
Chapter 2

Random Variables

2.1 Probability Distribution and Expectation

2.1.1 Random Variables and their Distributions

The number of heads in a sequence of 10000 coin tosses, the number of days it
takes until the next rain and the size of a genealogical tree are random numbers.
All are functions of the outcome of a random experiment (performed either by
man or by nature) and taking discrete values, that is, values in a countable set.
These values are integers in the above examples, but they can be more complex
mathematical objects, such as graphs for instance. This chapter gives the elemen-
tary rules for computing expectations, a list of famous discrete random variables
or vectors (binomial, geometric, Poisson and multinomial), and the elementary
theory of conditional expectation.

Definition 2.1.1 Let E be a countable set. A function X : Ω → E such that for
all x ∈ E

{ω;X(ω) = x} ∈ F
is called a discrete random variable.

Since E is a countable set, it can always be identified with or , and therefore
we shall often assume that either E = or .

Being in F , the event {X = x} can be assigned a probability.

Remark 2.1.2 Calling a random variable a random number is an innocuous habit
as long as one is aware that it is not the functionX that is random, but the outcome
ω. This in turn makes the number X(ω) random.

Example 2.1.3: Tossing a die, take 3. The sample space is the set Ω =
{1, 2, 3, 4, 5, 6}. Take for X the identity: X(ω) = ω. In that sense X is the random
number obtained by tossing a die.
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Example 2.1.4: Heads and tails, take 4. The sample space Ω is the collection
of all sequences ω = {xn}n≥1, where xn = 1 or 0. Define a random variable Xn

by Xn(ω) = xn. It is the random number obtained at the n-th toss. It is indeed a
random variable since for all an ∈ {0, 1}, {ω ; Xn(ω) = an} = {ω ; xn = an} ∈ F ,
by definition of F .

The following are elementary remarks.

Theorem 2.1.5 Let E and F be countable sets. Let X be a random variable with
values in E, and let f : E → F be an arbitrary function. Then Y := f(X) is a
random variable.

Proof. Let y ∈ F . The set {ω; Y (ω) = y} is in F since it is a countable union of
sets in F , namely:

{Y = y} =
∑

x∈E; f(x)=y

{X = x} .

�

Theorem 2.1.6 Let E1 and E2 be countable sets. Let X1 and X2 be random vari-
able with values in E1 and E2 respectively. Then Y := (X1, X2) is a random
variable with values in E = E1 × E2.

Proof. Let x = (x1, x2) ∈ E. The set {ω; X(ω) = x} is in F since it is the
intersection of sets in F : {X = x} = {X1 = x1} ∩ {X2 = x2}. �

Definition 2.1.7 From the probabilistic point of view, a discrete random variable
X is described by its probability distribution function (or distribution, for short)
{π(x)}x∈E, where π(x) := P (X = x).

Example 2.1.8: The uniform distribution. Let X be a finite set. The random
variable with values in this set and having the distribution

P (X = x) =
1

|X | for all x ∈ X

is said to be uniformly distributed (or to have the uniform distribution) on X .

Example 2.1.9: Is this number the larger one? Let a and b be two numbers
in {1, 2, . . . , 10, 000}. Nothing is known about these numbers, except that they are
not equal, say a > b. Only one of these numbers is shown to you, secretely chosen
at random and equiprobably. Call X this random number. Is there a good strategy
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for guessing if the number shown to you is the largest of the two? Of course, we
would like to have a probability of success strictly larger than 1

2
.

Perhaps surprisingly, there is such a strategy, that we now describe. Select at
random uniformly on {1, 2, . . . , 10, 000} a number Y . If X ≥ Y , say that X is the
largest (= a), otherwise say that it is the smallest.

Let us compute the probability PE of a wrong guess. An error occurs when either
(i) X ≥ Y and X = b, or (ii) X < Y and X = a. These events are exclusive of one
another, and therefore

PE = P (X ≥ Y,X = b) + P (X < Y,X = a)

= P (b ≥ Y,X = b) + P (a < Y,X = a)

= P (b ≥ Y )P (X = b) + P (a < Y )P (X = a)

= P (b ≥ Y )
1

2
+ P (a < Y )

1

2
=

1

2
(P (b ≥ Y ) + P (a < Y ))

=
1

2
(1− P (Y ∈ [b+ 1, a]) =

1

2

(
1− a− b

10, 000

)
<

1

2
.

Example 2.1.10: Heads and tails, take 5. The number of occurrences of
heads in n tosses is Sn = X1 + · · · + Xn. This random variable is the fortune at
time n of a gambler systematically betting on heads. It takes the integer values
from 0 to n. We have

P (Sn = k) = 1
2n

(
n
k

)
.

Proof. The event {Sn = k} is “k among X1, . . . , Xn are equal to 1.” There are(
n
k

)
distinct ways of assigning k values 1 and n− k values 0 to X1, . . . , Xn, and all

have the same probability 2−n. �

One sometimes needs to prove that a random variable X taking its values in
(the value ∞ is a priori possible) is in fact almost surely finite, that is, one must
prove that P (X = ∞) = 0 or, equivalently, P (X < ∞) = 1. Since {X < ∞} =∑∞

n=0{X = n}, we have P (X < ∞) =
∑∞

n=0 P (X = n).

Remark 2.1.11 We seize this opportunity to recall that in an expression such
as
∑∞

n=0, the sum is over and does not include ∞ as the notation seems to
suggest. A less ambiguous notation would be

∑
n∈ . In case we want to sum over

all integers plus ∞, we shall always use the notation
∑

n∈ .

The following result is highlighted as a theorem for the purpose of future reference:

Theorem 2.1.12 Let X be an integer-valued random variable (in particular, the
probability that X = ∞ is null). Then
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lim
n↑∞

P (X > n) = 0 .

Proof. This follows by monotone sequential continuity since the sequence {X >
n}, n ≥ 0, is non-increasing and ∩n≥0{X > n} = ∅ since X takes only finite
values. �

Almost Surely, take 2

An expression like “X = Y P -almost surely” means that P ({ω ∈ Ω; X(ω) =
Y (ω)}) = 1. One interprets similarly expressions such as “f(X) = 0 P -almost
surely” and so on.

2.1.2 Independent Random Variables

Definition 2.1.13 Two discrete random variables X and Y are called independent
if for all i, j ∈ E,

P (X = i, Y = j) = P (X = i)P (Y = j) . (2.1)

The extension of the definition to a finite number of random variables is natural:

Definition 2.1.14 The discrete random variables X1, . . . , Xk taking their values
in E1, . . . , Ek respectively are said to be independent if for all i1 ∈ E1, . . . , ik ∈ Ek,

P (X1 = i1, . . . , Xk = ik) = P (X1 = i1) · · ·P (Xk = ik) . (2.2)

Theorem 2.1.15 Let X1, . . . , Xk be as in Definition 2.1.14. Then, for any gi :
Ei → (1 ≤ i ≤ n), the random variables gi(Xi) (1 ≤ i ≤ n) are independent.

Proof. We do the proof in the case n = 2:

P (g1(X1) = j1, g2(X2) = j2) =
∑

i1;g1(i1)=j1

∑
i2;g1(i2)=j2

P (X1 = i1, X2 = i2)

=
∑

i1;g1(i1)=j1

∑
i2;g1(i2)=j2

P (X1 = i1)P (X2 = i2)

=

⎛⎝ ∑
i1;g1(i1)=j1

P (X1 = i1)

⎞⎠⎛⎝ ∑
i2;g1(i2)=j2

P (X2 = i2)

⎞⎠
= P (g1(X1) = j1)P (g2(X2) = j2) .

�
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Definition 2.1.16 A sequence {Xn}n≥1 of discrete random variables indexed by
the set of positive integers and taking their values in the sets {En}n≥1 respectively
is called independent if for all n ≥ 2, the random variables X1, . . . , Xn are inde-
pendent. If in addition En ≡ E for all n ≥ 1 and the distribution of Xn does not
depend on n, the sequence {Xn}n≥1 is said to be iid (independent and identically
distributed).

Example 2.1.17: Heads and tails, take 6. We show that the sequence
{Xn}n≥1 is iid. Therefore, we have a model for independent tosses of an unbi-
ased coin.

Proof. Event {Xk = ak} is the direct sum of events {X1 = a1, . . . , Xk−1 =
ak−1, Xk = ak} for all possible values of (a1, . . . , ak−1). Since there are 2k−1 such
values and each one has probability 2−k, we have P (Xk = ak) = 2k−12−k, that is,

P (Xk = 1) = P (Xk = 0) =
1

2
.

Therefore,

P (X1 = a1, . . . , Xk = ak) = P (X1 = a1) · · ·P (Xk = ak)

for all a1, . . . , ak ∈ {0, 1}, from which it follows by definition that X1, . . . , Xk are
independent random variables, and more generally that {Xn}n≥1 is a family of
independent random variables. �

Definition 2.1.18 Let {Xn}n≥1 and {Yn}n≥1 be sequences of discrete random
variables indexed by the positive integers and taking their values in the sets {En}n≥1

and {Fn}n≥1 respectively. They are said to be independent if for any finite collec-
tion of random variables Xi1 , . . . , Xir and Yj1 , . . . , Yis extracted from their respec-
tive sequences, the discrete random variables (Xi1 , . . . , Xir) and (Yj1 , . . . , Yis) are
independent.

(This means that

P ((∩r
�=1{Xi� = a�}) ∩ (∩s

m=1{Yjm = bm}))
= P (∩r

�=1{Xi� = a�})P (∩s
m=1{Yjm = bm}) (2.3)

for all a1 ∈ E1, . . . , ar ∈ Er, b1 ∈ F1, . . . , bs ∈ Fs.)

The notion of conditional independence for events (Definition 1.3.14) extends nat-
urally to discrete random variables.

Definition 2.1.19 Let X, Y , Z be random variables taking their values in the
denumerable sets E, F , G, respectively. One says that X and Y are conditionally
independent given Z if for all x, y, z in E, F , G, respectively, events {X = x}
and {Y = y} are conditionally independent given {Z = z}.
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2.1.3 Expectation

Definition 2.1.20 Let X be a discrete random variable taking its values in the
countable set E and let g : E → be a function that is either non-negative or
such that ∑

x∈E |g(x)|P (X = x) < ∞ . (2.4)

Then one defines E[g(X)], the expectation of g(X), by the formula

E[g(X)] =
∑

x∈E g(x)P (X = x) . (2.5)

If the summability condition (2.4) is satisfied, we say that the random variable
g(X) is integrable, and in this case the expectation E[g(X)] is a finite number. If
it is only assumed that g is non-negative, the expectation may well be infinite.

