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Abstract In this paper we use some classical ideas from linear systems theory to
analyse convolutional codes. In particular, we exploit input-state-output represen-
tations of periodic linear systems to study periodically time-varying convolutional
codes. In this preliminary work we focus on the column distance of these codes and
derive explicit necessary and sufficient conditions for an (#, 2, 1) periodically time-
varying convolutional code to have Maximum Distance Profile (MDP).
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1 Introduction

Convolutional codes [1] are an important type of error correcting codes that can be
represented as a time-invariant discrete linear system over a finite field [2]. They are
used to achieve reliable data transfer, for instance, in mobile communications, digi-
tal video and satellite communications [3]. In particular, maximum distance profile
(MDP) convolutional codes are relevant in applications since they have the potential
to correct a maximal number of errors per time interval.

In contrast to block codes, the mathematical theory for the construction of good
convolutional codes is not fully exploited. In fact, most convolutional codes used in
practice have been found by systematic computer search and their distance properties
must be also computed by full search. In recent years a great deal of effort has been
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dedicated to develop constructions of non-binary convolutional codes having good
distance [4, 5].

The idea of considering time-varying and, in particular, periodically time-varying
convolutional codes has attracted the attention of several researchers [6, 7]. One of
the advantages of this type of codes is that they can have better distance properties
than the best time-invariant convolutional code of the same rate and total encoder
memory [8, 9].

In this paper we start by presenting the necessary concepts about convolutional
code within a input-state-output approach. Then we introduce periodically time-
varying convolutional codes and find necessary and sufficient conditions on the sub-
codes to obtain a (n,2, 1) MDP time-varying convolutional code combining (possi-
bly) non MDP subcodes.

2 Definitions and Basic Properties

Let [F be a finite field. Let n, k and 6 be positive integers with k < n. Following [10],
a rate kin convolutional code C of degree 6 can be described by the linear system
governed by the equations:

X1 = Ax, + Bu,

- D
Vi C);’J” o C t=0,1,2,..., 1)
v, = (ui>, )C():O

where A € F?*% B € F¥, C € F"0%6 and D € F"~0*k Moreover we assume that
the pair (A, B) is controllable and the pair (4, C) is observable. We call x, € [F° the
state vector, u, € F¥ the information vector, y, € F"~* the parity vector and v, € F"
the code vector. The associated code consists of all the finite sequences of code vec-
tors, called codewords, produced by (1). We will refer to such a code as an (n, k, 6)-
code and (A, B, C, D) is its input-state-output representation.

The Hamming weight of a vector v € F" is defined to be the number of nonzero com-
ponents of v and is denoted by wt(v). The weight of a codeword is the sum of the
Hamming weights of all the code vectors that form that word.

It follows from our assumptions that in this paper we are concerned only with finite-
weight codewords. These are defined as follows:

Definition 1 A sequence {v, = (Z; ) e F'|tr=0,1,2,...} represents a finite-weight
codeword if

1. Eq. (1) is satisfied forallt =0, 1,2, ...;
2. There exists an integer j such that u, = 0 for r > j + 1.
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Due to the observability of (A, C), this definition implies that y, = 0 forf > j+ 1 and
Xy = 0; the codeword, therefore, has finite weight.

Important distance measures of a code are the free distance and the column distance.
They are defined in the sequel as in [11] by means of this input-state-output approach.

Definition 2 The free distance of the code C described by (1) is defined as

dy(C) = min { D wi) + ) wt(y,)} ,
=0 =0

where the minimum weight is to be taken over all nonzero codewords.

Rosenthal and Smarandache [12] showed that the free distance of an (n, k, ) convo-
lutional code is upper bounded by

d3(C) < (=) (H F1)+6+1.
k
This bound is called the generalized Singleton bound.

In this paper we focus on the following more local distance measure.

Definition 3 The jth column distance of the code C described by (1) is defined as
J Jj
d‘(C) = min wt + wt s
H(C) = min Z; () Z(; o)

where the minimum weight is to be taken among all the codewords that start with a
nonzero information vector.

The column distances satisfy

d¢ < ds <o Sjlgg d/c = dfree(c)’

and have the following upper bounds [11].

Proposition 1 For every j € N, we have
dj?'(C) <(n-kbG+1+1.

