Chapter 2
Sampling

2.1 Sampling in Time and Frequency

Sampling is a common technical process with the aim to represent a continuous-time
signal by a sequence of samples. A movie consists out of a sequences of photographs
(the samples), a newspaper photograph has been grated in little dots in two
dimensions, a television broadcast consists out of a sequence of half pictures, etc.
The sampling function can be implemented in many ways. In a photo camera the
chemical substance on the film is exposed during the aperture time. In modern
camera’s the image sensor performs this function and allows light to generate charge
during a short time. In all sampling realizations, a switch mechanism followed by
some form of storage is required. In an electronic circuit a sample pulse defines
the sampling moments and controls a switch (relays, bipolar, MOS, and avalanche
device). There are two electronics storage media available: currents in a coil and
voltages on a capacitor. The practical use of a switched coil is in the ignition circuit
of a combustion engine, but is here outside of the scope. The most widely applied
sampling circuit in microelectronics consists of a switch and a capacitor.

The analysis of the sampling process starts with a mathematical view. The
sampling pulse determines the value of a signal on a predetermined frame of time
moments. The sampling frequency f; defines this frame and determines the sampling
moments as:

n

t=f=nTs, n=-oo,...—3,-2,-1,0,1,2,3,...00 (2.1)

Between the sampling moments there is a time period of length Ty, where math-
ematically speaking no value is defined.! In practice this time period is used to
perform operations on the sample sequence. These various operations (summation,

1“No value is defined” does not imply that the value is zero! There is simply no value.
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6 2 Sampling

multiplication, and delay) are described in the theory of time-discrete signal
processing, e.g., [16, 17] and allow to implement filtering functions. In the present
context the value of 7 is considered constant, resulting in a uniform sampling
pattern. Generalized non-uniform sampling theory requires extensive mathematical
tools and the reader is referred to the specialized literature.

Sampling transforms a time-continuous signal in a time-discrete signal and can
be applied on all types of band-limited signals. In electronics, sampling of analog
time-continuous signals into analog time-discrete signals is most common. Also
time-continuous digital signals (like pulse-width modulated signals) and sampled
signals themselves (as found in image sensors) can be (re-)sampled.

The mathematical description of the sampling process uses the “Dirac” function.
This function §(¢) is a strange> mathematical construct as it is only defined within
the context of an integral. The Dirac function requires that the result of the integral
equals the value of the integral function at the position of the running variable as
given by the Dirac function’s argument.

f FO8(— 1) di = f(t0) 2.2)

=—00

The dimension of the Dirac function is the inverse of the dimension of the running
variable. A more popular, but not exact, description states that the integral over a
Dirac function approximates the value “1”:

0, —co<t<0 o
sn=1Llo0<t<e :,/ S(ydt =1 (2.3)
0,e<t<oo =700

with € — 0.
A sequence of Dirac pulses mutually separated by a time period T, defines the
time frame needed for sampling:

n:Z 8(t — nTy)

n=—0o0

This repetitive sequence of pulses with a mutual time spacing of 7, can be
equated to a discrete Fourier series. The discrete Fourier transform (DFT) has
sinusoidal frequency components with a base frequency f; = 1/T; and repeats at
all integer multiples of f;. The amplitude factor for each frequency component at
frequency kf; is Ci. Equating both series yields:

n=0oo o0 ) i
Y 8t—nT)= Y G (2.4)
n=-—00 k=—00

2Strange in the sense that many normal mathematical operations cannot be performed, e.g., §2(f)
does not exist.
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As the Dirac sequence is periodic over one period Ty, the coefficients Cj of the
resulting discrete Fourier series are found by multiplying the series with e ™77/
and integrating over one period.

1 rL/2 "= o
Ci= — > 8(t—nT)e > ar (2.5)
T Ji=—1,2 , 5%
Within the integration interval there is only one Dirac pulse active at t = 0, so the
complicated formula reduces to:

1 T/2 . 1 . 1
Cr= — §(t)e gt = — R0 = — (2.6)
T t=—T;/2 T T

Now the substitution of Cy, results in the mathematical description of the DFT from
the sequence of Dirac pulses in the time domain.

i 8(t —nT,) = Ti Z Mt = Tl (1 + kZZcos(kZ;rfJ)) 2.7)

n=-—00 S k=—o00 =1

Note that both terms are time-domain functions. The right-hand side is a summation
of simple sine waves that can also be obtained from a frequency domain description
using Dirac functions. This sum of Dirac functions in the discrete frequency domain
is the counterpart of the time-domain Dirac sequence.

n=00 k=00
O 8t—nT) & Y S(F—kf) (2.8)

n=—00 k=—00

The infinite sequence of short time pulses corresponds to an infinite sequence of
frequency components at integer multiples of the sampling rate.