Example 2.1.21: Heads and tails, take 7. Consider the random variable
Sn = X1+ · · ·+Xn with values in {0, 1, . . . , n}. Its expectation is E[Sn] = n/2. In
fact,

E[Sn] =
n∑

k=0

kP (Sn = k) =
1

2n

n∑
k=1

k
n!

k!(n− k)!

=
n

2n

n∑
k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!

=
n

2n

n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
=

n

2n
2n−1.

Example 2.1.22: Finite random variables with infinite expectations.

It is important to realize that a discrete random variable taking finite values may
have an infinite expectation. The canonical example is the random variable X with
values in E = + and such that

P (X = n) =
1

cn2
(n ∈ +)

where the constant c is chosen such that X actually takes its values in :

P (X < ∞) =
∞∑
n=1

P (X = n) =
∞∑
n=1

1

cn2
= 1

(therefore c =
∑∞

n=1
1
n2 = π2

6
). In fact, the expectation of X is

E[X] =
∞∑
n=1

nP (X = n) =
∞∑
n=1

n
1

cn2
=

∞∑
n=1

1

cn
= ∞.
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Remark 2.1.23 Although the above example is artificial, there are many natural
occurences of the phenomenon. Consider for instance Example 2.1.21, and let T
be the first integer n such that 2Sn − n = 0. Then, as it turns out, and as we
shall prove in Subsection 8.1.1 that T is a finite random variable with infinite
expectation. Note that the quantity 2Sn − n is the fortune at time n of a gambler
systematically betting one euro on heads.

The telescope formula below gives an alternative way of computing the expectation
of an integer-valued random variable.

Theorem 2.1.24 For a random variable X taking its values in ,

E[X] =
∑∞

n=1 P (X ≥ n) .

Proof.

E[X] = P (X = 1)+2P (X = 2) + 3P (X = 3) + . . .

= P (X = 1) +P (X = 2) + P (X = 3) + . . .

+P (X = 2) + P (X = 3) + . . .

+ P (X = 3) + . . .

�

We now list a few elementary properties of expectation.

Theorem 2.1.25 Let A be some event. The expectation of the indicator random
variable X = 1A is

E[1A] = P (A) . (2.6)

Proof. X = 1A takes the value 1 with probability P (X = 1) = P (A) and the
value 0 with probability P (X = 0) = P (A) = 1− P (A). Therefore,

E[X] = 0× P (X = 0) + 1× P (X = 1) = P (X = 1) = P (A).

�

Theorem 2.1.26 Let g1 and g2 be functions from E to such that g1(X) and
g2(X) are integrable (resp., non-negative), and let λ1, λ2 ∈ (resp., ∈ +). Ex-
pectation is linear, that is,

E[λ1g1(X) + λ2g2(X)] = λ1E[g1(X)] + λ2E[g2(X)] . (2.7)

Also, expectation is monotone, in the sense that if g1(x) ≤ g2(x) for all x such
that P (X = x) > 0 (in other words, g1(X) ≤ g2(X) almost surely)

E[g1(X)] ≤ E[g2(X)] . (2.8)

Also, we have the triangle inequality

|E[g(X)]| ≤ E[|g(X)|] . (2.9)
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Proof. These properties follow from the corresponding properties of series. �

Theorem 2.1.27 Let X be a random variable with values in E and let g : E →
+ be a non-negative function.

(a) If E [g(X)] = 0, then g(X) = 0 P -almost surely.

(b) If E [g(X)] < ∞, then g(X) < ∞ P -almost surely.

Proof. (a) Condition E [g(X)] = 0 reads
∑

x∈E g(x)P (X = x) = 0. In particular
P (X = x) = 0 whenever g(x) > 0. Therefore

P (g(X) > 0) =
∑

x∈E; g(x)>0

P (X = x) = 0

or, equivalently, P (g(X) = 0) = 1.

(b) Condition E [g(X)] < ∞ reads
∑

x∈E g(x)P (X = x) < ∞. In particular
P (X = x) = 0 whenever g(x) = ∞. Therefore

P (g(X) = ∞) =
∑

x∈E; g(x)=∞
P (X = x) = 0

or, equivalently, P (g(X) < ∞) = 1. �

Product Formula for Expectations

Theorem 2.1.28 Let Y and Z be two independent random variables with values
in the (denumerable) sets F and G respectively, and let v : F → , w : G →
be functions that are either non-negative, or such that v(Y ) and w(Z) are both
integrable. Then

E[v(Y )w(Z)] = E[v(Y )]E[w(Z)] .

Proof. Consider the discrete random variable X with values in E = F ×G defined
by X = (Y, Z), and consider the function g : E → defined by g(x) = v(y)w(z)
where x = (y, z). Under the above stated conditions, we have

E[v(Y )w(Z)] = E[g(X)] =
∑
x∈E

g(x)P (X = x)

=
∑
y∈F

∑
z∈F

v(y)w(z)P (Y = y, Z = z)

=
∑
y∈F

∑
z∈F

v(y)w(z)P (Y = y)P (Z = z)

=

(∑
y∈F

v(y)P (Y = y)

)(∑
z∈F

w(z)P (Z = z)

)
= E[v(Y )]E[w(Z)].

�
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Mean, Variance and Covariance

Definition 2.1.29 Let X be an integrable random variable. In this case, we define
its mean as the (finite) number

μ = E[X] .

Let X be a square-integrable random variable. We then define its variance σ2 by

σ2 = E[(X − μ)2] .

(In the case of integer-valued random variables, the mean and variance, when they
are well-defined, are therefore given by the following sums:

μ =
+∞∑
n=0

nP (X = n) σ2 =
+∞∑
n=0

(n− μ)2P (X = n) .)

The variance is also denoted by Var (X). From the linearity of expectation, it
follows that E[(X −m)2] = E[X2]− 2mE[X] +m2, that is,

Var (X) = E[X2]−m2 .

The mean is the “center of inertia” of a random variable. More precisely,

Theorem 2.1.30 Let X be a real integrable random variable with mean m and
finite variance σ2. Then, for all a ∈ , a �= μ,

E[(X − a)2] > E[(X − μ)2] = σ2 .

Proof.

E
[
(X − a)2

]
= E

[
((X − μ) + (μ− a))2

]
= E

[
(X − μ)2

]
+ (μ− a)2 + 2(μ− a)E [(X − μ)]

= E
[
(X − μ)2

]
+ (μ− a)2 > E

[
(X − μ)2

]
whenever a �= μ. �

The following consequence of the product rule is extremely important. It says that
for independent random variables, variances add up.

Theorem 2.1.31 Let X1, . . . , Xn be independent square-integrable random vari-
ables. Then

σ2
X1 +···+Xn

= σ2
X1

+ · · · + σ2
Xn

.



30 CHAPTER 2. RANDOM VARIABLES

Proof. Let μ1, . . . , μn be the respective means of X1, . . . , Xn. The mean of the
sum X := X1 + · · · +Xn is μ := μ1 + · · ·+ μn. If i �= k, we have, by the product
formula for expectations,

E [(Xi − μi)(Xk − μk)] = E [(Xi − μi)]E [(Xk − μk)] = 0.

Therefore

Var (X) =E
[
(X − μ)2

]
= E

⎡⎣( n∑
i=1

(Xi − μi)

)2
⎤⎦

=E

[
n∑

i=1

n∑
k=1

(Xi − μi)(Xk − μk)

]

=
n∑

i=1

n∑
k=1

E [(Xi − μi)(Xk − μk)]

=
n∑

i=1

E
[
(Xi − μi)

2
]
=

n∑
i=1

Var (Xi).

�

Note that means always add up, even when the random variables are not indepen-
dent.

Let X be an integrable random variable. Then, clearly, for any a ∈ , aX is
integrable and its variance is given by the formula

Var (aX) = a2 Var (X) .

Example 2.1.32: Variance of the empirical mean. From this remark and
Theorem 2.1.31, it immediately follows that if X1, . . . , Xn are independent and
identically distributed integrable random variables with values in with common
variance σ2, then

Var

(
X1 + · · ·+Xn

n

)
=

σ2

n
.

2.1.4 Famous Distributions

A random variable X taking its values in {0, 1} with distribution given by

P (X = 1) = p,

where p ∈ (0, 1), is called a Bernoulli random variable with parameter p. This is
denoted

X ∼ Bern(p) .
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Consider the following heads and tails framework which consists of an iid sequence
{Xn}n≥1 of Bernoulli variables with parameter p. It is called a Bernoulli sequence
with parameter p.

Since P (Xj = aj) = p or 1− p depending on whether ai = 1 or 0, and since there

are exactly h(a) :=
∑k

j=1 aj coordinates of a = (a1, . . . , ak) equal to 1,

P (X1 = a1, . . . , Xk = ak) = ph(a)qk−h(a) ,

where q := 1 − p. (The integer h(a) is called the Hamming weight of the binary
vector a.) Comparing with Examples 1.1.3 and 1.2.3, we see that we have a prob-
abilistic model of a game of heads and tails, with a biased coin when p �= 1

2
.

The heads and tails framework gives rise to two famous discrete random variables:
the binomial random variable, and the geometric random variable.

The Binomial Distribution

Definition 2.1.33 A random variable X taking its values in the set E = {0, 1, . . . , n}
and with the distribution

P (X = i) =
(
n
i

)
pi(1− p)n−i

is called a binomial random variable of size n and parameter p ∈ (0, 1).

This is denoted
X ∼ B(n, p) .

Example 2.1.34: We place ourselves in the heads and tails framework. Define

Sn = X1 + · · ·+Xn .

This random variable takes the values 0, 1, . . . , n. To obtain Sn = i where 0 ≤ i ≤
n, one must have X1 = a1, . . . , Xn = an with

∑n
j=1 aj = i. There are

(
n
i

)
distinct

ways of having this, each one occuring with probability pi(1−p)n−i. Therefore, for
0 ≤ i ≤ n,

P (Sn = i) =
(
n
i

)
pi(1− p)n−i.

Theorem 2.1.35 The mean and the variance of a binomial random variable X
of size n and parameter p are given by

E[X] = np ,

Var (X) = np(1− p) .
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Proof. This can be proven by a direct computation. Later on, in the Exercises
section, you will prove this using generating functions. Another approach is to
start from the random variable Sn of Example 2.1.34. This is a binomial random
variable. We have

E [Sn] =
n∑

i=1

E [Xi] = nE [X1]

and, since the Xi’s are iid,

V (Sn) =
n∑

i=1

V (Xi) = nV (X1) .

