
2

Maple for APPL

Maple is a computer algebra system and programming language that can be
used for numerical computations, solving equations, manipulating symbolic
expressions, plotting, and programming, just to name a few of the basics.
APPL is, simply, a set of supplementary Maple commands and procedures
that augments the existing computer algebra system. In effect, APPL takes
the capabilities of Maple and turns it into a computer algebra system for com-
putational probability. This chapter contains guidelines for using Maple, and
discusses the Maple commands that are used in APPL programming. After
reading this chapter, an APPL user will have the knowledge necessary to mod-
ify the APPL code to meet his or her particular needs. We will start with a
discussion of basic numeric computation, then advance to defining variables,
symbolic computations, functions, data types, solving equations, calculus and
graphing. Then we will discuss the programming features of Maple that facil-
itate building the APPL language: loops, conditions, and procedures.

2.1 Numerical Computations

Numerical computations in Maple give it the functionality of a hand-held
calculator. The command prompt is >. To execute an arithmetic expression
in Maple, the expression must be terminated with a semicolon or colon. The
symbol is used for commenting in a Maple worksheet. Below are several
examples of numerical computations with their corresponding outputs.

© Springer International Publishing AG 2017
J.H. Drew et al., Computational Probability, International Series
in Operations Research & Management Science 246,
DOI 10.1007/978-3-319-43323-3 2

13

14 2 Maple for APPL

> 2 + 2;

4

> 1 + 1 / 2;

3

2

> 1 + 0.5;

1.5

> sqrt(2); # sqrt() takes the square root
√
2

> Pi;

π

> evalf(Pi);

3.141592654

> 2 * 2.5:

> % + 1 / 2;

5.500000000

From these few examples, it is important to note the following:

• Spaces between symbols are optional, so 2 + 2; and 2+2; are equivalent.
We include spaces between operators for readability, consistent with good
programming practice.
• Maple performs exact calculations with rational numbers and approximate
calculations with decimals. To Maple, the rational number 3/2 and the
floating-point approximation 1.5 are different objects. Using both decimals
and rational numbers in a statement produces a decimal output.
• Maple interprets irrational numbers as exact quantities. Maple also recog-
nizes standard mathematical constants, such as π and e, and works with
them as exact quantities.
• The evalf command converts an exact numerical expression to a floating-
point number. By default, Maple calculates the result using ten digits of
accuracy, but any number of digits can be specified. The optional second
argument of evalf controls the number of floating-point digits for that
particular calculation.
• For particularly precise numerical expressions, a call to evalhf evaluates
an expression to a numerical value using the hardware floating-point preci-
sion of the underlying system. The evaluation is done in double precision.
The evalhf function computes only with real floating-point arguments.

2.2 Variables 15

• If a statement ends with a colon, instead of a semicolon, then Maple
suppresses the output, although it will store the result (if assigned to a
variable) internally.

• The ditto operator % refers to your last calculated result, even if that
result is not on the line preceding the %.

2.2 Variables

It is convenient to assign variable names to expressions that are referred to
one or more times in a Maple session. Maple’s syntax for assigning a vari-
able name is name := expression. Almost any expression, including numbers,
equations, sets, lists, and plots, can be given a name, but it is helpful to choose
a name that describes the expression. The restart command makes Maple
act (almost) as if just started, and it clears the values of all Maple variables.
Some guidelines for variable names are:

• Maple is case sensitive, so the names X and x denote unique variables.
• A variable name can contain alphanumeric characters and underscores,
but it cannot start with a number.

• Once a variable is assigned to an expression, it remains that expression
until changed or cleared.
• A variable name can be cleared by assigning variable := ’variable’;

or executing the statement unassign(’variable’);
• Maple has some predefined and reserved names, such as Sum, sqrt, and
length, that are not available for variable assignment. Maple will not
allow an expression to be assigned to a predefined variable name.
• When you close a Maple session, variable names assigned during that
session will be forgotten. When a Maple worksheet is re-opened, variable
names must be reactivated.
• The restart command at the top of the worksheet, followed by the se-
quence of keystrokes Alt, E, E, W (Edit, Execute, Worksheet) restarts the
memory of the variables and then executes the entire worksheet in order.
Often one will be in the middle of a series of commands, fix an error and
need to re-execute all commands in order once again.

