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Abstract The difficulties associated with the appraisal of the determinacy proper-
ties of a three-dimensional system are circumvented by the introduction of a new
geometrical argument. It brings about a complete typology of the eigenvalues mod-
uli in discrete time three-dimensional dynamical systems and then provides a new
apparatus for assessing from a geometrical standpoint the emergence of local bifurca-
tions for parameterised economies. The argument is considered through the extensive
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2.1 Introduction

The difficulties associated with the appraisal of the local determinacy properties
of a three-dimensional discrete time dynamical system have long deterred a more
widespread use of the associated setups in economic theory. This contribution is
intended to introduce graphical methods for assessing the stability and the scope
for local bifurcations within such systems. It also provides some illustrations in
parameterised economies.

As they reconsider the role of factors substitutability in competitive economies,
Grandmont (1998) and Grandmont et al. (1998) have come to introduce a tractable
graphical way of assessing local uniqueness or local indeterminacy for dynamical
systems of order two. Their approach is based upon a graphical partition of the
(T P)-plane defined from the two coefficients .7 and Z of the second-order charac-
teristic polynomial P(z) = 72 — .7z + 2 that is associated with a two-dimensional
dynamical system in the neighbourhood of some steady state, these coefficients .7
and 2 being assumed to depend upon a range of n parameters {1, Az, ..., Ay—1, Ay}
Such a partition is then completed by drawing the linear critical loci associated to
the occurrence of real and complex eigenvalues with unitary modulus, respectively
two straight-lines (AB) and (AC) of slopes +1 and —1 and a horizontal segment
[BC] over the plane defined from the coefficients .7 and 2. These critical loci
feature boundaries between stability and unstability zones, a full stability—all the
moduli of the eigenvalues are less than one—zona being noticeably depicted by
the interior of the triangle (ABC). A given economy—a set of fundamental prefer-
ences and technological parameterisations {1, A, ..., A,_1, A,}—Was then to be
understood as a point over that plane whilst the appraisal of its local dynamics sum-
marised to the localisation of this point. Letting one of its building parameters, say
some x; € {A1, Az, ..., Ay—1, Ay}, vary gives rise to a family of economies, namely a
curve ;, A, over that plane the localisation of which provided insights about the asso-
ciated qualitative changes undergone by the dynamical properties of the economy.
The crux interest of this construction for economic theory stems from its explicit con-
sideration of meaningful and generic concepts without having to resort to specific
parametric formulations. That graphical method was remarkable from its tractability
and its potential for significantly easing the appraisal of otherwise complex formal
structures.

Two key difficulties however quickly emerge as being associated with the exten-
sion of the above approach to three-dimensional dynamical systems and the elab-
oration of a graphical partition of a three-dimensional (.7.# %)-space defined
from the three coefficients 7, .# and 2 of the third-order characteristic poly-
nomial Q(z) = —z° + 7z — .47 + Z in the neighbourhood of some steady state.
Firstly, the intricacies of three-dimensional graphs and the geometry of a three-
dimensional (7.# 2)-space are far more difficult to grasp than the aforementioned
two-dimensional pictures in a two-dimensional (.7%)-space. Secondly, the elabora-
tion of a graphical partition is anchored on the introduction of critical loci associated
with the occurrence of eigenvalues with unitary modulus: whilst linearity keeps on
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being an attribute of the critical loci associated with real eigenvalues—this results
in planes in the (7.# 2)-space, one is now faced with the uprise of a nonlinear
critical locus in order to picture the occurrence of complex eigenvalues with unitary
modulus. The first of these issues shall be circumvented by apprehending the origi-
nal three-dimensional (.7.# 2)-space through a collection of sections along the 2
coordinate and thus of (.7.#)4 planes parameterized by . Fortunately enough,
such an approach also entails linear definitions for the three parameterised critical
loci: one indeed recovers two straight-lines (AgBg) and (A5Cg) of slopes +1 and
—1 and a segment [B4C4]—its slope is now to vary according to Z—over a finite
collection of planes (7.#) 4 that are also parameterised by the coefficient 2 and
defined for |7| < 1, 2 < —1 and & > 1, the interior of the parameterised triangle
(AB4Cg) being accordingly changed from a full stability area—all the moduli
of the eigenvalues are less than one—to a full instability one—all the moduli of the
eigenvalues are greater than one.

Assuming further that the coefficients .7 and .# depend upon a range of n para-
meters {A, A2, ..., Au_1, Ay} While the coefficient Z depends upon at most n — 1
such parameters, say the n — 1 first ones, {A;, A2, ..., A,—1}, the appraisal of the
range of configurations admissible for a given economy can anew be completed over
a parameterised plane. Letting indeed the parameter X, vary gives rise to a family of
economies, namely a curve ;, A, over a parameterised plane—it is uniquely defined
for a given —the localisation of which provides insights about the associated quali-
tative changes undergone by the dynamical properties of the economy when X,, spans
its interval of admissible values.

