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Abstract In this paper we use some classical ideas from linear systems theory to

analyse convolutional codes. In particular, we exploit input-state-output represen-

tations of periodic linear systems to study periodically time-varying convolutional

codes. In this preliminary work we focus on the column distance of these codes and

derive explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-

varying convolutional code to have Maximum Distance Profile (MDP).
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1 Introduction

Convolutional codes [1] are an important type of error correcting codes that can be

represented as a time-invariant discrete linear system over a finite field [2]. They are

used to achieve reliable data transfer, for instance, in mobile communications, digi-

tal video and satellite communications [3]. In particular, maximum distance profile

(MDP) convolutional codes are relevant in applications since they have the potential

to correct a maximal number of errors per time interval.

In contrast to block codes, the mathematical theory for the construction of good

convolutional codes is not fully exploited. In fact, most convolutional codes used in

practice have been found by systematic computer search and their distance properties

must be also computed by full search. In recent years a great deal of effort has been
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dedicated to develop constructions of non-binary convolutional codes having good

distance [4, 5].

The idea of considering time-varying and, in particular, periodically time-varying

convolutional codes has attracted the attention of several researchers [6, 7]. One of

the advantages of this type of codes is that they can have better distance properties

than the best time-invariant convolutional code of the same rate and total encoder

memory [8, 9].

In this paper we start by presenting the necessary concepts about convolutional

code within a input-state-output approach. Then we introduce periodically time-

varying convolutional codes and find necessary and sufficient conditions on the sub-

codes to obtain a (n, 2, 1) MDP time-varying convolutional code combining (possi-

bly) non MDP subcodes.

2 Definitions and Basic Properties

Let 𝔽 be a finite field. Let n, k and 𝛿 be positive integers with k < n. Following [10],

a rate k/n convolutional code  of degree 𝛿 can be described by the linear system

governed by the equations:

⎧
⎪
⎨
⎪
⎩

xt+1 = Axt + But
yt = Cxt + Dut
vt =

(
yt
ut

)

, x0 = 0
, t = 0, 1, 2,… , (1)

whereA ∈ 𝔽 𝛿×𝛿
, B ∈ 𝔽 𝛿×k

, C ∈ 𝔽 (n−k)×𝛿
andD ∈ 𝔽 (n−k)×k

. Moreover we assume that

the pair (A,B) is controllable and the pair (A,C) is observable. We call xt ∈ 𝔽 𝛿

the

state vector, ut ∈ 𝔽 k
the information vector, yt ∈ 𝔽 n−k

the parity vector and vt ∈ 𝔽 n

the code vector. The associated code consists of all the finite sequences of code vec-

tors, called codewords, produced by (1). We will refer to such a code as an (n, k, 𝛿)-
code and (A,B,C,D) is its input-state-output representation.

The Hamming weight of a vector v ∈ 𝔽 n
is defined to be the number of nonzero com-

ponents of v and is denoted by wt(v). The weight of a codeword is the sum of the

Hamming weights of all the code vectors that form that word.

It follows from our assumptions that in this paper we are concerned only with finite-

weight codewords. These are defined as follows:

Definition 1 A sequence {vt =
( ytut

)
∈ 𝔽 n|t = 0, 1, 2,…} represents a finite-weight

codeword if

1. Eq. (1) is satisfied for all t = 0, 1, 2,…;

2. There exists an integer j such that ut = 0 for t ≥ j + 1.
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Due to the observability of (A,C), this definition implies that yt = 0 for t ≥ j + 1 and

xj+1 = 0; the codeword, therefore, has finite weight.

Important distance measures of a code are the free distance and the column distance.

They are defined in the sequel as in [11] by means of this input-state-output approach.

Definition 2 The free distance of the code  described by (1) is defined as

dfree() = min

{ ∞∑

t=0
wt(ut) +

∞∑

t=0
wt(yt)

}

,

where the minimum weight is to be taken over all nonzero codewords.

Rosenthal and Smarandache [12] showed that the free distance of an (n, k, 𝛿) convo-

lutional code is upper bounded by

dfree() ≤ (n − k)
(⌊

𝛿

k

⌋
+ 1

)
+ 𝛿 + 1.

This bound is called the generalized Singleton bound.

In this paper we focus on the following more local distance measure.

Definition 3 The jth column distance of the code  described by (1) is defined as

dcj () = min
u0≠0

{ j∑

t=0
wt(ut) +

j∑

t=0
wt(yt)

}

,

where the minimum weight is to be taken among all the codewords that start with a

nonzero information vector.

The column distances satisfy

dc0 ≤ dc1 ≤ ⋯ ≤ lim
j→∞

dcj = dfree(),

and have the following upper bounds [11].

Proposition 1 For every j ∈ ℕ0, we have

dcj () ≤ (n − k)(j + 1) + 1.

It can be shown [5] that if the upper bound is attained for a certain j, then it is attained

for all the preceding ones. Moreover, since no column distance can exceed the gen-

eralized Singleton bound, the largest integer j for which the previous bound can be

attained is for j = L, with



16 R. Pereira et al.

L =
⌊
𝛿

k

⌋
+
⌊

𝛿

n − k

⌋
.

