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Abstract Sentiment analysis is one of the most important tasks in text mining.
This field has a high impact for government and private companies to support major
decision-making policies. Even though Genetic Programming (GP) has been widely
used to solve real world problems, GP is seldom used to tackle this trendy problem.
This contribution starts rectifying this research gap by proposing a novel GP system,
namely, Root Genetic Programming, and extending our previous genetic operators
based on projections on the phenotype space. The results show that these systems
are able to tackle this problem being competitive with other state-of-the-art classi-
fiers, and, also, give insight to approach large scale problems represented on high
dimensional spaces.
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1 Introduction

In recent years, the production of textual documents in social media has increased
exponentially. For instance, during 2014, around 300,000 tweets were generated
every minute,1 and 2.5 million pieces of content in Facebook. This ever-growing
amount of available information promotes research and business activities around
opinionmining and sentiment analysis areas. In socialmedia, people share comments
about many disparate topics. i.e., events, movie reviews, sports, and organization,
among others. The main result is that social media has now become a gold mine of
human opinions. This is perhaps the reason that social media has received a lot of
attention from companies and governments.

Automatic sentiment analysis of texts is one of the most important tasks in text
mining. The goal is to determine whether a particular document has a positive,
negative or neutral opinion on a given topic. There exist other variations considering
intermediate (gradual) levels for sentiments. Determining whether a text document
has a positive or negative opinion is becoming an essential tool for both public and
private companies [15, 23]. This tool is useful to know “What people think” about
anything; so, it represents a major support for decision-making processes [21].

The sentiment analysis task has been traditionally faced as a classification prob-
lem, where supervised learning methods have been mostly used (e.g., Support Vec-
tor Machines). Although, this solution has achieved competitive results, there is still
room for improvement. In search for a most effective solution to the sentiment analy-
sis problem, this chapter proposes the usage of evolutionary algorithms. Specifically,
we consider semantic genetic programming as modeling framework.

Genetic Programming (GP) is an evolutionary algorithm that has received a lot
of attention due to its success in solving hard real-world problems [25]. GP has been
known for obtaining human-competitive results, actually, GP has outperformed the
solutions found by humans in a number of problems. For instance, since 2004, there
has been a competition called “Hummies” held at the Genetic and Evolutionary
Computation Conference (GECCO) where GP systems have been awarded 7 gold
medals, 2 silver and 1 bronze from 2004 to 2014. Only on 2011 GP did not obtained
any award. Nonetheless, a variant of GP Cartesian GP obtained the silver medal.
Even with this proved effectiveness, to the best of our knowledge, GP has almost
not been used to tackle the problem of sentiment analysis, being [1], the exception.
In fact, the use of GP in the field of text processing is rather scarce, being one of
these exceptions our own previous work, see [6]. In the previous work GP was used
to optimize the weighting schemes of a vector space model for text classification;
in addition, the work of [16] proposed a GP for evolving features with the goal of
reducing the dimensionality of data; finally, there are some works in automatic text
summarization with GP [31, 33].

Sentiment analysis poses a number of challenges where GP might be a feasible
option. Some of these problems come from its high-dimensional representation and
the considerable training set size. In order to give an idea of the well-known curse

1http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/.

http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
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of dimensionality, a typical real-world dataset for text-mining is represented using
tens to hundred of thousands coordinates and tens of thousands examples.2 However,
most of the components of these vectors are zero. Unfortunately, the most popular
GP systems (ECJ [36], GPLAB [32], TinyGP [24], among others) do not use sparse
representation making them unfeasible to tackle problems with these characteristics
given memory restrictions.

Some papers in the GP literature are dedicated to solving problems with a high-
dimensional representation and a considerable training size. [38] uses an ensemble
of GP created on a problem with 300,000 exemplars on 41 dimensions. In [12–14]
a symbolic regression problem is tackled where there are 1,000,000 points with 20
dimensions. In [11] it is proposed to learn a multiplexor of 135 bits this represents
a training size of 2135; nonetheless, the fitness function only uses 1,000,000 training
cases. On the other hand, looking at problems having a high-dimensional represen-
tation in [17] a novel symbolic regression method is proposed on a problem with
340 dimensions and 600 training cases. In [5] different classifiers were co-evolve
on problems having from 649 to 102,660 features on 7,000 exemplars. This review
shows that the use of GP on problems with high-dimensional representation and
considerable training size are scarce, it might be possible that one of the limitations
is the time required to find an acceptable solution on GP; this restriction has been
mentioned previously by [7].

However, the so-called semantic GP that uses novel semantic operators seem a
feasible alternative to tackle text mining problems. This is due to their fast conver-
gence rate and the efficient implementations; being able to evaluate a new individual
in O(n) where n is the size of the training set. Among the different semantic oper-
ators (see [35] for a recent survey of semantic methods in GP) the ones that seem
to have the highest convergence rate were proposed by [4, 9]. Both techniques were
inspired by the geometric semantic crossover proposed by Moraglio et al. [18] with
the implementation of Vanneschi et al. [3, 34]. The key idea for these new approaches
consists in creating the best offspring that can be produced by a linear combination
of the parents.

In this contribution, it is proposed an extension of our previous work based on
projection in the phenotype space (PrGP) [9]. In addition, a novel GP system named
Root Genetic Programming (RGP) is introduced. In RGP all the genetic interchange
is performed at the root node. These two systems are tested on a sentiment analysis
benchmark obtaining excellent results. That is, the performance of these systems
are competitive with the performance of state-of-the-art classifiers. Furthermore,
given the characteristics of the benchmark (i.e., the problem has a high-dimensional
representation and a considerable dataset) this is an indication that the novel semantic
operators are a feasible approach to tackle these kind of problems.

The rest of this chapter is organized as follows. Section2 presents the proce-
dure used to transform a short text into a vector representation. Section3 describes
the extension of PrGP and our novel proposal, namely Root Genetic Programming

2The interested reader in how a document collection is processed to obtain a vector representation
is referenced to the specialized literature [2, 28].
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(RGP). The parameters settings and the description of the benchmark used are
presented on Sect. 4. Finally, the conclusions and some directions for future work
are described on Sect. 6.