As an illustration of the appropriateness of this approach, an overlapping genera-
tions model is subsequently analysed, the two-period overlapping generations model
having become a workhorse for the theory of descriptive fluctuations. The literature
on the subject has focused on both the Samuelson’s (1958) pure exchange framework,
e.g., Grandmont (1985), and the Diamond’s (1965) setting with productive capital,
e.g., Reichlin (1986). The present contribution more precisely considers a slightly
modified Diamond’s setting in order to illustrate the easiness of use of the graphical
method and the tools it introduces. The first departure from the original framework
lies in the consideration of a labor-leisure arbitrage in the first-period of agent’s life.
The requirement of capital-wealth equality is further relaxed, i.e., it is not any longer
assumed that the consumer’s wealth is equal to the value of the capital stock. Here
private wealth—the sum of private assets—and capital are assumed to be separate
entities. This is an extension of the pure-exchange Gale’s (1972) model in which
the equilibrium value of the private wealth could be nonzero. Taking over the Gale’s
terminology, economies for which private wealth is smaller, respectively greater,
than capital are labelled as Classical, respectively Samuelson. The local dynamics
nearby the steady state of both type of economies are characterized thanks to the
aforementioned tools and the parallel use of some infinite cones whose generatrices
are defined by a boundary featuring strict concavity and a boundary denoting the bor-
der between gross substitutability and complementarity for leisure and first-period
consumption.
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Beyond the specifics of that setup, the current class of techniques can be applied
to quite a large range of parameterised environments that would result in third-
order dynamical systems. In models of economics, the applicability of the whole
approach revolves around the identification of some fundamental parameter that
would not appear into the coefficient 2, i.e., the one that corresponds to the product
of the eigenvalues. Even though such a qualification may sound as being restrictive,
the computation of that coefficient being commonly the most difficult for a given
Jacobian Matrix, it typically uncovers a rather simplified analytical form with respect
to 7 and ./ and thus a dependence with respect to a fewer range of coefficients, a
property that should prove useful in potential future applications.

The geometrical techniques are introduced in Sect.2.2. Section?2.3 builds upon
an extension of the pure-exchange model of overlapping generations. Some formal
details are provided in a final appendix.

2.2 A Geometrical Argument for the Appraisal
of the Local Stability Properties of Three-Dimensional
Dynamical Systems

2.2.1 A Simple Typology for the Eigenvalues of a Discrete
Three-Dimensional Dynamical System

Letting the equilibrium dynamics of an economy be described by a system: y, | =
G(y), ¥ € IR3+, steady states equilibria are the roots of y — G(y) = 0. The charac-
terisation of the local dynamics nearby a given steady equilibrium proceeds from the
appraisal of an associated linear map ¢,41 = _#¢;, for ¢ := DG(y) the Jacobian
matrix of G(-) evaluated at y and ¢, := y, — y the deviation from the steady state. The
eigenvalues of the matrix _# are the zeroes of the following third order polynomial:

Q@)= — )z —2)(z3—2) 2.1
=7+ (zl +220+ Z3)z2 — (ZlZz + 2123+ 12Z3)z + 212223
=2+ I - M+ 9,

for .7, # and 2 that respectively denote the trace, the sum of the principal minors
of order two and the determinant of the Jacobian matrix _# := DG(y).

The locus such that the coefficients .7, .#, & satisfy Q(4+1) = 0 is a plane—
henceforward referred to as the saddle-node critical plane—of the (7.4 2)-space
whose characteristic equation is given by:

N+ T —M+9=0. (2.2)
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Generically, a saddle-node bifurcation' will occur when the triple (7, .#, 9)
crosses this plane and the uniqueness properties of the steady state will be lost.
Similarly, the locus such that the coefficients .7, .#, & satisfy Q(—1) =0 is a
plane—henceforth mentioned as the flip critical plane—of the (.4 9)-space whose
characteristic equation is given by:

\+ T+ 4+ 2=0. (2.3)

A flip bifurcation is bound to occur in its neighbourhood when the triple (7, 4, 9)
crosses this plane and two-period cycles will emerge.

Lastly, when a pair of nonreal characteristic roots exhibiting an unitary norm
occurs, the remaining eigenvalue, e.g., z3, summarises to the product of the eigen-
values 2.2 The latter coefficient thus becomes a characteristic root, i.e., Q(Z2) = 0.
Solving, the characteristic polynomial hence restates as Q(z) = (Z — z)P(z), for
P(z) =2~ (T — Dz+ M — (T — P)P. A standard analysis of P(-) then indi-
cates that the locus of coefficients .7, .# and 2 such that two roots are complex
conjugate with unitary modulus is given by:

M—1—(T —D)2 =0, (2.4a)
|7 - 9| <2, (2.4b)

Eq.(2.4a) being associated with P(-) that assumes a pair of roots with a product
equal to 1 whereas Eq.(2.4b) follows from the restriction for a negative sign for
the discriminant associated to P(-). This locus defines a hyperbolic paraboloid in the
(T M D)-space. A Poincaré-Hopf bifurcation will occur when the triple (7, .4, 9)
crosses the complex interior component of the critical surface (2.4a)—(2.4b) and
quasi-periodic equilibria will emerge in its neighbourhood.

For a given 2, the depiction of these three critical surfaces is going to be facili-
tated’ by the ensued consideration of a collection of sections along the & coordinate,
henceforth denoted as (7.#) 9, any of the aforementioned critical loci being then
represented through a straight-line or a segment.

More explicitly and first introducing the benchmark case 2 = 0 on Fig.2.1, the
set of coefficients (.7, .#) such that Q(4+1) = 0 and Q(—1) = 0 respectively corre-
spond to the saddle-node and flip critical lines (AOCO) and (AOBO)—the index O refers
to the value of the parameter & under which the whole picture is drawn—whilst the
corresponding set for two nonreal eigenvalues with unitary norm is depicted by the
horizontal Poincaré-Hopf critical segment [BOCQ]. This gives rise to a construction
familiar from the two-dimensional analysis, namely the triangle (AgBoCo) defined
by | 7| < |1+ 4| and |.#Z]| < 1.