Now,

E [X1] = 0× P (X1 = 0) + 1× P (X1 = 1) = P (X1 = 1) = p

and, since X2
1 = X1,

E
[
X2

1

]
= E [X1] = p .

Therefore

V (X1) = E
[
X2

1

]− E [X1]
2 = p− p2 = p(1− p) .

�

The following inequalities concerning the binomial coefficients are useful:

Theorem 2.1.36 Let p ∈ (0, 1) and H2(p) := −p log2 p−q log2 q, where q := 1−p.
Then for 0 < p ≤ 1

2
, (

n

�np�
)

≤ 2nH2(p). (2.10)

For 1
2
≤ p < 1, (

n

�np�
)

≤ 2nH2(p) . (�)

For 1
2
≤ p < 1,

2nH2(p)

n+ 1
≤
(

n

�np�
)
. (2.11)

For 0 < p ≤ 1
2
,

2nH2(p)

n+ 1
≤
(

n

�np�
)
. (†)

The proof uses the following lemma.

Lemma 2.1.37 Let n be an integer and let p ∈ (0, 1) be such that np is an integer.
Then

2nH2(p)

n+ 1
≤
(
n

np

)
≤ 2nH2(p) .
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Proof. The inequality (
n

np

)
pnp(1− p)n(1−p) ≤ 1

follows from the fact that the left-hand side is a probability, namely P (B(n, p) =
np). Therefore (

n

np

)
≤ p−np(1− p)−n(1−p) = 2nH2(p) .

The integer value k = np will be shown to maximize
(
n
k

)
among all integers k such

that 0 ≤ k ≤ n. Therefore

1 =
n∑

k=0

(
n

k

)
pk(1− p)n−k ≤ (n+ 1)

(
n

np

)
pnp(1− p)n(1−p)

= (n+ 1)

(
n

np

)
2−nH2(p) .

To prove that k = np maximizes
(
n
k

)
, compare two adjacent terms. We have(

n

k

)
pk(1− p)n−k −

(
n

k + 1

)
pk+1(1− p)n−k−1

=

(
n

k

)
pk(1− p)n−k

(
1− p(n− k)

(1− p)(k + 1)

)
.

This difference is non-negative if and only if

1− p(n− k)

(1− p)(k + 1)
≥ 0

or, equivalently, k ≥ pn− (1− p). This shows that the function k → (
n
k

)
increases

as k varies from 0 to pn and decreases afterwards. �

We now proceed to the proof of Theorem 2.1.36:

Proof. Proof of (2.10):(
n

�np�
)
ppn(1− p)(1−p)n ≤

(
n

�np�
)
p�np	(1− p)n−�np	

≤
n∑

k=0

(
n

k

)
pk(1− p)n−k = 1 .

Inequality (�) is proved in a similar way, or by an obvious symmetry argument.
Inequality (2.11) follows from Lemma 2.1.37, since(

n

�np�
)

≥ 2nH2(�np	/n)

n+ 1
≥ 2nH2(p)

n+ 1
.

The proof of (†) is proved in a similar way, or by a symmetry argument. �
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The Geometric Distribution

Definition 2.1.38 A random variable X taking its values in + := {1, 2, . . . , }
and with the distribution

P (T = k) = (1− p)k−1p , (2.12)

where 0 < p < 1, is called a geometric random variable with parameter p.

This is denoted
X ∼ Geo(p) .

Of course, if p = 1, P (T = 1) = 1, and if p = 0, P (T = ∞) = 1. If 0 < p < 1,

P (T < ∞) =
∞∑
n=1

(1− p)k−1p =
1

1− (1− p)
=

p

p
= 1 ,

and therefore P (T = ∞) = 0.

Example 2.1.39: First “heads” in the sequence. We are in the heads and
tails framework. Define the random variable T to be the first time of occurrence
of 1 in the sequence X1, X2, . . ., that is,

T = inf{n ≥ 1;Xn = 1},
with the convention that if Xn = 0 for all n ≥ 1, then T = ∞. The event {T = k}
is exactly {X1 = 0, . . . , Xk−1 = 0, Xk = 1}, and therefore,

P (T = k) = P (X1 = 0) · · ·P (Xk−1 = 0)P (Xk = 1),

that is, for k ≥ 1,
P (T = k) = (1− p)k−1p .

Theorem 2.1.40 The mean of a geometric random variable X with parameter
p > 0 is

E[X] = 1
p
.

Proof.

E [X] =
∞∑
k=1

k (1− p)k−1 p =
1

p2
× p =

1

p
.

�

Theorem 2.1.41 A geometric random variable T with parameter p ∈ (0, 1) is
memoryless in the sense that for any integers k, k0 ≥ 1, we have P (T = k+k0 |T >
k0) = P (T = k).
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Proof.

P (T > k0) =
∞∑

k=k0+1

(1− p)k−1 p = (1− p)k0

and therefore

P (T = k0 + k|T > k0) =
P (T = k0 + k, T > k0)

P (T > k0)
=

P (T = k0 + k)

P (T > k0)

=
p (1− p)k+k0−1

(1− p)k0
= p (1− p)k = P (T = k) .

�

Example 2.1.42: The coupon collector, take 1. In a certain brand of
chocolate tablets one can find coupons, one in each tablet, randomly and indepen-
dently chosen among n types. A prize may be claimed once the chocolate amateur
has gathered a collection containing all the types of coupons. We seek to compute
the average value of the number X of chocolate tablets bought when this happens
for the first time.

For 0 ≤ i ≤ n − 1, let Xi be the number of tablets it takes after (>) i different
types of coupons have been collected to find a new type of coupon (in particular,
X0 = 1), so that

X =
n−1∑
i=0

Xi ,

where each Xi (1 ≤ i ≤ n − 1) is a geometric random variable with parameter
pi = 1− i

n
. In particular,

E [Xi] =
1

pi
=

n

n− i
,

(still true for i = 0) and therefore

E [X] =
n−1∑
i=0

E [Xi] = n
n−1∑
i=0

1

n− i
= n

n∑
i=1

1

i
.

The sum H(n) :=
∑n

i=1
1
i
(called the n-th harmonic number) satisfies the inequal-

ity
log n ≤ H(n) ≤ log n+ 1 , (2.13)

as can be seen by expressing log n as the integral
∫ n

1
1
x
dx, partitioning the domain

of integration with segments of unit length, and using the fact that the integrand
is a decreasing function, which gives the inequalities

n∑
i=2

1

i
≤
∫ n

1

dx

x
≤

n−1∑
i=1

1

i
.

Therefore,
E [X] = (1 + o(1))n log n ,

where o(1) is a symbolic representation of a function of the positive integers that
tend to 0 as n ↑ ∞ (Landau’s notation; see Section A.5).
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The Hypergeometric Distribution

Recall Example 1.2.17. There is an urn containing N1 black balls and N2 red balls.
You draw successively without replacement and at random n balls from the urn
(n ≤ N1+N2). The probability of having drawn k black balls (0 ≤ k ≤ inf(N1, n))
is:

pk =

(
N1

k

)(
N2

n−k

)(
N1+N2

n

) .

This probability distribution is called the hypergeometric distribution of parame-
ters N1 and N2.

The Poisson Distribution

Definition 2.1.43 A random variable X taking its values in and such that for
all k ≥ 0,

P (X = k) = e−θ θk

k!
,

is called a Poisson random variable with parameter θ ≥ 0.

This is denoted by
X ∼ Poi(θ) .

If θ = 0, X ≡ 0 (the general formula applies if one uses the convention 0! = 1).

Example 2.1.44: The Poisson law of rare events, take 1. A veterinary
surgeon in the Prussian cavalry once gathered data concerning the accidents due to
horse kickbacks among soldiers. He deduced that the (random) number of accidents
of the kind had a Poisson distribution. Here is an explanation.

Suppose that you play “heads and tails” for a large number n of (independent)
tosses using a coin such that

P (Xi = 1) =
α

n
.

In the Prussian army example, n is the (large) number of soldiers, and Xi = 1 if
the i-th soldier has been hurt by a horse. Let Sn be the total number of heads (of
wounded soldiers). We show that

lim
n↑∞

P (Sn = k) = e−αα
k

k!
, (�)

and this explains the findings of the veterinary surgeon. (The average number of
casualties is α and the choice P (Xi = 1) = α

n
guarantees this. Letting n ↑ ∞

accounts for n being large but unknown.) Here is the proof of the mathematical
statement.

The random variable Sn follows a binomial law with mean n× α
n
= α:

P (Sn = k) =

(
n

k

)(α
n

)k (
1− α

n

)n−k

.
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In particular P (Sn = 0) =
(
1− α

n

)n → e−α as n ↑ ∞. Also,

P (Sn = k + 1)

P (Sn = k)
=

n−k
k+1

α
n

1− α
n

tends to α
k+1

as n ↑ ∞, from which (�) follows.

Theorem 2.1.45 The mean of a Poisson random variable with parameter θ is
given by

E[X] = θ ,

and its variance is
Var (X) = θ .

Proof.

E [X] = e−θ

∞∑
k=1

θk

k!
k = e−θθ

∞∑
j=0

θj

j!
= e−θθeθ = θ

and

E
[
X2 −X

]
= e−θ

∞∑
k=0

(
k2 − k

) θk
k!

= e−θ

∞∑
k=2

k (k − 1)
θk

k!

= e−θθ2
∞∑
k=2

θk−2

(k − 2)!
= e−θθ2

∞∑
j=0

θj

j!
= e−θθ2eθ = θ2 .

Therefore

Var (X) = E
[
X2
]− E [X]2

= E
[
X2 −X

]
+ E [X]− E [X]2 = θ2 + θ − θ2 = θ.

�

Theorem 2.1.46 Let X1 and X2 be two independent Poisson random variables
with means θ1 > 0 and θ2 > 0, respectively. Then X = X1 + X2 is a Poisson
random variable with mean θ = θ1 + θ2.

Proof. For k ≥ 0,

P (X = k) = P (X1 +X2 = k) = P

(
k∑

i=0

{X1 = i,X2 = k − i}
)

=
k∑

i=0

P (X1 = i,X2 = k − i) =
k∑

i=0

P (X1 = i)P (X2 = k − i)

=
k∑

i=0

e−θ1
θi1
i!
e−θ2

θk−i
2

(k − i)!
= e−(θ1+θ2)

(θ1 + θ2)
k

k!
,

where we used the binomial formula. �
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The Multinomial Distribution

Consider the random vector X = (X1, . . . , XN ) where all the random variables Xi

take their values in the same (this restriction is not essential, but it simplifies the
notation) denumerable space E. Let p : EN → + be a function such that∑

x∈EN

p(x) = 1 .