2 Text Representation

Natural language processing (NLP) is a broad and complex area of knowledge having
manyways to represent an input text [8, 27]. In this contribution, we select thewidely
used vector representation of a text given the simplicity and the proven utility of the
model. Figure1 depicts the procedure used to transform a text input into a vector.
There are three main blocks, the first one normalizes the text, then the normalized
text is transformed into a vector using Term Frequency Inverse Document Frequency
TFIDF and Latent Semantic Index (LSI), more about these blocks below.

In the vector representation each word, in the collection, is associated with a
coordinate in a high dimensional space. The numeric value of each coordinate is
sometimes called the weight of the word. The precise weighting scheme is tightly
dependent on the underlying task; we use TFIDF [2] as weighting scheme. The
formulae tf× idf puts the name to the technique. Here, tf means for term’s fre-
quency, and idf means for the inverse document frequency. More precisely, let
D = {D1, D2, . . . , DN } be the set of all documents in the corpus, and f iw be the
frequency of the word w in document Di . tf

i
w is defined as the normalized frequency

of w in Di

tfiw = f iw
maxu∈Di { f iu }

.

In some way, tf describes the importance of w, locally in Di . On the other hand, idf
gives a global measure of the importance of w;

idfw = log
N

∣
∣{Di | f iw > 0}∣∣ ;

in some sense, idf resembles the definition of self-information in Information
Theory [29].

The final product, tf× idf, tries to find a balance between the local and the global
importance of a term. It is common to use variants of tf and idf instead of the original
ones, depending in the application domain [27]. Let vi be the vector of Di , a weighted

Fig. 1 Generic treatment of input text to obtain input vectors used in our algorithms
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matrix TFIDF of the collection D is created concatenating all individual vectors,
in some consistent order. Using this representation, a number of machine learning
methods can be applied; however, the plain transformation of text to TFIDF poses
some problems. On the one hand, all documents will contain common terms having
a small semantic charge, e.g., articles and determiners. These terms are known as
stop words. The bad effects of stop words are controlled by TFIDF, but most of them
can be directly removed since they are fixed for a given language. On the other hand,
after removing stopwords,TFIDFwill produce a very high dimensional vector space,
O(N ) in Twitter, since new terms are commonly introduced (e.g. misspellings, urls,
hashtags). This will rapidly yield to the Curse of Dimension (CoD); which makes
hard to learn from examples since any two random vectors will be orthogonal with
high probability. From amore practical point of view, a high dimensionality will also
have huge memory requirements, at the point of being impossible to train a typical
implementation of a machine learning algorithm (not being designed to use sparse
vectors).

One solution is to find which terms have the same meaning and then group them
to reduce the dimension. These terms can be synonyms, misspellings, composed
terms, hashtags, etc. The task can be effectively performed by a semantic identifier
method, like Latent Semantic Indexing (LSI). From a general perspective, the context
where each term occurs is used to determine its semantic similarity. LSI starts with a
weighted matrix, like that created by TFIDF, and then factorizes the matrix through
SingularValuesDecomposition (SVD). SVDfinds anorthonormal basis of dimension
δ that will be used to describe documents as if theywerewords. A proper study of LSI
is beyond the scope of this document; however, the interested reader is encouraged
to review the specialized literature about the technique [2]. It is important to mention
that depending on the desired δ, the LSI transformationwill lose some of the precision
that we can found in the original space; this is a non-desirable behavior. In order to
avoid this problem, we kept both the original and the transformed spaces, combined
through the direct sum, i.e., the document Di is represented by the concatenation of
TFIDF and its LSI transformation. Using this approach we correlate documents that
use synonyms (or even common typos) of the same words.

In the following subsections we describe a set of NLP techniques designed to fight
the source of variations and errors of the words; after applying these procedures, the
documents will be transformed into a cleaner input to compute both TFIDF and
LSI models. Even when most of the NLP techniques have a counterpart in many
languages, the proper implementation of them are highly dependent on the particular
targeted language; in our case study, Spanish language. The interested reader looking
for solutions in a particular idiom is encouraged to follow the relevant linguistic
literature for its objective language, in addition to the general literature in NLP [27].
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2.1 Text Normalization

Since Twitter messages (tweets) are full of slang and misspellings, we normalize
tweets in order to transform messages into standard language for better text repre-
sentation. In our case, normalization is language dependent, i.e., Spanish language.
The normalization pipeline consists in four steps: error correction, part of speech
(POS) tagging, negation, and filtering content words.

Error Correction Step. Language used in Twitter is very informal, with slang,
misspellings, new words, creative spelling, URLs, specific abbreviations, hashtags,
which are especial words for tagging in Twitter messages, and emoticons, which are
short strings and symbols that express different emotions. These problems are treated
to prepare and standardize tweets for the POS-tagging stage. All words in each tweet
are checked to be a valid Spanish word, or are reduced according to valid rules for
Spanish word formation. In general, words or tokens with invalid duplicated vowels
or consonants are reduced to valid or standard Spanish words, e.g., (ruiiidoooo →
ruido (noise); jajajaaa→ jaja; jijijji→ jaja).We used an approach based on Spanish
dictionary, statistical model for common double letters, and heuristic rules for com-
mon interjections. In general, the duplicated vowels or consonants are removed from
the target word; the resulting word is looked up in a Spanish dictionary (ca. 550,000
entries) to be validated. For words that are not in the dictionary are reduced at least
with valid rules for Spanish word formation. In addition, colloquial words and abbre-
viations are transformed using a regular expression based on a dictionary of those
sort of words. Figure2 illustrates the procedure. Due to its nature, such dictionary
should evolve on large scale living systems to capture the dynamic of the language.
Twitter tags such as user names and hashtags (topics) are handled as special tags in
our representation to keep the structure of the sentence, and URLs are removed. In
the case of emotions, we classify the 500 most popular emoticons into four classes
(P=Positive, N=Negative, NEU=Neutral, NONE= none), which are replaced by
a polarity word in the text, e.g., positive emoticons are replace by the word positivo
(positive), negative emoticons are replaced by the word negativo (negative), neutral
emotions are replaced by the word neutro (neutral), and emoticons that do not rep-
resent a polarity are discarded. Table1 shows an excerpt of the dictionary that maps
emoticons to their corresponding polarity class.