2.1.1 Sampling Signals

In Fig.2.1 a signal® A(¢) is sampled at a rate f,. This signal corresponds in the
frequency domain to A(f) = A(w/2m) with abandwidth fromf = OHztof = BW.
The straight-forward Fourier transform is defined as*:

3For clarity this chapter uses for time-domain signals normal print, while their spectral equivalents
are in bold face. The suffix s refers to sampled sequences.

4The Fourier transform definition and its inverse require that a factor 1/27 is added somewhere.
Physicists love symmetry and add 1 /\/ﬂ in front of the transform and its inverse. Engineers
mostly shift everything to the inverse transform, see Eq.2.15. More attention is needed when a
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Fig. 2.1 Sampling an analog signal (a) in the time-continuous domain results in a series of analog
signal samples (b). In the frequency domain the time-continuous signal (¢) is folded around the
sampling frequency and its multiples (d)

A(f) = / - A(r)e 2 gy (2.9)

=—00

Mathematically sampling is performed by multiplying the time-continuous function
A(t) of Fig. 2.1a with the sequence of Dirac pulses, resulting in a time-discrete signal
in Fig. 2.1b. The product of the time-continuous function and the Dirac sequence is
defined for those time moments equal to the multiples of the sampling period T

00 n=o00
A (1) = / A(t—1) x Z §(t — nT,)dt (2.10)
T=—00 n=—00
A useful property of the Fourier transform is that a multiplication of time-domain
functions corresponds to a convolution of their frequency counterparts in the Fourier
domain.

00 k=00
A= [ AF-0x 3 80— kdx @.11)
X

=—00 k=—o00

Evaluation of this integral is easy as the result of an integral with a Dirac function
is the integral function evaluated at the values where the Dirac function is active.
In this case this means that for k = 0 the sampled data spectrum equals the original
time-continuous spectrum: Ag(f, k = 0) = A(f). For k = 1 the resultis As(f, k =
+1) = A(f; £ f). Or in other words: the spectrum is mirrored around the first

single-sided engineering type Fourier transform is used instead of a mathematically more accurate
double sided.
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multiple of the sample rate. The same goes for k = 2, 3, ... and negative k. Another
property of the Fourier transform is applied: for a real function in the time domain,
the Fourier result is symmetrical around 0: A(f) = A(—f).

Consequently Aq(f) consists of a sum of copies of the time-continuous spectrum
each with a frequency shift of k x f;. The total spectrum A4 can be written as:

AN = Y A —K) (2.12)

k=—00

The original time-continuous signal A(f) is connected to only one spectrum band in
the frequency domain A(f). By sampling this signal with a sequence of Dirac pulses
with a repetition rate (f;) a number of replicas of the original spectral band A(f) are
created on either side of each multiple of the sampling rate f;. Figure 2.1c, d depicts
the time-continuous signal and the sampled signal in the frequency domain. In the
frequency domain of the sampled data signal, next to the original signal, also the
upper bands are present.

The idea that from one spectrum an infinite set of spectra is created seems to
contradict the law on the conservation of energy. If all spectra where mutually
uncorrelated and could be converted in a physical quantity, there would indeed be
a contradiction. However, in the reconstruction from a mathematical sequence of
Dirac pulses to a physical quantity, there is an inevitable filtering operation, limiting
the energy.

An important consequence of the previous sampling theory is that two frequency
components in the time-continuous domain that have an equal frequency distance
to arbitrary multiples of the sampling frequency will end up on the same frequency
location in the sampled data band. Figure 2.2 shows three different sine wave signals
that all result in the same sampled data signal (dots). Different signals in the time-
continuous domain can have the same representation in the time-discrete domain.

A time-continuous signal close to (m X f;) will result in replica around ((k £
m) X f;). In case k = m the signals around (;m X f;) will appear near DC, shifting
the original signal band to low frequencies. This phenomena not only finds an
application in down-mixing of communication signals, Sect.2.3.2, but also means
that unwanted or unexpected signals will follow the same path and show up in the
wanted bandwidth. In the Sect. 2.2.2 countermeasures are discussed.