!'Vide Devaney (1986) or Grandmont (2008) for an extensive typology of local bifurcations.
2Letting z1 and zp be two eigenvalues with a unitary norm, it is indeed obtained that z1z2z3 =
lzlz3 = 2.

3Equation (2.4a) depicts a ruled surface, i.e., a surface generated by straight-lines in .7 and .# for
a given value of 2.
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B, \ Co

Fig. 2.1 Benchmark case 2 =0

The two panels of Fig.2.2 then assess the status of this construction for various
fixed values of Z in the neighbourhood of the benchmark case 2 = 0, respectively
for 7 < 0and Z > 0. As Z is decreased over IR_ or increased over IR, the slopes
of (AyCg) and (AyBg) are let unmodified. In opposition to this, the segment
[B 2C @], of slope 2, respectively follows a translated clockwise rotation for 7 < 0
and a translated counter-clockwise rotation for 2 > 0.

The expressions of the parameterised coordinates of Ay, By and C4 that underlie
the definition of the triangle (A@B 2C @) can readily be computed from the solving
of (2) and (3), (3) and (4), (2) and (4) and list as:

B, . &
5 N - ///

-1 \\\\ N \\\ I‘,' ///Cl
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\ o~ \\\‘ o //// /
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Fig. 2.2 Translated rotations of the benchmark triangle (A 9B @C@)
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(yA@’ 'ﬁA@) = (_-@7 _1)’ (2'58')
(T, Ms,) = (=24 2.1-29), (2.5b)
(Tco, Mc,) =2+ 2,1+29). (2.5¢)
Worthwhile noticing is also the non-generic occurrence, for = —1 and Z = 1, of
A_; =B_; and A = B;: the Poincaré critical segment becomes respectively part

of the flip and the saddle node critical loci. Such occurrences imply that the formal
definition of the triangle (A@B 7C @) is modified as |Z| goes through one, namely:

M <1+ (T =7 2] < 1, (2.6a)
\T+ D <1 +.4
M1+ (T =97 P < 1, (2.6b)
N+ |>T+9
M1+ (T — DD

for 7> 1. 2.6
[|1+///|<9+@ oz (2.6¢)

The case |Z| = 1 is however non-generic and merely two generic configurations,
namely |Z] < 1 and |2]| > 1, are to be considered, making use, as illustrated by
Figs.2.3 and 2.4, of a finite collection of (.7.#) 4 planes. Putting this into perspec-
tive and as made clear by Figs.2.3 and 2.4, there will be no loss of generality in
considering, for a given sign of &, a finite collection of sections (.7.#) of the space
(T4 2) will fully describe the set of admissible geometric configurations.

Cy
I <-1

Fig. 2.3 Two generic configurations as & is decreased over IR_
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I €lo,1] D=1 9#1

Fig. 2.4 Two generic configurations as & is increased over IR

It then remains to characterise any of the generic configurations of Figs.2.3 and
2.4 in terms of the cardinality of the set of stable roots. It is first noticed that the
origin (7, .#) = (0,0) belongs to (AyB5Cg) for any Z € R\ {—1, +1}: this
appears from the translated rotations of Fig.2.2 but this is also rapidly checked
from the analytical definitions (2.6a)—(2.6¢) of the triangles for | 2| < 1,2 < —1 or
9 > 1. This geometric property translates as the satisfaction of Q(z) = —z* + 2 =
0 by the characteristic polynomial, hence z* = 2 and the occurrence of a triple real
eigenvalue at the origin. This will assume an absolute value greater than one for
|2| > 1 and an absolute value less than one for |Z| < 1.

As long as the system is maintained in the interior of the triangle (AyB5Cg),
its stability properties are left unaltered with respect to the ones the origin (0, 0),
that eventually establishes the corresponding number of stable eigenvalues between
parenthesis for both configurations on Fig.2.5—equivalently, the dimension of the
local stable manifold.

Considering then a perturbation that occasions on Fig.2.5 the leave from the
unstable triangle (AyB4Cq) for [2] > 1. A crossing of the Poincaré-Hopf critical
segment [B @C@] would then imply that the modulus of the complex eigenvalues
enters into the unit circle and an area characterized by two eigenvalues with a norm
that is less than one. When such a leave from the unstable triangle (A@B@C @) with
zero stable roots rather proceeds through the crossing of the saddle-node critical line
(AC) or the flip critical line (AyB), a unique eigenvalue with respect to the
unit circle will be modified and the system falls in an area with one stable eigenvalue.
Finally, the crossing of the flip critical line after having crossed the saddle node critical
line or the reversed sequence will lead the system within an area that exhibits a pair
of moduli within the unit circle. A related line of reasoning can straightforwardly
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(iii) Z €]o, 1|

Fig. 2.5 Ceritical loci and typologies of stable eigenvalues for || < | and |Z| > 1

be completed for the typology of stable eigenvalues associated with | 7| < 1 and the
stable definition of the triangle (A@B @C@).