For instance, in Fig. 4a, in ‘Original text’, the bold tokens refer to errors that need
to be fixed. Those tokens are transformed into a standardized form, as we can see
after text ‘Error Correction step’, Fig. 4a. The resulting text, in this step, is the input
for the POS-tagging stage.

tqm → te quiero mucho (I love you so much),
compu → computadora (computer).

Fig. 2 Expansion of colloquial words and abbreviations
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Table 1 An excerpt of the
mapping table from
Emoticons to its polarity
words

POS-Tagging Step. At this point, all words are tagged and lemmatized using the
POS tagger of Freeling for Spanish language [20]. In Fig. 4b, we can see the parsed
text after applying the POS tagger. Each token has the word, left side of the slash
symbol, and its lexical information, the right side.

Figure4b shows the output of our example, for instance, the token
orgulloso/AQ0MS0 (proud) stands for adjective as part of speech (AQ), mascu-
line gender (M), and singular number (S); the token querer/VMIP1S0 (to want)
stands for main verb as part of speech (VM), indicative mood (I), present time (P),
singular form of the first person (1S); positivo_tag/NTE0000 stands for noun
tag as part of speech, and so on.

Negation Step. Spanish negation markers might change the polarity of the message.
Thus, we attached the negation clue to the nearest word, similar to the approaches
used in [30]. We designed 50 regular expression rules for common Spanish negation
structures that involve negation markers, namely, no (not), nunca, jamás (never), and
sin (without). The rules are processed in order and when one of them matches, the
remaining rules are discarded.

A rule consists in two parts: the left side of the arrow represents the text to be
matched, and the right side of the arrow is the structure to be replaced. All rules
are based on a linguistic motivation taking into account lexical information from the
POS-Tagging step.

For example, in the sentence “El coche no es ni bonito ni espacioso” (“The car is
neither nice nor spacious”), the negation marker no is attached to its two adjectives
no_bonito (not nice) and no_espacioso (not spacious); as it is showed in Pattern
1, the negation marker is attached to group 3 (\3) and group 4 (\4) that stand for
adjective position because of the coordinating conjunction ni. The number of group is
identified by parenthesis in the rule from left to right. Negation markers are attached
to content words (nouns, verbs, adjectives, and some adverbs), e.g., ‘no seguir’ (do
not follow) is replaced by ‘no_seguir’, ‘no es bueno’ (it is not good) is replaced
by ‘es no_bueno’, ‘sin comida’ (without food) is replaced by ‘no_comida’. Figure3
illustrate the negation stem with two examples.

Filtering Step. In the last step of the normalization pipeline, all words are filtered
and the lexical information is removed. Content words are the filtered words that we
used as features in the following processes. The words are filtered based on heuristic
rules that take into account the lexical information shown in Fig. 4b. Figure4c shows
the bag of words resulting of the example parsed above.
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— Pattern 1: el coche no es ni bonito ni espacioso (the car is neither nice nor spacious)
(no/RN)\s+(ser/VS\w+)\s+ni/CC\s+(\w+/AQ\w+)\s+ni/CC\s+(\w+/AQ\w+) → \2 no \3 y/CC
no \4

— Pattern 2: no es (de) madera (X is not made of wood)
(no/RN)\s+(ser/VS\w+)\s+(\w+/S\w+\s+)?(\w+/N[ TP]\w+) → \2 \3 no \4

Fig. 3 A set of rules are applied to transform the text giving special emphasis to negation words
and its negated concepts

Original text:

@username èl siempre estará contigo, muy orgulloso de tiiiii y del graaaaannn ser
humano que eres :) ... Tqm!!! Buen jueves.

(@username he will always be with you, so proud of you and great human being that
you are :) ... ILY!!!! good Thursday.)

After Error Correction step:

user tag él siempre estará contigo muy orgulloso de ti y del gran ser humano que
eres positivo tag te quiero mucho Buen jueves

(user tag he will always be with you, so proud of you and great human being that you
are positive tag I love you good Thursday.)

user tag/NT00000 él/PP3MS000 siempre/RG estar/VAIF3S0 contigo/PP2CSO00
muy/RG orgulloso/AQ0MS0 de/SPS00 ti/PP2CSO00 y/CC de/SPS00 el/DA0MS0
gran/AQ0CS0 ser/NCMS000 humano/AQ0MS0 que/PR0CN000 ser/VSIP2S0
positivo tag/NTE0000 te/PP2CS000 querer/VMIP1S0 mucho/DI0MS0 bueno/AQ0MS0
jueves/NCMN000

@username siempre orgulloso gran humano positivo querer bueno jueves
(@username always proud great human positive want good thursday)

(a)

(b)

(c)

Error correction step

The output of a Spanish sentence parsed with Freeling

After the filtering step only content words are preserved

Fig. 4 A step-by-step transformation of a tweet. The negation step is not considered in favor of
Fig. 3

Finally, all diacritic and punctuation symbols are also removed.