Definition 2.1.47 The discrete random vector X above is said to admit the prob-
ability distribution p if for all sets C ⊆ EN ,

P (X ∈ C) =
∑
x∈C

p(x) .

In fact, there is nothing new here since X is a discrete random variable taking its
values in the denumerable set X := EN .

Considerm balls to be placed inN boxes B1, . . . , BN independently of one another,
with the probability pi for a given ball to be assigned to box Bi. Of course,∑N

i=1 pi = 1 .

Box 1 Box 2 Box N

p1

p2 pN

m balls

After placing all the balls in the boxes, there are Xi balls in box Bi, where∑N
i=1Xi = m.

The random vector X = (X1, . . . , XN ) is a multinomial vector of size (N,m) and
parameters p1, . . . , pN , that is, its probability distribution is

P (X1 = m1, . . . , XN = mN) =
k!∏N

i=1(mi)!

∏N
i=1 p

mi

i ,

where m1 + · · ·+mN = m.

Proof. Observe that (α): there are m!/
∏N

i=1(mi)! distinct ways of placing m balls
in N boxes in such a manner that m1 balls are in box B1,m2 are in B2, etc., and
(β): each of these distinct ways occurs with the same probabilty

∏N
i=1 p

mi

i . �
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The Uniform Distribution on [0, 1]

This subsection introduces non-discrete random variables. In fact, it gives just
what is strictly necessary in this book, in particular, the notion of independent
random numbers.

Definition 2.1.48 A function X : Ω → such that for all x ∈
{ω;X(ω) ≤ x} ∈ F

is called a real random variable.

Its cumulative distribution function is the function F (x) := P (X ≤ x). If

F (x) =

∫ x

−∞
f(y) dy ,

for all x ∈ for some non-negative function f such that
∫ +∞
−∞ f(y) dy = 1, the

latter is called the probability density function, or pdf, of X.

The following example is all we need in this book.

Example 2.1.49: The uniform distribution. Let [a, b] ∈ . A real random
variable X with the pdf

f(x) =
1

b− a
1[a,b](x)

is called a uniform random variable on [a, b]. This is denoted by

X ∼ U([a, b]) .

Uniform random variables are used in simulation, more precisely, to generate a
discrete random variable Z with a prescribed distribution P (Z = ai) = pi (0 ≤
i ≤ K). The basic principle of the sampling algorithm is the following

Draw U ∼ U([0, 1]).
Set Z = a� if U ∈ I� := (p0 + p1 + . . .+ p�−1, p0 + p1 + . . .+ p�].

Indeed, since the interval I� has length pl, P (Z = a�) = P (U ∈ I�) = p�.

This method is called the method of the inverse.

Definition 2.1.50 A real random vector of dimension d is a mapping X =
(X1, . . . , Xd) : Ω → such that each coordinate Xi is a real random variable.

A non-negative function f : d → such that
∫

d f(x) dx = 1 and

P (X1 ≤ x1, . . . , Xd ≤ xd) =

∫ x1

−∞
· · ·

∫ xd

−∞
f(x1, . . . , xd) dx1 · · · dxd

is called the probability distribution function of the random vector X.
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Definition 2.1.51 The real random variables X1, . . . , Xd admitting the respective
pdf’s f1, . . . , fd are said to be independent if the pdf of the random vector X =
(X1, . . . , Xd) is of the form

f(x1, . . . , xd) = f1(x1)× · · · × f(xd)

where the fi’s are non-negative functions such that
∫ +∞
−∞ fi(y) dy = 1.

The fi’s are then the pdf’s of the Xi’s. For instance with i = 1,

P (X1 ≤ x1) = P (X1 ≤ x1, X2 < ∞ . . . , Xd < ∞)

=

∫ x1

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
f1(x1)f2(x2) · · · fd(xd) dx1 · · · dxd

=

∫ x1

−∞
f1(x1) dx1

∫ +∞

−∞
f2(x2) dx2 · · ·

∫ +∞

−∞
fd(xd)dxd =

∫ x1

−∞
f1(x1) dx1 .

Definition 2.1.52 The real random variables X1, X2 . . . admitting the respective
pdf’s f1, f2, . . . are said to be independent if for all integers k ≥ 2, the random
variables X1, . . . , Xd are independent.

Example 2.1.53: Sequence of independent random numbers. The se-
quence {Un}n≥1 is called a sequence of independent random numbers if for all
k ≥ 1, U1, . . . , Uk are independent random variables uniformly distributed on the
interval [0, 1].

The Gilbert–Erdös–Rényi Random Graphs

A graph is a discrete object and therefore random graphs are, from the purely
formal point of view, discrete random variables. The random graphs considered in
this book are in fact described by a finite collection of iid {0, 1}-valued random
variables. They will be studied in more detail in Chapter 10. The basic definitions
of graph theory below will be complemented as the need arises.

A (finite) graph (V, E) consists of a finite collection V of vertices v and of a collec-
tion E of unordered pairs of distinct vertices, 〈u, v〉, called the edges. If 〈u, v〉 ∈ E ,
then u and v are called neighbours, and this is also denoted by u ∼ v. The degree
of vertex v ∈ V is the number of edges stemming from it.

In a few occasions, some redundancy in the notation will be useful: V and E will
be denoted by V (G) and E(G).

A subgraph (or induced subgraph) of a graph G = (V, E) is any graph G′ = (V ′, E ′)
with V ′ ⊆ V and E ′ = {〈u, v〉 ∈ E ; u, v ∈ V ′}. Such graph is also called the
restriction of G to V ′ and is denoted by G|V ′ .

A complete graph is one having all the possible
(
n
2

)
edges. It will be denoted by Kn

and its edge set by En. Note that a subgraph of a complete graph is also complete.
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A complete subgraph is called a clique of the graph. Note that a singleton of V is
a clique.

The complete pythagorean graph

A graph is connected if for all pairs of distinct vertices v, w, there is a sequence
v0 = v, v1, . . . , vn = w (called a path from v to w) and such that v0 ∼ v1 ∼ . . . ∼ vn.

A cycle of a graph is a sequence of distinct vertices v1, v2, . . . , vn such that v1 ∼
v2 ∼ . . . ∼ vn ∼ v1. A tree is a connected graph without cycles.

Let G1 = (V, E1) and G2 = (V, E2) be two graphs with the same set of vertices.
The graph G = G1 ∪ G2 is by definition the graph on the set of vertices V such
that e ∈ E if and only if e ∈ E1 ∪ E2. This graph is called the union of G1 and G2.
One defines similarly the intersection of G1 and G2, G = G1 ∩G2, to be the graph
on the set of vertices V such that e ∈ E if and only if e ∈ E1 ∩ E2. One writes
G2 ⊆ G1 if and only if E(G1) ⊆ E(G2).

Some graph properties may be difficult to verify on a given graph. However, there
exist results showing that they are satisfied (or not) for “large” and “typical”
graphs. The question of course is: what is a typical graph? One possible choice is
the Gilbert random graph (Definition 2.1.54 below).

Definition 2.1.54 (Gilbert, 1959) Let n be a fixed positive integer and let V =
{1, 2, . . . , n} be a finite set of vertices. To each unordered pair of distinct vertices
〈u, v〉, associate a random variable X〈u,v〉 taking its values in {0, 1} and suppose
that all such variables are iid with probability p ∈ (0, 1) for the value 1. This
defines a random graph denoted by G(n, p), a random element taking its values in
the (finite) set of all graphs with vertices {1, 2, . . . , n} and admitting for edge the
unordered pair of vertices 〈u, v〉 if and only if X〈u,v〉 = 1.

Note that G(n, p) is indeed a discrete random variable (taking its values in the
finite set consisting of the collection of graphs with vertex set V = {1, 2, . . . , n}).
Similarly, the set En,p of edges of G(n, p) is also a discrete random variable. If
we call any unordered pair of vertices 〈u, v〉 a potential edge (there are

(
n
2

)
such

edges forming the set En), G(n, p) is constructed by accepting a potential edge as
one of its edges with probability p independently of all other potential edges. The
probability of occurence of a graph G with exactly m edges is then

P (G(n, p) = G) = P (|En,p| = m) = pm(1− p)(
n
2)−m .
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Note that the degree of a given vertex, that is the number of edges stemming from
it, is a binomial random variable B(n − 1, p). In particular, the average degree is
d = (n− 1)p.

Another type of random graph is the Erdös–Rényi random graph (Definition 2.1.55
below). It is closely related to the Gilbert graph as we shall see below, in Theorem
2.1.56.

Definition 2.1.55 (Erdös and Rényi, 1959) Consider the collection Gm of graphs

G = (V, E) where V = {1, 2, . . . , n} with exactly m edges (|E| = m). There are
((n2)

m

)
such graphs. The Erdös–Rényi random graph Gn,m is a random graph uniformly
distributed on Gm.

(The notation is chosen for a quick differentiation between Gilbert graphs Gn,m

and Erdös–Rényi graphs G(n, p).)
Denoting by En,m the (random) collection of edges of Gn,m, the probability of
obtaining a given graph G ∈ Gm is

P (G) =

((n
2

)
m

)−1

.

The random graph Gn,m can be constructed by including m edges successively at
random. More precisely, denoting by Gk (0 ≤ k ≤ m) the successive graphs, and
by Ek the collection of edges of Gk, G0 = (V,∅) and for 1 ≤ k ≤ m, Ek = Ek−1∪ek,
where

P (ek = e | G0, . . . , Gk−1) = |En\Ek−1|−1

for all edges e ∈ En\Ek−1.

Theorem 2.1.56 The conditional distribution of G(n, p) given that the numner
of edges is m ≤ (

n
2

)
is uniform on the set Gm of graphs G = (V, E) where V =

{1, 2, . . . , n} with exactly m edges.

Proof. Let G be a graph with vertex set V have exactly m edges. Observing that
{G(n, p) = G} ⊆ {|En,p| = m}, we have that

P (G(n, p) = G | |En,p| = m) =
P (G(n, p) = G, |En,p| = m)

P (|En,p| = m)

=
P (G(n, p) = G)

P (|En,p| = m)

=
pm(1− p)(

n
2)−m((n2)

m

)
pm(1− p)(

n
2)−m

=

((n
2

)
m

)−1

.

