topological dynamics is about the possibility of specific phenomena and
evolutions, ergodic theory is about their probability. Among the aims of ergodic
theory is to sharpen in a quantitative way various recurrence properties such as
recurrence of an orbit, topological transitivity, minimality, and topological mixing
by considering asymptotic frequencies with which corresponding types of recur-
rence appear. This notion in turn is closely tied in with the notion of time averages
discussed in the historical sketch. Indeed, as we saw in Theorem 1.4.11, shifts are
a good model for hyperbolic dynamical systems, and since these are mathematical
representations of coin tosses or dice, it is natural to seize on probabilistic methods
to describe their complexity.



66 B. Hasselblatt
1.7.1 Asymptotic Distribution, Invariant Measures

If X is a metrizable space and f: X — X continuous, the time average or Birkhoff
average of a continuous function ¢ is

n—1
Ep)= lim 3" 0(7). (122)
k=0

Whether this exists depends on x (actually, on the orbit of x) and ¢. Let C(X) be the
space of continuous functions on X with the uniform topology. If x € X is such that
E,(p) exists forevery ¢ € C(X), then E,: C(X) — R has the following properties:

1. Linearity: Ex(ap + BY) = aE.(¢) + BE(¥), for, B € R;
2. Boundedness: |E(¢)| < supyex [9(¥)[;

3. Positivity: Ex(¢) > 0if ¢ > O and E (1) = 1;

4. f-invariance: Eyy(9) = Ex(p o f) = E(¢) because

1 n—1 n—1
E(pof)—E(o) = lim (Y o)=Y e(fen) =0 123
k=0 k=0

=(f"(x))—p(x)

(1)—(3) imply that the Riesz Representation Theorem below gives

Theorem 1.7.1 There is a unique probability measure (1, with Ex(¢) = [, ¢ djt,.
Moreover, j, is f-invariant: For A: (X, u) — (Y, v) we write

hapt(A) = pu(h™'(A)). (1.24)

h~! appears because yy o h = Xn—1(v)- By uniqueness, (4) implies f-invariance of
W, i.e., fxt = i, and u € M(f) := {f-invariant Borel probability measures}:

Corollary 1.7.2 E(¢) = [y ¢ du, for a unique i, € M(f).
Two main questions arise:

(A) Are there x € X for which asymptotic distributions E, exist?

(B) When does an invariant measure determine any asymptotic distribution of
orbits, i.e., given u € M(f), is there an x € X with [@du = E.(¢) for
all ¢ € C(X)?

We will answer these in due course using a combination of two fundamental
theorems from topological dynamics and ergodic theory (see Corollaries 1.7.26
and 1.7.44). But we first pause to introduce the notion of a Borel measure.

Definition 1.7.3 (Borel and Radon Measures) Let X be a separable locally
compact Hausdorff space and # the o-algebra of Borel sets, i.e., the o-algebra
generated by closed sets. Then a Borel measure is the completion of a measure p
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defined on A. A Radon measure is a Borel measure such that ;(B) < oo when B is
compact. (In particular, finite Borel measures are Radon measures.)

Theorem 1.7.4 (Regularity) Radon measures are regular, i.e., for every B € 2 we
have u(B) = inf{u(O) B C O open} = sup{u(K) K C B compact}.

Every continuous function f: X — R is Borel measurable, i.e., preimages of open
sets are Borel sets.

For every compact set K there is a decreasing sequence { f, }nen of nonnegative
continuous functions with compact support such that f, — xg pointwise, where xg
is the characteristic function of K.

Radon measures are separable. (For a dense {x;}icn, precompact open neigh-
borhoods {Bjj} i jen with ﬂj Bjj = {x;} define a basis, and every atom is a point by
regularity and the Hausdorff assumption.)

Theorem 1.7.5 If w is a Borel probability measure then uniformly continuous
Sfunctions are dense in L (i) for 1 < p < oo.

Theorem 1.7.6 (Riesz Representation Theorem) Let X be a compact Hausdorff
space. Then for each bounded linear functional F on C°(X) (i.e., satisfying (1)—~(2).)
there exists a unique mutually singular pair (., v of finite Borel measures (Defini-

tion 1.7.3) such that F(¢) = [‘@dp — [ @dv for all ¢ € C°(X).

Remark 1.7.7 1t is especially useful that the collection 21(X) of Borel probability
measures on a compact metrizable space is a convex norm-bounded subset of the
dual to C(X). M is closed with respect to the weak ™ (or setwise or product) topology
defined by pt, — pu:% [y 9 dp, — [ @ dp Yo € C(X), hence sequentially compact
by the Banach—Alaoglu Theorem.?®

Coudene [Col6] provides a highly accessible account of these measures and
Lebesgue spaces. For some applications these are the appropriate notion of a
measure space. They are isomorphic up to a null set to an interval with Lebesgue
measure with at most countably many ‘“atoms’; i.e., points of positive measure,
added. Surprisingly, this notion is not too restrictive; virtually every probability
space in analysis or geometry has this property. In particular, a Borel probability
measure on a separable locally compact Hausdorff space defines a Lebesgue space.

1.7.2 Existence of Invariant Measures and Recurrence

Theorem 1.7.8 (Krylov-Bogolubov Theorem) A continuous map on a metriz-
able compact space has an invariant Borel probability measure.

28The (norm-) unit ball in the dual of a normed linear space is weak*-compact—this implies that
norm-bounded weak*-closed sets are compact; separability gives sequential compactness.
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Proof If f:X — X continuous, u € M(X), then by Remark 1.7.7 there is a weak*
accumulation point p’ of 1/n Zz;éf*,u € M(X). ' is fe-invariant as in (1.23). O

Remark 1.7.9 If f is a homeomorphism, i an f-invariant measure, and A C X
measurable then u(f(A)) = u(A).

Definition 1.7.10 A surjective f: X — X is said to be p-preserving or measure-
preserving if A C X measurable = f~!(A) measurable and u(f~'(A)) = u(A).
In concrete situations an invariant measure may be readily apparent.

Theorem 1.7.11 (Poincaré Recurrence Theorem) Let f be a probability-
preserving transformation of (X, ), A C X measurable, and N € N. Then

p({xreA {f"0}l=y CX~A}) =0.

Proof Replacing f by fV shows that we may suppose N = 1. The set

Ai={xcA {f'@hen CX~A}=AN (ﬂf‘”(X \A))

n=1

is measurable. f~ ”(A) NA = o for every n # 0 and hence f~ ”(A) N f""(A) =g
forallm # n € N. ,u(f_”(A)) = ,u(A) since f preserves . Thus p,(A) = 0 since

L= p(X) 2w (UpZof (@) = X2 n(f (D) = Y02y u(A). o

Remark 1.7.12 The name of this theorem reflects its application to recurrence in
Proposition 1.7.66(1).

1.7.3 The Birkhoff Ergodic Theorem

The Birkhoff Ergodic Theorem provides the time averages introduced in (1.22). It
applies on any probability space, and no topology is involved. Before stating it, we
recall a standard result in measure theory in slightly unconventional form.

Definition 1.7.13 (Absolute Continuity) If (X,.”,u) and (X, .7,v) are signed
measure spaces then v is said to be absolutely continuous with respect to , written
v K W, if every null set for w is a null set for v.

Theorem 1.7.14 (Radon-Nikodym) If (X,.””, ) and (X, 7,v) are o-finite

signed measure spaces and v < [, then there is a [i-a.e. unique density or Radon—

d
Nikodym derivative |:dv1| = p: X — R of v with respect to | that is measurable
"

with respect to the completion . of . and such that v(A) = [, pdji, where [i is
the completion of 1, for every A in the completion of 7. In particular, 7 C ..



1 Introduction to Hyperbolic Dynamics and Ergodic Theory 69

Corollary 1.7.15 (Conditional Expectation) Suppose (X,.,1) is a o-finite
measure space, J C . a o-algebra, ¢ € L'(X,.7,)). Denote by A N the

restriction, that is, A F g(A) = AA) forall A € T C . Then the conditional
expectation

dg2)

E(<P|<7)3=<P91=[ ary
7

:|eL1(X,ﬂ,)Lr9)

of ¢ on 7 is defined A-a.e. uniquely by [, 97 dA = [, ¢ dA forall A € 7.
Proof Theorem 1.7.14 with A Ny DVi= (pA) fﬂ’A — [@yadiforAe 7. O
Proposition 1.7.16

1 E¢(|T)=nz:L"(n) — L' (u rg) C L' () is a projection.

2. wg is linear and positive, i.e., f > 0 = f7 > 0.

3. If gis T -measurable and bounded, then E(gf | ) = gE(f | 7).
4. If 7 C Jithen E(- | ) o E(- | T1) = E(- | ).

The proof is straightforward; we note that (1) follows from (4) but more directly
from the obvious fact that 7 = Id.
We digress briefly to a contemplation of how this plays out in L?.

Definition 1.7.17 If H is a Hilbert space, L < H a closed subspace, theneachv € H
uniquely? decomposes as v = vy + vy withvg € Landv; L L,i.e.,v; L w for
all w € L, and the orthogonal projection to L is defined by

nH— L, vy+ v — vg.

Proposition 1.7.18 v € Hw € L = |v—a@)|| < |[v—w| and (v,w) =

(m(v), w).
Proof |[v —w|*> = |lvo + vi —w|? = |[vo — w|? is minimal iff w = vy = 7(v),
and (v, w) = (vo + v1,w) = (vo, w) = (m(v), w). O

Example 1.7.19 Suppose (X, .7, ) is a probability space and .¥ C 7 is a o-
algebrain .7. Then L:=L*(X,.”, ) C H:=L*(X, .7, 1) is a closed subspace. For
fel*X,7,n) and A € . we then have y4 € L and hence by Proposition 1.7.18

/ Fdu = (f. 1) = (1) xa) = / . (f) die.
A A

29v0+1u_=w0+wi_=>v0—w0=wJ-—vJ-€LﬂLJ-.
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In light of uniqueness in Corollary 1.7.15 we see that w2y o, = E( |

) M2 , i.e., the orthogonal projection to L?(X, .7, 1) is given by conditional
L*(X, T )

expectation.
If f is a measure-preserving transformation of a measure space (%, i) denote by
I = :={A€PB ['(A) = A} the invariant o-algebra.

Theorem 1.7.20 (Birkhoff Ergodic Theorem) Let (X, ) be a probability space,
f:X — X p-preserving, ¢ € L' (X, ). Then the time average exists:

n—1

@p = lim Z(pof—fpﬂf u-a.e.

n—00 1

In particular, ¢ is measurable and f-invariant, and

/fpfdu = /wdu = /(pd,u. (1.25)

k=1
Proof If Y € L'(u), then F,, := max E ¥ of' e L'(u) is nondecreasing in 7, and
<n
= =0

lim Zwofk< lim "<o off A:={x F,(x) >oo}e.Z. (1.26)

n—>o0o n n—>oo n

Fup1(0) = ¥(x) + Fu(f(x)) & (Fy0f)(x) >0, s0
Fop1—F,of =¥ —min(0, F,of) \y ¥ onA, and
0= [ =Fdu= [ = Fropdi— [wan= [vrdny,
A A =0 Ja A ‘
by the Monotone-Convergence Theorem. Thus ¥ » < 0 = u(A) = 0, and if
Vi=¢—¢gy—e€,theny sy =—€ <0,s0 (1.26) becomes
n—1

lim Z((pof)—<p¢—6<0 H-a.e.

n—o0o n

with € > 0 arbitrary. Replacing here ¢ by —¢ gives

n—1

lim Z(pof > g —€ u-ae.

n—oo 1
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The Birkhoff Ergodic Theorem applies to f~! when defined, yielding almost-
everywhere convergence of negative time averages:

Proposition 1.7.21 If f is invertible, then

n—1

1 _
W@r=%4@%=£gHEQWJkM)=%44=%@=%¢&

and the two-sided time averages 2n1_1 Z|k|5n—1 o(f*(x)) =5 ¢.9, as well.

Remark 1.7.22 By property (4) of (1.22)1i.e., of ¢r:x — Ey(¢) (or Example 1.7.19)
and the Birkhoff Ergodic Theorem, ¢ + ¢y is a projection to the f-invariant
functions.

We note another corollary

Proposition 1.7.23 Let (X, 1) be a probability space, f:X — X u-preserving, ¢ €
Ll(X, ). Then lim,,_, 5 3l(p o fm 0.

n n—1
1 o+l 1 a1 " a
prof oft == L 2ol D wel o Vs —ps 20

|

1.7.4 Existence of Asymptotic Distribution

The exceptional set where the positive or negative time averages do not exist may,
of course, depend on the function ¢. However, it is negligible for any invariant
measure.

Definition 1.7.24 Given a continuous map f of a metric space X, we say that a
subset A C X has total measure if A has full measure with respect to any f-invariant
Borel probability measure on X.

Corollary 1.7.25 Let X be compact metrizable, f: X — X continuous. Then

n—1

1
{x €eX lim Z o(f*(x)) exists for all continuous functions go}

has total measure, and if f is a homeomorphism then so does

n—1 n—1
feex aim LS g0 o) = tim LY p(Hw) for o € CO0).
k=0 k=0



72 B. Hasselblatt

Proof For each ¢; in a countable dense set of functions the averages converge on
a set E; of total measure. Lipschitz continuity of ¢ +— 1/x Zz;é o(f*(x)) implies
convergence on | ); E; for all continuous ¢, and having total measure is stable under
countable intersection. O
Combining this with the Krylov—Bogolubov Theorem 1.7.8 we obtain a positive
answer to question (A) on page 66:

Corollary 1.7.26 For any continuous map f:X — X of a compact metric space
there exists a point x € X such that the time average \/n ZZ;(I) o(f*(x)) has a limit
for every continuous function ¢ on X and such that if f is a homeomorphism, then
in addition 1/n ZZ;B o(f7%(x)) converges to the same limit.

1.7.5 The Birkhoff Ergodic Theorem for Flows

For flows the statement of the Birkhoff Ergodic Theorem looks as expected and is a
straightforward consequence of the Birkhoff Ergodic Theorem 1.7.20 for maps. We
state and prove it here mainly to explicitly address the minor subtleties regarding
neglected null sets that arise because a flow comprises a continuum of maps. We
here use greek letters for flows and roman ones for functions.

Definition 1.7.27 A 1-parameter group ¢’ of probability-preserving transforma-
tions of (X, ) is said to be a (measurable) flow if (x,7) + ¢'(x) is measurable
and measure-preserving if each ¢’ is measure-preserving.

The following is straightforward to verify.

Theorem 1.7.28 Consider a flow @' on a measure space (X, jt) for which there is
a A > 0 such that u(¢'(A)) = A w(A) for each measurable set A and every t € R.
Suppose S C X is measurable and such ®@: [0, a] xS — X, (¢, x) — ¢'(x) is injective
for some a > 0. Then S, := @([0, a] x S) is called a flow box over S, and

[rau= [ [ ns o
for measurable f: S, — R, where

_ (elnl(a))
/‘LS(A) T '/;1;2 A ds

with) <tH <t <a.
Note that the case A = 1 corresponds to invariant measures. Now consider a
measurable map (¢, x) > ¢’(x) that defines a probability-preserving flow on (X, u).