Q-Gram Expansion. In addition to the exposed NLP transformations, we also
appended one more technique to our pipeline. After applying the mentioned NLP
machinery, we expanded the resulting text to q-grams. A character-based q-grams,
or simply q-grams, is an agnostic language transformation that consists in rep-
resenting a document by all its substring of length q. Please notice that our q-
grams differ from the traditional word-based q-grams used in traditional NLP that
represents a document by the set of all consecutive q words in the text. For example,
let T = abra_cadabra, its 3-g set are
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QT
3 = {abr, bra, ra_, a_c, _ca, aca, cad, ada, dab},

so, given text of size n we obtain a set with at most n − q + 1 elements. Notice
that this transformation handle white-spaces as part of the text. Since there will be
q-grams connecting words, in some sense, applying q-grams to the entire text can
capture part of the syntactic information in the sentence. The main idea behind using
character-based q-grams is to tackle misspelled sentences from another perspective,
independently of the mentioned ones. The technique is borrowed from the approx-
imate pattern matching literature [19], where it is used for efficient searching and
matching text with some degree of error.

A more elaborated example shows why the q-gram transformation is more robust
to variations of the text. Let T = I_like_vanilla and T ′ = I_lik3_vanila,
clearly, both texts are different and a plain algorithm will simply associate a low
similarity between both texts. However, after extracting its 3-g, the resulting objects
are more similar:

QT
3 = {I_l, _li, lik, ike, ke_, e_v, _va, van, ani,nil,

ill, lla}
QT ′

3 = {I_l, _li, lik, ik3, k3_, 3_v, _va, van, ani, nil,
ila}

Using the Jaccard’s coefficient to compare these sets we observe the following
similarity values:

|QT
3 ∩ QT ′

3 |
|QT

3 ∪ QT ′
3 | = 0.448.

These sets are more similar than the ones resulting from the original text split as
words |{I, like, vanilla} ∩ {I, lik3, vanila}|

|{I, like, vanilla} ∪ {I, lik3, vanila}| = 0.2

The hope is that a machine learning algorithm knowing how to classify T will do a
better job classifying T ′ using q- grams than a plain representation. This fact is used to
create a robust method against misspelled words and other deliberated modifications
to the text. We have found that using q = 5 is the better value for our problem.

3 Root Genetic Programming

So far, we have described the procedure used to transform a text into a vector. Now,
it is time to present the extension performed to PrGP and our novel RGP. Let us start
by describing the framework where these systems are developed. PrGP as well as
RGP are supervised learning algorithms that learn the instances of a training set T
formed by n ∈ N pairs of inputs and outputs, i.e., T = {(xi , yi )|i = 1 . . . n} where
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xi 3 represents the i-th input, and yi is the associated output. The objective is to
find a function f such that ∀(x,y)∈T f (x) = y and that could be evaluated in any
element x of the input space. In general, it is not possible to find a function f that
learns perfectly T, consequently, one tries to find a function f that minimize an error
function, e.g., sum of squared errors

∑

(x,y)∈T((y − f (x))2.
Let us consider a fixed order in T to define t = (y1, . . . , yn) ∈ R

n , namely the
target vector, which contains all the outputs in T. Let s(p, x) be a function that
evaluates the individual p on input x . Using the order in T, it is possible to define
p = (s(p, x1), . . . , s(p, xn)) that contains the evaluation of individual p in all the
inputs x of the training set. In this scenario the fitness (using as fitness function the
sum of squared error) of individual p can be computed as the square of the euclidean
norm ||t − p||2; the euclidean norm is enough since the induced order is notmodified.

PrGP is based on the ideas of the geometric semantic crossover proposed by
Moraglio et al. [18] and the implementation developed in [3, 34]. The geometric
semantic crossover is defined as follows: Let p1 and p2 be the first and second parent
the offspring produce by these parent is o = p1r + p2(1 − r), where r is a random
function or a constant in the range [0, 1]. The output of individual o at input x is
computed as s(o, x) = s(p1, x)s(r, x) + s(p2, x)(1 − s(r, x)).

Let us assume that r in the geometric semantic crossover is a constant, then the
offspring is just a linear combination of the parents. This combination lies in the line
segment intersecting the parents. This characteristic influenced the development of
PrGP. That is, it is reasonable to investigate whether there is a better linear combina-
tion between two parents, and, the effects that this modification has in the converge
of the algorithm.

In order to describe PrGP, let us rewrite the geometric semantic crossover with the
constraint that r is a constant. Thegeometric crossover is computed aso = αp1 + βp2
where α = r and β = 1 − α. Using this notation it is evident that the geometric
semantic operators constraints the values of α and β. PrGP removes these restrictions
but are not geometric as defined by Moraglio et al. [18].

PrGP crossover is defined as follows: let p1 and p2 be the first and sec-
ond parent, then the offspring o is computed as o = αp1 + βp2 where α and β

are calculated solving the following equation A · (α, β)′ = t′ where A = (p′
1,p

′
2),

pi = (s(pi , x1), . . . , s(pi , xn)) is the evaluation of parent i in all the inputs, and t is
the target vector. By construction, the offspring o is the projection of t on the plane
produced by the linear combination of p1 and p2 in the case of crossover. Given
that o is created to minimize ||t − (s(o, x1), . . . , s(o, xn)) ||; so, it corresponds to the
orthogonal projection of t in that plane. Figure5 depicts this process where A and B
play the role of p1 and p2, it is observed target vector t which is outside the plane and
the offspring is the orthogonal projection of t on the plane generated. Consequently,
if the fitness function is the euclidean distance then the offspring has at least the
fitness of the best parent.

At this point, we are in the position to introduce the extension performed to PrGP.
PrGP has its origins in the geometric crossover removing the constraint that the

3xi could be a input-vector or a scalar.
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Fig. 5 The optimization process of coefficients. The orthogonal projection is finding the nearest
point of target t into the hyperplane generated by an individual and its coefficients. On the left, it
will find α, the point being orthogonal to t. On the right, the procedure on the plane (here, it finds
two constants)

offspring must lie in the linear segment connecting the parents, and, instead, a linear
combination of the parents is used to create the offspring. From this point, it is evident
that PrGP has the constraint that the offspring has only two parents; however, being
a linear combination it is straightforward to generalize this beyond two arguments.

PrGP creates an offspring as follows:

• Let {p1, . . . , pk} be the arguments of function
∑k .