�

Remark 2.1.57 In the sequel, we will follow the tradition of refering to Gilbert
graphs as Erdös–Rényi graphs.
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2.2 Generating functions

2.2.1 Definition and Properties

The computation of probabilities in discrete probability models often require an
enumeration of all the possible outcomes realizing this particular event. Generat-
ing functions are very useful for this task, and more generally, for obtaining the
probability distributions of integer-valued random variables. We first define the
expectation of a complex-valued function of a random variable.

Let X be a discrete random variable with values in , and let ϕ : → be
a complex function with real and imaginary parts ϕR and ϕI respectively. The
expectation E[ϕ(X)] is naturally defined by

E[ϕ(X)] := E[ϕR(X)] + iE[ϕI(X)] ,

provided the expectations on the right-hand side are well-defined and finite. This
is the case if E [|ϕ(X)|] < ∞.

Definition 2.2.1 Let X be an integer-valued random variable. Its generating func-
tion (gf) is the function g : D → defined by

g(z) := E[zX ] =
∞∑
k=0

P (X = k)zk , (2.14)

and where D := D(0;R) := {z ∈ ; |z| ≤ R} is the closed disk of absolute conver-
gence of the above series.

Since
∑∞

n=0 P (X = n) = 1 < ∞, R ≥ 1. In the next two examples, R = ∞.

Example 2.2.2: gf of the binomial variable. For the binomial random
variable of size n and parameter p,

g(z) =
∑n

k=0

(
n
k

)
pk(1− p)n−kzk =

∑n
k=0

(
n
k

)
(zp)k(1− p)n−k ,

and therefore
g(z) = (1− p+ pz)n .

Example 2.2.3: gf of the Poisson variable. For the Poisson random vari-
able of mean θ,

g(z) = e−θ
∑∞

k=0
(θ)k

k!
zk = e−θ

∑∞
k=0

(θz)k

k!
,

and therefore
g(z) = eθ(z−1) .
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Next is an example where the radius of convergence is finite.

Example 2.2.4: gf of the geometric variable. For the geometric random
variable of (2.12),

g(z) =
∑∞

k=0 p(1− p)k−1 zk .

The radius of convergence of this generating function power series is 1
1−p

and its
sum is

g(z) =
∑∞

k=0 pz((1− p)z)k−1 = pz
1−qz

.

Theorem 2.2.5 The generating function characterizes the distribution of a ran-
dom variable.

This means the following. Suppose that, without knowing the distribution of X,
you have been able to compute its generating function g, and that, moreover, you
are able to give its power series expansion in a neighborhood of the origin1, say,

g(z) =
∞∑
n=0

anz
n.

Since g is the generating function of X,

g(z) =
∞∑
n=0

P (X = n)zn

and since the power series expansion around the origin is unique, P (X = n) = an
for all n ≥ 0. Similarly, if two integer-valued random variables X and Y have the
same generating function, they have the same distribution. Indeed, the identity
in a neighborhood of the origin of two power series implies the identity of their
coefficients.

Theorem 2.2.6 Let X and Y be two independent integer-valued random variables
with respective generating functions gX and gY . Then the sum X + Y has the gf

gX+Y (z) = gX(z)× gY (z).

Proof. Use the product formula for expectations:

gX+Y (z) = E
[
zX+Y

]
= E

[
zXzY

]
= E

[
zX
]
E
[
zY
]
.

�

Example 2.2.7: Sum of independant Poisson variables. Let X and Y be
two independent Poisson random variables with means α and β respectively. The

1
This is a common situation; see Theorem 2.2.10 for instance.
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sum X + Y is a Poisson random variable with mean α + β. Indeed, by Theorem
2.2.6,

gX+Y (z) = gX(z)× gY (z) = eα(z−1) eβ(z−1) = e(α+β)(z−1),

and the assertion follows directly from Theorem 2.2.5 since gX+Y is the gf of a
Poisson random variable with mean α + β.

The next result gives concerns the shape of the generating function restricted to
the interval [0, 1].

Theorem 2.2.8 (α) Let g : [0, 1] → be defined by g(x) = E[xX ], where X is a
non-negative integer-valued random variable. Then g is nondecreasing and convex.
Moreover, if P (X = 0) < 1, it is strictly increasing, and if P (X ≤ 1) < 1, it is
strictly convex.

(β) Suppose P (X ≤ 1) < 1. If E[X] ≤ 1, the equation x = g(x) has a unique
solution x ∈ [0, 1], namely x = 1. If E[X] > 1, it has two solutions in [0, 1], x = 1
and x = x0 ∈ (0, 1).

Proof. Just observe that for x ∈ [0, 1],

g′(x) =
∞∑
n=1

nP (X = n)xn−1 ≥ 0,

and therefore g is nondecreasing, and

g′′(x) =
∞∑
n=2

n(n− 1)P (X − n)xn−2 ≥ 0,

and therefore g is convex. For g′(x) to be null for some x ∈ (0, 1), it is necessary
to have P (X = n) = 0 for all n ≥ 1, and therefore P (X = 0) = 1. For g′′(x) to be
null for some x ∈ (0, 1), one must have P (X = n) = 0 for all n ≥ 2, and therefore
P (X = 0) + P (X = 1) = 1.

1

P (X = 0)

0 1
E[X] ≤ 1

0

P (X = 0)

1

1

E[X] > 1

Two aspects of the generating function

The graph of g : [0, 1] → has, in the strictly increasing strictly convex case
P (X = 0) + P (X = 1) < 1, the general shape shown in the figure, where we
distinguish two cases: E[X] = g′(1) ≤ 1, and E[X] = g′(1) > 1. The rest of the
proof is then easy. �
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Moments from the Generating Function

Generating functions are powerful computational tools. First of all, they can be
used to obtain moments of a discrete random variable.

Theorem 2.2.9 We have

g′(1) = E[X] (2.15)

and

g′′(1) = E[X(X − 1)]. (2.16)

Proof. Inside the open disk D(0;R) centered at the origin and of radius R, the
power series defining the generating function g is continuous, and differentiable at
any order term by term. In particular, differentiating twice both sides of (2.14)
inside the open disk D(0;R) gives

g′(z) =
∞∑
n=1

nP (X = n)zn−1, (2.17)

and

g′′(z) =
∞∑
n=2

n(n− 1)P (X = n)zn−2. (2.18)

When the radius of convergence R is strictly larger than 1, we obtain the announced
results by letting z = 1 in the previous identities.

If R = 1, the same is basically true but the mathematical argument is more
subtle. The difficulty is not with the right-hand side of (2.17), which is always well-
defined at z = 1, being equal to

∑∞
n=1 nP (X = n), a non-negative and possibly

infinite quantity. The difficulty is that g may be not differentiable at z = 1, a
boundary point of the disk (here of radius 1) on which it is defined. However, by
Abel’s theorem (Theorem A.1.3), the limit as the real variable x increases to 1 of∑∞

n=1 nP (X = n)xn−1 is
∑∞

n=1 nP (X = n). Therefore g′, as a function on the
real interval [0, 1), can be extended to [0, 1] by (2.15), and this extension preserves
continuity. With this definition of g′(1), Formula (2.15) holds true. Similarly, when
R = 1, the function g′′ defined on [0, 1) by (2.18) is extended to a continuous
function on [0, 1] by defining g′′(1) by (2.16). �

2.2.2 Random Sums

How to compute the distribution of random sums? Here again, generating functions
help.

Theorem 2.2.10 Let {Yn}n≥1 be an iid sequence of integer-valued random vari-
ables with the common generating function gY . Let T be another random variable,
integer-valued, independent of the sequence {Yn}n≥1, and let gT be its generating
function. The generating function of
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X =
∑T

n=1 Yn ,

where by convention
∑0

n=1 = 0, is

gX(z) = gT (gY (z)) . (2.19)

Proof.

∑
n≥0

znP (X = n) =
∑
n≥0

zn

(∑
k≥0

P (X = n, T = k)

)

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n, T = k

))

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n, T = k

))

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n

)
P (T = k)

)

=
∑
k≥0

P (T = k)

(∑
n≥0

znP

(
k∑

j=1

Yj = n

))
.

But (∑
n≥0

znP

(
k∑

j=1

Yj = n

))
= g∑k

j=1 Yj
(z) = (gY (z))

k .

Therefore, ∑
n≥0

znP (X = n) =
∑
k≥0

P (T = k) (gY (z))
k = gT (gY (z)) .

�

By taking derivatives in (2.19),

E [X] = g,X(1) = g,Y (1)g
,
T (gY (1)) = E[Y1]E[T ].

This is Wald’s formula. Exercise 2.4.16 gives more general conditions for its validity.

2.2.3 Counting with Generating Functions

The following example is typical of the use of generating functions in combinatorics
(the art of counting).

Example 2.2.11: Lottery. Let X1, X2, X3, X4, X5, and X6 be independent
random variables uniformly distributed over {0, 1, . . . , 9}. We shall compute the
generating function of Y = 27+X1 +X2 +X3 −X4 −X5 −X6 and use the result
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to obtain the probability that in a 6-digit lottery the sum of the first three digits
equals the sum of the last three digits. We have

E[zXi ] =
1

10
(1 + z + · · ·+ z9) =

1

10

1− z10

1− z
,

and therefore

E[z−Xi ] =
1

10

1

z9
1− z10

1− z
,

and

E[zY ] = E[
[
z27+

∑3
i=1 Xi−

∑6
i=4 Xi

]
= E

[
z27

3∏
i=1

zXi

6∏
i=4

z−Xi

]
= z27

3∏
i=1

E[zXi ]
6∏

i=4

E[z−Xi ] .

Therefore,

gY (z) =
1

106
(1− z10)

6

(1− z)6
.

But P (X1 + X2 + X3 = X4 + X5 + X6) = P (Y = 27) is the factor of z27 in the
power series expansion of gY (z). Since

(1− z10)6 = 1−
(
6

1

)
z10 +

(
6

2

)
z20 + · · ·

and

(1− z)−6 = 1 +

(
6

5

)
z +

(
7

5

)
z2 +

(
8

5

)
z3 + · · ·

(recall the negative binomial formula:

(1− z)−p = 1 +

(
p

p− 1

)
z +

(
p+ 1

p− 1

)
z2 +

(
p+ 2

p− 1

)
z3 + · · · ),

we find that

P (Y = 27) =
1

106

((
32

5

)
−
(
6

1

)(
22

5

)
+

(
6

2

)(
12

5

))
.