Definition 4 An (n, k, 𝛿)-convolutional code  is said to have maximum distance
profile (MDP) if

dcL() = (n − k)(L + 1) + 1, L =
⌊
𝛿

k

⌋
+
⌊

𝛿

n − k

⌋
.

MDP convolutional codes are characterized by the property that their initial column

distances increase as rapidly as possible for as long as possible and therefore they are

very important since they have the potential to correct a maximal number of errors

per time interval [11]. Existence and characterizations of these codes in terms of the

matrices (A,B,C,D) can be found in [11]. Here we present necessary and sufficient

conditions for the periodically time-varying convolutional codes introduced in the

next section to be MDP.

3 Periodically Time-Varying Convolutional Codes

In this section we start by defining periodically time-varying convolutional codes.

Assume now that the matrices At,Bt,Ct and Dt at time t are of sizes 𝛿 × 𝛿, 𝛿 × k,

(n − k) × 𝛿 and (n − k) × k, respectively. A time-varying convolutional code can be

defined by means of the system

⎧
⎪
⎨
⎪
⎩

xt+1 = Atxt + Btut
yt = Ctxt + Dtut
vt =

(
yt
ut

)

, x0 = 0
, t = 0, 1, 2,… , (2)

If the matrices change periodically with periods 𝜏A, 𝜏B, 𝜏C and 𝜏D respectively, (that

is A
𝜏A+t = At,B𝜏B+t = Bt,C𝜏C+t = Ct and D

𝜏D+t = Dt for all t) then we have a peri-
odically time-varying convolutional code of period 𝜏 = lcm(𝜏A, 𝜏B, 𝜏C, 𝜏D). For each

fxed t0 ∈ {0, 1,… , 𝜏 − 1} the code represented by (At0 ,Bt0 ,Ct0 ,Dt0 ) is called a sub-
code of the time-varying convolutional code (2) [13]. Note that, contrary to what the

name seems to indicate, the codewords generated by the “subcode” do not constitute

a subset of the time-varying code.

Our aim is to find necessary and sufficient conditions on the subcodes to obtain a

MDP time-varying convolutional code, combining (possibly) non MDP subcodes.

The (n, 1, 1) case was already studied in [13]. Here we present the (n, 2, 1) case.
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3.1 MDP (n, 𝟐, 𝟏) Convolutional Codes

In this section we assume that our convolutional codes are over a finite field 𝔽 with

a large enough number of elements. Consider a periodically time-varying code of

period 𝜏. Then we have the matrices

At =
[
at
]
, Bt =

[
bt,1 bt,2

]
, Ct =

⎡
⎢
⎢
⎢
⎣

ct,1
ct,2
⋮

ct,n−2

⎤
⎥
⎥
⎥
⎦

,

Dt =
⎡
⎢
⎢
⎢
⎣

dt,11 dt,12
dt,21 dt,22
⋮ ⋮

dt,(n−2)1 dt,(n−2)2

⎤
⎥
⎥
⎥
⎦

=∶
[
Dt,1 Dt,2

]
,

with t = 0, 1,… , 𝜏 − 1.

According to Definition 4, since

L =
⌊
𝛿

k

⌋
+
⌊

𝛿

n − k

⌋
=
⌊1
2

⌋
+
⌊ 1
n − 2

⌋
=
{

0, n > 3
1, n = 3 ,

this convolutional code is MDP if

dc0() = (n − 2)(0 + 1) + 1 = n − 1

when n > 3 and

dc1() = (3 − 2)(1 + 1) + 1 = 3

when n = 3.

∙ Suppose first that n > 3. By Definition 3 and Eq. (2) we have

dc0() = min
u0≠0

{
wt(u0) + wt(y0)

}

= min
u0≠0

{
wt(u0) + wt(C0x0 + D0u0)

}
, x0 = 0

= min
u0≠0

{

wt
([

u0,1
u0,2

])

+ wt
(
D0,1u0,1 + D0,2u0,2

)
}

,

where u0 =
[ u0,1
u0,2

]
.
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Since the minimum is taken over u0 ≠ 0 then wt(u0) can be either 1 or 2. We study

these two cases separately.

If wt(u0) = 1, assume without loss of generality that u0,1 ≠ 0 and u0,2 = 0. If D0,1
has a zero element, then wt(D0,1u0,1) ≤ n − 3,

wt(u0) + wt(D0,1u0,1) ≤ 1 + n − 3 = n − 2 < n − 1,

and the code is not MDP. The same happens for D0,2. This implies that all entries

of the matrix D0 must be nonzero. In this case wt
(
D0,1u0,1

)
= n − 2 and hence

wt(u0) + wt(y0) = 1 + n − 2 = n − 1.