It can be shown [5] that if the upper bound is attained for a certain j, then it is attained
for all the preceding ones. Moreover, since no column distance can exceed the gen-
eralized Singleton bound, the largest integer j for which the previous bound can be
attained is for j = L, with
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=il =)

Definition 4 An (n, k, §)-convolutional code C is said to have maximum distance
profile (MDP) if

dEC) =n-kL+1)+1, L= [%J + [nka.

MDP convolutional codes are characterized by the property that their initial column
distances increase as rapidly as possible for as long as possible and therefore they are
very important since they have the potential to correct a maximal number of errors
per time interval [11]. Existence and characterizations of these codes in terms of the
matrices (A, B, C, D) can be found in [11]. Here we present necessary and sufficient
conditions for the periodically time-varying convolutional codes introduced in the
next section to be MDP.

3 Periodically Time-Varying Convolutional Codes

In this section we start by defining periodically time-varying convolutional codes.
Assume now that the matrices A,, B,, C, and D, at time ¢ are of sizes 6 X 6, 6 X k,
(n— k) x 6 and (n — k) X k, respectively. A time-varying convolutional code can be
defined by means of the system

X1 =AX, + B,

i =Cx, +Du, tr=0,1,2,... 2

If the matrices change periodically with periods 74, 7, 7 and 7, respectively, (that
isA, ,,=A.B, ,=B,C._,=C and D__, =D, forall 7) then we have a peri-
odically time-varying convolutional code of period t = lem(zy, 73, 7¢, 7). For each
fxed t, € {0, 1,...,7 — 1} the code represented by (A,n, B[O, C,D, Dto) is called a sub-
code of the time-varying convolutional code (2) [13]. Note that, contrary to what the
name seems to indicate, the codewords generated by the “subcode” do not constitute
a subset of the time-varying code.

Our aim is to find necessary and sufficient conditions on the subcodes to obtain a
MDP time-varying convolutional code, combining (possibly) non MDP subcodes.

The (n, 1, 1) case was already studied in [13]. Here we present the (n, 2, 1) case.
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3.1 MDP (n,2,1) Convolutional Codes

In this section we assume that our convolutional codes are over a finite field F with
a large enough number of elements. Consider a periodically time-varying code of
period 7. Then we have the matrices

Cr1

Al = [Clt] , B[ = [bt,l bt,z] 5 Ct = CtS,Z ,
Ct,n—2

dt, 11 dl, 12
d d
Dt - l,:21 1222 =: [Dt,l |Dt,2] ,
dt,(n—2)1 dt,(n—2)2

withr=0,1,...,7 - 1.

According to Definition 4, since

e= 3]+ 2l = lal [l = {0025

this convolutional code is MDP if

dC)=n-2)0+H+1=n-1

when n > 3 and
dT(C)=(3—2)(1+1)+ 1=3

when n = 3.

« Suppose first that n > 3. By Definition 3 and Eq. (2) we have

dy(C) = LIOI;léIOI {wt(uo) + Wt(yo)}
= m;ié% {Wt(ug) + wt(Coxo + Doutg) } , X =0
Uy

. U
= min{ Wt > + wt (Dg 1y + Dyt ,
1y #0 { < [“0,2]) ( 0,1%0,1 0,2 0,2) }

where uy = [, ].
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Since the minimum is taken over u;, # 0 then wt(u,) can be either 1 or 2. We study
these two cases separately.

If wt(uy) = 1, assume without loss of generality that u,; # 0 and uy, = 0.If Dy,
has a zero element, then wt(Dy juy ;) < n—3,

wt(ug) + wt(Dgup ) £ 1+n-3=n-2<n-1,

and the code is not MDP. The same happens for D, ,. This implies that all entries
of the matrix D, must be nonzero. In this case wt (D uy,) = n — 2 and hence
wt(ug) +wt(yg) =1+n—-2=n-1.

If wt(uy) =2, wt (D0,1u0,1> = wt (Dy,tty,) = n — 2, but adding both terms can
provoke cancellations and the weight decreases. A necessary condition to obtain
the desired result is the following. If

do’lldo’mz - do’lzdo’ml ?é 0, Vl,m = 1, cee, 1 — 2, l # m,

at most one component of Dy iy + Dg,uy, can be zero and so its weight is
greater or equal than n — 3. Thus, wt(ug) + wt(yy) >2+n—-3=n-1.