• The offspring is defined as
∑k

i αi pi where the set {αi } must be computed to
minimize the fitness function, in this case the euclidean distance.

The extension performed toPrGP is that the offspring is producedby k parents, that
is, the offspring is the orthogonal projection of target t on the hyper-plane generated
by k parents.

Creating an offspring as the linear combination has the feature that the offspring’s
fitness is at least as good as the fitness of the best parent. This is clearly a greedy
strategy that is suitable to learn the patterns in the training set; however, it is not clear
whether this characteristic is reflected on the ability to generalize of the evolvemodel.
This research gap is where our novel proposal, namely Root Genetic Programming
(RGP), comes in. That is, RGP explores different combinations at root level, instead
of usingonly the sum.However, the guarantee of producing anoffspring that performs
better or equal than the best involved parent cannot be preserved in general; this is a
secondary effect of allowing more sophisticated combinations.

RGP creates an offspring as follows:

• Let {p1, . . . , pk} be the arguments of a function f randomly selected from the
function set.

• In the case, f is the sum, i.e.,
∑k , the offspring is

∑k
i αi pi which is basically what

PrGP does.
• On the other hand, the offspring is defined as α f (p1, . . . , pk)where α is computed
to minimize ||t − α f (p1, . . . , pk)||.
Figure6 exemplifies an individual evolved by RGP doing the following. Let p =

[x1, x2, x3, (exp x2)] be the initial population and pi refers to the i-th individual
in population p. The first offspring was created by selecting function if from the
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Fig. 6 An individual
generated by RGP

function set and as arguments p1, p4, and p3 (i.e., x1, (exp x2), and x3) resulting
in o = (if x1 (exp x2) x3). Offspring o was set to p2 thus the population is p =
[x1, (if x1 (exp x2) x3), x3, (exp x2)]. The second offspring was created by selecting
ln and as argument p3 resulting in (ln x3) this offspring was set in p4 leaving the
population as: p = [x1, (if x1 (exp x2) x3), x3, (ln x3)]. At this point we are in the
position to show the procedure followed to create the the individual depicted in
the figure.

∑k was randomly selected from the function set where k = 4 and the
arguments were p1, p2, p3 and p4 this produces as offspring the individual depicted
on Fig. 6.

4 Problem and Parameters Settings

At this point, we are in the position to analyze the performance of the systems
proposed on a sentiment analysis benchmark. We decided to use as testbed task 1 of
TASS 2015 (Taller de Análisis de Sentimientos en la SEPLN) workshop [26]. This
task consists on performing an automatic sentiment classification to determine the
global polarity—six polarity levels positive (P), strong positive (P+), neutral (NEU),
negative (N), strong negative (N+) and no-sentiment tag (NONE)—of each tweet
in the provided dataset. The data consists of 7,218 tweets distributed as follows P:
1232, P+: 1652, N: 1335, N+: 847, NEU: 670 and NONE: 1482. Spanish native
speakers from different universities around the world performed the labeling task.
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In order to test the generality of the models evolved, a 10-fold cross-validation
was performed. Each fold was treated as follows: the first part of each fold, i.e., the
data used to train the algorithm was split in two: 80% is used to actually train the
algorithm, and the rest 20% was used as validation set. That is, each fold contains
a training set, a validation set and a test set. The validation set was used to make
early stopping, i.e., to keep the model that best performed on the validation set. In
addition to this, the training set is always balanced that is, each label contains the
same number of exemplars.

There are different paths to tackle classification problems with GP. The simplest
of this is to treat the classification problems as a symbolic regression problem, this
is straightforward in the case of two classes, e.g., on class is identified with −1 and
the other with 1, in this scenario the output, of evolved tree, is just the sign albeit
the class. However, in the sentiment analysis problem presented here there are six
classes. Under this circumstance, the strategy followed is the one vs one classifier,
i.e., for all the pairs of different labels a different classifier is trained. Given that there
are 6 different labels then it is needed to create 15 different classifiers. Each pair of
labels is treated as an independent symbolic regression problem where the output
was −1 and 1 to represent each class.

In addition to using one vs one strategy, it was decided to predict the class using
an ensemble of 5 different instances. That is, given a pair of labels, a system is trained
using 80% of the data randomly selected, with a particular seed, from the training
part of the fold, and validated using the remaining 20%. Then another instance is
created by choosing another seed, and, consequently, selecting different exemplars.
This process is repeated 5 times and the final prediction on the test set is the sign of
the average of all the systems.

We decided to test different parameters settings for our proposal RGP, as well as
for PrGP. The first change was the replacement of add function, i.e.+ in the function
set by the sum, i.e.,

∑k . These modifications allows to have more than 2 arguments,
hereafter, it will make explicit the number of arguments by the value of k. Secondly,
inspired by the PrGP’s feature that guarantees offspring as fit as the best of the
parents, it was decided to force RGP to keep an offspring only when this offspring
is better than its parents this constraint is referred here after as greedy. Standard
is used to refer a systems that keep an offspring regardless of its fitness. Finally, it
is traditionally to initialize the population using the ramped half-and-half method,
besides this procedure, this contribution test another approach which consists in
creating the initial population with only leafs, i.e., the inputs of the problem. The
former method is referred as Ramped half-and-half and the later is referred as Inputs.

Table2 presents the parameters used by all GP systems. All systems use a steady
state strategy with tournament selection. The size of the population is considerable
greater than traditional parameters, and, the number of generations is lower; however,
the number of individuals evaluated (100,000) are comparable with the parameters
used traditionally. In fact, our first approach was to use a traditional configuration
such as a population of 1000 individuals evolved during 100 generations; however,
on preliminary runs, this standard parameter configuration was outperformed by the
used of a larger population. Furthermore, it was observed that the convergence rate
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Table 2 Genetic Programming’s parameters

Parameter Value

Selection Tournament size 2

Population size 100,000

Number of generations 10

Function Set (F) {∑k
,×, /, | · |, exp,√· sin, cos, sigmoid, ln, (·)2, if}

decreased considerable around generation 10th, so we decided to cut the evolution at
generation 10th (more about the number of generations below). The fitness function
is the mean square error, this is coherent with the procedure used to optimize the
constants in the tree. Furthermore, the early stopping individual is selected using the
balance error rate (BER) this is to consider the imbalance in the validation set.