Below are several examples of defining variable names.

> restart:

> EventA := 0.3:

> EventB := 0.3:

> EventC := 0.4:

> S := EventA + EventB + EventC;

S := 1.0

16 2 Maple for APPL

> Sum := EventA + EventB;

Error, attempting to assign to ‘Sum‘ which is protected

> prob := p * (1 - p) ^ 2:

> p := 1 / 4:

> prob;

9

64

> unassign(’p’): # You could also write p := ’p’

> newprob := 3 * p ^ 2 * (1 - p);

newprob := 3p2(1− p)

Once a Maple expression is given a name, it can be evaluated at different
values using subs() or eval(). The command subs(p = 1 / 2, newprob)

or eval(newprob, p = 1 / 2) yields the value 3
8 . Since newprob is a variable,

and not a function, Maple does not understand the syntax newprob(1 / 3),
which the user may incorrectly try to use to determine the value of newprob
for p = 1/3. If an expression is intended to actually define a function, then the
function must be formally defined, and a technique for doing so is in Sect. 2.4.

Sometimes assumptions must be made on variables in order to set vari-
able properties or relationships. A common use of the assume function is
to assume a constant is positive, i.e., assume(p > 0). Making such assump-
tions allow Maple routines to use this information to simplify expressions,
for example,

√
p2. When an assumption is made about a variable, thereafter

the variable is displayed with an appended tilde ~ to indicate that it carries
assumptions. The additionally function adds additional assumptions with-
out removing previous assumptions. For example, we could further restrict p
to be less than one with the command additionally(p < 1).

2.3 Symbolic Computations

One of Maple’s main strengths is its ability to manipulate symbolic expres-
sions. Symbols can be treated in the same way that numbers were in the
previous section and can do much more. Entering a constant or variable fol-
lowed by a variable, e.g., 2x or ab, does not imply multiplication in Maple. In
fact, ab would be treated as a new two-letter variable instead of the product of
two single-letter variables. You may not omit the multiplication symbol (∗) in
expressions with more than one factor. Below are a few examples of Maple’s
symbolic abilities using three commands, combine, expand, and simplify,
that appear in the APPL code.

> exp(-t ^ 2) * exp(-s ^ 2);

e(−t2)e(−s2)

2.4 Functions 17

> combine(%);

e(−t2−s2)

> mgf_1 := (1 / 3) * exp(t) + (2 / 3) * exp(2 * t):

> mgf_2 := (1 / 4) + (3 / 4) * exp(-t):

> mgf_1 * mgf_2; (
1

3
et +

2

3
e(2t)
)(

1

4
+

3

4
e−t

)

> expand(%);

7

12
et +

1

4
+

1

6
(et)

2

> mgf_1 / mgf_2;

1

3
et +

2

3
e(2t)

1

4
+

3

4
e(−t)

> simplify(%);

4

3

e(2t) (1 + 2et)

et + 3

2.4 Functions

Functions are defined in Maple by using the arrow notation -> or the unapply()
command. The assignment operator := associates a function name with a
function definition. Two equivalent ways of defining a function f are

> f := x -> exp(-2) * 2 ^ x / x!:

> f := unapply(exp(-2) * 2 ^ x / x!, x);

f := x→ e(−2)2x

x!

This notation allows a function to be evaluated in the “usual” way, i.e., f(0),
when it appears in Maple expressions. Such functions are an integral part of
APPL, and are used to create PDFs, CDFs, and transformations of random
variables. Unassigning a function is done in the same way that a variable is
unassigned to a value, f := ’f’. As shown in the examples below, piecewise
functions may also be defined in Maple, and we certainly take advantage of
this in APPL, e.g., the triangular distribution.

> g := unapply(exp(-lambda) * lambda ^ x / x!, lambda, x);

18 2 Maple for APPL

g := (λ, x)→ e(−λ)λx

x!