Definition 1.7.29 A function f: X — R is said to be almost ¢'-invariant if there is
anull set N off which f o ¢” = f for all t. The salient point is that N does not depend
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on .30 A set is said to be almost ¢'-invariant if its characteristic function is. The
o-algebra of these sets is denoted by .#.

Theorem 1.7.30 (Birkhoff Ergodic Theorem for Flows) Let (X, i) be a proba-
bility space, ¢':X — X a ji-preserving flow, f € L'(X, ). Then the time average
exists:

1 t
fo(x) := lim / fo@'ds=fys p-ae.
t—00 0

Proof We apply the Birkhoff Ergodic Theorem 1.7.20 to establish the existence of
the limit and then show that it is f.». As a minor convenience we assume f > 0; the
result follows from this by considering positive and negative parts.

First note that by Tonelli’s Theorem

o [ran= [ ' [rwnauas= [ | " Fe* () ds .

s0 [y f(¢*(x)) ds is defined (and finite) off a null set E,, and 0 < f; := folf o @*ds
is well-defined a.e. with [ f; = [ f. The Birkhoff Ergodic Theorem 1.7.20 gives

n—1

1 [ 1
/fwsds: > fiogt ——= E(fi| Fp)offanullset . (1.27)
nJo nk=0 n—»o0o

To pass from integer times to others, write n, := || and consider x outside the null
set N defined as the union of the set F in (1.27), all the E,, above and the null set
implicit in Proposition 1.7.23. Then Proposition 1.7.23 and f > 0 imply

0= /0 _ 1@ (@) ds < (9" () = o).

so (1.27) gives

N N L
70 = tim [ s
n 1 n—1 1 t—n;
=t S + | e s = g, <o

301¢ is not required, but in this situation, we can ultimately choose the exceptional set to be invariant,
i.e., f is measurable with respect to the completion of the o-algebra of (properly) invariant sets.
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Thus [ f, = [ f. Now apply what we proved so far to g := f x4 forany A € .#:

/ftp—/fthA—/fw(XA)w—/(fXA)w—/gtp—/g—/fXA—/f

and this, together with g-invariance, is the very definition of f, = f.».

1.7.6 The von Neumann Mean Ergodic Theorem

Let us introduce notation that will be much used later, notably in Sect. 1.7.19.

Definition 1.7.31 (Koopman Operator) To p > 1 and a measure-preserving map
f:(X,u) = (Y, v) associate an isometric operator

UpIP(Y,v) > IPX,u), ¢ g@of

on complex-valued functions, the Koopman operator. Eigenvectors of the Koopman
operator Uy are called eigenfunctions (of Uy or of f), and eigenvalues of U are also
referred to as eigenvalues of f. Constant functions are eigenfunctions of Uy (for
the eigenvalue 1). Therefore, in L?, we sometimes explicitly or implicitly restrict
attention to 1+ when discussing the spectrum of Uy.

Remark 1.7.32 The case p = 2 is of particular interest. If f: X — X is invertible
then so is Uy and in this case Uy defines a unitary operator on L.

As previously mentioned, the Birkhoff Ergodic Theorem 1.7.20 has a counterpart
for convergence in [2, the Mean Ergodic Theorem, which, in fact, predates it [Zu02].

Theorem 1.7.33 (von Neumann Mean Ergodic Theorem) Let (X, ) be a
measure space, f: (X, ) — (X, |0) a pu-preserving transformation, ¢ € L*(X, ).
Then

1 n—1 i 2
Y wof —— Pr(p).
n P n—00

where Py is the orthogonal projection to the Uy-invariant space LX(X, .7, u r])
Remark 1.7.34 Unsurprisingly, Py = E(- | %), the latter being as in Theo-
rem 1.7.20: by definition, P; is uniquely defined by Py(¢) — ¢ L L*(X, .7, r])
for all ¢ € L?, while at the same time clearly E(p | .#) —¢ L L*(X, %, r]) for
all p € L2,
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The measure need not be finite. By passing to | (¢ of") "1 (R~{0}), one may assume
o-finiteness without loss of generality.
The von Neumann Ergodic Theorem follows from a Hilbert-space lemma:

Proposition 1.7.35 Suppose H is a Hilbert space, U:H — H linear such that
Ul <1, P:H — I:={x € H Ux = x} the projection to the U-invariant
subspace. Then \/n Z::é U'(x) —— P(x) forall x € H.

n—>oo

Proof Since the sum is telescoping on N := {x — Ux phantom|x € H} C H and
trivial for invariant elements, the essential step is to show

Claim I = N+,ie, H=N®I.

Proof Let us show that x = U*x < x = Ux. First, ||U*|| < ||U|| because
1U*x]> = (U*x, U*x) = (UU*x,x) < |[UU*x]|Ix]| < |U*x][ U] |1x]
for all x € H. Next, if |V|| < 1 and x = V*x, then x = Vx because

0 < [lx—Vx|® = (x,x) — (x, Vx) — (Vx, x) +(Vx, Vx) = | Vx||> — |lx]|* < 0.

=(x—Vx,x—Vx) =(V*xx)=(x,x) =(x,V*x)=(xx)
Applying this to U and U* proves x = U*x < x = Ux. Then x € [ iff x = U*x iff
yeH = 0= (x—U"xy) = (Id=0)"x,y) = (x, Ad=0)y) = {x,y — Uy)

if and only if x € N+ = NL. Therefore I = N*. O
Now write an arbitrary x € Hasx = a + b witha € [ and b € N. Then

nl nl n—1

ZU’x—Px— ZU’(a—}—b) Pla+b) = 1ZU‘b—>O

n—>oo
i=0 —a+U‘b =a i=0

because if € > 0, b, = ¢ — Uce € N such that ||b — b.| < €/2, and n > 4|cc|,
then

n—1 n—1 n—1
1 X 1 . 1 .
| D UBl =1 Y U®G—b)+ > Ub
i=0 i=0 i=0

n—1

1 )
<lb=bell+ 1| Y Ullce —Uc |l < €/2+2]ecll/n < e.
n i=0

=c.—U"c,
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1.7.7 Ergodicity and Unique Ergodicity

Definition 1.7.36 A measure p is said to be ergodic with respect to f, or one says
that f is ergodic with respect to p, if for any measurable A C X with f~'(4) = A
either (A) = 0 or (X ~ A) = 0. If this holds for all iterates /", then we say that f
is totally ergodic.

Remark 1.7.37 Note that f-invariance of u is not needed for this definition.
Ergodicity can be reformulated in functional language:

Proposition 1.7.38 (Characterization of Ergodicity)

f:X — X is ergodic with respect to |4
any measurable f-invariant ¢: X — C is constant p-a.e.
any bounded measurable f-invariant ¢: X — R is constant pi-a.e.
any f-invariant ¢ € LF (X, u) is constant p-a.e.
any nonnegative measurable f-invariant ¢: X — C is constant ji-a.e.

SRR (2

Proof These (and other) characterizations arise from the following implications: f
is not ergodic = there is an invariant characteristic function (namely, of an invariant
set of intermediate measure) that is not constant a.e. = there is a nonnegative
bounded invariant measurable function that is not constant a.e. = there is a
nonconstant invariant ¢ € LF = there is an invariant measurable C-valued function
that is not constant a.e. = f is not ergodic (because either the real or the imaginary
part is an f-invariant measurable function ¢:X — R and not constant almost
everywhere, so there exists an a € R such that u(¢~'((a, o0))) ¢ {0, 1}, and this
set is invariant). |

Remark 1.7.39 Proposition 1.7.38 simply states in various function spaces that the
subspace of f-invariant functions is the space of constant functions. Remark 1.7.22
lets us determine the space of f-invariant functions as the range of the projection
¢ — ¢y, and doing so for a dense set of functions gives the needed information—
Theorem 1.7.5 implies the following result.

Theorem 1.7.40 If ¢; = const. u-a.e. for every ¢ € C(X), then i is ergodic.
Considering densities gives:

Proposition 1.7.41 € M(f) is ergodicifand only if u > v € M(f) = u = v.

Proof i > v € M(f) & v = p-v, where p € L'(v) is the (unique hence
f-invariant) Radon—Nikodym derivative. This is constant (= 1) iff v is ergodic. 0O
One can strengthen the statement that functions invariant under an ergodic transfor-
mation are constant via the following simple observation:

Proposition 1.7.42 If f:X — X is a transformation preserving a probability
measure and ¢: X — R satisfies ¢ of < ¢ (“subinvariance”), then @ is f-invariant.

Proof By assumptionA,:={x€ X o) <r}D{xeX o(fx) <r=f"1A4,),
while u(f~'(4,)) = u(A,). Thus f~'(A,) = A, forall r € R. O
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This and Proposition 1.7.38 yield

Corollary 1.7.43 If w is an ergodic invariant probability measure for f: X — X,
¢0: X —> R, and ¢ of < @, then ¢ is constant [i-a.e.

An important corollary of the Birkhoff Ergodic Theorem 1.7.20 is that for an ergodic
transformation time averages equal space averages almost everywhere.

Corollary 1.7.44 (Strong Law of Large Numbers) If u(X) =1,f:X — Xisan
ergodic p-preserving transformation, and ¢ € L' (X, i) then

_nlggonz(pof —/(pd,u.

Equivalently, ZZ;%) o(f*(x)) —n fX edu =om) p-ae.

Remark 1.7.45 The latter form of the conclusion uses “little o notation:

F) = o(gy) 0T o
g(n) n—oo

Proof ¢y is f-invariant, so constant a.e. By (1.25) the constant is fx pdu. O
Thus we have answered question (B) after Corollary 1.7.2. An invariant measure
determines the asymptotic distribution of p-almost every point if it is ergodic. A
nonergodic invariant measure (& may also determine the asymptotic distribution of
some orbits, but such orbits are always a set of p-measure zero.

Proposition 1.7.46 A probability-preserving transformationf: X — X is ergodic iff
1 n—1
Z/goof"w—>/<p/1/f (1.28)
n =0 n—>oo

forall o, € L2, i.e., if and only zf Zk —0¢ o fk BN const. for all ¢ € L.
n—o0

Remark 1.7.47 For ¢ = x4 and ¥ = yp, (1.28) becomes

n—1
DY U A N B) —— k() (129)
k=0

1 ko Weakly
Proof If g = g of, theng = | 3 /- 0<p of — > const.

If f is ergodic, then Corollary 1.7.44 and the Dominated-Convergence Theorem
give (1.28) for all ¢, ¥ € L. O
Corollary 1.7.44 leads to the question of whether every continuous map has an
ergodic invariant measure. This is so thanks to a little functional analysis.
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Lemma 1.7.48 Ergodic measures are the extreme points of M(f): u € M(f) is
not ergodic iff there exist uy # a2 € M(f) and 0 < A < 1 such that p =
A+ (1 =) .

Proof If f7'(A) = Aand 0 < u(A) < 1, then p = pu(A) s + (1 — w(A)) px-a,
where

w(BNA)

pa(B) :==p(B[A) = L(A)

is the density of Bin A. (Note that pua L px-a.)

Ifi = 1,2, then u; < p, so the Radon—Nikodym Theorem gives an f-invariant
L'(w)-density p; with [ ¢ du; = [ pip dp. By assumption Ap; + (1 —A)py = 1 =
[ prdun = [ padu,sopy # o = p1 # p2 = p1 # const., and 1 is not ergodic.

O

Theorem 1.7.49 Every continuous map f on a metrizable compact space X has an
ergodic invariant Borel probability measure.

Proof By the Krein-Milman Theorem?! 9(f) # @ has extreme points. O
Lemma 1.7.48 connects decomposability of a measure (by convex combination) and
decomposability of the space. One can sharpen that connection:

Proposition 1.7.50 Different invariant ergodic probability measures for the same
transformation are mutually singular.

Proof Call them v, & = o + - with g, < v L put (invariantly by uniqueness
of Lebesgue decomposition); since w is ergodic, hence extreme, we have either
W = it or L = pae = v by ergodicity of v and Proposition 1.7.41. O
Proposition 1.7.50 means that any convex combination of finitely many ergodic
measures produces a corresponding nontrivial finite partition of the space.

Moreover, every invariant measure for a measure-preserving transformation
can be decomposed into ergodic components. For continuous maps of compact
metrizable spaces the latter fact is a consequence of Lemma 1.7.48 and:

Theorem 1.7.51 (Choquet Theorem) If C is a compact metrizable convex set in
a locally convex®? topological vector space and x € C, then there is a probability
measure i, on ex C such that x = [, - zdi(z).

Theorem 1.7.52 (Ergodic Decomposition [Co16]) Every invariant Borel proba-
bility measure for a continuous map f of a metrizable compact space X decomposes
into an integral of ergodic invariant Borel probability measures in the following
sense: There is a partition (modulo null sets) of X into invariant subsets Xy, @ € A

31 A compact convex set in a locally convex topological vector space is the closed convex hull of
its extreme points, i.e., C = coex(C).
32 A topological vector space is locally convex if every open set contains a convex open set.
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with A a Lebesgue space, and each X, carrying an f-invariant ergodic measure Ly
such that [ @ dp = [[ ¢ djq do for any function @.

Definition 1.7.53 These sets X,, are called the ergodic components of (f, ).

Example 1.7.54 The ergodic components of T, /), (x,y) = (x,y + V/2) are the
vertical circles {x} x S! for x € S'.

Definition 1.7.55 A continuous map f: X — X of a metrizable compact space X is
said to be uniquely ergodic if it has only one invariant Borel probability measure.

Proposition 1.7.56 The invariant probability measure of a uniquely ergodic map f
is ergodic.
Proof M(f) = {u} = ex{u} = exM(f); apply Lemma 1.7.48. O

Unique ergodicity is related to uniform convergence of Birkhoff averages:

Proposition 1.7.57 If f:X — X is uniquely ergodic then for every continuous
function ¢ the time averages /n ZZ;%) @(f*(x)) converge uniformly.

Proof If 1/n Zk 0 @(f(x)) does not converge uniformly for some continuous
function ¢, then one can find a < b, x¢, yx € X, and n; — oo such that

nkl nkl

Z o(f'(0)) < a, Z o(f'(3)) > b.

A diagonal argument gives a subsequence 7y, such that for every ¥ € C(X) both

nkj_l nk]—l

1 1
HW) = lim D V() and L) = lim Y Y ()

7 1=0 110

exist. J; and J, are bounded linear positive f-invariant functionals; thus J;(y) =
[ dui, Jo(¥) = [ ¥ dus for f-invariant probability measures 1 and 5. Since
Ji(p) <a < b < Jy(p) we have i) # W so f is not uniquely ergodic. O

Remark 1.7.58 The converse fails for Id: X — X with card(X) > 1 but holds if f is
transitive or if these uniform limits are always constants (Proposition 1.7.61).
Corollary 1.7.59 Letf:X — X, M(f) = {u}, U C X open and p(0U) = 0. Then
Y izy xu(f* ) = p(U) uniformly.