5 Results

At this point, we are in the position to start comparing the performance of the different
systems. One of the unusual parameters, used in this contribution, is the number of
generations which is considerable low. To address whether this parameter affects the
performance, Table3 presents the average of the fraction of total individuals evaluated
to find the early-stopping-individual on the different systems, namely PrGP andRGP,
with the different parameters. The number of arguments k of

∑k is specified in the
first column.

It is observed, fromTable3, that the different configurations of PrGPandRGPwith
the greedy strategy obtained the early-stopping-individual before evaluating 65% of

Table 3 Average with 95% confidence interval of the fraction of total individuals evaluated to
reach the best individual in the validation set, i.e., the early stopping solution
∑k Ramped half-and-half Inputs

PrGP RGP PrGP RGP

Greedy Standard Greedy Standard

2 0.529 ± 0.016 0.610 ± 0.016 0.873 ± 0.010 0.528 ± 0.015 0.623 ± 0.016 0.876 ± 0.010

3 0.381 ± 0.014 0.523 ± 0.016 0.838 ± 0.010 0.408 ± 0.015 0.564 ± 0.017 0.845 ± 0.010

4 0.339 ± 0.015 0.450 ± 0.014 0.762 ± 0.011 0.342 ± 0.014 0.498 ± 0.016 0.774 ± 0.011

5 0.302 ± 0.013 0.405 ± 0.014 0.698 ± 0.013 0.314 ± 0.014 0.442 ± 0.016 0.704 ± 0.013

6 0.278 ± 0.013 0.365 ± 0.013 0.658 ± 0.014 0.293 ± 0.013 0.413 ± 0.015 0.651 ± 0.014

7 0.254 ± 0.012 0.356 ± 0.013 0.616 ± 0.014 0.250 ± 0.011 0.380 ± 0.014 0.616 ± 0.015

8 0.244 ± 0.011 0.337 ± 0.013 0.600 ± 0.015 0.228 ± 0.010 0.338 ± 0.012 0.599 ± 0.015

9 0.215 ± 0.009 0.322 ± 0.013 0.581 ± 0.016 0.209 ± 0.008 0.319 ± 0.011 0.571 ± 0.015

10 0.203 ± 0.009 0.291 ± 0.011 0.567 ± 0.016 0.199 ± 0.008 0.300 ± 0.011 0.558 ± 0.016
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the total of individuals evaluated. This clearly indicates that the number of generations
is not affecting the performance of these systems. On the other hand, RGP with
the standard strategy and using k ≤ 6 obtained the early-stopping-individual after
evaluating 65% of the total individuals; and, for the case k = 1, the early-stopping-
individual is obtained after 80% of the individuals had been evaluated. That is, in the
later case, the early-stopping-individual is obtained around generation 8 (number of
generation is 10). Consequently, one may wonder whether by increasing the number
of generations the performance for these systems would improved as well.

Table4 presents the average performance using the balance error rate (BER) of
the early-stopping-individual on the different systems and configurations. The best
performance in each configuration is highlighted in boldface to facilitate the com-
parison. It is observed that the best performance is always obtained by RGP using
inputs as initial population; and for k ≥ 3 the best performance is obtained by RGP
with the standard evolution strategy. The system having the best performance was
compared against all other systems; in the case, the difference in performance was
statistically significant (with a confidence of 95%) the superscript ∗ was used on the
losing system. This comparison was performance using the Wilcoxon signed-rank
test [37] and the p-values were adjusted using the Holm–Bonferroni method [10] in
order to consider the multiple comparisons performed.

It is observed that most of the times, the systems having the best performance is
statistically better than the others, the only exception is the systems RGP with inputs
as initial population and k = 3. Let us focus on RGP with standard evolution and
inputs as initial population, i.e., seventh column. In this column, the best performance
was k = 10. It is natural to test whether this particular configuration is statistically
better than the others. Performing an equivalent statistical analysis as the previously
described, it is obtained that the best system is statistically better than the systems

Table 4 Average performance (BER) of the best individual found in the validation set (early
stopping)
∑k Ramped half-and-half Inputs

PrGP RGP PrGP RGP

Greedy Standard Greedy Standard

2 33.541∗ 33.271∗ 35.703∗ 33.450∗ 33.049 34.695∗

3 33.081∗ 32.928∗ 33.816∗ 33.207∗ 32.728 32.676

4 33.119∗ 32.735∗ 33.347∗ 32.994∗ 32.684∗ 32.165

5 33.054∗ 32.775∗ 33.256∗ 32.899∗ 32.679∗ 32.061

6 32.856∗ 32.704∗ 33.269∗ 32.782∗ 32.401∗ 31.956

7 32.981∗ 32.674∗ 33.231∗ 32.849∗ 32.385∗ 32.056

8 32.873∗ 32.729∗ 33.206∗ 32.726∗ 32.350∗ 31.991

9 32.846∗ 32.828∗ 33.250∗ 32.746∗ 32.332∗ 32.033

10 32.882∗ 32.684∗ 33.139∗ 32.717∗ 32.401∗ 31.916
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Table 5 Performance in terms of macro-F1 on the test set of different GP systems
∑k Ramped half-and-half Inputs

PrGP RGP PrGP RGP

Greedy Standard Greedy Standard

2 0.356 0.362 0.340 0.353 0.353 0.345

3 0.356 0.369 0.356 0.348 0.359 0.363

4 0.359 0.373 0.372 0.349 0.365 0.379

5 0.363 0.368 0.373 0.353 0.364 0.377

6 0.363 0.370 0.368 0.354 0.367 0.377

7 0.371 0.375 0.370 0.354 0.371 0.375

8 0.369 0.377 0.367 0.357 0.367 0.383

9 0.369 0.383 0.370 0.354 0.373 0.380

10 0.373 0.380 0.374 0.361 0.369 0.376

with k ≤ 4, consequently, for the remaining values of k the null hypothesis cannot
be rejected.