> g(2, 0);

e(−2)

> h := x -> piecewise(x <= 1, 0, x > 1, 2):

> h(x); {
0 x ≤ 1
2 x > 1

In addition to facilitating the creation of custom functions, Maple has
built-in mathematical functions, e.g., trigonometric functions such as tan, in-
verse trigonometric functions such as arccos, absolute value (abs), the expo-
nential function (exp), the gamma function (GAMMA), and binomial coefficients
(binomial). As illustrated earlier in the chapter, the exponential function in
Maple is written as exp(x). In order to compute e3, enter exp(3), not e ^

3. The binomial function binomial(n, x) determines binomial coefficients
for selecting x items from n items without replacement. Examples of calling
Maple functions that might arise in the APPL code are given below.

> abs(ln(0.4) + arcsin(0.65));

0.2087062952

> binomial(4, 2);

6

> GAMMA(5);

24

> evalf(erf(2));

0.9953222650

Maple has packages of functions available with specialized commands
to perform tasks from an extensive variety of disciplines. The commands
in a package can be activated using the with command. For exam-
ple, with(networks) adds the networks package, which supplies tools
for constructing, drawing, and analyzing combinatorial networks. Likewise,
with(plots) enables more options with plotting functions.

When a package’s functions are accessed with with, occasionally a previous
definition or a function, either built-in or defined by the user, will be over-
ridden. For example, trace is by default defined to be the program-tracing
function. However, after invoking with(linalg), trace is redefined to mean
the trace of a matrix. The with function prints out a warning message when-
ever it overrides a previous definition or function.

2.5 Data Types 19

2.5 Data Types

This section examines some basic types of Maple objects, including lists, sets,
arrays, and strings.

A Maple list can be created by enclosing any number of expressions (sep-
arated by commas) in brackets. Maple preserves the order and repetition in a
list. Thus, [a,b,c] and [b,c,a] are different lists. The nops command deter-
mines the total number of elements in a list. The membership of an element
in a list can be checked with member(), which returns a true or false Boolean
value.

> probs := [0.3, 0.5, 0.2]:

> nops(probs);

3

> member(0.3, probs);

true

Because order is preserved in a list, a particular element can be extracted
from a list without searching for it. Use L[i] to access the ith element of a
list L. The op command applied to a list removes the brackets of the list, and
sort preserves the list structure while sorting the elements into ascending
order.

> probs := [0.3, 0.5, 0.2]:

> op(probs);

0.3, 0.5, 0.2

> sort(probs);

[0.2, 0.3, 0.5]

In APPL, we utilize the functionality of Maple’s list structure to represent
a random variable as a “list-of-sublists.” A list-of-sublists is just a list, each
of whose elements is itself a list. For example, we create a random variable
as a list of three sublists, where the first sublist contains the functional form
that describes the probability distribution, the second sublist contains its
support, and the third sublist uses strings to describe the type of the random
variable, i.e., continuous or discrete, and the type of function, e.g., the PDF,
CDF or HF. When APPL receives a random variable for manipulation, it first
checks the type of the random variable before continuing; that is, is the random
variable continuous or discrete? Depending on the answer, APPL treats that
random variable accordingly, for example, integrating to determine expected
value versus summing. Additional information about APPL’s list-of-sublists
data structure for random variables is contained in Chaps. 3 and 7. Elements
in a list-of-sublists can be extracted using indices. For example,

20 2 Maple for APPL

> x := [[1, 2, 3], [4, 5, 6], [7, 8]];

sets x to a list of three elements, each of which is a list. Sublists or individual
elements can be extracted as follows:

> x[2];

[4, 5, 6]

> x[2, 1];

4

> x[2][1];

4

A Maple set is constructed by enclosing any number of Maple objects (sep-
arated by commas) in braces. The braces identify the object as a set. Maple
does not preserve order or repetition in a set. Thus the sets {a,b,c}, {b,c,a},
and {c,c,b,a} are identical. The member command validates membership in
a set, and to choose an item from a set, the subscript notation [i] is used,
where i identifies the position of the desired element in the set. Also, the nops
function counts the number of elements in a set.

The seq command is used to generate sequences, which can be contained
in a list or a set if desired. For example, a sequence of binomial coefficients
can be obtained by using seq as follows:

> seq(binomial(4, i), i = 0 .. 4);

1, 4, 6, 4, 1

The Maple array data structure is an extension of the Maple list data
structure. Each element is still associated with an index (which can be negative
or zero), but an array is not restricted to one dimension.