Example 2.1. The input stage of a sampling system is generating distortion. Plot the
input signal of 3.3 MHz and its 4 harmonics in the band between 0 and a sampling
frequency of 100 Ms/s. Change the sampling rate to 10 Ms/s and plot again.

Solution. Figure 2.3 shows on the left side the sampled spectrum at 100 Ms/s and
on the right side the 10 Ms/s variant. Signal components will appear at frequencies:
i X fin £j X fs, where i = 1...number of harmonics and j = 0. .. co. Therefore in
the last graph there are components at the frequencies shown in Table 2.1.

Note that within each f;/2 range there are exactly five components, correspond-
ing to each of the original tones.
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Fig. 2.2 Sampling three time-continuous signals: 1, 19, and 39 MHz sine waves result after
sampling with 20 Ms/s in the same sampled data sequence (dots)
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Fig. 2.3 The sample rate in the left plot is 100 Ms/s and in the right plot 10 Ms/s

Table 2.1 Frequency 0.1MHz | f, — 3fn
components of a distorted :
32MHz | f; — 4fi,

3.3 MHz sinusoid sampled at
10 Ms/s 3.3MHz | fix

34MHz | f, — 2fy,
35MHz | f, — 5fn
6.5MHz | 2f, — 5
6.6MHz | 2f,
6.7MHz | f, — fn
6.8MHz | 2f, — 4f;,
9.9MHz | 3f;,
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2.2 Sampling Limits
2.2.1 Nyaquist Criterion

Figure 2.4 shows a signal in the time domain with higher frequency components
than the signal in Fig. 2.1. The samples of this signal are valid values of the signal at
that sample moments, however, it is not possible to reconstruct uniquely the signal
based on these values. A likely reconstruction would be the dotted line, a signal that
largely differs from the original.

If the bandwidth in the time-continuous domain increases, the mirror bands
around the multiples of the sample frequency will follow. Figure 2.5 shows that
this will lead to overlap of signal bandwidths after sampling, and mixing of data.
This phenomenon is called “aliasing.” The closest upper band directly adjacent to
the original band is called: “the alias band.” If the original signal mixes with its
alias, its information contents are corrupted.

This limitation of sampling signals is known as the “Nyquist” criterion. Indicated
already in a paper by Harry Nyquist [18, Appendix 2-a], it was Claude E. Shannon

A(t) Aq(t)

—_—
(a) time time
Fig. 2.4 The time-continuous signal contains higher frequency components (a) and does not sat-
isfy the Nyquist criterion. The sample series in the time domain (b) allow multiple reconstructions
of the original time-continuous signal

BW=f /2 BW=f_/2 BW > f_ /2
Alias
band
0o f f 0 f Mi)(()ing of fs
data

Fig. 2.5 The time-continuous bandwidth can be increased until half of the sample rate is reached
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who extended his mathematical theory of communication [19] in 1949 with a paper
dealing with communication in the presence of noise. In that paper [20] the Nyquist
criterion, also known as Nyquist theorem, is formulated as’:

“If a function contains no frequencies higher than BW cycles per second,
it is completely determined by giving its ordinates at a series of points spaced
1/2BW seconds apart.”

This Nyquist criterion says that if the sample rate is more than twice the highest
frequency in a bandwidth, there is a theoretical manner to uniquely reconstruct the
signal. This criterion imposes a simple mathematical relation between a bandwidth
BW and the minimum sample rate f;:

f, > 2BW (2.13)

The Nyquist sample rate is often defined as f;,, = 2 x BW and the Nyquist
bandwidth is the bandwidth BW = f;,,/2. The Nyquist frequency is the highest
frequency in the Nyquist bandwidth.® This criterion is derived assuming ideal filters
and an infinite time period to reconstruct the signal. In practical circumstances
designers will use additional margins to avoid having to meet these constraints. An
interesting discussion on present insights in the mathematical aspects of the Nyquist
criterion was published by Unser [21].