If wt(u0) = 2, wt
(
D0,1u0,1

)
= wt

(
D0,2u0,2

)
= n − 2, but adding both terms can

provoke cancellations and the weight decreases. A necessary condition to obtain

the desired result is the following. If

d0,l1d0,m2 − d0,l2d0,m1 ≠ 0, ∀l,m = 1,… , n − 2, l ≠ m,

at most one component of D0,1u0,1 + D0,2u0,2 can be zero and so its weight is

greater or equal than n − 3. Thus, wt(u0) + wt(y0) ≥ 2 + n − 3 = n − 1.

This shows that for n > 3, dc0() = n − 1, i.e., the convolutional code is MDP.

∙ Suppose now that n = 3. Again by Definition 3 and Eq. (2) we have

dc1() = min
u0≠0

{ 1∑

t=0
wt(ut) +

1∑

t=0
wt(yt)

}

= min
u0≠0

{
wt(u0) + wt(u1) + wt(y0) + wt(y1)

}

= min
u0≠0

{
wt(u0) + wt(u1) + wt(C0x0 + D0u0) + wt(C1x1 + D1u1)

}
, x0 = 0

= min
u0≠0

{

wt
([

u0,1
u0,2

])

+ wt
([

u1,1
u1,2

])

+ wt
(
d0,11u0,1 + d0,12u0,2

)

+wt
(
c1,1(b0,1u0,1 + b0,2u0,2) + d1,11u1,1 + d1,12u1,2

)
}

We want to establish conditions such that dc1() = 3. Since the minimum is taken

over u0 ≠ 0 then wt(u0) can be either 1 or 2 and therefore wt(u0) + wt(u1) ∈
{1, 2, 3, 4}.

If wt(u0) + wt(u1) is 3 or 4, obviously wt(u0) + wt(u1) + wt(y0) + wt(y1) ≥ 3.

If wt(u0) + wt(u1) = 1, then wt(u1) = 0 and wt(u0) = 1 and assume without loss

of generality that u0,1 ≠ 0 and u0,2 = 0. Then, it is easy to check that

wt(u0) + wt(u1) + wt(y0) + wt(y1) = 1 + 0 + 1 + 1 = 3,
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if and only if the elements b0,1, c1,1 and d0,11 are nonzero. Note that, if u0,1 = 0
and u0,2 ≠ 0, the previous condition holds when the elements b0,2, c1,1 and d0,12
are nonzero.

When wt(u0) + wt(u1) = 2, two different situations can occur which will studied

separately. If wt(u0) = wt(u1) = 1, analogously to the previous cases it follows

that wt(u0) + wt(u1) + wt(y0) + wt(y1) ≥ 3.

If wt(u0) = 2 and wt(u1) = 0, then

wt(u0) + wt(u1) + wt(y0) + wt(y1)
= 2 + wt

(
d0,11u0,1 + d0,12u0,2

)
+ wt

(
c1,1(b0,1u0,1 + b0,2u0,2)

)
.

In this situation we need that at least one of these weights be nonzero, which

implies that

d0,11b0,2 − d0,12b0,1 ≠ 0, c1,1 ≠ 0.

This leads to the following result.

Theorem 1 The (n, 2, 1) periodically time-varying convolutional code (2) is MDP
if and only if

(a) When n > 3, all the entries of the matrix D0 are nonzero and

d0,l1d0,m2 − d0,l2d0,m1 ≠ 0, ∀l,m = 1,… , n − 2, l ≠ m.

(b) When n = 3, all the entries of matrices B0,C1 and D0 are nonzero and

d0,11b0,2 − d0,12b0,1 ≠ 0.

Example 1 Let  be a time-varying code of period 𝜏 = 2 over the finite field 𝔽7
constituted by the (3, 2, 1) subcodes

0 = (A0,B0,C0,D0), 1 = (A1,B1,C1,D1)

where

A0 = A1 =
[
1
]
, B0 =

[
1 2

]
, B1 =

[
2 3

]
,

C0 = C1 =
[
1
]
, D0 =

[
2 1

]
, D1 =

[
4 6

]
.

By Proposition 1. (b) this code is MDP since

d0,11b0,2 − d0,12b0,1 = 2 × 2 − 1 × 1 ≠ 0.

However, the subcode 1 is not MDP, since by Definition 4 we have that L = 1 but

dc1(1) < 3. Indeed, considering the inputs u0 =
[ 2
1
]

and u1 =
[ 0
0
]
, we have that
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wt(u0) + wt(u1) + wt(y0) + wt(y1)
= wt(u0) + wt(u1) + wt(C1x0 + D1u0) + wt(C1x1 + D1u1), x0 = 0
= 2 + 0 + wt(D1u0) + wt(C1B1u0) = 2 + 0 + 0 + 0 = 2.

The previous example showed that it is possible to obtain an MDP time-varying

convolutional combining time-invariant subcodes which are not all MDP.

4 Conclusions

In this paper we used input-state-output representations of periodic linear systems

to study periodically time-varying convolutional codes. In particular, we derived

explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-varying

convolutional code to have Maximum Distance Profile (MDP). The extension of

these results to codes with other rates is under investigation.
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