A string is a Maple object created by enclosing a sequence of characters
in double quotes. We use strings in APPL in the third sublist of the list-of-
sublists that define a random variable to help identify its functional form,
such as "Continuous", "Discrete", "PDF", "CDF", etc.

2.6 Solving Equations

Maple can find analytic solutions for a large class of algebraic equations.
The solve command is a general-purpose equation solver. It takes a set
of one or more equations and attempts to solve it exactly for the specified
set of unknowns. The fsolve command is the numeric equivalent of solve;
fsolve calculates the solution(s) to equations using a variation on Newton’s

2.6 Solving Equations 21

method, producing approximate (floating-point) solutions. For a general equa-
tion, fsolve searches for a single root and often returns the first root it finds,
which may not be the desired root. For a polynomial, it looks for all real
roots. Fortunately, there is a way to make fsolve look for a specific solution
by specifying an interval over which fsolve may search, as illustrated in the
examples to follow. Some special notes about solving equations are:

• If the variable(s) being solved for are not specified, Maple solves for all
variables.
• If no right-hand side to an equation is given (for example, solve(2 * x

- 8)), the right-hand side is assumed to be 0.
• The fsolve command often only returns one real solution.
• If there are multiple solutions to an equation, they can be extracted by
setting the solution set to a variable, then using subscripts [1], [2], etc.

Here are several examples of solving one or more equations at a time.

> solve(x ^ 3 = 2 * x, x);

0,
√
2,−√2

> fsolve(x ^ 3 = 2 * x, x);

−1.414213562, 0., 1.414213562
> eqns := {x + 2 * y = 3, y + 1 / x = 1}:

> solns := solve(eqns, {x, y});

solns := {y = 2, x = −1} ,
{
x = 2, y =

1

2

}

> solns[2]; {
x = 2, y =

1

2

}

> solve(cos(x) - x = 0);

RootOf(Z − cos(Z))

> fsolve(cos(x) - x = 0);

0.7390851332

> express1 := (1 / x) + (1 / x ^ 2) - (3 / x ^ 3):

> solve(express1);

−1

2
+

√
13

2
, −1

2
−
√
13

2

22 2 Maple for APPL

> fsolve(express1);

1.30277563

> fsolve(express1, x = -3 .. 0);

−2.302775638
Maple occasionally returns solutions in terms of the RootOf function,

which is a place holder for representing all the roots of an equation in one
variable. The prefix Z on the variable in a RootOf solution indicates that it
has integer values. The fsolve command is able to approximate these roots
(at most one at a time for non-polynomial equations, and a specific root if a
search interval is specified). Below is also an indication of the range of a vari-
able using two periods in a row. The range delimiter “..” denotes endpoints
of intervals in plots, integrations, and other situations.

Two other commands of interest for obtaining either the left-hand side
or right-hand side of an expression are lhs and rhs, respectively. Especially
useful to APPL is the ability of these commands to extract the first and last
term of a sequence. This functionality allows APPL to read off the bounds on
the support of a probability function, which is displayed in the second sublist
for a random variable. Both uses of lhs and rhs are displayed below.

> eqn1 := x + y = z + 3:

> lhs(eqn1);

x+ y

> rhs(eqn1);

z + 3

> support := 1 .. infinity:

> lhs(support);

1

> rhs(support);

∞

2.7 Graphing

Another capability of Maple is graphing. The explicit function y = f(x) and
its domain must be specified for a Maple plot. Plotting the standard normal
distribution on the interval −3 ≤ x ≤ 3, for example, can be done with the
Maple statements shown below. We will use the function form -> to define the
PDF of the standard normal distribution. The plot is displayed in Fig. 2.1.