2.3 Conditional Expectation

2.3.1 Conditioning with Respect to an Event

Chapter 1 introduced the notion of conditional probability and the Bayes calculus
associated with it. We now introduce the notion of conditional expectation and
the set of rules accompanying it.
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Let Z be a discrete random variable with values in E, and let f : E → be
a non-negative function. Let A be some event of positive probability. The condi-
tional expectation of f(Z) given A, denoted by E [f(Z) |A], is by definition the
expectation when the distribution of Z is replaced by its conditional distribution
given A, P (Z = z |A). Therefore

E [f(Z) |A] :=
∑
z

f(z)P (Z = z |A) .

Let {Ai}i∈ be a partition of the sample space. Then

E [f(Z)] =
∑
i∈

E [f(Z) |Ai]P (Ai) .

Proof. This is a direct consequence of the Bayes formula of total causes:

E [f(Z)] =
∑
z

f(z)P (Z = z) =
∑
z

(∑
i

f(z)P (Z = z |Ai)P (Ai)

)

=
∑
i

(∑
z

f(z)P (Z = z |Ai)

)
P (Ai) =

∑
i

E [f(Z) |Ai]P (Ai) .

�

The following elementary result will often be used, and therefore, we shall promote
it to the rank of theorem:

Theorem 2.3.1 Let Z be a random variable with values in E, and let f : E �→
be a non-negative function. Let A be some event of positive probability. Then

E [f(Z)1A] = E [f(Z) |A]P (A) .

Proof.

E [f(Z) |A]P (A) =

(∑
z∈E

f(z)P (Z = z |A)
)

P (A) =
∑
z∈E

f(z)P (Z = z , A) .

Now, the random variable f(Z)1A takes a non-null value if and only if this value is
of the form f(z) > 0, and this happens with probability P (Z = z , A). Therefore

E [f(Z)1A] =
∑

z ;f(z)>0

f(z)P (Z = z , A) =
∑
z∈E

f(z)P (Z = z , A) .

�

Example 2.3.2: Poisson bounding of multinomial events. (Mitzenmacher
and Upfal, 2005.) The computation of expectations concerning multinomial vectors
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often turns out to be difficult, whereas it might be considerably simpler in the
Poisson case. The result of this subsection gives, under certain conditions, a bound
for the expectation of interest in terms of the expectation computed for the Poisson
case. Before the precise statement of this result, some preliminary remarks are in
order.

Balls are placed in N bins in the following manner. The number of balls in any
given bin is a Poisson variable of mean m

N
, and is independent of the numbers in

the other bins. In particular, the total number of balls Y1+ · · ·+YN is, as the sum
of independent Poisson random variables, a Poisson random variable whose mean
is the sum of the means of the coordinates, that is m.

Let f ≥ 0 be a function of N integer-valued arguments, and let (X1, . . . , XN ) be a
multinomial random vector of size (m,N) and with parameters pi =

1
N

(obtained
by placing m balls independently and at random in N bins). Then, with the Yi’s
as above,

E [f(X1, . . . , XN)] ≤ e
√
mE [f(Y1, . . . , YN)] . (2.20)

In particular, with f the indicator of some subset E of N , the probability that
(X1, . . . , XN ) ∈ E is less than e

√
m times the probability that (Y1, . . . , YN) ∈ E.

This can be rephrased in imprecise but suggestive terms as follows: An event that
has probability P in the Poisson case happens with probability at most e

√
mP in

the multinomial case.

Proof. For a given arbitrary integer k, the conditional probability that there are
k1 balls in bin 1, k2 balls in bin 2, . . . , given that the total number of balls is
k1 + · · ·+ kN = k is

P (Y1 = k1, . . . , YN = kN |Y1 + · · ·+ YN = k)

=
P (Y1 = k1, . . . , YN = kN , Y1 + · · ·+ YN = k)

P (Y1 + · · ·+ YN = k)

=
P (Y1 = k1, . . . , YN = kN)

P (Y1 + · · ·+ YN = k)
.

By independence of the Yi’s and since they are Poisson variables with mean m
N
,

P (Y1 = k1, . . . , YN = kN) =
N∏
i=1

(
e−

m
N

(
m
N

)ki
ki!

)
.

Also, P (Y1 + · · ·+ YN = k) = e−mmk

k!
. Therefore

P (Y1 = k1, . . . , YN = kN |Y1 + · · ·+ YN = k) =
k!

k1! · · · kN !
(

1

N

)N

.

But this is equal to P (Z1 = k1, . . . , ZN = kN), where Zi is the number of balls in
bin i when k = k1 + · · ·+ kN balls are placed independently and at random in the
N bins. Note that the above equality is independent of m.

Now:



2.3. CONDITIONAL EXPECTATION 51

E [f(Y1, . . . , YN)] =
∞∑
k=0

E

[
f(Y1, . . . , YN) |

N∑
i=1

Yi = k

]
P

(
N∑
i=1

Yi = k

)

≥ E

[
f(Y1, . . . , YN) |

N∑
i=1

Yi = m

]
P

(
N∑
i=1

Yi = m

)

= E [f(X1, . . . , XN)]P

(
N∑
i=1

Yi = m

)

= E [f(X1, . . . , XN)]
mme−m

m!
.

The announced result will follow from the bound

m! ≤ e
√
m
(m
e

)m

. (�)

For this, use the fact that, by concavity of the function x → log x,∫ i

i−1

log x dx ≥ log(i− 1) + log i

2
,

and therefore ∫ m

1

log x dx ≥
m∑
i=1

log i− logm

2
= log(m!)− logm

2
.

Integration by parts gives m logm − m + 1 =
∫ m

1
log x dx. Therefore m logm −

m + 1 ≥ log(m!) − logm
2

, from which the announced inequality follows by taking
exponentials. �

There exists a stronger version of (2.20):

E [f(X1, . . . , XN )] ≤ 4E [f(Y1, . . . , YN)] ,

but this time it is required in addition that E [f(X1, . . . , XN)] should be a quantity
increasing with the number m of balls.

Proof.

E [f(Y )] =
∞∑
k=0

E
[
f(Y ) |

∑
Yi = k

]
P
(∑

Yi = k
)

≥
∞∑

k=m

E
[
f(Y ) |

∑
Yi = k

]
P
(∑

Yi = k
)

≥ E
[
f(Y ) |

∑
Yi = m

]
P
(∑

Yi = k
)

≥ E [f(X)] P
(∑

Yi = k
)

≥ E [f(X)]× 1

4
,

since for any Poisson variable Z with a mean θ that is a positive integer, P (Z ≥
θ) ≥ 1

4
. �
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2.3.2 Conditioning with Respect to a Random Variable

Let X and Y be two discrete random variables taking their values in the denu-
merable sets F and G respectively. Let the function g : F ×G → be either non-
negative, or such that E[|g(X, Y )|] < ∞. For each y ∈ G such that P (Y = y) > 0,
define

ψ(y) :=
∑
x∈F

g(x, y)P (X = x |Y = y) , (2.21)

and let ψ(y) := 0 otherwise. The sum in (2.21) is well-defined (possibly infinite
however) when g is non-negative. Note that in the non-negative case, we have that∑

y∈G
ψ(y)P (Y = y) =

∑
y∈G

∑
x∈F

g(x, y)P (X = x |Y = y)P (Y = y)

=
∑
x

∑
y

g(x, y)P (X = x, Y = y) = E[g(X, Y )].

In particular, if E[g(X, Y )] < ∞,
∑

y∈G ψ(y)P (Y = y) < ∞, which implies that

(Theorem 2.1.27) P (ψ(Y ) < ∞) = 1. Therefore, E
[
EY [g(X, Y )]

]
< ∞. Let

now g : F × G → be a function of arbitrary sign such that E[|g(X, Y )|] <
∞, and in particular E[g±(X, Y )] < ∞. Denote by ψ± the functions associated
with g± as in (2.21). As we just saw, for all y ∈ G, ψ±(y) < ∞, and therefore
ψ(y) = ψ+(y)− ψ−(y) is well-defined (not an indeterminate ∞−∞ form). Thus,
the conditional expectation is well-defined also in the integrable case. From the
observation made a few lines above, in this case,

|EY [g(X, Y )]| = |EY [g+(X, Y )]|+ |EY [g−(X, Y )]| < ∞, P -a.s.

Definition 2.3.3 The number ψ(y) defined by (2.21) is called the conditional ex-
pectation of g(X, Y ) given Y = y, and is denoted by EY=y[g(X, Y )] or, alterna-
tively, by E[g(X, Y ) |Y = y]. The random variable ψ(Y ) is called the conditional
expectation of g(X, Y ) given Y , and is denoted by EY [g(X, Y )] or E[g(X, Y ) |Y ].

Example 2.3.4: The hypergeometric distribution. Let X1 and X2 be in-
dependent binomial random variables of same size N and same parameter p. We
are going to show that

EX1+X2 [X1] = ψ(X1 +X2) =
X1 +X2

2
.

We have

P (X1 = k|X1 +X2 = n) =
P (X1 = k,X1 +X2 = n)

P (X1 +X2 = n)

P (X1 = k,X2 = n− k)

P (X1 +X2 = n)

P (X1 = k)P (X2 = n− k)

P (X1 +X2 = n)
.
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Inserting the values of the probabilities thereof, and using the fact that the sum
of two independent binomial random variables with size N and parameter p is a
binomial random variable with size 2N and parameter p, a straightforward com-
putation gives

P (X1 = k|X1 +X2 = n) =

(
N
k

)(
N

n−k

)(
2N
n

) .

This is the hypergeometric distribution. The right-hand side of the last display is
the probability of obtaining k black balls when a sample of n balls is randomly
selected from an urn containing N black balls and N red balls. The mean of such
a distribution is (by symmetry) n

2
, therefore

EX1+X2=n[X1] =
n

2
= ψ(n)

and this gives the announced result. A more elegant solution is given in Exercise
2.4.22 where the reader will also discover that the result is more general.

Example 2.3.5: Two Poisson variables. Let X1 and X2 be two independent
Poisson random variables with respective means θ1 > 0 and θ2 > 0. We seek to
compute EX1+X2 [X1], that is E

Y [X], where X = X1, Y = X1+X2. For y ≥ x, the
same computations as in Example 2.3.4 give

P (X = x |Y = y) =
P (X1 = x)P (X2 = y − x)

P (X1 +X2 = y)
.