Proof Let e (g (m € N) be sequences of continuous functions such that
S ¢mdp — p(U) and fgom du — u(U). For each n € N and x € X one has

n—1 n—1 n—1

pr (F ) < Zm(f @) = Y eu(Feo. (1.30)

k 0
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Fix § > 0 and find m such that [ @ dp> u(U)—68/2and [ ¢, dp < n(U)+38/2.
By Proposition 1.7.57 we have

n—1
) =5 = |3 1A @) < p() +3
k=0

from (1.30) for sufficiently large n. Since § is arbitrary, the claim follows. O

Proposition 1.7.60 If for every ¢ € C(X) the time averages \/n ZZ;M o f*
converge uniformly to a constant then f is uniquely ergodic.

Proof Suppose p is an f-invariant probability measure. For ¢ € C(X) we have

n— uniformly
n SiZo @(f* () —— 9o € R, 50 [ @dp = [ podp = go. Hence pu € C(X)*
is unique. O
Since any € C(X)* is uniquely determined by its values on a dense set, the

preceding argument actually establishes:

Proposition 1.7.61 If @ C C(X) is dense and for every ¢ € @ the time averages
1/n Z;é @ o f* converge uniformly to a constant, then f is uniquely ergodic.

1.7.8 Isomorphism and Factors

Similarly to the theory of smooth dynamical systems and topological dynamics,
ergodic theory has a dual agenda: the classification of various classes of measure-
preserving transformations up to natural equivalence relations and the study of
various asymptotic properties invariant under those relations. Ergodicity is an
example of such an invariant which is a counterpart of topological transitivity;
mixing, another recurrence-type invariant, is discussed in Sect. 1.7.16. Right now
we define and discuss the most natural equivalence relation in ergodic theory.

Definition 1.7.62 Let f:X — X and g: Y — Y be measure-preserving transforma-
tions of measure spaces (X, i) and (Y, v), correspondingly. f and g are said to be
measure-theoretically isomorphic if there exists an isomorphism 4: (X, u) — (Y, v),
i.e., an injective (mod 0) transformation such that s, = v [see (1.24)] and

g=hofoh™'
g is said to be a (measure-theoretic) factor of f if there is a measure-preserving map
h: X — Y (in general noninvertible) such that A,pt = vandgoh =hof.

All properties of measure-preserving transformations that we are going to discuss
are invariants of measure-theoretic isomorphism??; ergodicity quite obviously is.

3Section 1.7.18 excepted.



1 Introduction to Hyperbolic Dynamics and Ergodic Theory 81

Furthermore, a factor of an ergodic transformation is also ergodic: If g is a factor
of fand A C Y is g-invariant, 0 < v(A) < 1, then B := h~!(A) is f-invariant and
n(B) = v(A).

In certain cases invariants of measure-theoretic isomorphism provide insights
into properties of smooth or topological dynamical systems. For example, the
measure-theoretic isomorphism class of a uniquely ergodic map is an important
invariant of topological conjugacy.

1.7.9 Topological and Probabilistic Recurrence

In spirit, several of the statistical properties we have discussed are close counterparts
to topological recurrence properties. We now connect these two realms systemati-
cally.

Proposition 1.7.63 For a Borel measure |1 on a separable metrizable space X

1. the support supp i := {x € X u(U) > 0 wheneverx € U,U open} of u is
closed,

2. p(X ~suppp) =0,
3. any set of full measure is dense in supp (L.

Proof

1. If x ¢ supp u take U, > x open with p(U,) = 0. Then U, Nsupppu = @.

2. Since X is separable, X ~ supp u is covered by countably many U, as above, so
(X ~ supp ) = 0 by o-additivity of p.

3. IfACXandx € U:=supppu ~A then u(X ~A) > u(U) > 0.

|

Remark 1.7.64 1f supp 4 = X then we say that p has full support or p is positive
on open sets.

Definition 1.7.65 Let f: X — X be a homeomorphism of a topological space. A
point y € X is said to be an w-limit point resp. an «-limit point for a point x € X if
there exists a sequence n; — +oo resp. n; — —oo such that f (x) — y.

The sets of all w-limit resp. a-limit points for x are denoted by

o = (Jr@ rep. a@=)Jsr"®)

NeN n>N neN n>N

and are called its w-limit resp. a-limit set. The a- and w-limit set of f are defined by

Li(f)=o(f)=Jow ad L(f):=ea(f):=Jaw.

xeX x€X

The limit set of f is L(f) := L_(f) U Ly (f).
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A point x € X is positively recurrent if x € w(x), i.e., x = limf™(x) for some
sequence n; — oo. If f is invertible, x is negatively recurrent if x € o(x).

Finally, x is recurrent if it is both positively and negatively recurrent. We denote
by RT(f), R™(f), and R(f) the closures of the sets of all positively recurrent,
negatively recurrent, and recurrent points.

Proposition 1.7.66 Let f be a continuous map of a complete separable metrizable
space X. Then:

1. suppu C RY(f) for any f-invariant Borel probability measure . If f is
invertible, then supp i C R(f).
2. If u is ergodic then f Msupp 1 has a dense positive semiorbit; indeed the set of

these has full measure. In particular, ergodicity of a measure with full support
implies topological transitivity.
3. If supp u is compact and f Msupp 1 is uniquely ergodic, then supp u is minimal.

Proof

1. Take a countable base {U;, U,, ...} of open subsets of X and let R be the set
of all points x such that if x € U, then infinitely many positive iterates of x also
belong to U,,. Apply the Poincaré Recurrence Theorem 1.7.11 to each of the U;
to deduce that Ry has full measure. If f is invertible then by the same argument
the set R_ constructed similarly to R4 but with negative iterates also has full
measure. Hence R := R_ N R4 has full measure and is by Proposition 1.7.63(3)
dense in supp p. On the other hand, if x € R and U > x is an open set then
U,, C U for some m; hence infinitely many positive and negative iterates of n lie
in U, i.e., R consists of recurrent points. Hence supp 4 C R = R(f).

2. Take a countable base {U;, U,, ...} of open sets for the induced topol-
ogy on supp i. By definition 0 < w(U,,), and a full-measure set of dense
orbits for invertible f is elementary: 0 < w(Un) < w(U;epf "(Un)), so
w(Uierf"(Uy)) = 1 by ergodicity, hence R := [,y Uz f " (Un) has full
measure, and the orbit of any x € R intersects all U, and hence is dense. To
prove the claim as stated, instead apply Corollary 1.7.44 simultaneously to the
characteristic functions yy,, to obtain a set R of full measure such that for x € R,
meN

n—1

tim |3 (0, (F) = (U > 0,
i=0

n—

and which is hence as desired.
3. For closed f-invariant A € supp u the Krylov—Bogolubov Theorem 1.7.8 gives
av e mt(fh) COM(f). Thenpu =v = suppu = suppv C A Csupppu. O

Recurrence implies chain-recurrence (Definition 1.3.14), so Proposition 1.3.37
implies
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Corollary 1.7.67 Let (X, 1) be a complete separable metrizable probability space,
supp u = X (Proposition 1.7.63), f: X — X continuous jL-preserving. Then Z(f) =
R(f) = X. If X is connected, then f is chain-transitive.

Proof Proposition 1.7.66(1) gives X = supppu C R(f) C Z(f) C X
Chain-components are clopen (Proposition 1.3.37), so there is only one by
connectedness. O
Thus, having typical behavior with respect to an invariant measure is a probabilistic
counterpart for recurrence, ergodicity is such for topological transitivity, and unique
ergodicity is likewise for minimality. It is important to note that the converse to any
of the statements of Proposition 1.7.66 is not true, even if we assume in addition
that f is a diffeomorphism of a compact manifold.
The following subsections establish ergodicity of various classical examples.

1.7.10 Ergodicity of Translations

We begin our study of examples with instances of group translations, the first of
which is a circle rotation. We can use multiplicative notation, representing the circle
as the unit circle in the complex plane

Sl={zeC |z7l=1}={*" ¢eR}

or additive notation, where S = R/Z is the factor group of the additive group of
real numbers modulo the subgroup of integers. The exponential map

R/Z3¢r e ef{zeC |z=1}

establishes an isomorphism between these representations. There is a natural
projection from R to S' defined by

7(x) =x+7Z or n(x) =",
respectively. We denote by R, the rotation by angle 2n ¢, i.e.,
Ryz = zoz withzg = €™ or Rex = x4 o (mod 1),
respectively. The iterates of the rotation are correspondingly
Ryz=Ryz=2zpz or Ryx=x+na (mod1).

A crucial distinction appears between the cases of rational and irrational c.
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In the former case, write @ = p/q, where p, g are relatively prime integers. Then
Rix = x for all x so R}, is the identity map and after g iterates the transformation
simply repeats itself. The latter case is much more interesting.

1.7.10.1 First Proof of Unique Ergodicity

Every rotation preserves Lebesgue measure.

Proposition 1.7.68 (Kronecker—Weyl Equidistribution Theorem) Any irra-
tional rotation is uniquely ergodic.

Proof By Proposition 1.7.61 it is sufficient to check that time averages for every
continuous function from a dense set of continuous functions uniformly converge
to a constant. By the Weierstrass Theorem, trigonometric polynomials form a dense
set among all continuous functions in the uniform topology. Furthermore, uniform
convergence to a constant is a linear property; if ¢ and ¥ have it, then so does
ap + by for a,b € R. Thus, it is enough to check uniform convergence for any
complete system of functions, e.g., for the characters (Definition 1.7.162) y,,(x) =
e?™"™ For m = 0 this is trivial. If m # 0, then

Xm(Rocx) — eZﬂim(x-l—a) — eZﬂimanHimx — e2m‘maxm(x)
and
<2
—1 n—1 27 imno
1§ 1 , 1—e
‘ ZXW!(R{;(X))‘ < ) Zemeka _ | . | 0.
ni— n i n|l — e?™ima|  n—oo

0
This argument extends to any translation 7}, x + x + y on the torus where
Yy = (Y1,---,Yn) issuch that m € Z" = (m,y) = myy1 + -+ myy, ¢ Z, i.e.,
{1,¥1,...,ya} is rationally independent. In fact, this is necessary for topological
transitivity and hence, since the support of Lebesgue measure is the whole torus, by
Proposition 1.7.66(2), also for ergodicity of Lebesgue measure.

Proposition 1.7.69 A translation Ty, ,.):T" — T" is uniquely ergodic if and
only if {1,y1,...,vn} is rationally independent.
1.7.10.2 Second Proof of Unique Ergodicity

An alternative proof of unique ergodicity for translations on the torus consists of
two parts. First, we obtain ergodicity from a Fourier analysis argument.
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Proposition 1.7.70 If (k,y) := 2}1:1 kiy; ¢ Z for any k € Z" ~ {0}, then the

translation T, is ergodic with respect to Lebesgue measure.
Proof If p oT,, = ¢: T" — C is a bounded measurable function, then it is in L? and
uniqueness of the Fourier expansion

Z q0k€27‘[i(k,)c) — (p(x) — (p(Ty(x)) — Z (pkeZHi(k,x-i-}/) — Z q0k€27ri(k,y)e27ri(k,)()
kez oty kT kez

implies g = @e?™ k1) ie., for every k either ¢ = 0 or (k, y) € Z.

Unless ¢ = const., there is a k # 0 with ¢ # 0, so (k, y) € Z. O

Remark 1.7.71 Since the exponents are characters of the torus considered as a com-
pact abelian group (Definition 1.7.162), the above statements and arguments easily
translate to the general case of translations of compact abelian groups. This kind of
argument is also useful for other dynamical systems of an algebraic nature, including
the expanding maps E,, (Sect. 1.7.13) and hyperbolic toral automorphisms.

The second step consists of showing that ergodicity with respect to Lebesgue
measure implies unique ergodicity. The special property of Lebesgue measure is that
it is invariant with respect to all translations. The natural context for the argument
is thus the multiplication transformation on compact abelian groups.

Definition 1.7.72 (Haar Measure) A topological group is said to be locally
compact if every point (or equivalently, the identity) has a compact neighborhood.
Such a group possesses a locally finite Borel measure invariant with respect to all
right translations, which is unique up to a scalar multiple and called the right Haar
measure. Similarly, the left Haar measure is, up to a scalar multiple, the unique
measure invariant with respect to all left translations L,,: g — gog.
These measures are finite if and only if the group is compact. In many interesting
cases right-invariant Haar measures are also left-invariant, e.g., when the group is
abelian, compact, or, most importantly, a unimodular linear group, i.e., a closed
subgroup of the group SL(n, R) of all nxn matrices with determinant one. In general,
groups for which the left and right Haar measures coincide (and naturally are simply
called Haar measures) are said to be unimodular.

Let us mention a theorem that yields Haar measure and that can otherwise be
useful when looking for invariant measures.

Theorem 1.7.73 (Kakutani-Markov Fixed-Point Theorem) Let E be a locally
convex topological vector space, G an equicontinuous group of linear maps of E,
K C E a nonempty G-invariant compact convex set. Then G has a fixed point p in
K, ie,gp=pforall gecG.

Note that since supprAcs # @ (Proposition 1.7.63) is invariant under all
translations, A is positive on open sets. For the torus, A is the usual Lebesgue
measure.

Proposition 1.7.74 If a translation Ly, on a compact metrizable abelian group G
is ergodic with respect to the Haar measure Ag, then it is uniquely ergodic.
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Proof Let u be any Lg,-invariant Borel probability measure. Then so is the pullback
measure Ly: A = L(LA):

Mg(LgoA) = H(Lng()A) = H(Lg(>LgA) = H(LgA) = Mg(A)-

Since M(Lg, ) is weak*-closed and convex, we can average over any measurable set
E of positive Haar measure to get an Ly, -invariant measure

1
A A)dA . 1.31
pEAS L /E 1A o (g) (131)
If ENF = & then

AG(EU F)pupur = AG(E) e + AG(F)iur. (1.32)

A change of variables in (1.31) shows that ¢ is Le-invariant for any g € G; hence
e = Ag by uniqueness of Haar measure.
If © # Ag, then there exists a continuous function ¢ such that

/Gwdu#/G<ﬂdka=/6wduc=/6([6<ﬂdug)dkc=[G(/G(</J0Lg—1)du)dka.

g @ = fc @ o Le—1 du is continuous and not constant since g # fG @odAg.
Thus we can find a number a such that Ag(E) > 0 and Ag(F) > 0, where E =
{¢ @g=>a},F=G~E.Then [;@dug>aand [,@dur <aso

HE F# IF,

while (1.32) implies Ag(E)ug + Ac(F)r = peur = e = Ag. SO Ag is not
ergodic by Lemma 1.7.48. O

1.7.10.3 A Third Proof and an Application

We sketch a geometric proof that introduces ideas useful in the study of broad
classes of dynamical systems, including those with no apparent algebraic structure.