2.8 Calculus 23

> f := x -> 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):

> plot(f(x), x = -3 .. 3);

In order to plot more than one function on a single graph, the functions
must be contained in brackets or braces. The use of brackets means that
order is important and Maple should graph them in the given order; the use
of braces means that order is not important and Maple may graph them in
any order. Also, it is sometimes useful to specify the range of the y-values in
order to display important features of a graph. Figure 2.2 contains a plot of
two normal PDFs. The functions are defined with two different variables, but
used as arguments in plot with a third variable, as one would expect.

x
3210

0.3

-1

0.4

-2

0.1

0.2

-3
0

Fig. 2.1. Plot of a standard normal PDF between x = −3 and x = 3

> f1 := t -> 1 / sqrt(2 * Pi) * exp(-t ^ 2 / 2):

> f2 := z -> 1 / (2 * sqrt(2 * Pi)) * exp(-(z - 1) ^ 2 / 8):

> plot({f1(x), f2(x)}, x = -7 .. 9, color = [red, blue]);

2.8 Calculus

Maple provides many powerful tools for solving calculus problems. This
section describes Maple’s ability to determine limits, symbolically compute
derivatives and definite integrals, and determine summations. The need for
calculus operations in APPL is significant because many probability theo-
rems rely on calculus to create new distribution functions. A few comments
about determining limits, derivatives, and definite integrals in Maple follow:

24 2 Maple for APPL

-4

0.4

x

0.3

0.2

8

0.1

0
40

Fig. 2.2. Plot of a standard normal PDF and a normal PDF with mean μ = 1 and
standard deviation σ = 2 between x = −7 and x = 9

• Maple will compute both two-sided limits, e.g., limx→5

(
x+2
x−1

)
, and one-

sided limits, e.g., limx↑1
(

x+2
x−1

)
, with the limit procedure.

• Maple can determine limits at∞, such as the limit of an exponential CDF
at infinity.

Examples of the limit command are

> limit((3 ^ (x + h) - 3 ^ x) / h, h = 0);

3x ln(3)

> assume(lambda > 0):

> limit(1 - exp(-lambda * x), x = infinity);

1

The diff procedure computes the derivative of an expression. Maple dif-
ferentiates with respect to the variable placed in the second argument of the
diff() procedure. Clearly, diff is used often in APPL for changing from one
functional form of a continuous random variable’s distribution to another,
e.g., deriving a PDF from a CDF. One such example of the diff() command
follows; however it is important to note that APPL will do such conversions
in a more automated manner. Also note the use of the unapply command to
turn the final expression into a function.

2.8 Calculus 25

> F := x -> 1 - exp(-2 * x);

F := x→ 1− e(−2x)

> f := unapply(diff(F(x), x), x);

f := x→ 2 e(−2x)

The capabilities of Maple include a robust set of integration operations.
Symbolic integrals (often used in APPL) can be calculated as in the following
example:

> f := y -> 2 * exp(-2 * y):

> F := unapply(int(f(y), y = 0 .. x), x);

F := x→ 1− e(−2x)

Maple’s ability to integrate also includes the numerical evaluation of inte-
grals for which no closed-form solution is available, such as the case with the
standard normal random variable:

> g := 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):

> int(g, x = -infinity .. 1.96);

0.9750021049

However, if we integrate the standard normal PDF over exact values, rather
than floating point values, Maple responds with erf. For example, integrating
a standard normal PDF from x = −1 to 1 yields the following:

> int(g, x = -1 .. 1);

erf

(√
2

2

)

The function erf(x) is the error function and it is defined for real and complex
x by erf(x) = 2

π

∫ x
0
e−t2dt. Maple can numerically evaluate an erf(x) output

with the evalf command.

> evalf(int(g, x = -1 .. 1));

0.6826894920

Maple can also compute finite sums and infinite series, which are necessary
capabilities for working with discrete random variables. The next few exam-
ples demonstrate the use of sum. The first example verifies that a geometric
distribution with p = 1/4 has a PDF that sums to one.

26 2 Maple for APPL

> geometric := (1 / 4) * (3 / 4) ^ (x - 1);

geometric :=

(
3

4

)(x−1)

4

> sum(geometric, x = 1 .. infinity);

1
The second example determines the expected value of a binomial distribution
with parameters n and p.

> assume(p > 0):

> additionally(p < 1):

> pdf := binomial(n, x) * p ^ x * (1 - p) ^ (n - x):