At this point, it has been analyzed the performance of the systems on the vali-
dation set. In order to test the generality of the models, Table5 presents the perfor-
mance of the different systems on the test set (i.e., 10-fold cross-validation) using as
performance measure macro-F1. macro-F1 is defined as the average F1 score over
all the different classes, and F1 is the harmonic mean of precision and recall, i.e.,

F1 = 2 precision·recall
precision+recall .

It can be seen from Table5, that RGP outperformed PrGP. RGP using the ramped
half-and-half method and the greedy strategy obtained the best performance of
k = 2, 3, 7, 9, 10 and RGP using inputs and standard evolution obtained the best
performance in k = 4, . . . , 8, these two systems obtained equivalent performance in
k = 7.

The highestmacro-F1value is 0.383whichwas obtained byRGPusing the ramped
half-and-half method, greedy evolution and k = 9 and RGP with inputs, standard
evolution and k = 8. It is interesting to note that with the information presented so
far it is not evident which parameters is obtaining the best performance, it seems
that k must be above 4 and taking the performance of the test set then one must
use a greedy strategy when the ramped half-and-half method is used, and a standard
evolution when only the inputs are the initial population.

At this point, we have compared the performance of PrGP and RGP on different
configurations and parameters settings, it is time to test whether RGP is competitive
with other state-of-the-art classifiers. Table6 presents the performance (using score
F1 for the different classes and macro-F1) of different classifiers trained with the
scikit-learn library [22]. From the table, it is observed that RGP is the second best.
RGP was outperformed by SVM in the macro-F1 and in almost all classes except
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Table 6 Performance in terms of score F1 of different classifiers. The performance of RGP is
reported as a single instance classifier; Table7 contains the RGP’s performance as part of a group

Classifier P P+ N N+ NEU NONE Macro-F1

RGP 0.265 0.534 0.314 0.396 0.199 0.548 0.327

SVM 0.285 0.603 0.425 0.408 0.126 0.558 0.401

KNN
(K = 30)

0.235 0.507 0.356 0.307 0.074 0.394 0.312

Naive
Bayes
(Gaussian)

0.25 0.457 0.369 0.282 0.079 0.344 0.297

Extreme
Random
Trees

0.24 0.484 0.301 0.227 0.046 0.447 0.291

AdaBoost 0.127 0.477 0.355 0.301 0.014 0.442 0.286

NEU where RGP obtained the highest F1 score. The third place was obtained by
K-nearest neighbor classifier using K = 30.4

RGP obtained the second best performance among all the classifiers presented
on Table6. Unfortunately, RGP’s running time is the highest of all the classifiers
presented. This issue is noticeable when RPG is used to create an ensemble. For
instance, the performance of SVM was computed in order of minutes whilst the
RGP’s performance was recorded in the order of hours. It is important to note that
RGP has a lower complexity than traditional GP systems, nonetheless there is still
room for improvement in order to make it competitive with the running time of
traditional classifiers.

So far, we have compared PrGP and RGP using different parameter settings such
as: the procedure to create the initial population, the greedy or standard evolution,
and k. In addition, the RGP system having one of the best performances was com-
pared against state-of-the-art classifiers. Although RGP obtained the second best
performance among the classifiers analyzed, it is still missing to investigate the con-
sequence that one particular parameter affecting the running time of the system has
on the performance. This is the size of the ensemble. Let us remember that it was
used one-vs-one strategy to convert the multi-class problem into a binary one, then
for each pair of classes, the GP system under study was instantiated with different
seeds and selecting randomly a training set and validation set from corresponding
part of the fold. This process was repeated 5 times and the final prediction is the
average of these instances. It is natural to ask whether this arbitrary number of times,
i.e., size of the ensemble, was correctly selected.

In order to give insight into the behavior of the ensemble when its size is varied
Table7 presents the performance, using the score F1, of RGP with inputs, standard
evolution and k = 10; when the size of ensemble is varied from 1 to 30. It is observed

4The K-nearest neighbor classifier was tested with varying K from 10 to 100 and K = 30 gave the
highest result.
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Table 7 Performance in terms of score F1 of varying the size of the ensemble using RGP with
inputs as initial population and standard evolution with k = 10

Size (�) P P+ N N+ NEU NONE Macro-F1

1 0.251 0.464 0.272 0.343 0.173 0.460 0.327

2 0.257 0.505 0.298 0.360 0.187 0.507 0.352

3 0.267 0.510 0.307 0.379 0.175 0.516 0.359

4 0.262 0.523 0.312 0.388 0.190 0.532 0.368

5 0.265 0.534 0.314 0.396 0.199 0.548 0.376

6 0.280 0.547 0.320 0.393 0.205 0.552 0.383

8 0.276 0.548 0.330 0.403 0.203 0.558 0.386

10 0.283 0.549 0.342 0.408 0.199 0.555 0.389

12 0.279 0.547 0.345 0.409 0.192 0.554 0.388

14 0.272 0.554 0.344 0.409 0.202 0.558 0.390

16 0.271 0.559 0.351 0.413 0.196 0.560 0.391

18 0.272 0.561 0.352 0.412 0.199 0.563 0.393

20 0.276 0.565 0.354 0.409 0.200 0.565 0.395

22 0.265 0.564 0.356 0.410 0.208 0.565 0.395

24 0.264 0.568 0.354 0.411 0.208 0.565 0.395

26 0.267 0.566 0.354 0.414 0.208 0.563 0.395

28 0.274 0.566 0.353 0.413 0.210 0.562 0.396

30 0.274 0.569 0.355 0.417 0.214 0.562 0.399

that the most drastic change is from 1 to 2, i.e., from a single instance (not really
an ensemble) to the minimum ensemble. In addition, it is observed that for all the
classes the corresponding score F1 increases as the size of the ensemble increases.
It is observed from the table that the performance according to macro-F1 reaches at
stable point around 20, i.e., it reaches 0.395, then it increases on 28 and 30.