Every measurable set on a small scale is densely concentrated; it fills some
small balls or cubes almost completely and almost misses others because it can
be approximated arbitrarily well (in measure) by finite collections of cubes. Fix an
invariant set A and € > 0 and find a small cube A suchthat A((ANA) > (1—€)A(A).
Images of A under the iterates of our map have the same property since both A and
A are invariant. Since our map is an isometry, any image of A is again a cube of
the same size. By topological transitivity one can find a collection of images that
cover the whole phase space almost uniformly, without much overlap. In fact it is
sufficient to assume that every point is covered no more than N times, where N is
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independent of €, because then the measure of A must be greater than 1 — eN. Since
€ can be chosen arbitrarily small, this implies that A has full measure.

The uniform distribution of each orbit under Lebesgue measure lets us determine
how often a given string of digits occurs as the initial string of digits of powers of
ke N, i.e., howoftenp < k"10~ < p 4+ 1 for some i € N:

Proposition 1.7.75 (Benford-Newcomb Law)>* If k € N is not a power of 10,
p € N, and 1g = log,, is the logarithm to base 10, then

1 , 1
F(N)::Ncard{Ofn <N p <K'l10™" <p+1 for someic N} mlgp:

Remark 1.7.76 For k = 2 and p < 10 this gives the statistics of the first digit
of 2". Over numbers with [lg p] digits, these sum to 1: Z!Eﬂ;] Ig 1 =Tlgp] —
lgp] =1.

Proof The salient eventislgp < nlgk —i <lIg(p + 1). Subtract m := |Igp] to get

1
0<Ig 10m =lgp—m=<nlgk—i—m<lg(p+ 1)—m=1gpl-(')_m < 1.
={nlgk}, fractional part
i i 1035 ; p+1
The rotation Ry, is ergodic,” so lim F(N) = [ x,. » , »+1, =18 )
N—o00 [lg 10m 518 “1om ) p

1.7.11 Circle Homeomorphisms

We can apply our insight into circle rotations beyond homogeneous systems
because irrational rotations more generally represent the dynamics of many circle
homeomorphisms. The Poincaré classification (Theorem 1.7.79) establishes how so,

34From Wikipedia: The discovery of Benford’s law goes back to 1881, when the American
astronomer Simon Newcomb noticed that in logarithm tables the earlier pages (that started with
1) were much more worn than the other pages. Newcomb’s published result is the first known
instance of this observation and includes a distribution on the second digit, as well. Newcomb
proposed a law that the probability of a single number N being the first digit of a number was equal
to log(N + 1) — log(N).

The phenomenon was again noted in 1938 by the physicist Frank Benford, who tested it on data
from 20 different domains and was credited for it. His data set included the surface areas of 335
rivers, the sizes of 3259 US populations, 104 physical constants, 1800 molecular weights, 5000
entries from a mathematical handbook, 308 numbers contained in an issue of Reader’s Digest, the
street addresses of the first 342 persons listed in American Men of Science and 418 death rates.
The total number of observations used in the paper was 20,229.
3If Igk = p/q then 2?57 = 107 = k9 = 2"95"4 using prime factorization. Then n = m and
k= 10"
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and for which circle homeomorphisms. The salient parameter is the average amount
by which a point is being rotated (or translated) by the homeomorphism, called the
rotation number.

The natural projection 7:R — S! = R/Z,x + x + Z provides a lift of a
homeomorphism f: S' — S! to a homeomorphism F: R — R with the property

fom=moF.

Such a lift F is unique up to an additive integer constant.

Proposition 1.7.77 Let f:S' — S' be an orientation-preserving homeomorphism
and F:R — R a lift of f. Then

1. p(F):= lim ! (F"(x) — x) exists for all x € R,
[n|—o0 1
2. is independent of x, and
is well-defined up to an integer, i.e., if F1, F are lifts of f then p(F1) — p(F2) =
Fi—F € 7.
p(F") = np(F).
p(F) € Qif and only if f has a periodic point.
If p(F) € Q then all periodic orbits have the same period.
If h:S' — S' is an orientation-preserving homeomorphism then p(h™'fh) =

p(f)-

This justifies the following terminology:
Definition 1.7.78 p(f) := n(p(F)) is called the rotation number of f.
Proof 1. Take x € R and let x,, = F"(x), a, := x, — X, k := | a,]. Then

w

NS A

Am+n = Fm+n(x) —x=F"(xy) =X, + X, — x

<1 =a,—lan|=0
= [F"(x+ k) = (x + O] + Pon —x] + [F"(x) = F"(x + k) =6, —x — k)]

=a, =a, <1

<am+a,+1,

so Proposition 1.6.10 shows that a,/n converges because

n—1
(Fi+1(x) —Fi(x)) > min F(y) —y > —o0.
i=0 =F(x;)—x; 0=y=l

a, 1
n n
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4
5
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. Since f is an orientation-preserving homeomorphism, F(x + 1) = F(x) + 1, and
|F(y) — F(x)| < 1forx,y € [0, 1). Consequently

F) = P 0) ] = R @ - PO e <

and the rotation numbers of x and y coincide.
.p(F+k)=pF)+kforkeZ

1 1
. p(F™) = lim  ((F™)"(x) —x) = m lim (F"™(x) —x) = mp(F).
n—>oo n n—>o0 mn
. If f has a g-periodic point 7 (x), then F9(x) = x + p for some p € Z, hence

m—1
F™(x) — 1 . .
(x) X _ Fq(qu(x)) _th(x) _ mp — p’
mq mq Z,.ZO mqg  q

form € N, and p(F) = p/q.

If p(F) = p/q € Q, then p(f9) = n(p(F?)) = n(gp(F)) = 7(p) = 0, so,
passing to 4, it suffices to show that if p(f) = O then f has a fixed point.

If f has no fixed point and F is a lift such that F(0) € [0, 1), then F(x) — x €
R~ Z forall x € R,* s0 0 < F(x) — x < 1 by the Intermediate-Value Theorem.
Since F — Id is continuous on [0,1] it attains its minimum and maximum and
therefore there exists a § > 0 such that

0<6<Fx)—x<1-6<1

for all x € R since F —Id is periodic. Taking x = F(0) and summing fromi = 0
ton—1givesnd < F"(0) < (1—-¥8)nord < F”rfo) <1-8,506 < p(F) <1-38.

. If p(f) = p/q with p, g € 7Z relatively prime and 7 (x) is periodic, then we need
to show that there is a lift ' of f for which F?(x) = x + p. If F is a lift such that
o(F) = Z, then F"(x) = x + s for some r, s € Z, and

Fnr _
pzp(F): lim (x) X _ lim ns:s’

q n—00 nr n—>00 nr r

so s = mp and r = mgq. If F4(x) — p > x then by monotonicity

F'(x)—s= F(”’_l)q(Fq(x) —p)—(m—Dp=---=Fi(x)—p>x,

=F"4(x)—mp >Fn=14(x)—(m—1)p

contrary to the assumption, so F9(x) —p < x. Similarly, F7(x) —p > x as claimed.

36F(x) — x € Z implies that 7r(x) is a fixed point for f.
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7. If F and H are lifts of f and h, respectively, i.e., 7F = fm and mH = h, then

(@ H 'isaliftof ' zH' = hm'"wnH ' = h'wHH™' = h 7.
(b) H™'FH is alift of i~ fh: wH'FH = h™'wFH = h™\fxH = h™\fhr.

We need to estimate |H™'F"H(x) — F"(x)| = |(H™'FH)"(x) — F*(x)|.

(a) If H0) € [0,1) > x,then 0 — 1 < H(x) —x < H(x) < H(1) < 2 and by
periodicity |H(x) — x| < 2 forx € R.

(b) Similarly, [H™'(x) — x| < 2 forx € R.

(c) If [y — x| <2 then |F"(y) — F"(x)| < 3 since ||y] — |x]| < 2 and thus

Bl -1=F(D-F(x]+ 1D <F'(y) - F'()
<F'(]+D=-F(x) =Dl +1-[x] =3,
<2 <3

o JHFHE) = F' @) _ |HT FUHE) = FPHE)| 1P = F'0)]

n n

0.
O

Theorem 1.7.79 (Poincaré Classification Theorem [KaHa95, Theorem 11.2.7])
For an orientation-preserving homeomorphism f:S' — S without periodic
points

1. if f is transitive then f is conjugate to the rotation Ry,
2. otherwise, h o f = R,y o h for a noninvertible continuous monotone map h:

st — st
This implies

Theorem 1.7.80 A circle homeomorphism without periodic points is uniquely
ergodic and measure-theoretically isomorphic to an irrational rotation.

Definition 1.7.81 We say that a map f of a measure space (X, i) is nonsingular
and that y is quasi-invariant under f if u(A) = 0 if and only if w(f~'(A)) = 0.
Equivalently the pullback fi u is equivalent to i and hence, by the Radon—Nikodym
Theorem, is given by a positive density.

For a topologically transitive homeomorphism (and hence for a minimal one) there
is no open set that is wandering, i.e., with pairwise disjoint images, and by the
Poincaré Recurrence Theorem 1.7.11 there is also no set of positive measure of this
kind—so long as the measure is invariant and finite. However, when a probability
measure is only quasi-invariant, then there might be sets of the latter type, and
we presently demonstrate something even stronger for Lipschitz-continuous circle
maps and Lebesgue measure.

Proposition 1.7.82 (Kodama—Matsumoto) There is a minimal uniquely ergodic
bi-Lipschitz homeomorphism f of S' with a measurable fundamental domain A:
f"(A) Nf™A) = @ forn # m, and S* ~ |, f'(A) is a Lebesgue null set.
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Remark 1.7.83 Clearly, u(A) = 0 for any invariant Borel probability measure;
the interest here lies in the fact that this can happen for the natural quasi-invariant
measure. Lebesgue measure is here nonergodic in a strong sense; for instance, any
Borel function on A can be extended to an f-invariant measurable function.

One can arrange for f to be topologically conjugate to any given irrational
rotation, but we choose a Diophantine one to avert the need for a more careful
construction of the set in question. A number « is said to be Diophantine of type
(c, d) if for any nonzero p, g € Z we have |go — p| > cq™¢

Proof For the rotation R := R, with ¢ Diophantine of type (c, 2) for some ¢ > 0 we
choose as a fundamental domain the Cantor set

C: —{Z 4 with w € {0, 1}N}

ieN

To check disjointness, write a point of R"(C) N R™(C) as x + ngp = y + mg with
x,y € C and hence

(n—m)(p:y—xéC—C:{Z withﬁe{o,l,—l}N}.
ieN

With partial sums as approximants g we have g = 2¥7in

1 1 2 2 2

< E o< E L= = = .

— 4i — i 4k 4k 1 4k—1 4
P 2 oy’ 2 2 q /

[ = m)gp !—\224,

This implies n = m because no nontrivial integer multiple of ¢ has this property.
Now let 1o be a nonatomic probability measure supported on C. For instance, define
wo(S' ~C) = 0and

([Z:;Z% +Zz4’]) — 2,

i>k

=1 3cs 37MRL g is a probability measure (3., 37/ = 2) with full support
. . dR,' 1 1

(U,ez R'C is dense) and quasi-invariant: |: dy :| = 3XU0Ri(C) + 3)(U0Ri(c) €

L®(11). Take A := h™'(C) with h(([0, y])) := y (a homeomorphism with 1, A = 1,

where 1 is Lebesgue measure); the homeomorphism f := h~! o R o h is bi-Lipschitz

because

df,' A dr; ' 1
[ a2 }:[ d*u Oh= L XUmorin + 33Xy € L7 ).
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1.7.12 Extensions of Rotations

We now describe a class of examples closely connected to rotations.
The first instance of these should be classified as elliptic, and it contains minimal
nonergodic examples. (The second instance appears in (1.33).)

Proposition 1.7.84 Consider a map f:(x,y) — (x + a.y + ¢(x)) of T2 with
a € R~Qand ¢:S' — R.If p(x) = ®(x + a) — ®(x) for some Lebesgue
measurable function ®:S' — R then for any ergodic invariant measure f is
measure-theoretically isomorphic to the rotation R, and there are uncountably
many different ergodic invariant measures.

Proof Take h(x,y) = (x,y + @(x)). Then h~' o f o h(x,y) = (x + «,y). Since
the rotation is uniquely ergodic any invariant measure for f projects to Lebesgue
measure on the circle and hence / defines a measure-theoretic isomorphism for any
such measure. Thus the invariant ergodic measures for f are exactly the measures
induced from measures on circles. There are uncountably many of these because the
graph of @ + ¢ for any ¢ € R supports such a measure. O

Proposition 1.7.85 Consider the torus T?, a function ¢:S' — R, and a map
f:(x,y) = (x+a,y+ @) of T2. Then either p(x) = ®(x+a) — DP(x) +ria +r
for some continuous ®: S' > Randr,rneQ, or f is minimal.

Remark 1.7.86 1f @ is continuous and (r;,r,) = 0, then & is a topological
conjugacy to R, x Id on T2.

Proof One can show that there is an invariant minimal set M for f and the projection
of this set to the first coordinate is invariant, hence is S'. Consider the intersection
of M with the fiber {x} x S'. We show that if it contains two points y and y + 7 then
it is invariant under translation by 7 in the fiber. Namely, by minimality there exist
points z; = fNi(x,y) — (x,y + 1), so the points fi(x,y) —— (x,y + k1),

which are hence in M. Thus the closed set M N ({x} x §') is elther a coset of a finite
subgroup of {x} x S' generated by r € Q or equal to {x} x S'. Since M is closed the
same case occurs for all x and by continuity we obtain the same subgroup for all x,
hence giving either minimality or a collection of invariant closed curves for f.

In the first case we factor the second coordinate modulo 1/g. Thus in this factor
the set intersects every vertical exactly once and is hence the graph of a continuous
function. On the universal cover it lifts to the graph of a function @’ with &'(x +
1) = @'(x) + k and all its integer translates. Invariance under the lift F yields
x+a,®@(x)+eokx) =Fx, & (x) = (x+ a,® (x + «) + n) for some n € Z.
Thus we obtain ¢(x) = @’ (x+«)—®’(x) +n. Recalling that we factored the second
coordinate by 1/g and writing @’ (x) = ®(x) + kx we obtain Proposition 1.7.85 with
ri=k/qand r, = n/q. O
One interesting application of the preceding two results is that a circle extension of
the above form is a minimal nonergodic diffeomorphism if one can write ¢(x) =
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P (x + a) — D(x) for some measurable @ but not p(x) = @(x + o) — @(x) + r for
any continuous .