2.2.2 Assessing the Stability Properties of Parameterised
Economies

This section shall argue that Fig. 2.5 equips the analysis with a range of tools that are
going to facilitate the undertaking of a sensitivity analysis in actual parameterised
economies. Consider indeed some characteristic polynomial Q(z) = —z° + 77> —
M 7 + 2 in the neighbourdhood of some steady state and assume that the coefficients
7 and .# depend upon a list of four parameters whilst Z merely depends upon one
parameter, say the fourth of the list, whence some formulations 7 (A1, A2, A3, Ag),
M (M1, Xa, A3, Ag) and P (A4). From Sect.2.2.1, an appraisal of the local stability
properties of the economy {X[, Ap, A3, A4} Will be available from the features of
parameterised (7.4 ) »-planes. For illustration purposes, consider the range of values
of the coefficient A4 for which the coefficient & is such that Z(A4) > 1, the typology
of the eigenvalues being available from Fig. 2.5(iv). Further let the coefficients .7
and 2 both assume the same positive linear dependency with respect to parameters
A1 and A, whose domains are restricted to the positive real line. Letting, e.g., the
parameter A; vary, this will result in a parameterised half-line ;, A—arrowed on
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Fig.2.6—with a slope of +1 that is parallel to (AyCgy). It is positioned over the
plane (7.4 4 by considering how its origin, defined for A; = 0, would vary with
the remaining parameters A, and X3, the value of 14 being, by definition, given over a
plane (:7.#4) 5. Figure 2.6 describes a configuration where the dashed locus ;, Ay, =9
follows a counterclockwise rotation whilst the parameter A, is increased, that in turn
allows for introducing a dotted locus ;, A, —0,1,=0 thatis, by assumption, also parallel
to (AgCqg).

Otherwise stated and for the range of values of A4 such that Z(14) > 1, the dotted
locus j, Ay, =0,5,=0 1s located above both of the loci (A@B@) and (A@C@). As this is
clear from Fig. 2.6, for arbitrary small values of 13 and whatever the value of A,, the
parameterised straight-line ;, A under consideration will locate in the same area with
a unique modulus inside the unit circle, that would, e.g., correspond to a determinacy
property for a system with a unique predetermined variable. In opposition to this and
for larger values of A3, the origin of ;, A will locate below the locus (A@C@). If it
is also considered for arbitrary small values of X, that origin will be found below
(A9By) and within an area with, again, one modulus inside the unit circle. The
straight-line ;, A will assume an intersection with (A@B@) for larger values of A;:
if this takes place by the left of By, there will exist a range of values of A for which
2, A is located in the interior of the triangle (A@B@C@) with no modulus inside the
unit circle and an instability configuration for a system with a unique predetermined

2 M =00, =0

Fig. 2.6 The loci ;; A, ;5 Ax=0 and ;, Ay —0,53=0 for Z(14) > 1
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variable. Finally, for still larger values of A, and beyond the segment [B5Cg], the
parameterised line ;, A will end up in an area with two moduli inside the unit circle
that would correspond to an indeterminacy configuration for a system with a unique
predetermined variable.

2.3 A Simple Parameterised Economy: The Golden Rule
in the Model of Overlapping Generations

This section will consider an economy populated by generations of agents living for
two periods. The representative agent works £ hours and consumes ¢ when young
but then solely consumes ¢’ when old. His preferences are described by a separably
additive utility function, i.c., y. Ui (c) + Up(c') — % V(€), where y. > 0 and y, > 0
are scaling parameters. In the sequel it will be assumed that both U;(-) and U, (-)
are increasing and concave whilst V(-) is increasing and convex. At date r > 1, the
young agent of generation ¢ chooses a consumption vector (cf, cl +1), a supply of
labor ¢} and savings x;, | so as to maximize his utility subject to:

c +xt’_~_l = w, ),

iy = B X,
and c§ >0, cﬁ_H >0, E; > 0, for w, the wage rate and %, the gross return on
savings. The single good is produced by a constant returns neoclassical production
function AF(K, L), where K and L are respectively the productive capital and the
labor employed, A > 0 being a scaling parameter. In every period, competitive firms
maximize profits, given the wage rate and the rental rate—for the sake of simplicity
it will be assumed that capital fully depreciates on use within the period. The FOC
of the optimisation problem for the young agent, that are necessary and sufficient
under the assumed properties of the utility function, list as:

LAY U
vegg (6 = w"%’Jrla_;(C;Jrl)’
A ou
Vzﬁ(zi) = thca—Cl(Cf)v

t r t
¢ + Xi41 = w,@t,

12
€1 = Rrp1Xi41-

In the lines of Gale (1973), the agent’s sum of the assets will be allowed to differ from
the total amount of productive capital. In other words, it will be assumed that capital
is not the only channel of inter-temporal exchange. In that perspective, let B, denote
the difference between the savings willingness of the young and the stock of capital,
ie., B, := xl’ +1 — Ki41. Taking into account the market-clearing conditions for the
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factor markets, it can be established that, in reduced form, a competitive equilibrium
is a sequence (K,, L, B,) satisfying:

Ny = a2 ka2 kL )—3U2 A KL
Ye BL( z)— BL( 15 z) BK( 141 Lr+1 3¢/ BK( 1+1> r+1)
doF
X [AE(KU Lt)Lf —C::|), (2.7a)
LAY dF Uy
Vlg(Lt) = AE)iL(Kh Lt)}/cW(C;), (2.7b)
JF
Kit1 + B + C; = AE(KU Lt)Lta (2.7¢)
dF
Bt = AB?(Kr+1’ Li+1)By, (2.7d)

for (2.7b) that defines, for 92U, / ac? # 0, ¢! as a function of (K,, L,). Two distinct
inter-temporal transfer institutions with a distinct interpretations for the parameter B,
can then be considered on top of productive capital: either fiat money in the line
of Samuelson (1958), or public debt following the work of Diamond (1965), both
giving rise to a reduced form (2.7a)—(2.7d). From the former perspective, assume
that rwo assets are available: the productive capital, that is remunerated at rate %,
plus outside money with unitary price Q. The maximization problem of the young
would then have a solution if and only if the no-arbitrage condition between the
two assets holds, i.e., Q,,/Q; = %;+1. The capital-money portfolio choice being
then indeterminate, x;,; = K;;1 +M,4,Q,. Assuming that the stock of money is
in constant supply M, the money market clearing condition writes M; = M for all
t > 0. In this monetary interpretation, B, = MQ, and the no-arbitage equation (2.7d)
is thus determining the equilibrium price of money. From the second perspective,
assume that the government has issued at date # a debt G, to the younger generation.
This debt has a one-period maturity and will be repaid with interest at the same
rate on return on capital. At date 7 + 1, the debt burden is %,,1G,. Provided that
the policy followed is to maintain a constant zero deficit, the government budget
constraint then implies G, = %;11G;. The equilibrium savings willingness of the
young must adequate the demand of capital from firms and the debt issued by the
government, hence x/ +1 = Kiy1 + G;. For this public debt interpretation, B, = G;
and Eq. (2.7d) hence gives the equilibrium value of the public debt.

2.3.1 The Golden Rule Steady State: Existence
and Normalisation

Under the previous assumptions, the system (2.7a)—(2.7d) defines an implicit three-
dimensional dynamical system (K,+1, Lit1, Bt+1)/ = T(K,, L,, B,). A steady state
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is a fixed point of the map Y'(-), i.e., a triple (K*, L*, B*) such that (K*, L*, B*) =
T(K*, L, B*). The economy under study possesses two steady states, namely the
wealth-capital or balanced steady state in which B* = 0 and the Golden Rule—its
understanding is detailed below—in which B* # 0. In the sequel, the focus will
be exclusively upon the latter. Formally, the Golden Rule is a triple (K*, L*, B*) €
R x IR x IR\ {0} such that:

ﬂ (L*) _ AE(K* L*) BUZ I:Aﬁ (K* L*)L* _ *] (2 8 )
AT R R TR A 2 Tk | o
A N B L (2.8b)
Ve =) TR\ R ey ) '
K* +B* +¢" = Ag—]lj(K*, LY, (2.8¢)
1= a2 ke L) (2.8d)
= A (K1), .

Noticing that (2.8a), (2.8b) and (2.8d) are the FOC of a constrained stationary second-
best program:

{ n}ixK} y.Ui(c) + Ua(c") — V(L) subjectto ¢+ < AF(K,L) —K,

the above defined competitive equilibrium steady state is then efficient, i.e., it coin-
cides with the Golden Rule. The quantity of money or the government debt required
to sustain the Golden Rule is given by (2.8¢c). Following the terminology coined by
Gale (1973), an economy in which this quantity is negative, respectively positive,
is termed Classical, respectively Samuelson.* Currently, the fact that B < 0 means
that the sum of the young agents’ assets, namely their savings, is smaller that the
total amount of capital; sustaining the Golden Rule stock of capital hence requires
transfers towards the young agents. Oppositely, for B > 0, the sustainment of the
Golden Rule stock of capital requires transfers from the young.

In order to simplify the analysis, and making use of the scaling parameters, con-
ditions for the existence of a normalised Golden Rule will be explicitly detailed. Let
then

* * *x\ . x a_F * * *
ac(K* L* ¢*) i=c /AaL(K,L)L,

oF
s(K*,L*) := A—(K*,L*)K* / F(K*,L*),
oK
respectively denote the share of first-period consumption in wage income and the

share of capital in output, both being evaluated at the steady state and henceforward
compactly referred to as o and s.

4See, e.g., the enlightening discussion in Weil (2008).
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Now, fix arbitrarily a vector (K*,L* c¢*) € R} x IR} x IR}. Solving the
Egs. (2.8a), (2.8b) and (2.8d) in (yc, Ve, A), it is obtained that:

LY N SRR AT
vy, = P |: 5 :| / (c) (2.9a)
aU, [ (1 — s)K*
v =0 —-5HK— o |: i| L* (2.9b)
* aF * *
A _1/8K(K LY). (2.9¢)

The steady state value B* then follows from (2.8c):

B = |:1_S(1—ac)—1:|K*.

N

Aside from B*, whose sign is unrestricted, and under the earlier assumptions
on preferences, y, y,” and A* are unambiguously positive. It follows that a unique
restriction is to be imposed on the arbitrary choice of (K*, L*, c*) e R} x R} x
IR*, in order to ensure the existence of the normalized steady state, namely:

= (1 —s)K*/s — ¢* > 0. Note however that the latter is equivalent to the hold-
ing of the restriction o, < 1 that will be hereafter assumed to prevail. To sum
up, choose arbitrarily (K*,L*, ¢*) € IR} x IR x R} such that a. € [0, 1[. Let
(yc, Ve, A) = (yc* 7 A*). By construction, (K*, L*, B*) e R} xR} xIR* is a
Golden Rule steady state. In the sequel, the local dynamics will be characterised
in the neighbourhood of the normalised steady state.