This shows that for n > 3, dS(C) =n — 1, i.e., the convolutional code is MDP.
o Suppose now that n = 3. Again by Definition 3 and Eq. (2) we have

1 1
d;(C) = min { Z; wt(u,) + ; wt(y,)}

= min {Wtug) + wt(uy) + wt(yy) + wt(y)) }
)
= m;rol {Wt(uo) + wt(u) + wt(Coxo + Dyuy) + wt(Cx; + Dlul)} , X =0

0
: Uy, U
= min ¢ Wt ’ + wt ’ + wt (dy  ug, +dpy o1,
uO#O{ ([”o,z > (["12 > ( 0,11%0,1 0,12 0,2)

+wt () (Do ugy + boptg,) +dy gy +dy i)}

We want to establish conditions such that df (C) = 3. Since the minimum is taken
over uy # 0 then wt(i;) can be either 1 or 2 and therefore wt(u,) + wt(u;) €
{1,2,3,4}.

If wt(uy) + wt(u;) is 3 or 4, obviously wt(u,) + wt(u;) + wt(yy) + wt(y;) > 3.

If wt(uy) + wt(u;) = 1, then wt(u;) = 0 and wt(u,) = 1 and assume without loss
of generality that i, ; # 0 and u,, = 0. Then, it is easy to check that

wt(ug) + wt(u;) + wt(yg) +wt(y)) =1+0+14+1=3,
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if and only if the elements by, c;; and d,;; are nonzero. Note that, if uy; =0
and u,, # 0, the previous condition holds when the elements b ,, ¢; ; and d;) |,
are nonzero.

When wt(u) + wt(u,) = 2, two different situations can occur which will studied
separately. If wt(u,) = wt(u;) = 1, analogously to the previous cases it follows
that wt(ug) + wt(u;) + wt(y,) + wt(y,) > 3.

If wt(u) = 2 and wt(u;) = 0, then

wt(ug) + wt(u;) + wt(yy) + wt(y,)
=2+ wt (dy U, + d0,12u0,2) + wt (Cl,l(bo,luo,l + byatg))-

In this situation we need that at least one of these weights be nonzero, which
implies that
dy11boa = do 12y # 0, ¢1y # 0.

This leads to the following result.

Theorem 1 The (n,2, 1) periodically time-varying convolutional code (2) is MDP
if and only if

(a) When n > 3, all the entries of the matrix D are nonzero and
dodomn — dopdom #0, Vibm=1,....,n =2, [ #m.
(b) When n =3, all the entries of matrices B, C, and D, are nonzero and
dy 11bo2 = dy 12bo,1 # 0.

Example 1 Let C be a time-varying code of period 7 = 2 over the finite field F,
constituted by the (3,2, 1) subcodes

C() = (A(),B(),CO,D())7 Cl = (A1,Bl,C1,D1)

where
A=A, =[1],By=[12],B,=[23],

Co=C, =[], Dy=1[21], D, =[46].
By Proposition 1. (b) this code is MDP since
d0,11b0,2 - d0,12b0,1 = 2 X 2 —-1x1 # O.

However, the subcode C; is not MDP, since by Definition 4 we have that L = 1 but
d5(C,) < 3. Indeed, considering the inputs uy = [#] and u; = [}], we have that
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wt(ug) + wt(u) + wt(yy) + wt(y;)
= wt(uy) + wt(u;) + wt(Cyxy + Dyug) + wt(Cyx; + Dyuy), x5 =0
=240+ wt(Dyuy) + wt(C;Bjuy) =2+0+0+0 = 2.

The previous example showed that it is possible to obtain an MDP time-varying
convolutional combining time-invariant subcodes which are not all MDP.

4 Conclusions

In this paper we used input-state-output representations of periodic linear systems
to study periodically time-varying convolutional codes. In particular, we derived
explicit necessary and sufficient conditions for an (#, 2, 1) periodically time-varying
convolutional code to have Maximum Distance Profile (MDP). The extension of
these results to codes with other rates is under investigation.
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