By taking ¢(x) = x above, we now consider a map of the two-torus T2 that
is somewhat similar in form to a translation, can be analyzed by similar methods,
shares some common features (e.g., minimality) but also exhibits different features.
The map, which depends on a parameter «, has the form

Ay(x,y) = (x + o,y +x) (mod 1). (1.33)

Itis a prototype of smooth dynamical systems on compact manifolds with parabolic
behavior. Similarly to translations the map A, is “integrable” in the sense that there
is a closed formula for its iterates:

Al (x,y) = (x+no,y +nx + n(n—1)a/2) (mod 1).

This map is an example of a skew product. The evolution of the first coordinate
depends only on itself. The partition of the torus into circles x = const. is invariant
under A,, and if one identifies each circle with the corresponding value of x, the
elements of this partition are mapped according to the rotation R,. The difference
with the Cartesian product is that the way in which each element maps to its image
changes from one element to another.

Unlike toral translations, these maps are not isometries. They have a suitably
weakened property related to the relative behavior or orbits.

Definition 1.7.87 (Distality) A homeomorphism f of a compact metric space is
distal if for x # y there exists a § > 0 such that d(f"(x),f"(y)) > é forall n € Z.
Obviously a map is distal if it is an isometry, or more generally, if the collection of
its iterates is equicontinuous. Skew-products provide more interesting (and typical)
examples of a topologically transitive distal maps.

Proposition 1.7.88 The affine map Ay from (1.33) of the torus is distal.
Proof If p = (x,y),p’ = (¥',y’) € T? then there are 2 cases.

© x=x:d(A5(p). Ay () = Iy — Y| =:86.
o x#x:dAL(p),AL(P)) = |(x+ na) — (¥ + na)| =[x —x'| =:6.

Proposition 1.7.89 If o ¢ Q then A, is minimal.

Proof We show that this follows from topological transitivity, which by Pro-
position 1.7.66 is a consequence of Proposition 1.7.90 below. We argue by
contraposition. Assume A, is not minimal, i.e., for some point (x,y) € T2 the
closure of its orbit under the iterates of A, is not the whole torus. The map Ay
commutes with every “vertical” translation T ;) and hence the orbit closure of any
point (x,y + s) is the translation of the orbit closure of (x, y) and is also not dense.
Now consider the union X of such orbit closures for all s. This set is A,-invariant
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and closed and consists of whole vertical circles. No point in X has dense orbit
(each is in a nondense invariant orbit closure). If X = T? this implies that A, is not
topologically transitive. If X # T2, then X projects onto a closed invariant proper
subset of the rotation Ry, so R, is not minimal and hence @ € Q. ]

Proposition 1.7.90 The affine map Ay: T> — T2, Ao (x,y) = (x+0o, y+x) (mod 1)
is ergodic with respect to Lebesgue measure if a ¢ Q: bounded measurable A -
invariant functions ¢: T" — C are constant almost everywhere.

Proof Write the Fourier decomposition of ¢ as

.Y = Y @uaexpri(mx + ny)).

(m.,n)€Z?
The invariance condition ¢(x,y) = ¢(Aq(x,y)) implies

Omtnn = eXp2mwimot)Qm . (1.34)

If n = 0 then ¢, 0 = exp(2ima) @m0, SO Pmo = 0 for m # 0 since o ¢ Q.

If n # 0 then (1.34) gives infinitely many different Fourier coefficients with the
same absolute value; since ¢ is bounded and hence in L2, this absolute value is 0.
Thus ¢,,, = O unless m = n = 0, so ¢ is constant a.e. O

Proposition 1.7.91 The affine map A,: T> — T2, Ay (x,y) = (x+a, y+x) (mod 1)
is uniquely ergodic if o ¢ Q.

Proof We use the fact that A, commutes with all vertical translations T ;) and apply
the method of Proposition 1.7.74 although with some modifications to show another
version of the argument.

We will use the same letter A for Lebesgue measures on the torus, on the circle
and on each fiber {x} x S'. Every ergodic invariant measure j for A, projects to the
Lebesgue measure A in the x-coordinate. The pullback u, := T(’B, oy is also ergodic

and A,-invariant as is the average g = (IE) /;  Mdt for any Lebesgue measurable

set E C S'. Note that for every set of positive measure (g is absolutely continuous
because it projects to A in the first coordinate and its conditionals are convolutions
of the conditional measure for p with an absolutely continuous measure ygA.
Hence pg is absolutely continuous invariant measure and its density with respect
to Lebesgue measure must be invariant, hence constant. Thus g = A. Assume that
1 # A. Since for any continuous function ¢ the integral sz @d s is continuous in ¢
one can find a ¢ and an interval I around zero such that

1
du,d dxd
/W)/Iw Mrt#/w@)w

and hence p; # A, a contradiction. O



1 Introduction to Hyperbolic Dynamics and Ergodic Theory 95

Similarly to Proposition 1.7.75 (as well as Corollaries 1.7.97, 1.7.110 and 1.7.111
below), this has number-theoretic implications.

Proposition 1.7.92 If a ¢ Q then the fractional part of any quadratic polynomial
an® + Bn + y on 7 is uniformly distributed on [0, 1], i.e., [a,b) C [0, 1] =

1
card{0 <i<n ai2+,3i+y—Lai2+,3i+yJe[a,b)}T)b—a.
n n—o00

Proof A3, (B+a,y) = (B+ (4n+ 1)a,an® + Bn + y) is equidistributed on T2 by
Proposition 1.7.91 and Corollary 1.7.59, and so is the second coordinate on S'. O

1.7.13 Ergodicity of Expanding Maps and Toral
Automorphisms

Now we study the linear expanding map E,:S' — S!, x + mx (mod 1) for
m # 0. Algebraically this is endomorphism of the group S' = R/Z onto itself.
Geometrically it is an m-fold cover of S'. Writing P,,(f) := card Fix(f"), we have

Proposition 1.7.93 If m > 2 then P,(E,) = m" — 1 and periodic points of E,, are
dense in S'.

Proof E'(z) =z & 7" =z & "' = 1, so Fix(E") consists of the m" — 1 roots

of unity of order m" — 1, hence is mnl_l -dense. O

E,, preserves Lebesgue measure A because the preimage of any interval of length /
consists of |m| disjoint intervals of length //m.

Proposition 1.7.94 Lebesgue measure is ergodic for E,, with |m| > 2.
We give two proofs of this fact which are related to our second and third proofs for
the toral translations.

First Proof Let ¢ be a measurable bounded E,,-invariant function. Using the Fourier
expansion

o) =Y prexp(2riky)
k€EZ

we obtain ¢(E,,(x)) = Y_,c; ¢k exp(27ikmx). Since ¢(x) = @(En(x)), we have

Ok = Qk-ms m e N.
Since ¢ € L' and hence |¢y| - 0, this implies ¢; = 0 for k # 0 and ¢ = ¢y.
—00
O

Second Proof Let A C S' be a measurable E,,-invariant set of positive Lebesgue
measure. E, ' (A) = A implies forward-invariance of S' ~A = E,,(S' ~A). As in the
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third proof for the toral translations, fix € > 0 and find an open interval A of length
|m|™" for some n such that

MA~A) > (1 —OAA) = (1 — &) |m|™.

Since E,, has constant derivative it expands the Lebesgue measure of any set on
which it is injective exactly |m| times. Thus A(E! (A)~A) = |m|"A(A~A) > 1—e.
O

The first proof of Proposition 1.7.94 adapts to give

Proposition 1.7.95 Consider A € GL(m,Z), i.e., an m X m-matrix with integer
entries and determinant 1, and assume that no eigenvalue of A is a root of unity.
Then the toral automorphism Fp:T™ — T™ induced by A is ergodic.

Remark 1.7.96 Concrete such examples are given by Examples 1.1.1 and 1.1.3. The
converse holds as well.

Proof Let ¢ be a measurable bounded F4-invariant function. Expressing invariance
through the Fourier expansion gives

Y peexprifk, x) = o(x) £ @(Fa(x) = ) gexp(2ri (k, Ax)).
kezm kezm =(Alk.x)

Uniqueness of the Fourier expansion then gives
Ok = Py k forn € N.

If k # 0, then the (A")"k (for n € 7Z) are pairwise distinct since A, and hence A’,

has no roots of unity as eigenvalues. Thus, there are infinitely many [ € Z™ with

o =g Butg e L' = |g \I—) 0,50 ¢ = 0 when k # 0, and ¢ = ¢. O
I|—>o00

Corollary 1.7.97 (of Proposition 1.7.94) Lebesgue-a.e. x € R is normal with
respect to any base b > 1, i.e., each digit is equally frequent in the base-b expansion.

Proof The base-b digit a < b appears in the kth place iff Ef(x) € (5 ‘Hb'l ). By the

Birkhoff Ergodic Theorem, the fraction of those & tends to ‘”;1 — jj =1/b. O

1.7.14 The Gauss Map

Definition 1.7.98 The map G:[0,1] — [0, 1) defined by x — {1/x} (fractional
part) is called the Gauss map.

The special importance of this map lies in its close connection with the classical
continued-fraction algorithm, analogously to the way the doubling map is connected
to binary expansion. The Gauss map has jump discontinuities at 1/i for i € N which
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0.2 0.4 0.6 0.8 1

Fig. 1.12 The Gauss map (©Cambridge University Press, reprinted from [HaKa03] with per-
mission)

can be removed if one identifies the end-points of the interval and makes it into
a circle, and a discontinuity without right-sided limit at 0. Projecting to the circle
S' = R/Z would fix the discontinuities away from zero, but as a dynamical system
this map is most naturally defined on the interval. The restrictions x +— )1( —iof Gto
the intervals (; 41_1 , %] of continuity of G are called the branches of G. It is apparent
that min(G?)’ > 1, so the Gauss map (or, more precisely its square) can be viewed
as expanding although it is not everywhere differentiable. In fact, we have a stronger
statement (Fig. 1.12).

Lemma 1.7.99 (G?)' > 4 wherever defined.

Proof G'(x) < —1 wherever defined, and if x < 1/2 then G'(x) = —1/x*> < —4, 50
ifx < 1/2 or G(x) < 1/2 then (G?)/(x) = G'(G(x))G'(x) > 4. Otherwise, x > 1/2

and G(x) > 1/2,50 G’(x) = — 1=~ and (G (x) = (1 -0)7> > 4. O

1
Remark 1.7.100 Observe that the condition x > 1/2 and G(x) > 1/2 defines the
longest interval of continuity of G?, which is (1/2,2/3) and hence has length 1/6 <
1/4. Since the longest interval of continuity of G has length 1/2, Lemma 1.7.99
shows that the intervals of continuity of G" have length at most 27".

Analogously to Proposition 1.7.93 we obtain
Proposition 1.7.101 P,(G) = oo and periodic points of G are dense in (0, 1].

Proof Each branch of G and hence of G" is onto, so by the Intermediate-Value The-
orem G" has a fixed point in each interval of continuity. Thus, by Remark 1.7.100,
the union of these is dense, and P,(G) = oo. O
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1 1
That G(x) = — a implies a = |1/x] and x = + 6 leads to an
X a X

explicit description of periodic points. Fixed points satisfy x = . Likewise,
a+x

1 1
x = ! implies that a period-2 point satisfies x =

a) + a) +

a + G%(x) ar +x
Generally:

Proposition 1.7.102 A period-n point satisfies the equation

1
X = 1 (1.35)
a +
L 1
a, +x
and hence is of the form
1 . 1
X = = lim
1 m—>00 1
aq + aq +
a+ ... 1

with aj+, = a; for all i € N.

Proof That the limit exists follows from Remark 1.7.100 because the local inverse

1
Fo.a,:10,1] = [0,1], 1+ (=tifn=0) (1.36)

a; +
1. |

+
a, +t

of G" parametrizes the closure I, ,, of an interval of continuity of G”, and the
lengths of these go to 0 as n — oo. O

Remark 1.7.103 By (1.35), every periodic point is a quadratic irrationality, i.e., it
satisfies a quadratic equation with integer coefficients because a + Z;i; is a ratio of
linear expressions in x and hence so is its reciprocal:

1 B 1 . dx +e
adt 'ﬁii = (ad+(l;)c)r;ae+c - (ad + b)x + (ae + c)

ax+b

recursively leads from (1.35) to a quadratic equation of the form x = 777 .
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1 1
n+1'n
Theorem 1.7.104 (Continued-Fraction Representation) For ¢ € R define
(a))2, and (a;)2, recursively by

IJ e N, so:

1
—nwithn:L
X

X

The branchof Gon A, := ( ) isx

a:=la). o=t ar=| | ww={ )
and set

‘=ay + (1.37)

in lowest terms and with g, > 0. ( Z " are called the convergents.) If a € Q then the
recursion terminates with a;+1 = 0 for some i (because {o;} is a proper fraction

and hence ojy = {01 } has smaller numerator), and
4

1
o0 =ap+ |
ap +
1 ‘ 1
S
a;
. 1
Otherwise, @« = ag + = lim agp +
n—>00 1
a + ap +
! a + ... ! . 1
—
ap

Proposition 1.7.105 (p,),>—1 and (g,)n>—1 both satisfy the two-step recursion
Xn+1 = Xp—1 + An+1Xn

with initial values p—_y = 1, g—1 = 0, po = ao, qo = 1.

Proof We establish this by definingp—y = 1, g—1 = 0, po = aop, g0 = 1,
DPnt+1 = Pn—1 + Gny1pn a0d Gut1 = Gu—1 + Ant1Gn,

and by inductively showing that p, and g,

1. are relatively prime and
2. satisfy (1.37).
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pn and g, are coprime because p,g,—1 — Pr—1¢» = (—1)"~! (so any common divisor
of p, and g, divides —1). For n = 0 this follows fromp_; = 1,g—; =0, go = 1,
and the induction step is

Pn+19n —Pnqn+1 = (pn—l +an+1pn)qn _pn(qn—l +an+1qn) = _(PnQn—l _pn—lqn)‘
Pn and g, satisfy (1.37) because Fy, ,, from (1.36) satisfies

Pn—1 + Gnt1Pn _ Dn+1

ap + Fal...a,,(l/an+l) = s
qn—1 + an+19n qn+1

which is the special case t = 1/a,+ of

Pn + Pn—1

ao+ Foy.0,(t) =
@ qn + IQn—l

fort € [0, 1). (1.38)

This follows inductively from Fy, g, (f) = Fal...a,,( :Itis clear forn = 0

n t n— t . .
because P 1pn-i = + , and if n is such that (1.38) holds, then

qn + tqn—1 1+0

a,,+11 +t)

1
1 ) = Pt g +iPr=t i1+ 1py

ao+ F, 1) =ap+F = = :
0 al"'a”Jrl( ) 0 alma"(an_H +1t qn + an+ll+,qn_1 qn+1 + 1q,

_ Pn—1Fay4pntipn
dn—1Fan19n+1an

Corollary 1.7.106 g,+; > g, > 20~D/2,

Proof Proposition 1.7.105 gives the first inequality, and together, they imply g, >
qn—1 + gn—2 = 2q,—>. Recursively, gz, > 2"qo = 2" and gp,41 > 2"q) > 2". ]
If (a,)2, is a sequence of natural numbers, then (1.37) defines a convergent
sequence of rational numbers whose limit « is irrational, and those numbers are
convergents for «. Thus, the Gauss map is related to continued-fraction expansion
in the same way the map E,, is related to expansion in base m.