2.3.2 Some Parameterised Curves

The coefficients of the characteristic polynomial list, letting V(£) = ¢, along:

1 c c
9_1+1—+1—+<1_9) 1 [(+")“ <

— —], (2.10a)
s1—a. Ne K

M=T —(1 —@)(;— : ), (2.10b)

1 —

(2.10¢)
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for

oF OF 9%F oF oF
¢ = F l1—s:=— "L F, s .= —- K F,

T 0K 0L " 9KIL’ oL 9K
, 0°U; / U, . %0 / U,
Ne=c — e i=c ,
‘ ' 8(c§)2 dc; o 8(c§+1)2 9ty

that are evaluated at (K*, L, c*) and where ¢ denotes the elasticity of substitution
between the productive factors. While concavity assumptions ensure that 1, < 0
and 1. < 0, gross substitutability properties would correspond to 1 + 1, > 0 and
1 4+ n > 0. It is also worth emphasising the gross substitutability on second-period
consumption 1 + 1. > 0 translates as & > 1 whereas its violation would result in
2 < 0. Let further, and for convenience, 1/n; := n. 1/1; := n.. In a more concise
form, the coefficients of the characteristic polynomial may be understood as a triple
of functions of structural parameters, namely

{9(771» )727 gv aL‘7 S)7 ///(771’ 7727 gs A, S)a 9(7]2)}a

These functions can be seen as parametric equations for curves in the (.4 9)-
space. It is then noticed that & does neither depend upon the parameters describing
the technology, namely s and ¢, nor on the ones that relate to first-period consumption,
namely o, and n;. The current approach being based upon diagrams over the planes
(T M)z, the following parameterised curve is generated by the variations of 7, for
fixed ( n, ¢, e, s) and hence leaves unaffected the coefficient 2:

nd = {(ﬂ(m, My 6o e, 8), A (MM G e, 8, ), 9(712)) im €] — 00,0[}-
(2.11)
From (2.10b), it is observed that ,, A is a half-line starting from (A that is parallel
to (A@C @) and whose direction vector is available from:

s o

T =M =1-9) 20 for 1-220. 2.12)

l—s1—a.

It is further noticed that the position of this straight-line with respect to the locus
(A4Cg) is ruled by the sign of:

— S

(1— 9 1 |:1

1 —a,

(1-a) - 1]. (2.13)

N

One is then to undertake a sensitivity analysis on oA and as the share of first period
consumption «, spans its interval [0, 1[, hence the locus:
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acAyy=0 = {(7(0, ., S, dc, s), ///(O, 12, G, e, s), @(;72)) toe € [0, 1[},

1—s K s 1
for  .7(0,m, ¢ ac,s) =1+ + +1-2) ozc—E ,
s 1—=s l—s1—ac

1 1
M(0,m2, 6 ac,5) =T (0,6, ac,s,m2) — (1 — @)(f - )

s 1—ac
It is further established in Appendix A that this locus does in turn correspond to a
half-line that starts from (9(0 m, ¢, 0, s), ///(O, 12, ¢, 0, s)) and assumes a slope
of (1 =¢)/(s —¢).

It is finally also appropriate to first clarify how the half-line points ,, A, —o moves

while the parameter ¢ spans its interval [0, +o00]. This ¢ A, —g .0 locus is formally
defined as follows:

cAp=0,0.=0 == {(9(0 M2.6.0,5), #(0,1m2,5,0,5), @(nz)) 1 ¢ €]0, +oo[},

P a2 (-5)
1—=s

1—ys )

1—5

for  7(0,m.5.0,5) =1+

N

1
M(0,1m,6,0,5) =7(0,1m,6,0,5) — (1 — 9);.

This, once again, results in the obtention of a half-line starting from
(7(0,72,0,0,5), .2(0,n2,0,0, s)) whose properties are detailed in Appendix B.

The diagrams on Figs.2.7 and 2.8 picture the three half-lines ,, A, o, A, —o and
¢y =0,0,—0- They clarify their dependency with respect to the admissible values
of 2. They allow at a glance to picture the dependency of ,, A with respect to ¢ and
.. Letting ¢ be fixed sums up to select a point of a point of . A, —¢ =0, that will in
its turn gives rise to a specific half-line ,, A, —o. Subsequently selecting a value of
a.,i.e., apoint of , A, —o, eventually defines the starting point of a particular set of
economies, i.e., the , A associated to these given values of . and ¢. Diagrams such
as Figs.2.7 and 2.8 hence allow for contemplating the whole set of such economies
for the range of admissible values of «. and ¢: as a simple illustration and for 7 > 1,
a larger substitutability between the factors would, e.g., uniformly translate into a
north-east move for the economies.

It is finally of interest to introduce a last, economically relevant, locus that sep-
arates, in the course of the line ,, A, the areas where gross substitutability prevails
between first-period consumption and leisure from the ones where it is gross com-
plementarity that prevails. As for the origin of the parameterized line , A, = and
from Appendix C, the border between these two areas emerges as being described by
the curve (7 (=1, m, 6, o, ), A (=1, M2, 6, @, 5)) as «, spans its interval [0, 1,
namely:
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Ny =0,%=0