Inserting the values of the the probabilities thereof, and using the fact that the
sum of two independent Poisson random variables with parameter θ1 and θ2 is a
Poisson random variable with parameter θ1 + θ2, a simple computation yields

P (X = x |Y = y) =

(
y

x

)(
θ1

θ1 + θ2

)x(
θ2

θ1 + θ2

)y−x

.

Therefore, with α = θ1
θ1+θ2

,

ψ(y) = EY=y[X] =

y∑
x=0

x

(
y

x

)
αx(1− α)y−x = αy .

Finally, EY [X] = ψ(Y ) = αY , that is,

EX1+X2 [X1] =
θ1

θ1 + θ2
(X1 +X2) .
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2.3.3 Basic Properties of Conditional Expectation

The first property of conditional expectation, linearity, is obvious from the defini-
tions: For all λ1, λ2 ∈ ,

EY [λ1g1(X, Y ) + λ2g2(X, Y )] = λ1E
Y [g1(X, Y )] + λ2E

Y [g2(X, Y )]

whenever the conditional expectations thereof are well-defined and do not produce
∞−∞ forms. Monotonicity is equally obvious: if g1 ≤ g2, then

EY [g1(X, Y )] ≤ EY [g2(X, Y )].

Theorem 2.3.6 If g is non-negative or such that E[|g(X, Y )|] < ∞, we have

E[EY [g(X, Y )]] = E[g(X, Y )].

Proof.

E[EY [g(X, Y )]] = E[ψ(Y )]] =
∑
y∈G

ψ(y)P (Y = y)

=
∑
y∈G

∑
x∈F

g(x, y)P (X = x |Y = y)P (Y = y)

=
∑
x

∑
y

g(x, y)P (X = x, Y = y) = E[g(X, Y )].

�

Theorem 2.3.7 If w is non-negative or such that E[|w(Y )|] < ∞,

EY [w(Y )] = w(Y ),

and more generally,

EY [w(Y )h(X, Y )] = w(Y )EY [h(X, Y )] ,

assuming that the left-hand side is well-defined.

Proof. We prove the second (more general) identity. We do this for non-negative
w and h, the general case following easily from this special case:

EY=y[w(Y )h(X, Y )] =
∑
x∈F

w(y)h(x, y)P (X = x |Y = y)

= w(y)
∑
x∈F

h(x, y)P (X = x |Y = y)

= w(y)EY=y[h(X, Y )].

�
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Theorem 2.3.8 If X and Y are independent and if v is non-negative or such that
E[|v(X)|] < ∞, then

EY [v(X)] = E[v(X)].

Proof. We have

EY=y[v(X)] =
∑
x∈F

v(x)P (X = x |Y = y)

=
∑
x∈F

v(x)P (X = x) = E[v(X)].

�

Theorem 2.3.9 If X and Y are independent and if g : F×G → is non-negative
or such that E[|g(X, Y )|] < ∞, then, for all y ∈ G,

E[g(X, Y |Y = y] = E[g(X, y)].

Proof. Applying formula (2.21) with P (X = x |Y = y) = P (X = x) (by indepen-
dence), we obtain

ψ(y) =
∑
x∈F

g(x, y)P (X = x) = E [g(X, y)] .

�

Successive Conditioning

Suppose that Y = (Y1, Y2), where Y1 and Y2 are discrete random variables. In this
situation, we use the more developed notation

EY [g(X, Y )] = EY1,Y2 [g(X, Y1, Y2] .

Theorem 2.3.10 Let Y = (Y1, Y2) be as above, and let g : F × G → be either
non-negative or such that E[|g(X, Y )|] < ∞. Then

EY2 [EY1,Y2 [g(X, Y1, Y2)]] = EY2 [g(X, Y1, Y2)].

Proof. Let
ψ(Y1, Y2) = EY1,Y2 [g(X, Y1, Y2)].

We must show that

EY2 [ψ(Y1, Y2)] = EY2 [g(X, Y1, Y2)].

But



56 CHAPTER 2. RANDOM VARIABLES

ψ(y1, y2) =
∑
x

g(x, y1, y2)P (X = x |Y1 = y1, Y2 = y2)

and

EY2=y2 [ψ(Y1, Y2)] =
∑
y1

ψ(y1, y2)P (Y1 = y1 |Y2 = y2),

that is,∑
y1

∑
x

g(x, y1, y2)P (X = x |Y1 = y1, Y2 = y2)P (Y1 = y1 |Y2 = y2).

But

P (X = x |Y1 = y1, Y2 = y2)P (Y1 = y1 |Y2 = y2)

=
P (X = x, Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y2 = y2)

= P (X = x, Y1 = y1 |Y2 = y2) .

Therefore

EY2=y2 [ψ(Y1, Y2)] =
∑
y1

∑
x

g(x, y1, y2)P (X = x, Y1 = y1 |Y2 = y2)

= EY2=y2 [g(X, Y1, Y2)].

�

Conditional Jensen’s Inequality

Theorem 2.3.11 Let I, ϕ and X be as in Theorem 3.1.5. Let Y be another ran-
dom variable. Then

E [ϕ(X) |Y ] ≥ ϕ(E [X |Y ]) .

Proof. The proof follows exactly the same lines as that of Theorem 3.1.5. �

The fkg Inequality

Theorem 2.3.12 Let E ⊆ and let f, g : En → be two bounded functions that
are non-decreasing in each of their arguments. Let Xn

1 := (X1, . . . , Xn) be a vector
of independent variables with values in E. Then,

E [f(Xn
0 )g(X

n
0 )] ≥ E [f(Xn

0 )]E [g(Xn
0 )] . (2.22)

In other words, f(Xn
0 ) and g(Xn

0 ) are positively correlated.
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Proof. By induction. For n = 1: Let X1 and Y1 be two independent and iden-
tically distributed E-valued random variables, and let f, g : E → + be two
non-decreasing bounded functions. Since f(X1) − f(Y1) and g(X1) − g(Y1) have
the same sign, their product is non-negative, and therefore

E [(f(X1)− f(Y1))(g(X1)− g(Y1))] ≥ 0 .

Developing the left-hand side

E [f(X1)g(X1)] + E [f(Y1)g(Y1)] ≥ E [f(X1)]E [g(Y1)] + E [f(Y1)]E [g(X1)] .

AsX1 and Y1 have the same distribution, the left-hand side equals 2E [f(X1)g(X1)].
Since X1 and Y1 have the same distribution and are independent, the right-hand
side equals 2E [f(X1)]E [g(X1)]. Therefore

E [f(X1)g(X1)] ≥ E [f(X1)]E [g(X1)] .

We now suppose that the result is true for n− 1 and show that it is then true for
n. From the independence of Xn−1

0 and Xn and Theorem 2.3.9,

E [f(Xn
0 )g(X

n
0 ) |Xn = xn] = E

[
f(Xn−1

0 , xn)g(X
n−1
0 , xn)

]
and since, by the result assumed for n− 1,

E
[
f(Xn−1

0 , xn)g(X
n−1
0 , xn)

] ≥ E
[
f(Xn−1

0 , xn)
]
E
[
g(Xn−1

0 , xn)
]

= E [f(Xn
0 ) |Xn = xn]E [g(Xn

0 ) |Xn = xn] ,

we have that

E [f(Xn
0 )g(X

n
0 ) |Xn = xn] ≥ E [f(Xn

0 ) |Xn = xn]E [g(Xn
0 ) |Xn = xn] ,

or

E [f(Xn
0 )g(X

n
0 ) |Xn] ≥ E [f(Xn

0 ) |Xn]E [g(Xn
0 ) |Xn] .

Taking expectations

E [f(Xn
0 )g(X

n
0 )] ≥ E [E [f(Xn

0 ) |Xn]E [g(Xn
0 ) |Xn]]

≥ E [E [f(Xn
0 ) |Xn]]E [E [g(Xn

0 ) |Xn]]

= E [f(Xn
0 ]E [g(Xn

0 ] ,

where the last inequality follows from the case n = 1 applied to the functions
xn → E [f(Xn

0 ) |Xn = xn] = E
[
f(Xn−1

0 , xn)
]
and xn → E [g(Xn

0 ) |Xn = xn] =
E
[
f(Xn−1

0 , xn)
]
which are non-decreasing. �

Remark 2.3.13 A stronger version of the above fkg inequality will be given in
Section 9.3.
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An Alternative Point of View

This subsection presents another definition of conditional expectation. It is the
starting point for a generalization to the case of random elements that are not dis-
crete. Even in the discrete case, this new perspective is indispensable (see Exercise
2.4.24).

Let X and Y be two discrete random variables with values in E and F respectively.
Let g : E×F → + be a function that is either non-negative or such that g(X, Y )
is integrable. For any non-negative bounded function ϕ : F → , we have

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [g(X, Y )ϕ(Y )] . (�)

In fact,

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [ψ(Y )ϕ(Y )] =

∑
y∈F

ψ(y)ϕ(y)P (Y = y)

=
∑
y∈F

(∑
x∈E

g(x, y)
P (X = x, Y = y)

P (Y = y)
dx

)
ϕ(y)P (Y = y)

=
∑
y∈F

∑
x∈E

g(x, y)ϕ(y)P (X = x, Y = y) = E [g(X, Y )ϕ(Y )] .

This suggests to take (�) as a basis for an extension of the definition of conditional
expectation. The conditioned variable is now any random element Z taking its
values in E, a denumerable subset of .

Definition 2.3.14 Let Z and Y be as above, and suppose that Z is either non-
negative or integrable. A conditional expectation EY [Z] is by definition a random
variable of the form ψ(Y ) such that equality

E [ψ(Y )ϕ(Y )] = E [Zϕ(Y )] (2.23)

holds for any non-negative bounded function ϕ : E → .

Theorem 2.3.15 In the situation described in the above definition, the conditional
expectation exists and is essentially unique.

By “essentially unique” the following is meant. If there are two functions ψ1 and
ψ2 that meet the requirement, then ψ1(Y ) = ψ2(Y ) almost surely.

Proof. The proof of existence is by the construction at the begining of the section,
replacing g(X, Y ) by Z (more explicitly, h : E → , X = Z, g(x, y) = h(z)).
For uniqueness, suppose that ψ1 and ψ2 meet the requirement. In particular
E [ψ1(Y )ϕ(Y )] = E [ψ2(Y )ϕ(Y )] (= E [Zϕ(Y )]), or E [(ψ1(Y )− ψ2(Y ))ϕ(Y )] =
0, for any non-negative bounded function ϕ : n → . Choose ϕ(Y ) =
1{ψ1(Y )−ψ2(Y )>0} to obtain
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E
[
(ψ1(Y )− ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0}

]
= 0 .