Proposition 1.7.107 Lebesgue measure is ergodic for the Gauss map.
We establish this using partial mixing:

Lemma 1.7.108 u is ergodic if for all measurable A, B there are n € N and ¢ > 0
with 1 (f~"(A) N B) = cpu(A)iu(B).

Proof A =f"1(A) = cp(ARX~A) = p(f7(A) NX~A) = p(A N (X~A)) = 0.
o
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Proof of Proposition 1.7.107 1t suffices to establish the hypotheses of Lemma
1.7.108 for A :=[u, v] C [0, 1] and B:=1,, _,, as in the proof of Proposition 1.7.102
(the closure of an interval of continuity of G") because the proof of Proposi-
tion 1.7.102 shows that intervals of this type generate the Borel o-algebra.

The end-points of the interval I, ,, N G~'([u, v]) are F,, 4, (u) and F,, 4, (v),
where F,, 4, is the local inverse in (1.36). Denoting Lebesgue measure by m and
using (1.38) this gives

m(Ial...a,, N G_l([uv U])) _ Fal...a,, (U) - Fal...an (“)
m(lal...an) Fal...a,,(l) - Fal...an (O)
Pn + UPn—1 _ Pn + Upn—1
Gn + VGn—1 Gn + UGn—1
Pn +pn—l _ Pn
qn + gn—1 qn
qn qn + qn—1
(v —u)
qn + V4n—1 Y4n + Ugqn—1
=m([u.v])
>1/2 >1

> m([u, v])/2 since 0 < gn—1 < gn.

|
While Lebesgue measure is not invariant under the Gauss map, there is an absolutely
continuous invariant measure, with an explicitly given smooth positive density:

1 1
Proposition 1.7.109 The measure mg with density log2 1+ x (i.e., mg([a,b]) =

log, (b + 1) —log,(a + 1)) is invariant under the Gauss map and ergodic.

Proof Ergodicity follows from Propositions 1.7.107 and 1.7.41, and
mo(G™([a,b]) = ¥ logy(1+ 1) —log, (1 + 1) = log, "1 = ma([a, b]).

n€N
=log, (a+n+1)—log,(a+n) =log, (b+n+1)—log, (b+n)
|

Corollary 1.7.110 Almost no a € [0,1] has bounded continued-fraction
coefficients.

Proof Since a; = [1/G ()] these are the points whose G-orbits are bounded
away from zero, hence not uniformly distributed. By ergodicity, this is a null set. O

Corollary 1.7.111 For almost every x the number n € N occurs as a continued-

[fraction coefficient with asymptotic frequency log, (1 + rll) —log, (1 + rHl_l )

Proof By ergodicity of mg the orbits of G are uniformly distributed, so the

probability of a; = [1/G ()| = n,ie. , <G o) < ! isma((,y,.}]). O



102 B. Hasselblatt
1.7.15 Bernoulli Shifts

Definition 1.7.112 A Bernoulli shift is the shift transformation oy from Defini-
tion 1.4.10 on the probability space 2y = N or R = NN with a product measure
W, generated from a probability vector p = (u({i}))¥-' on{0,...,N—1} by setting

pp(Clik) = ]—[pa,

for cylinders as defined by (1.6) and then extending to the o-algebra of all Borel
sets.

Remark 1.7.113 Ttisreadily apparent that the product measure is shift-invariant (for
a shifted cylinders one computes the product of the same ;) and that the intersection
of finitely many cylinders is another cylinder; when their index sets {np, ..., n;}
are pairwise disjoint, its measure is the product of the measures of the intersecting
cylinders. This immediately implies Proposition 1.7.120 below.

This is a special case of the following.

Definition 1.7.114 If (Y, .7, v) is a probability space then the product measure y of
X, B, 1) = [liez(Y, T, v) or (X, B, 1) = [ien, (Y, 7, v) is called the Bernoulli
measure and the one- or two-sided shift 0:X — X defined by (0(x)), = X,+1
considered as p-preserving transformation is called a Bernoulli shift.

Here we used

Definition 1.7.115 (Product Measures) If (X;, .7, i;)ie; are probability spaces,
then we define their product (X, 8, ) := [ |,;(X:, -, 11:) as the cartesian product
X := [,¢; Xi with the probability measure u defined on cylinders

Ci i={XeX x;€A CX;,forj=1,.. 5k

by

p(CL ) = 1‘[u,,<A)

j=1

and extended to a measure on a o-algebra 4.
The importance of these systems motivates the following notion:

Definition 1.7.116 A measure-preserving dynamical system is said to be a
Bernoulli system if it is measure-theoretically isomorphic to a Bernoulli shift.

Proposition 1.7.117 When m > 1, the expanding map E,, from Sect. 1.7.13 (with
Lebesgue measure) is a Bernoulli system: it is measure-theoretically isomorphic to
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T:x+—>1-2x— ;|0n [0, 1].

Proof Let x = 0.x1x; ... be the base-m representation of x € [0, 1]. Then mx =
X1.%2x3 ... = 0.xox3 ... (mod 1). Thus

E,(x) = 0.x2x3... (mod 1),

and .x;xy ...~ (x1,x2,...) is the desired isomorphism.
For the tent map check that x — (card({T"(x) N ( é 1)}))ien works. O

1.7.16 Mixing

Analogously to the difference between topological transitivity and mixing, the dif-
ference in the probabilistic behavior of orbits between the simplest representatives
of our two groups of examples, an irrational rotation R, and a linear expanding map
E,, lies in the following properties.

Definition 1.7.118 A measure-preserving transformation f: (X, u) — (X, ) is
said to be weakly mixing if for any two measurable sets A, B

n—1
tim " [u(44) 1 B) — p@)n®)| = 0. (1.39)

n—oo n
k=0

It is said to be mixing if for any two measurable sets A, B
w(fA)NB) - u(A) - uw(B) as n— oo. (1.40)

It is said to be mixing of order N if for any N 4 1 measurable sets A; and with ny:=0

N N
p((VA)) ———= [ . (1.41)
i=0

. ni—nj—1—>00
i=0

Remark 1.7.119

* Mixing is mixing of order 1.

* One can restate (1.40) as ug(f"(A)) —= W(A), i.e., asymptotically f~"(A)
and B are independent sets.

* Clearly mixing implies weak mixing, so weak mixing is a weakened (average)
version of the statement about asymptotic independence.

* By taking A invariant and B := X ~ A (or by comparing (1.39) and (1.28), or
from Proposition 1.7.138) we find that weak mixing implies ergodicity. Thus,
ergodicity is the weakest statement of this sort.
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* To clarify the intent of (1.41), we rewrite it for N = 2 as

p(f A NfBYNC) > HA)uB)O).

m—>00 and m—n—>

Proposition 1.7.120 Bernoulli shifts are mixing of all orders.

Proof Since cylinders form a sufficient collection of -measurable sets it is enough

to check (1.40) for these, and we check only mixing of order 1. If C/?f:fi\k and

Y15l . . . .. .
Cp, ", are cylinders and n > max{ji,...,J;} —min{iy,..., i}, then

_ iy tn,.igtngee gy Q1 eennlk V1 seeedfl
= WGy i) = MCL 0, N Cy )
|
If a measure-preserving transformation is mixing, then the von Neumann Mean
Ergodic Theorem can be strengthened: the conclusion still holds if the iterates are
sampled “haphazardly” rather than successively:

Proposition 1.7.121 Let f: (X, u) — (X, i) be a mixing probability-preserving

transformation, ¢ € L*>(X, 1), (ki)ien a strictly increasing sequence in N. Then

n—1

1 R
Y pofft —— Pip) = /fpdu-
n pas n—00

Proof As usual, suffices to prove this for a sufficient family of functions, e.g., when
@ = ya is the characteristic function of a measurable set. To that end note that

/1. S r o - iy i
i=0

= nl2 i /X (XA oft — u(A)) (XA oft —M(A)) du

ij=0
=xaofhi-xaofi—u(a) (xacr +xacr) +u(4)?

n—1
1 ke __
= 5 D WA NFTIA) —p(A)
BIER (5 () ————>pu(a)?

li—jl—o0

by the mixing assumption, so the claim follows from Proposition 1.7.122 below. O

Proposition 1.7.122 If (a;)ijen, is a bounded sequence with limj;_j o a;; = 0,

. 1 n—1
then lim, o0 1 D 7= a;j = 0.
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Proof For € > 0 take N € N such that |a;j| < €/2 when |i —j| > N. Forn > N

there are at most n(2N + 1) pairs (i,j) with 0 < i,j < nand |[i —j| < N, so if
n > 2(2N + 1) sup; |a;| /€ as well, then

2N + 1
<
- n

1 n—1
‘nz Z %
ij=0

jasl+ S gl < €+ €
sup |a;; a;; .
LT g L NS 5 Ty
E 0<ij<n

li—j|>N

|
Weak mixing can be interpreted as a mixing condition in which one ignores a
“negligible” set of times:

Proposition 1.7.123 A measure-preserving transformation is weakly mixing if and
only if for any two measurable sets A, B
there is an E C N of density 0 with 5!lim w(f(A) N B) = u(A) - u(B).
EZn—o00
(1.42)

Here we used the following notion and fact:

Definition 1.7.124 If card(E N {1,...,n}) = dn + o(n), then we say that E has
density d. In particular, a set E C N has density 0 if card(E N {1, ...,n}) = o(n).

Lemma 1.7.125 (Koopman-von Neumann) If (a,)en is a bounded sequence,
then lim,— o0 !/n Z;:é la,| = 0 if and only if there is an E C N of density 0 such
that

n b E
lim ay =0, ie, 0= lLim )% J7F
EFn—>00 "= (0 ifnekE.
Corollary 1.7.126 If (a,),en is bounded, then
1 n—1 1 n—1
. _ . . . 2
Jim ; janl =0 ifandonlyif  lim Z(;an = 0.
Proof lim a, =0ifandonlyif lim a*=0. u]
EFn—00 EFn—00

Proof of Theorem 1.7.125 “if”’: Take M to be an upper bound of (|a,|),en. Fore > 0
there is an N € N such that for n > N we have

€
. E = |a,| < and
n ¢ ] M+ 1

1
C d(E)= cardEN L0 < MG

+1
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1 1 €
and hence . Z |la;| = n(z |ai] + Z lai|) < Md,(E) + M1 <€

i<n n>i€E n>i¢E

“only if”: Since Ey :={i € N |a;| > 1/k} C Ey4, satisfies

n—1
1 k
dn(Ek) = " cardE), < n Z |ai| m 0,
i=0

recursively take [y > [, such that d,(Ey) < 1/kforn > . Let E := | J, ey Ex N
[li—1,lx) and e > 0. Ifk > 1 /e and [;_; < n ¢ E, thenn ¢ E;, and |a,| < 1/k < €.
Now take K > 2/€,n > lg and k > K such that [; < n < [;4;. Since

EN[0,n) = (EN[0,4) U(EN[l,n)) C (Ex N[0,L)) U (Exq1 N I, 1)),

1 1

| k1 <k ’
we get d,(E) < (lkdlk(Ek) +n dn(Ek+l)> < r <eE€. |

n

=card(ExN{1,....I}) <card(ExN{1,....n})=nd, (Ex) <n/k

Clearly, mixing and weak mixing are invariants of measure-theoretic isomor-
phism (Definition 1.7.62). Furthermore, an argument similar to that for ergodicity
in Sect. 1.7.8 shows

Proposition 1.7.127 If a map is (weakly) mixing, then so is any factor.

Proposition 1.7.128 If a continuous map f has a mixing invariant measure |L then
f Msupp ¢ is topologically mixing (Definition 1.3.34).

Proof 1If A, B C supp u are open and r is sufficiently large then n(f~"(A) N B) is
positive and hence the intersection is nonempty. O
The converse is not true: A topologically mixing map, even a minimal one,
may fail to have a mixing invariant measure with full support. This phenomenon
is, however, atypical—similarly to the situation with other properties such as
topological transitivity and ergodicity which we discussed at the end of Sect. 1.7.12.
As we will soon see, our topologically mixing examples are mixing with respect to
natural invariant measures.

Now we prove a criterion of mixing that allows us to avoid tedious approximation
arguments when checking mixing for specific dynamical systems.

Definition 1.7.129 A collection ¥ C .¥ in a measure space (X, ., u) is said to
be sufficient if finite disjoint unions of elements of ¥ form a dense collection with
respect to the symmetric-difference metric

d(A,B):=d,(A,B):= u(A A B) € (0, 9]

Proposition 1.7.130 Suppose € is a sufficient collection of sets. Then
1. f is mixing if (1.40) holds for any A,B € €,
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2. f is weakly mixing if (1.39) or (1.42) holds for any A,B € €,
3. fis ergodic if (1.29) holds for any A,B € €,
4. f is mixing of order N if (1.41) holds for any A; € €.

Proof We prove (1) using Proposition 1.7.46; the other parts have like proofs. Let

A],...,Ak, By,...,B € (g, AiﬂAi/ = @fori;é i/, BjﬂBj/ = @fOI‘j?éj/
and A := Ji_, A;, B:= Ui, B;. Then u(A4) = Y1 i(A)), n(B) = Yj_; (B,
and

k

1 k l
pUTANB) =D 3 u(fA)NB) = Y D (A - w(B)) = (A) - u(B).

i=1 j=1 i=1 j=1

Thus (1.40) holds for any elements of the dense collection i formed by finite disjoint
unions of elements of €. Now let A, B be arbitrary measurable sets. Find A’, B’ €
such that u(A A A") < €/4, u(B A B') < €/4. By the triangle inequality

l(f™"(A) NB) — n(A)pB)| < p(f (A A A)NB) + u(f"(A) N (B A B))
+ w(fA) N B) — wA) (B
+u(A) - p(B AB) + p(B) - pA A A)
= n(f @A) NB) — w@A) - w(B)| + €.
Since € > 0 can be chosen arbitrarily small, this implies (1.40). O

It is not only with respect to the sets in question, but also in the conclusion that
suitable approximation is good enough:

Proposition 1.7.131 Let f be a homeomorphism of a compact metric space X and
W an f-invariant Borel probability measure with constants ¢, C > 0 such that

cu(P)u(Q) = lim p(PNF(Q) = lim pu(PNf(Q) = Cu(P)U(Q)
(1.43)

for all Borel sets P, Q C X. Then p is mixing.

Remark 1.7.132 In fact, this is true for measure-preserving transformations of a
measure space. In the proof one has to replace the use of the weak* topology by
some purely measure-theoretic considerations.