I ATll =0

Fig. 2.7 The loci ;, A, o, Apy=0 and ¢ Ay —0,q.=0 for 7 > 1

aAp=—1 1= {(9(—1, M. G e, s), (=1, m2. 6, 0c.5), 2(m2) : e € [0, 1[},

for (L cians) =14+ —q—gl LS
1—s s l—oa.s
1 1

As this is formally established in Appendix C and pictured on Figs.2.9 and 2.10,
the loci o, Ay, =0 and o, A, =—1 share a common origin for o, = 0, that further defines
an infinite cone with an apex at that point and two generatrices that correspond to
the two loci. The interior of a cone corresponds to an area where gross complemen-
tarity prevails between first-period consumption and leisure. In opposition to this,
the gross substitutability property prevails beyond the locus o, A;,=—1. Consider then
an economy starting from given point on ,, A, —o: while, by construction, it is first
characterised by gross complementarity, as soon as it crosses o A, ——_1, it falls into
an area where gross substitutability is recovered.
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¢ Amzo

Fig. 2.8 The loci ; A, . Ay =0 and ¢ Ay —0,0.=0 for 7 < 0

2.3.3 A Local Stability Analysis

Taking advantage of the previous constructions, a global qualitative picture becomes
available from the mere localisation of the apex of the cone when it is defined for
¢ = 0. Its position with respect to the critical lines (A»Cg) and (AgBg) in turn
derives from:

1 —
_1+9(o,n2,o,o,s)_//z(o,nz,o,o,s)+@=<1_@>( d _1),

S
(2.14a)

1 1
1+9&m&QQ+%@mﬁ&Q+@=ﬂ+%—+%—<(m%)
N —
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Fig. 2.9 The cones for S
2 >1

Fig. 2.10 The cones for
7 <0

2.3.3.1 Gross Substitutability Between Second-Period Consumption
and Leisure (27 > 1)

Under a gross substitutability assumption, & > 1, whence, from (2.14a),Q(+1) < 0,
and, from (2.14b) and for s < 1/2, Q(—1) > 0. Otherwise stated, the apex of the
cone for ¢ = 0 is located above both (A3Cg) and (AyBg) on Fig.2.11. From
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Fig. 2.11 The ,,A line for
2 > 1

Samuelson

ﬁnomies
\flassical
Economies

Appendices A and C, the direction vectors of the generatrices of the cone are of
negative sign: the generatrices o, Ay —o and o, A, —_; are then to cross (A@C@). It
however remains to check on which side of A4 this is to occur.

For that purpose, observe from (2.13) that, if ¢, € [0, 1[issuchthat1/(1 —a.) =
(1 —s)/s and the pair (7 (0, n2, 0, ac, 5), 4 (0, 12,0, ., 5)) is on (A5Cg) that
currently corresponds to the borderline between classical and Samuelson economies,
then

1—ys K

y(O,nz,O,ac,s)zl—l- —I—1

+(1—@)[1— il }
s 1

— S

Recalling that, from (2.5a), Ja,, = —2, it is derived that:
1—s K
3(0777270’0%,5) _<7A@ :1+_+1+_@1_ >O,
s -5

that eventually implies that the generatrices , A, =9 and o, A, —_; intersect (A@C _@)
on the right hand side of Ag.

In the same vein, while it is known that the generatrices are to intersect (A@B @),
it remains to check on which side of By this is to occur. To get some insight about

it, consider now
1—ys K

T (=1,1.,0,0,5) =1+ +

1—=s

and compare this with .75, = —2 + Z that derives from Eq. (2.5b). It is obtained

that:
1—ys K

i

9(—1,772,0,0,3)—%9:14— +2—-9.

— S
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Figure2.11 depicts a configuration with sufficiently large values of 2 for which
9(—1, 12, 0,0, s) < J8.,. In such a case, the curve ,,A will be associated with a
succession of flip and Poincaré-Hopf bifurcations that will both take place below the
line (AyCg), i.e., from (2.13), for classical economies. Interestingly, both bifurca-
tion phenomena take place in an area with a gross substitutability property between
first-period consumption and leisure. It is however to be recalled that these con-
clusions hold for ¢ = 0, that is for fixed coefficients Leontief-type technologies.
Letting ¢ undergo positive values and from Fig.2.9, the apexes of the cones are to
move north-east along the dotted line while the generatrices are to follow a counter
clockwise translation. The scope for bifurcations is then first to shrink and then to
disappear with an increased substitutability between the productive factors.

Focusing then on the uniqueness issue and taking advantage of the cardinality
of the stable eigenvalues available from Fig. 2.4, Samuelson economies will unam-
biguously be associated with a unique modulus inside the unit circle and a local
uniqueness property. Scenarios for Classical economies are in their turn conditional
to both &, and ¢, their key-feature being that locally indeterminate steady states are
admissible under a gross substitutability property between leisure and first-period
consumption.

To put these results into the perspective of the endogenous fluctuations literature,
an inter-temporal consumption arbitrage on top of an inter-temporal consumption-
leisure arbitrage has been proved to generate a new degree of instability for Clas-
sical economies. In spite of a gross substitutability assumption on preferences, flip
cycles are indeed allowed for sufficiently large values of the share of first-period
consumption. With that regard, it is worth recalling that for a formulation without
first-period consumption, savings must be a decreasing function of the interest rate in
order for flip cycles to exist—vide the extensive discussion in Benhabib and Laroque
(1988, Proposition III.1, p.154). The retainment of a gross substitutability assump-
tion on preferences would have then uniformly ruled out any area for flip cycles. As
for the Poincaré-Hopf bifurcation, though it is uniformly precluded for Samuelson
economies, it reveals as a robust phenomenon in Classical economies.