Comparing the performance of RGP when the size is 30 against the performance
of SVM, it is observed that RGP outperformed SVM in N+, NEU and NONE and,
consequently, SVM obtained the highest F1 on P, P+, N and macro-F1. Nonetheless,
the difference in performance between these two systems is small which might be
an indicator that RGP could outperform SVM in all this benchmark by optimizing
the rest of RGP’s parameters.

Determining the Size of the Ensemble Automatically. The optimality of the clas-
sifier setup is related to the ability to determine the minimum size that maximizes the
classification rate. The classification rate in our approach can be indirectly measured
using an additional set of non-labeled examples. As other real-world problems, the
TASS’s benchmark is full of unlabeled examples; this extra set does not poses a
complex requirement in practice.

The idea consists in finding on-line the proper ensemble’s size measuring the
agreement as we add members to the ensemble. The assumption is that an ensem-
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ble of size � can be improved adding an extra member; therefore, the number of
mismatches among � and � + 1 is relatively low, mismatches will be found when � is
distant relatively small than for larger values. The assumption should work whenever
each member of the ensemble performs better than a random classifier; this behav-

(a)

(b)

Classification mismatches between ensembles of size � and � + 1.

The differences of mismatches among consecutive runs, an
approximation to the derivative in the region of interest.

Fig. 7 Measuring the agreement between ensembles of size � and � + 1 through the number
of mismatches among predictions. The number of mismatches decreases as the ensemble’s size
increases, i.e., the derivative approaches to zero. The smoothing parameter w removes statistical
noise from the curves



62 M. Graff et al.

ior resembles Boosting [39]; nonetheless, our approach differs significantly in the
algorithms, the requirements, and the strategy to take advantage of the assumption.

Figure7 shows the behavior of mismatches for those ensembles listed in Table7.
In the left side, the number of mismatches among ensembles of sizes � and � + 1 are
shown; on the right side, the derivative of the number ofmismatches is approximated.
Notice how the real mismatches (plain legend) have some undesirable noise, then it
is necessary to smooth the curve. For this purpose we added the parameter w, which
defines the size of a slidingwindowaveraging the number of consecutivemismatches.
As w increases, the curve becomes smoother and it is more comfortable to decide
the proper size of the ensemble, that is, while the derivative remains negative the
classifier had not converged (from the consensus perspective).

Even when this procedure determines a proper size of the ensemble, the precise
value of w is dependent on the application domain. As a rule of thumb, a small value
w ≤ 5 should be used; however, large values are preferred when high quality clas-
sifiers are needed. The tradeoff consists on interchanging accuracy and construction
time because the slow convergence is an intrinsic problem on large w. The slow
convergence is exposed as small strict-positive values in the second derivative of
the consensus function; therefore, it is possible to tackle this problem stopping the
optimization whenever a small threshold is reached. The figures illustrate the slow
improvement in the consensus for ensembles larger than 20, this size corresponds to
the highest performance of the actual Macro-F1 depicted in Table7.

6 Conclusions

In this contribution, we have presented an extension of our previous semantic oper-
ators PrGP and a novel GP system, namely Root Genetic Programming (RGP). The
idea of these two systems is that the offspring is a combination of the complete par-
ents. In the case of PrGP is the linear combination of the parents; the extension is that
the offspring can have more than two parent, i.e., parameter k in our notation. Our
novel RGP explores more than just a linear combination, e.g., an offspring could be
the result of joining three parents with function if.

PrGP and RGP were tested on a sentiment analysis benchmark. The results show
that these systems are feasible to tackle this problem. In fact, RGP is very competitive
outperforming several state-of-the-art classifiers. Comparing RGP against SVM, it
was observed that SVM outperformed RGP; however, the difference in performance
is small, and there are a number of scenarios where one would prefer to loose a little
bit in performance to elicit knowledge from the model obtained. For example, in
the case one is interested on feature selection or feature engineering, it is easier to
perform these task usingGenetic Programming than a SVM, in fact, GP is performing
feature selection automatically.

PrGP and RGPwas tested using different parameter settings, some of them are not
very usual in the community. Let us pay attention at the procedure used to initialize
the population, there, itwas tested the ramped half-and-half against a simple approach
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of selecting only inputs. The results show that selecting only inputs is competitive,
in fact, in the validation set, using this technique is better that the traditional ramped
half-and-half. This result has an important consequence in the complexity of the
algorithm, that is, it is simpler to create the initial population using only the inputs
than implementing the ramped half-and-half method.

The size of the ensemble also plays a major role in the performance of RGP. It was
observed that the RGP’s performance increases when the ensemble size increases, it
reaches at stable point around 20. This behavior should be investigated further, for
example, it is still unknown whether the use of more sophisticated methods to create
the ensemble would improve the performance or reduce the computational cost to
create the final model.

Finally, the performance of RGP (using an ensemble of size 20) was similar
than SVM’s performance. As consequence, it is interesting to investigate whether
by optimizing the rest of RGP’s parameters it could be possible to improve RPG’s
performance, and, therefore, to outperform SVM. For example, the number of gen-
erations was set to 10; however, given that it is being used an early-stopping strategy
then it is possible to stop the evolution using the early stopping rounds parameter.
That is, the evolution is stopped when more than early-stopping-rounds individu-
als have been evaluated and the early-stopping individual has been kept constant.
Another parameter that plays an important role is the function set. In this contribu-
tion, it has not been explored whether the performance can be improved by using
different function sets. Related to this, PrGP was extended by including more than
two arguments to the sum. Clearly, this modification can also bee applied to the
product, that is, the product can have more than two argument. We will explore the
performance of RGP under these different settings in future work.
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