Proof We first show that the left inequality in (1.43) implies that the product f x f
is ergodic with respectto u x u. Let A, B, C, D C X be Borel sets. Then

lim (1 x @)((f X f)(A x C) N (Bx D)) = & u(A) - (B) - (C) - (D).
e n(f*(A)NB)-p(f*(C)ND) (X ) (AXB)-(uxp)(CXD)
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The same holds if we replace A x C and B x D by finite disjoint unions of product
sets. Since such sets approximate every measurable P, Q C X x X, we have

lim (e x W((f xN)"(P)N Q) > A x ) (P) - (1 x w)(Q),

and f x f is ergodic with respect to i X (.

Now let v be the diagonal measure in XxX given by v(E) = u(mw;(ENA)), where
A ={(x,x) x € X}and m:X x X — X is the projection to the first coordinate.
The measure v and its shift v, under the map f" x Id are (f x f)-invariant. Explicitly,
V(A x B) = u(f"(A) N B). By the right inequality in (1.43) we have

lim v,(AxB) = lim wu(f"(A)NB) < Cu(A)-u(B) = Cuxp)(AxB).  (1.44)

Let 1 be any weak limit point of the sequence v,. If A, B C X are closed sets then
N(AxB) < C(ux u)(A x B) by (1.44). Taking disjoint unions of products of closed
sets and using approximation we deduce that n(P) < C(u x p)(P) for any Borel set
P C X x X and hence 7 is absolutely continuous with respect to p x u. Since 1 is
(f x f)-invariant and pu x u is ergodic we have n = u x u by Proposition 1.7.41, so
for any closed sets A, B with (dA) = p(dB) = 0 we have

lim p(f*(A) N B) = lim v, (A x B) = (1 x p)(A x B) = p(A) - u(B).

Since the collection of all such sets is sufficient, f is mixing with respect to . by
Proposition 1.7.130. O
The notions of mixing and weak mixing transfer to products:

Proposition 1.7.133 A measure-preserving transformation f: (X, ) — (X, ) is
mixing (weakly mixing) if and only if f X f is.

Proof If f x f is weakly mixing and A, B C X then by Proposition 1.7.123 there is
aset E C N of density O such that

n( @ N B) = (ux ) ((f x A X X) N (Bx X))

P (U x p)(AxX) - (nx pu)(BxX)=pu@A)uB),

so f is weakly mixing. Taking E = & proves that f X f mixing = f mixing.
Suppose now that f is weakly mixing. Then for measurable A;,A,,B,B, C X
there exist sets Ej, E; C N of density 0 such that

E;ilf)ooﬂ(f_n(Ai) N Bj) = u(A) - u(B:)

i
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fori = 1, 2. Taking E := E| U E, we find that

=(fT"ADNB)X(fT"(A2)NBy)
(1) (0 % )7 (A1 % A2) 1) By X Ba) ) s (AN (B (AD(Br)
=p(fT"(ADNBY(f~"(A2)NB2) =(uXpu) (A1 xA2)(uXp1)(B1XB2)
Since the sets A x B form a sufficient collection, f x f is weakly mixing by
Proposition 1.7.130(2). Taking E; = E; = & shows f mixing = f x f mixing. O
One of the implications in Proposition 1.7.133 is easy to strengthen:

Proposition 1.7.134 If f: X — X is a measure-preserving transformation and f X f
is ergodic, then f is weakly mixing.
Proof Take A, B measurable and suppose f x f is ergodic. We will show that

n—1

Y (kU@ 0B - p@®)

k=0

—_

n—

1
= Y (1@ 0B = 2u(7HA) N BRARB) + pAVr(B)) —=> 0.
k=0
(1.45)

This implies the claim by Proposition 1.7.46 and Corollary 1.7.126. (1.45) follows
from ergodicity of f x f which by Proposition 1.7.46 implies

n—1 n—1
SR N B = LYk (N A X X) 1 (B x X))
k=0 k=0

—— (W x w)(AxX)(pn x p)(BxX) = u(A)u(B)

n—>oo

and

n—1 n—1

1 1
L2 T @NB = Y (e x ((f xHTHA X A) N (B x B))
k=0 k=0

—— (WX WA X A) (1 x 1)(B X B) = p(A)*11(B)*.
|
Just a little effort beyond Propositions 1.7.133 and 1.7.134 gives

Theorem 1.7.135 (Product-Characterization of Weak Mixing) For a
probability-preserving f the following are equivalent:

1. f is weakly mixing,
2. f x f is weakly mixing,
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3. f x g is ergodic whenever g is ergodic,
4. f x f is ergodic.

Proof Propositions 1.7.133 and 1.7.134 withRemark 1.7.119 give 1. &2. =4. = 1.
It now suffices to show 1. =3. =4. Here, 3. =4. is easy: take g = 0 on {0} in 3.
to deduce that f is ergodic, then take g = f in 3. to get 4.

To prove 1. =3. we use Proposition 1.7.130.

1 n—1
|, 20X 0)((f x ) TH (AL X A2) N B1 % B2) = (10 X )(A1 X A2) (1t X v)(B1 x Ba)|
k=0
1 n—1
= 2 nG7 @) N B (e (A2) N B2) — (AN (B1) v(A2)v(B)) |

k=0 =Xk =Zyk =x =y

1 1 1'e
= n!ZXkyk—xy\ < nZIXk—XI~yk+X~!nZyk—y! —— 0.
k=0 k=0 k=0

n—»00
<maxy yk,l, ZZ_O |xg—x|—0 (f weakly mixing) —0 (ergodicity of g)

O
Just as ergodicity can be expressed in terms of functions rather than sets, so can the
various notions of mixing. In probabilistic terms, sets are events and functions are
random variables. The preceding notions of ergodicity and mixing involve various
forms of eventual independence of events, and they can be recast in terms of
asymptotic independence of random variables using the covariance of L>-functions.

Definition 1.7.136 The covariance of ¢,y € L? is defined as

cov(g, ¥):=(¢ — (¢, 1). ¥ — (V. 1)) = (9. ¥) — {@. ) (1. ¥)

=t fow-[n=[e[o ]

That is, we project both functions to the orthocomplement 1+ C L? of the constant
functions by subtracting their average (to focus on their variation) and then take the
inner product.

Remark 1.7.137 Like the inner product itself, the covariance is sesquilinear (linear
in the first entry and antilinear in the second) and invariant under isometric operators
(ie., (U, U-) = {(-,-) = cov(U-, U-) = cov). If either of the functions is constant,
then the covariance is zero, so it is unaffected by the addition of constants to either
function. For many statements about covariance, this allows us to assume without
loss of generality that the functions in question have zero average, i.e., are in 1+,
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237

Indeed, “polarization” ' allows us to consider the same function in both entries:

1
covig.y) = leovip + .9 + V) —cov(p — Y.¢ —¥)].
Finally, the covariance satisfies the Cauchy—Schwarz inequality:

lcovie. ¥)| < llelllv].

Proposition 1.7.138 If ® C L? is a complete system, i.e., span(®) = L?, then
n—1
1
e fisergodic if and only if Z cov(Uf(¢),¥) —— Oforall g,y € P,
n N n—>o0

k=0
* f is weakly mixing if and only if

n—1

1
2| oW @) )] 0 (1.46)
k=0

forallp, € @,
» fisweakly mixing if and only if for all ¢, € @, there exists an E C N of density
0 (Definition 1.7.124) such that cov(U; (¢), ) ?f—) 0,
EZn—o00

* [ is mixing if and only if cov(Uf(¢). V) — 0forall p,y € .
v n—>0oo

ni—nj—1—>00

N N
e f is mixing of order N if/l_[goi o fdy —— l—[/ ;du for
i=0 i=0
{9o,...,on} C D.

Proof To see how to pass from a complete system to L? note first that sesquilinearity
of covariance means that checking any of these statements for all ¢, ¥ € @ implies
the same for all ¢,y € span(®). Now take arbitrary ¢, € L? and ¢', ¢’ €
span(®) such that ||y — y'|| < €/2]l¢] and [l¢ — ¢'[| < €/2[¢||. Then

| cov(Uf (¢). ¥)| = [ cov(U (9). ¥ — ¥') + cov(Uf (p) — Uf (¢). ¥')
+ cov(Uf (¢). ¥)| = [cov(UF(¢). ¥')] + €.

Now, for each of these statements, knowing it for all ¢, € L? implies the
corresponding mixing property by taking ¢ = y4,¥ = yp for measurable sets
A,B.

To see the converse note that characteristic functions of measurable sets (or of
only a sufficient collection) form a complete system in L? for which the statement
about covariance boils down to the respective mixing property. O

Mu+vl? = flu—vl> = 4(u ).
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Remark 1.7.139 Note that we have in particular reproved Proposition 1.7.130.

By Definition 1.7.136 this characterization of mixing can be restated:

Proposition 1.7.140 If ® C L? is a complete system, i.e., span(®) = L*(1), then
[/ is mixing if and only if U} (¢) BN o forallp € .

Remark 1.7.141 This last restatement motivates the notion of mixing as follows.
It implies that when ¢ > 0 with ||@||; = 1 represents the probability density of

“material” that is being redistributed as its points evolve under iteration of f, the
density evens out: f} (o) — . Thus, the material spreads out perfectly evenly
n—oo

and becomes equidistributed with respect to p.
Remark 1.7.137 suggests

Proposition 1.7.142 In each of the statements in Proposition 1.7.138 one can

replace cov(Uf (@), ¥) by cov(Uj(¢),¢) or by (Ui(p).¢) if {p,1) = 0. For
instance, f is mixing if and only if

cov(Ur(¢). ¢) ——0

for all ¢ in a complete set (in L? or in 11), which happens if and only if
(Ur(9).¢) ——0
n—>o0

for all ¢ in a complete set for 1+.

Proof While Remark 1.7.137 applies if the hypothesis is known for all ¢ € L2, the
step from a complete system to L? requires attention because ¢ > cov(Uf (), ¢)
is not linear. The following lemma covers the mixing case, and the others are
analogous. The last statement follows directly from Remark 1.7.137. O

Lemma 1.7.143 If cov(Uf (), ¢) — O, then cov(Uj(¢). ) — 0 for all € L2
Proof My :={y € L* cov(U}(g), V) ——> O} is closed in L?, contains {1, ¢},
N n—>oo

and UM, C My If ¢ € M, then (U} (¢), Us(¥)) = (Ur(U/~ (9). Ur(¥)) =
(U;‘_l(fp), V) since Uy is an isometry, so cov(Ur(¢), Us(¥)) — 0. Thus,

My, D mgy = U {E CL%*closed 1,9 €E, Ur(E) C E} D Us(my,).

Ify e mj;, then (1, /) = 0 and (Uf(¢). ) = 0 for all n since U} (¢) € Uj(my) C
mw,SOWEMw.Thus,Lzzmw@m;‘ CM,. |

Proposition 1.7.144 Eigenfunctions of a weakly mixing transformation are con-
stant, i.e., if ¢ € L* and ¢ of = Ao for some A € C then ¢ = const—and
hence A = 1, so f has only one eigenvalue. Thus “weakly mixing implies no
eigenfunctions” (in 11).
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Remark 1.7.145 We will eventually be able to prove the converse; see Defini-
tion 1.7.174 and Proposition 1.7.176.

Proof If ¢ € L* and ¢ o f = Af, then |A| = 1 and either A = 1, s0 ¢ = const. by
ergodicity (which follows from weak mixing), or A # 1, in which case

wii=[o=[oor=[10=110.

so {p,1) = 0 and

/wzigmk/@@:ig\/w@)=i§)/<w°f">¢)m°

by (1.46) since f is weakly mixing. O

1.7.17 Toral Translations and Expanding Maps

Proposition 1.7.146

1. No translation T, of the torus is weakly mixing with respect to Lebesgue measure.
2. Every expanding endomorphism E,,, |m| > 2, is mixing of order N forany N € N
with respect to Lebesgue measure.

Remark 1.7.147 Ttem (2) follows from the Bernoulli property (Proposi-
tion 1.7.117), but it is instructive to study direct proofs.

Proof
1. It is convenient to use multiplicative notation: T,  ,.)(1,...,2) =
(1z15-- -+ VYuzn). Then @:T" — C, (z1,...,24) > z1 is a nonconstant

eigenfunction for the eigenvalue y;. Now apply Proposition 1.7.144.

2. By Proposition 1.7.130 it is enough to establish (1.40) for intervals of the form
Aix = (i/|m|k, i+ 1)/|m|k) Consider a collection {A; 1, 0 <j < N} of these,
and let K := max; k;. The central observation is that forn > K,

Er;n(Al),kj) n Aiz,kl

consists of |m|" ¥ translates of Ao n+k- On one hand, this directly implies mixing
of order 1 because this set has measure

||/ |m|" = m| 75T = XAy ) - A (D)

On the other hand, this implies mixing of order N by working recursively from
the back (keeping in mind the structure of these sets rather than just their
measure), i.e., starting with / = N, j = N — 1 above, and then intersecting

the preimage of this intersection with A;,_, ,_,, and so on. O
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Second Proof of Mixing of Order 1 of E,, Fourier analysis gives

/ Ug,@-¥ = Z (pkl/n/exp(zm(m”k + Dx) = Z‘Pkl/f—m"k —=0
klez k#0
(147

for any L? functions ¢(x) = Y, ¢k exp(2mikx) and ¥ (x) = Y ,c;, V1 exp(2milx)
with (without loss of generality) [ ¢ = 0. O

1.7.18 Rates of Mixing and Decay of Correlations

In terms of functions (or observables or random variables), the various mixing

properties are expressed in terms of covariance. Specifically, mixing means that

cov(Uf(¢), ) ——— O forany ¢,y € L?, and we now digress to the question
K n—>oo

of how rapid this convergence might be. Since covariance is closely related to
correlation, this is known as the rate of decay of correlations. We do so in a particular
context.

Proposition 1.7.148 Consider the expanding endomorphism E,, for |m| > 2 with
Lebesgue measure and suppose ¢, ¥ [0, 1] — R are a-Holder-continuous functions
with coefficient L, i.e., | (x) — ¥ (y)| < L|x —y|*. Then correlations decay with the
exponential rate m™—*:

| cov(UE,, (). ¥)| <= Lm™"||¢]|.

Remark 1.7.149 We note that the parameters that affect the decay rate of correla-
tions are the expansion rate of the transformation as well as the Holder exponent
of the functions under consideration. In particular, for Lipschitz-continuous func-
tions the decay rate is the reciprocal of the expansion rate of the transformation.

Proof Assume without loss of generality that fol ¢ = 0. Then

mt—1 , kt1

ot @l =Y [ “oo ]
k=0 m"
mt—1 k+1 m"—1
<5 [ vomet- [0+ [ Coeme [T
mi—1 k1 gn—1
Sme/ |¢oE"|+\/ wZ/ g
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Closer study of (1.47) reveals that for smoother functions we get even more rapid
decay of correlations.

Proposition 1.7.150 Consider the expanding endomorphism E,, for |m| > 2
with Lebesgue measure and suppose ¢,¥:[0,1] — R are C" functions. Then
correlations decay with the exponential rate m™": cov(Ug, (¢), ¥) = O(m™™). (See
Remark 1.6.21.) In particular, analytic functions have superexponential decay of
correlations.