2.3.3.2 Gross Complementarity Between Second-Period Consumption
and Leisure (2 < 0)

Under a gross complementarity assumption, Z < 0: from (2.14a), Q(+1) > 0. From
(2.14b), the sign of Q(—1) remains ambiguous. Henceforward focusing on the most
interesting case with 2 > —I—the interior of the triangle (AyBC ) is now asso-
ciated with a strong indeterminacy configuration three moduli inside the unit circle,
Q(—1) > 0 and the apex of the cone is located below (A@C_@) but above (A@B _@)
on Fig.2.12. From Appendices A and C, the direction vectors of the generatrices
are of positive sign and they will cross (A@C _@) from below. In addition to this, as
9(— 1,1n,0,0, s) > 7., these crossings will occur on the right hand side of Co.
This configuration with strong indeterminacies is represented on Fig.2.12.
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Fig. 2.12 The ,,A approach ' I
forz e]—1,0[ :

Classical
Economies

Samuelson
Economies

To sum up, the allowance for gross complementaries between leisure and second-
period consumption had dramatic implications since Samuelson economies, even
though they kept on being associated with an gross substitutability between leisure
and first-period consumption, were no longer immune to local indeterminacies and
the occurrence of a flip bifurcation. Classical economies were then still more prone
to multiplicities with configurations with two degrees of indeterminacy, the latters
being further potentially available under a gross complementarity between leisure
and second-period consumption. Extrapolating the south west move of the cone
along Fig.2.10 and as ¢ undergoes positive values, the generatrices are to follow a
counter-clockwise translation. This strong indeterminacy phenomenon and the scope
for bifurcations are to disappear.

Appendix A: The Origin of , A

The starting point of , A is defined from the following set parameterised by c,:

[(,7(0, m, G o, s), A (0,12, 6, ac, s), 9(172)) ae € [0, 1[],

1—s K s 1
for  7(0,m, ¢ ac,s) =1+ + +(1-9) Olc_g ,
K 1—=s 1—s51—a¢

1 1
M(0,m2, 6. ac,s) =70, nz,g,ac,s)—(l—_@)<;— )

1 — e
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Letting 7 |, =0 := 7 (0, m2, 6, ¢, s) and A |, =g := 4 (0, M2, G, &, 5) and from
their above expressions, their dependency with respect to . are available as:

, 1
(Tlyeo), = (1 — D)—> —(1—5)20,

o I=s(1- Olc)2 s
’ 1
— —_ — - >
(.ﬂhﬂ:o)ac (1 @) (1 _ ac)z 1 —s (1 g) < O,

whence a slope available as

N
S (7|m:0)

I - s — S_
%

This again indicates that , A, —o depicts a straight-line, its origin being derived by
letting o, = O:

1—s K
+

<?|?71=0,010=0 =1 + - (1 — @)

S
(1 —y) 1—s
11—y
///|m=0,a5=0 = y|m:0,ar:0 - (1 - 9) .

N

’

Appendix B: A ¢-Sensitivity Analysis

The origin is in its turn fully described by letting ¢ span its interval [0, +o0] through
A yy=0,0,=0- As it is readily checked that both .7 | ), —0 o, =0 and .# | ), —0,«, =0 increase
as functions of ¢ for 2 > 1 but decrease as functions of ¢ for 2 < 0:

!/

(fglsz,at:O) = _(1 - @)

§ 1—ys

)

! 1
(‘%|771=0,a5=0) =—(- @):,

S

whence a slope available as

!/

N (4///|m:0,a(.=0)§
S =0,0,=0 (y|nl:0’ar:0)/§

=1,
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this latter curve being parallel to (A5 Cg), its origin g A ;)o,«,—o being given by:

1—s+ s
s 1—ys

M am0 = TN a0 — 1 — D)

1=0,0,=

=0 _
T lp=0.=0 = 1+

)

1—s
S

Appendix C: The Border Between Gross Substitutability
and Gross Complementarity

The gross substitutability and gross complementarity zones are separated by the
following set:

{(9(—1, My G 0e, 8), A (=1, M2, G, 0, 5), @(ng)) ta. € [0, l[},

1- 1 - 1
for T (—L o Goes)=14+— 4 —(1—g—" °
s 1—=s s 1l—oa.s

1 1
(///(—1, N2, g,ac,s) = 9(—1, 2, G, OlC,S) —(1- @)(; 1 4 )

Letting 7 |1 == 7 (=1, m, G, &, s) and A |- := M (—1,m2, G, @, 5) and
from their above expressions, their dependency with respect to «, is in turn available
from:

S 1 <
—— <0 for <1,
1—S(l—ac.)2> =

/ 1
My-1) =(1—2 -
( |7] l)ac ( )(1 _ac)z( 1

(Zly=), =—(1—=2)

S
-5

)20 for 71,

that in turn indicates a slope of

(‘///|?71=*1);(. l—s

(9|ﬂ1=—1);r s

for the locus ,, A, =_1, the latter being a straight-line with a nil slope for ¢ = 1 — s,
that provides a first critical threshold value for ¢. The coordinates of the origin of
the latter derive by letting o, = 0:
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1—ys s <
Tlp=tgmg =1+ ——+ —-—- — (1 — 9)——,
=teo =14 ==+ a5 0=
1—=s
M y=1.0.=0 = T |py=1.0.=0 — (1 = D) P
Interestingly, the origins of o A, —_; and of o A, o coincide along gA,——; =

0y =0, this latter locus corresponding to the apex of the cone defined by the gener-
atrices o, Ay =—1 and o A, =0 for a given ¢.
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