> simplify(sum(x * pdf, x = 0 .. n));

np∼

2.9 Loops and Conditions

Like all programming languages, loops in Maple allow the user to execute a
sequence of statements repeatedly, either for a prescribed number of times or
until a condition is satisfied (or not satisfied). This is a useful tool in APPL
when working with random variables. Loops are used in APPL to do many
things: cycle through segments of PDFs, verify inverse transformations, and
error-checking, to name a few. For example, if a discrete random variable’s
PDF consists of a finite number of numeric probabilities in the first sublist
in a list-of-sublists, we require these probabilities to be non-negative. Using a
for loop allows APPL to cycle through the items in this sublist (from item
one to nops(sublist)) until the list is complete or a negative value is identi-
fied. Similarly, if numeric probabilities in the first sublist are supposed to be
equally-likely probabilities, then APPL can repeatedly check each probability
value while the probability values remain the same. The expression in the
while clause is a Boolean expression which must evaluate to true or false
upon each cycle.

Conditional statements in APPL have a variety of purposes including error
checking, branching in logic, and conditional plotting. If an APPL procedure
requires input arguments from the user, then an if statement can be used to
verify that the input is valid. If a procedure does not receive the correct type
of arguments, e.g., lists, an error message is sent back to the APPL user. Also,
in the third sublist is the “form” of the random variable. The first element
of the third sublist tells APPL whether the random variable is continuous or
discrete. If the random variable is continuous, then continuous mathematics
(e.g., integration) is used to verify the validity of its PDF or compute its
mean, for example. If discrete random variables are indicated by the field,
then discrete mathematical techniques (e.g., summation) are used.

2.9 Loops and Conditions 27

Boolean expressions in the conditional statement are most often formed
by using <, <=, >, >=, =, <>, or, and, or not. For example, if the “form” of
the random variable is not one of the approved formats (e.g., PDF, CDF, SF,
HF, CHF, IDF), then an error message is reported to the user.

A few examples of small loops and conditionals are presented here to am-
plify the above explanations:

> probs := [0.1, 0.05, 0.2, 0.25, 0.15, 0.10, 0.15]:

> totprob := 0:

> for i from 1 to nops(probs) do

> totprob := totprob + probs[i]:

> end do; # ’od’ can also be used to end a ’do’ loop

totprob := 0.1
totprob := 0.15
totprob := 0.35
totprob := 0.60
totprob := 0.75
totprob := 0.85
totprob := 1.00

> die := rand(1 .. 6): # random integer from 1 to 6

> Roll1 := die():

> Roll2 := die():

> if (Roll1 >= Roll2) then

> print("Roll 1 is greater than or equal to Roll 2");

> else

> print("Roll 1 is less than Roll 2");

> end if; # ’fi’ can also be used to end an ’if’ conditional

To conclude this section, a while loop is created in which the user is encour-
aged to experiment with various values for the probability prob.

> i := 1:

> totprob := 0:

> prob := 1 / 2:

> while (totprob <= 1) and (i <= 1000) do

> totprob := prob + totprob:

> prob := prob ^ 2 + 0.001:

> i := i + 1:

> print(i):

> print(totprob):

> end do:

When a break statement is used in a procedure, a break is executed and
the result is to exit from the innermost repetition (for/while/do) statement
within which it occurs.

28 2 Maple for APPL

2.10 Procedures

The capability to create new procedures in Maple is a key element to enabling
APPL programming. In fact, APPL is a text file of new Maple procedures that
is imported into a worksheet session with the read command. When a file is
read into Maple, each line in the file is treated as if it had been typed in
order. The APPL procedures are available during the Maple session, but the
commands are not displayed on the Maple worksheet. When the user reads
in the APPL commands, it’s as if they used the with command to add extra
capability. The syntax for reading APPL into Maple from the ASCII source
code file named APPL.txt is read(‘APPL.txt‘).

The syntax for creating a procedure in Maple is

proc(〈argseq〉) [local 〈nseq〉 ; global 〈nseq〉 ;]
〈statement sequence〉

end;

where [] indicates optional parameters. Then

• 〈argseq〉 is a sequence of variable names, separated by commas. These
variables are the arguments to the procedure.
• 〈nseq〉 is a sequence of variable names, separated by commas.
• local 〈nseq〉 is a list of variables local to the procedure. Any assignments

of these variables will only have a scope of the procedure. The values of
these variables will be unassigned when the procedure starts, regardless
of the value of the variable outside the procedure.
• global 〈nseq〉 is a list of global variables used by the procedure. Any as-

signments made in the procedure will be global in scope and the initial
values of the variables will be as they are in the existing Maple session.