Proof |y < |l|7"in (1.47), hence |Y—yni| < C(m"|k|)™" = m~"|k|™", and

(D P \/Z |¢k|2\/Z Wi < 1)l - Cm ™.

O
We motivate this in terms of another convergence rate. In Corollary 1.7.44 we noted
that for ergodic measures Y /—b o(f*(x)) — n Jxeduw = o(n) p-ae. The right
information about correlation decay improves this to O(4/n) on average:

n—1
oo k k — =
Proposition 1.7.151 Zcov(Ufgo,qo) < 00 = H gw(f %) n/<pH2

kez
O(/n).

Proof We will use that cov(Uy -, Ur -) = cov. Let ot i= Z cov(U}‘qp, ¢). Then
keZ

| gw"w—n/wui =/(gw(f"(x))—n/w)(gw(fk(x))—n/w)

n—1 n—1
— [ Yo - [0 X @ - [o)
k=0 k=0
ShZh ak Y pZh ak=2"100 aiai+ Y st appiaitaiay g
n—1
= 2_cov(Ue. Ujg)
i=0
n—1 n—k—1
+ cov(Uf ', Ujp) + cov(Uje. Uf+'p)
k=1 i=0

= Y (n— [k cov(Ufg. ) = no’ + o(n).
|k|<n
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The decay of correlations is of interest in smooth dynamics but is a digression here
because, as Propositions 1.7.148 and 1.7.150 show, the rate in question depends
on the regularity of the functions and is hence not a meaningful notion on L2,
In particular, unlike the various mixing notions, it is not an invariant under
measure-theoretic isomorphism, being, rather, a quantity associated with a smooth
dynamical system.

1.7.19 Spectral Isomorphism and Invariants

One can study measure-preserving transformations by spectral analysis, i.e., via the
Koopman operator Uy (Definition 1.7.31). We first note some of its basic properties.

Proposition 1.7.152 [f f is a probability-preserving transformation, then

1. The eigenvalues of Uy lie on the unit circle.

2. The spectrum of Uy lies on the unit circle if f is invertible.

3. The eigenvalues of Uy form a subgroup of the unit circle.

4. Eigenfunctions of Uy for different eigenvalues are orthogonal.

Proof

1. If A is an isometry and Av = Av, then ||v|| = ||[Av| = ||Av|| = |Al]v]-

2. If A is unitary then r(AT!) < JAY'| = I,s00(A%") Cc {4 |A| <1} 4 €
Aut(V) implies 0 ¢ o(A) and hence 0(A™!) = {A7! 1 € o(A)} because
(1/2)I — A" is invertible if and only if —AA[(1/A)] —A™'] = Al — A is.

3. If Ur(¢) = A and Up(y) = uy, then uA =" is also an eigenvalue:

Ur(e - %) = Up(@)Us(¥) = k-9 -9 = pr~" g -,

This shows closure under inverses (take ; = 1) and then under multiplication.
4. If Ur(p) = Ag and Uy(¢) = uyr, then

{p.¥) = (Ur(@). Ur(¥)) = (Ao, uy) = Afilo, ¥) = Au~ g, ¥),

soAu~' =1or(p,¥) =0. O

If f, g are measure-theoretically isomorphic via & (i.e., g = hof o h™") then Uy, and
U, are unitarily equivalent:

U, = U; ' oUro Uy,

Thus spectral invariants of Uy, e.g., eigenvalues with their multiplicities or the
spectrum, are invariants of measure-theoretic isomorphism of f.
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Definition 1.7.153 Two measure-preserving transformations are said to be spec-
trally isomorphic if their Koopman operators are unitarily equivalent. An invariant
of spectral isomorphism is called a spectral invariant.

Since ergodicity is equivalent to 1 being a simple eigenvalue of the Koopman
operator, we conclude

Proposition 1.7.154 Ergodicity is a spectral invariant.
Indeed, ergodicity provides further information about eigenspaces.

Proposition 1.7.155 A probability-preserving transformation f is ergodic iff

1. All eigenfunctions have constant absolute value.
2. All eigenspaces are 1-dimensional.

Proof

1. Ur(lo]) = [Ur(p)| = |All@] = |@], so |¢| is invariant, hence constant a.e.
2. If ¢, ¥ are nonzero eigenfunctions for A, then they are nonzero a.e. by 1.,s0 ¢ /¢
is a well-defined invariant function, hence constant a.e. O

It is also easy to see the following.
Proposition 1.7.156 Mixing is a spectral invariant (Definition 1.7.153).

Proof Supposef: (X, n) — (X, u) is mixing, g: (Y, v) — (Y, v), Wo Uy = Ugo W,
W unitary, and ¢; = W(y;) € L*(Y,v) (i = 1,2). Then

(Ug (1), @2) = (Ug(W (), W(¥)) = (W(UF (Y1), W) = (UF (Y1), ¥2)
—— (Y1, ¥2) = (Wi, W) = (@1, 92).

n—>oo
O
The most obvious examples of ergodic measure-preserving transformations that are
not weakly mixing are rotations and transformations built from them by an extension
process. It is easy to see that this is no accident.

Proposition 1.7.157 Suppose a measure-preserving transformation f: (X, u) —
(X, ) is ergodic but not weakly mixing. Then f has a measure-theoretic factor
(Definition 1.7.62) that is a rotation of either a circle or a finite set.

Proof Since f is not weakly mixing, there is a nonconstant eigenfunction ¢
(Proposition 1.7.144); denote the corresponding eigenvalue by ¢ € S!. Then
|¢| = const. by Proposition 1.7.155. After scaling, we may assume |¢| = 1. Then
@:X — S! is the desired measure-theoretic factor map. To see this let v := @, be
as in (1.24). Since ¢ o f = A, we find that v is an invariant ergodic measure for
the rotation R, and ¢(X) C S! is Ry-invariant. If o ¢ Q, then unique ergodicity
of R, implies that v is Lebesgue measure on S' (and ¢(X) = S'), so R, is the
desired measure-theoretic factor via ¢. If @ € Q then the only ergodic R,-invariant
measures are concentrated on a periodic point, and v must be one of them. Thus
¢ defines a measure-theoretic factor map to a periodic orbit of R, with the unique
ergodic invariant measure. O
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The following notion is natural for describing a situation in which a measure-
preserving transformation is “spectrally rigid”

Definition 1.7.158 We say that f has pure point spectrum or discrete spectrum if f
is ergodic and there is a basis of eigenfunctions of Uy.

Remark 1.7.159 This clearly implies that Uy and hence f is invertible. The termi-
nology goes back to that in Definition 1.6.7 in that the spectrum consists entirely of
eigenvalues. Note also that by Proposition 1.7.155 these A are pairwise distinct; this
produces enough information for spectral isomorphism.

Proposition 1.7.160 Ergodic measure-preserving transformations with discrete
spectrum and with the same eigenvalues are spectrally isomorphic.

Proof For each eigenvalue map the corresponding eigenfunction for one trans-
formation to that for the other (see Proposition 1.7.155); extend by linearity and
continuity. O

Remark 1.7.161 1In this case the dynamics of Uy consists of a product of rotations
of the eigenspaces; the essential information is contained in what happens to
normalized eigenfunctions. This can be exploited to show that, in fact, here the
eigenvalues determine f up to a measure-theoretic isomorphism.

To go substantially beyond the topological groups S' and T”, we introduce
characters in suitable generality.

Definition 1.7.162 (Characters) A topological group is a group endowed with
a topology with respect to which all left translations Lgy:g + gog and right
translations Rg,: g + ggo as well as g — g~! are homeomorphisms. If G is a
locally compact abelian group then the group G of characters is defined as the group
of continuous homomorphisms G — S! = {z € C |z| = 1} with the topology of
uniform convergence on compact sets (i.e., the compact-open topology).

For locally compact abelian groups we have the following:

Theorem 1.7.163

St =17 every character is of the form z — 7.

T = Z"; every character is of the form (zy, . ..,2,) — zlf‘ "'zﬁ”.
G is compact if and only if Gis discrete.

Cf is second countable if and only if G is.

G=GviaGsar a g+ gla) (Pontryagin duality).
mz = él X 6;2. R

If G is compact then G is a complete orthonormal®® system for L*(G, Haar).

NS RN~

¥ 1@ dre = [ x(hg)dre = [ x(W)x(g)dig = x(h) [ x(g)dAg forall h € G,s0 x() =1
or [y = O0; since a ratio of characters is a character, this gives (x1,2)> = [xi/x2 =

L if 1 = o,
0 otherwise.
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A translation T,: g — gog of a compact abelian group G preserves Haar measure
Ag, and characters are eigenfunctions. Thus we have

Proposition 1.7.164 Translations of compact abelian groups have discrete spec-
trum, i.e., there is a basis of eigenfunctions.
The converse is one of the classical facts of ergodic theory.

Theorem 1.7.165 (von Neumann Discrete Spectrum Theorem) Any two ergodic
measure-preserving transformations with discrete spectrum that are spectrally
isomorphic (i.e., have the same groups of eigenvalues) are measure-theoretically
isomorphic. A complete system of invariants is given by the countable subgroup
I' < S' of eigenvalues: A transformation whose group of eigenvalues is I' is
measure-theoretically isomorphic to the translation on the compact group I'* of
characters of I', considered as a discrete group, by the character sy that defines the
inclusion I' < S'. The invariant measure is Haar measure.

Proof Let f: (X, ) — (X, ) be an ergodic measure-preserving transformation
with discrete spectrum and I" the group of eigenvalues of Uy. Let xo be a common
Lebesgue point® for all eigenfunctions of Uy. For each eigenvalue y € I' denote
by ¢, the unique eigenfunction whose Lebesgue value at x is 1. Then

Pyiva = P Pya- (1.48)

Identify I with the group of characters of the compact dual group I'* and
denote the character on I'* corresponding to the evaluation at y by y,. This
gives orthonormal bases {¢, },er and {y,},er in the Hilbert spaces L*(X, xt) and
L*>(I'*, 1) correspondingly, where A is the normalized Haar measure.

Now, ¢, > x, extends linearly to a unitary operator V: L*(X, u) — L*(I'*, ),
which is multiplicative on the eigenfunctions by (1.48). Their finite linear combi-
nations are dense in L?(X, 1), so V is generated by a measure-preserving invertible
transformation h: (X, ) — (I'*, 1), and VUV "'y, (s) = yx,(s) = xy(s0s) for
any s € I'*, hence hfh~! = L. O

Remark 1.7.166 Even invertible spectrally isomorphic measure-preserving ergodic
transformations may fail to be measure-theoretically isomorphic.

Several notions that follow relate to a collection of spectral invariants called spectral
measures. To introduce these, it is useful to define U;‘ for negative n even if f is
not invertible: When n € N define U™ := (U;‘ )", where “x” denotes the adjoint
defined by (U*@, ¥) = (@, Uy) forall ¢, ¥ € L. (If f, hence Uy, is invertible, this
coincides with the corresponding iterate of the inverse.)

39 Lot
ot = fim [ g a
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Definition 1.7.167 If u is an invariant Borel probability measure for f: X — X,
then the spectral measure of ¢ € L*(j1) ~ {0} is the unique measure v, on S' with
Fourier coefficients ¢, := (U}‘(qp), Q) = fsl Z'dv, forn € Z.

That the ¢, are the Fourier coefficients of a measure on S! follows from

Theorem 1.7.168 (Carathéodory—-Herglotz) (b,),cz are the Fourier coefficients
of a measure on S! iff b, = b, and Zlnl,\mlsN bp—mama, > 0 for N € N and
(an)nGZ-

It applies because (U7 (¢). ¢) = (¢. Ui (¢)) = (U; " (). ¢) and

0 <Y anlUf @I = O anUf(@). Y anUp(@)) = > _(UF (@), ¢)antn.

In|<N In|<N |m|<N |n|,|lm|<N

Remark 1.7.169 1f Urp = Ag, then v, = §, because A" = (Ujgp, ¢) = Js1 2dv,.
Thus, when f has discrete spectrum, Uy is completely determined by spectral
measures that are discrete (or point) measures, another reason for the terminology.

The description of the dynamics of Uy for f with discrete spectrum suggests that
having discrete spectrum is a strengthening of the notion of ergodicity analogous
to minimality as a strengthening of transitivity. We now present a notion that
corresponds to strengthening transitivity in the direction of mixing.

Definition 1.7.170 An invertible probability-preserving transformation f of a
Lebesgue space is said to have countable Lebesgue spectrum (see Definition 1.6.7)
if there is an orthonormal set 1 = @g, ¢1, ... in L? such that {1} U {Ui(@)) i€
N, n € Z} is a complete orthonormal set in L2—so the ¢y := U;’(q)i) € 1+ are
pairwise distinct and orthogonal.

Remark 1.7.171 The terminology indicates that each v,, is Lebesgue measure.
Interestingly (and obviously) these are all spectrally equivalent.

Proposition 1.7.172 Any pair of invertible probability-preserving transformations
of Lebesgue spaces that have countable Lebesgue spectrum are spectrally
isomorphic.

Proof Map the ¢; for one of the measure-preserving transformations to the ¢; for
the other; extend linearly. O

Proposition 1.7.173 Measure-preserving transformations with countable Lebes-
gue spectrum are mixing.

Proof By Proposition 1.7.142 it suffices to consider ¢;; := U;f(go,-) as in Defini-
tion 1.7.170 and to note that (U} (¢i). ¢ix) —— 0. ‘ O
h n—>oo

=0 when n#0
Weak mixing (Definition 1.7.118), an intermediate property between ergodicity and

mixing, turns out to be a spectral invariant as well. The first step towards seeing this
was Proposition 1.7.144. We conclude by proving the converse.
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Definition 1.7.174 We say that f has continuous spectrum if all eigenfunctions of
the Koopman operator Uy of f are constant.

Remark 1.7.175 A motivation for the term “continuous spectrum” is that one can
in this case show that all spectral measures are nonatomic (for functions in 1h): 1f
A € S! then a weak accumulation point ¥ of 1/n ZZ;%) Ak Uf () is an eigenfunction
for A, and it is nonzero if 0 # (Y, ) = vy(1).

Proposition 1.7.176 A probability-preserving transformation is weakly mixing if
and only if it has continuous spectrum.

Proof We will use that A := {(z,z) z € S'}is a (v, x v,)-null set by absolute
continuity of v, and the Fubini Theorem. If f has continuous spectrum, then

ln—l ) ln—l )
1t = / “ol = /de
g e ”/;‘ | vof ¢l n;\ ; vy (2)]

n—1
1
= Z/ 2 de(z)/ w dv,(w)
n =0 N N

= [o1 551 @)K d(vy Xy) (2.W)

n—1
- /S ! Z(zw)k d(v, X v,)(z. W) —— 0.

Ixsl N
xS k=0

R G
T n@w—1)

— 0 off A & bounded
(]
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