Since the random variable (ψ1(Y )−ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0} is non-negative and has
a null expectation, it must be almost surely null. In other terms ψ1(Y )−ψ2(Y ) ≤ 0
almost surely. Exchanging the roles of ψ1 and ψ2, we have that ψ1(Y )−ψ2(Y ) ≥ 0
almost surely. Therefore ψ1(Y )− ψ2(Y ) = 0 almost surely. �

Example 2.3.16: Let Y be a positive integer-valued random variable.

EY [Z] =
∞∑
n=1

E[Z1{Y=n}]
P (Y = n)

1{Y=n},

where, by convention,
E[Z1{Y =n}]

P (Y=n)
= 0 when P (Y = n) = 0 (in other terms, the sum

in the above display is over all n such that P (Y = n) > 0).

Proof. We must verify (2.23) for all bounded measurable ϕ : → . The right-
hand side is equal to

E

[(∑
n≥1

E[Z1{Y=n}]
P (Y = n)

1{Y=n}

)(∑
k≥1

ϕ(k)1{Y=k}

)]

=E

[∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)1{Y=n}

]
=
∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)E[1{Y=n}]

=
∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)P (Y = n) =
∑
n≥1

E[Z1{Y=n}]ϕ(n)

=
∑
n≥1

E[Z1{Y=n}ϕ(n)] = E[Z(
∑
n≥1

ϕ(n)1{Y=n})] = E[Zϕ(Y )] .

�

2.4 Exercises

Exercise 2.4.1. Geometric

Let T1 and T2 be two independent geometric random variables with the same
parameter p ∈ (0, 1). Give the probability distribution of their sum X = T1 + T2.

Exercise 2.4.2. Variance of the coupon’s collector variable

In the coupon’s collector problem of Example 2.1.42, compute the variance σ2
X of

X (the number of chocolate tablets needed to complete the collection of the n

different coupons) and show that
σ2
X

n2 has a limit (to be identified) as n ↑ ∞.

Exercise 2.4.3. Poisson
1. Let X be a Poisson random variable with mean θ > 0. Compute the mean of
the random variable X! (factorial, not exclamation mark).
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2. Compute E
[
θX
]
.

3. What is the probability that X is odd?

Exercise 2.4.4. Random sum

Let {Xn}n≥1 be independent random variables taking the values 0 and 1 with
probability q = 1− p and p, respectively, where p ∈ (0, 1). Let T be a Poisson ran-
dom variable with mean θ > 0, independent of {Xn}n≥1. Compute the probability
distribution of S := X1 + · · ·+XT .

Exercise 2.4.5. The binomial random variable

(a) Let X ∼ B(n, p). Show that Y := n−X ∼ B(n, 1− p) .
(b) Let X1, . . . , X2n be independent random variables taking the values 0 or 1, and
such that for all i, P (Xi = 1) = p ∈ (0, 1). Give the probability distribution of the
random variable Z :=

∑n
i=1Xi Xn+i.

Exercise 2.4.6. Null variance

Let X be a discrete random variable taking its values in E, with probability dis-
tribution p(x), x ∈ E.
(i) Let A := {ω; p(X(ω)) = 0}. Show that P (A) = 0.
(ii) Prove that a real-valued random variable with null variance is almost surely
constant.

Exercise 2.4.7. The blue pinko

The blue pinko is a bird owing its name to the fact that it lays eggs that are either
blue or pink. Suppose that it lays T eggs, with probability p that a given egg is
blue, and that the colours of the successive eggs are independent and independent
of the total number of eggs. The conclusion of Exercise 2.4.4 was that if the number
of eggs is Poisson with mean θ, then the number of blue eggs is a Poisson random
variable with mean θp and the number of pink eggs is a Poisson random variable
with mean θ(1 − p). Prove that the number of blue eggs and the number of pink
eggs are independent random variables.

Exercise 2.4.8. The entomologist

Each individual of a specific breed of insects has, independently of the others, the
probability θ of being a male.

(A) An entomologist seeks to collect exactly M > 1 males, and therefore stops
hunting as soon as she captures M males. What is the distribution of X, the
number of insects she must catch to collect exactly M males?

(B) What is the distribution of X, the smallest number of insects that the ento-
mologist must catch to collect at least M males and N females?

Exercise 2.4.9. Maximal bin load

N balls are thrown independently and at random in N bins. This results in Xi

balls in bin i (1 ≤ i ≤ N). Let Xmax = max{X1, . . . , XN} be the maximal bin
load. Prove the following: For sufficiently large N ,
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P

(
Xmax >

logN

log(2) N

)
≥ 1− 1

N
,

where log(2) N := log(logN).

Exercise 2.4.10. The matchbox

A smoker has one matchbox with n matches in each pocket. He reaches at random
for one box or the other. What is the probability that, having eventually found an
empty matchbox, there will be k matches left in the other box?

Exercise 2.4.11. Biased dice and uniformity

Is it possible to have two biased dice such that tossing them independently results
in a total number of points uniformly distributed on {2, 3, . . . , 12}?

Exercise 2.4.12. Residual time

Let X be a random variable with values in and with finite mean m. Show that
pn = 1

m
P (X > n) (n ≥ 0) defines a probability distribution on and compute its

generating function in terms of the generating function of X.

Exercise 2.4.13. Mean and variance via generating functions

(a) Compute the mean and variance of the binomial random variable B of size n
and parameter p from its generating function. Do the same for the Poisson random
variable P of mean θ.

(b) What is the generating function gT of the geometric random variable T with
parameter p ∈ (0, 1)? Compute its first two derivatives and deduce from the result
the variance of T .

(c) What is the n-th factorial moment (E [X(X − 1) · · · (X − n+ 1)]) of a Poisson
random variable X of mean θ > 0?

Exercise 2.4.14. From generating function to distribution

What is the probability distribution of the integer-valued random variable with
generating function g(z) = 1

(2−z)2
? Compute the fifth moment (E[X5]) of this

random variable.

Exercise 2.4.15. Throw a die

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other
numbers? (You are required to find a solution using generating functions.)

Exercise 2.4.16. Generalized Wald’s formula

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable such that
for all n ≥ 1, the event {T ≥ n} is independent of Yn. Let X :=

∑T
n=1 Yn. Prove

that E [X] = E[Y1]E[T ].
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Exercise 2.4.17. When Wald’s formula does not apply

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable. Let
X :=

∑T
n=1 Yn. It is not true in general that E [X] = E[Y1]E[T ]. Give a simple

counterexample.

Exercise 2.4.18. The return of the entomologist

Recall the setup of Exercise 2.4.8. What is the expectation of X, the number of
insects the entomologist must capture to collect exactly M males? (In Exercise
2.4.8, you computed the distribution of X, from which you can of course compute
the mean. However, you can give the solution directly, and this is what is required
in the present exercise.)

Exercise 2.4.19. Conditioning by sampling

Let Z be a discrete random variable with values in E and let f : E → be a
non-negative function. Let {Zn}n≥1 be an iid sequence of random variables with
values in E and the same distribution as Z. Let A be some subset of E such that
P (Z ∈ A) > 0.

(1) Define the random variable τ to be the first time n ≥ 1 such that Zn ∈ A.
Prove that P (τ < ∞) = 1.

(2) Let Zτ be the random variable equal to Zn when τ = n. Prove that

E [f(Zτ )] = E [f(Z) | Z ∈ A] .

Exercise 2.4.20. Multinomial distribution and conditioning

Let (X1, . . . , Xk) be a multinomial random vector with size n and parameters
p1, . . . , pk. Compute EX1 [X2 + · · ·+Xk−1] and EX1 [X2].

Exercise 2.4.21. XYZ

Let X, Y , and Z be three discrete random variables with values in E, F , and
G, respectively. Prove the following: If for some function g : E × F → [0, 1],
P (X = x |Y = y, Z = z) = g(x, y) for all x, y, z, then P (X = x |Y = y) = g(x, y)
for all x, y, and X and Z are conditionally independent given Y .

Exercise 2.4.22. A natural result

Let X1 and X2 be two integrable independent identically distributed discrete real-
valued random variables. Prove that

EX1+X2 [X1] =
X1 +X2

2
.

Exercise 2.4.23. Pólya’s urn

There is an urn containing black balls and white balls, the number of which varies
in time as follows. At time n = 0 there is one black ball and one white ball. At a
given time one of the balls is selected at random, its colour is observed, and the ball
is replaced in the urn together with a new ball of the same colour. In particular
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the number of balls increases by one unit at each draw. Let Bk be the number
of black balls after exactly k balls have been added. Prove that Bk is uniformly
distributed on {1, 2, . . . , k + 1}.

Exercise 2.4.24. Conditioning by the square

Let X be a random variable with values in and probability distribution
(p(n) , n ∈ ). Let h : → be a function such that E [|h(Z)|] < ∞. Prove
formally that

E
[
h(X) |X2

]
= h(|X|) p(|X|)

p(|X|) + p(−|X|) + h(−|X|) p(−|X|)
p(|X|) + p(−|X|) .

Exercise 2.4.25. Bayesian tests of hypotheses

Let Θ be a discrete random variable with values in {1, 2, ..., K} and let X be a
discrete random variable with values in E. The joint distribution of Θ and X is
specified in the following manner. For all 1 ≤ i ≤ K,

P (Θ = i) = π(i), P (X = x|Θ = i) = pi(x),

where π is a probability distribution on {1, 2, ..., K} and the pi’s are probability
disributions on E.

These random variables may be interpreted in terms of tests of hypotheses. The
variable Θ represents the state of Nature, and X — called the observation — is
the (random) result of an experiment that depends on the actual state of Nature.
If Nature happens to be in state i, then X admits the distribution pi.

In view of the observation X, we wish to infer the actual value of Θ. For this,
we design a guess strategy, that is a function g : E → {1, 2, ..., K} with the

interpretation that Θ̂ := g(X) is our guess (based only on the observationX) of the
(not directly observed) state Θ of Nature. An equivalent description of the strategy
g is the partition A = {A1, . . . , AK} of m given by Ai := {x ∈ E; g(x) = i}. The
decision rule is then

X ∈ Ai ⇒ Θ̂ = i .

Prove the following: Any partition A∗ such that

x ∈ A∗
i ⇒ π(i)pi(x) = max

k
(π(k)pk(x))

minimizes the probability of error PE.
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