• 〈statement sequence〉 is the body of the procedure and may consist of any
valid sequence of Maple statements.

The proc command is usually used in conjunction with the RETURN key-
word. The syntax is

RETURN (expression) ;

This command will terminate the execution of the procedure and return the
value of expression.

Since APPL’s random variables often have several arguments, it’s helpful
that Maple provides an easy way to do data typing in procedures. The ar-
guments passed to a procedure may be given a specific data type. If any of
these variables is then assigned an incorrect type, Maple generates an error
message. The syntax for declaring a variable to be of a given data type is the
declaration is

variable name :: data type

2.10 Procedures 29

where Maple accepts a wide range of data types. The types most frequently
encountered in APPL are list and listlist (because of the list-of-sublists
structure of APPL random variables), constant, posint, int, and array.
Another type used frequently in APPL is symbol. Infinity (∞) is of type
symbol, and this is important information for APPL procedures to know
when evaluating random variables over supports that are not finite. The type
of an expression can be determined in Maple with the command type. The
syntax is

type (expression, type)

which returns a Boolean value, either true or false.
Another useful error-checking command that can used with procedures

is nargs, which is the number of arguments passed to a procedure. We use
if statements in APPL to determine if optional arguments are passed to a
procedure and how the procedure should proceed given this number of argu-
ments. For example, the OrderStat procedure in APPL will perform differ-
ently based on whether or not it is given an optional fourth argument that
specifies whether sampling is done without replacement.

To summarize the last few sections on programming in Maple, the follow-
ing excerpt from the APPL source code is noteworthy. The procedure is called
ReduceList and it is a small sub-procedure in APPL that looks for redundant
support entries in a random variable list-of-sublist’s second sublist. One sees
how the proc command begins the procedure as well as some argument check-
ing, local variable declarations, a for loop and some conditional branching.
The RETURN and end commands complete the procedure.

#

ReduceList is a procedure that eliminates floating point

redundancies (e.g., 3 vs. 3.0) from a sorted Maple list.

#

ReduceList := proc(LST :: list)

local i, size, delt, deltamin, ListIn:

deltamin := 0.0000001:

ListIn := LST:

size := nops(ListIn):

for i from (size - 1) by -1 to 1 do

if (ListIn[i] <> -infinity and ListIn[i + 1] <> infinity) then

delt := evalf(ListIn[i + 1]) - evalf(ListIn[i]):

if (delt < deltamin) then

if (whattype(ListIn[i]) <> float) then

ListIn := subsop((i + 1) = NULL, ListIn):

else

ListIn := subsop(i = NULL, ListIn):

fi:

fi:

fi:

30 2 Maple for APPL

od:

RETURN(ListIn):

end:

This concludes our brief introduction to the Maple computer algebra sys-
tem. Additional help on a specific Maple topic can be accessed from the Maple
worksheet by entering ?topic or help(topic) at the prompt. Also, help can
be obtained directly by going to the “Help” menu in Maple, scrolling down to
“Topic Search,” and entering the topic of interest in the “Topic” line. We now
turn to the main topic of the monograph, defining random variables in APPL
and the associated algorithms to manipulate them. We begin with continuous
random variables.

http://www.springer.com/978-3-319-43321-9

	Preface
	Contents
	Part I Introduction
	Computational Probability
	Maple for APPL

	Part II Algorithms for Continuous Random Variables
	Data Structures and Simple Algorithms
	Transformations of Random Variables
	Bivariate Transformations of Random Variables
	Products of Random Variables

	Part III Algorithms for Discrete Random Variables
	Data Structures and Simple Algorithms
	Sums of Independent Discrete Random Variables
	Order Statistics for Random Sampling from Discrete Populations

	Part IV Applications
	Reliability and Survival Analysis
	Symbolic ARMA Model Analysis
	Stochastic Simulation
	Transient Queueing Analysis
	Bayesian Applications
	Other Applications
	References
	Index

	Driver_p201-205.pdf
	Symbolic ARMA Model Analysis