The Nyquist criterion specifies that the useable bandwidth is limited to half of
the sample rate. But the Nyquist criterion does not define where the bandwidth
is located in the time-continuous spectrum. The only constraint on the position of
this limited bandwidth that this bandwidth does not include any multiple of half of
the sample rate. That would lead to overlap in the sampled spectrum. There is no
need to specify the bandwidth starting at 0 Hz. For example, if it is known that the
original signal in Fig. 2.2 is in the bandwidth between 10 and 20 MHz, the samples
can be reconstructed to yield the originating 19 MHz time-continuous sine wave.
A bandwidth, located in the spectrum at a higher frequency than the sample rate, can
therefore also be properly sampled. The sampling operation generates copies around
all multiples of the sample rate, including near DC. This is in some communication
systems used to down-modulate or down-sample signals, see Sect. 2.3.1.

Example 2.2. A 10kHz sine wave is distorted with components at 20, 30, 40, and
50kHz, and sampled with 44 ks/s. Draw the spectrum.

Solution. In the left part of Fig. 2.6 shows the input spectrum. The right part shows
the result after sampling. The tones from the original spectrum are in bold lines,
the results of the folding and mirroring around the 44 ks/s sample rate are drawn

3Other originators for this criterion are named as E. Whittaker and V.A. Kotelnikov. Landau proved
in 1967 for non-baseband and non-uniform sampling that the average sample rate must be twice
the occupied bandwidth.

SPrecise mathematicians will now argue that a signal with frequency f = f;,,/2 cannot be
reconstructed, so they should read here: f = f; ,,/2 — Af, where Af goes to zero.
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Fig. 2.6 The sample rate in the upper plot is 44 ks/s

in dashed lines and the components originating from the second multiple at 88 ks/s
are shown in thinner dashed lines. The 50 kHz component results after sampling in
a (—6) kHz frequency. This component is shifted to the positive frequency domain,
while keeping in mind that it differs in phase. In every interval of f;/2 width there is
exactly one copy of each originating component. So there is a simple check on the
correctness and completeness of the spectrum: make sure the number of components
exactly matching the number at the input.

Note here, that the discrete tones as they are, have zero bandwidth. And as long
as folding of one tone on top of another is prevented, or is considered irrelevant,
many forms of sampling can be applied.

Example 2.3. A sampling system with distortion is excited with a single-tone sine
wave. An unexpected tone appears in the output spectrum. How do you find out
what its origin is?

Solution. In a sampled data system it is obvious that tones can be generated by
distortion of the sine wave in combination with aliasing through sampling. The first
check is made by varying the input frequency by a small frequency offset Af;,. If
the tone in the output spectrum varies by a multiple of the offset i x Af;,, the i-th
harmonic of the input tone is involved. Now the same procedure is repeated for the
sampling rate, identifying j x Af; as the originator. The integers i, in the formula
i X fin £ j x f; are known and the evaluation of this formula should point at the
unexpected tone position.

There are of course many more possible scenarios, e.g., suppose there is a
reaction on varying the sampling rate, but not on input signal variations. Probably
an external frequency is entering the system and gets mixed down in the sampling
chain.

2.2.2 Alias Filter

The Nyquist criterion requires that all input signals are band-limited in order to
prevent mixing up of modulated signal components. This requirement is even more
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stringent for signals that are up-front unwanted: various noise contributions, tones,
distortion, etc. These signals are also modulated by the (integer multiples of) the
sample rate. As this sampling process stretches out into high-frequency ranges, even
RF signals can cause low frequency disturbance after modulation with hundreds
xfs. In a correctly designed analog-to-digital conversion system the bandwidth of
the incoming signal is limited by means of an “alias-filter,” so that no mixing of out-
of-band frequency components can take place, see Fig.2.7. An analog-to-digital
converter is therefore preceded by a band-limiting filter, see Fig.2.8. This filter
prevents the components outside the desired frequency range to be sampled and
to mix up with the wanted signals.

In practical system design it is recommended to choose a higher sample rate than
prescribed by the Nyquist criterion. The fraction of frequency spacing between the
extremes of the base and its alias with respect to the sample rate determines the
number of poles needed in the anti-alias filter. A filter will suppress signals at a rate
of 6 dB per octave per filter pole, Fig. 2.9.

Sharp band-limiting filters require many accurately tuned poles. Additional
amplification is needed, and therefore these filters tend to become expensive and
hard-to-handle in a production environment. On the other hand, there are some
good reasons not to choose for an arbitrary high sample rate: the required capacity
for storing the digital data will increase linear with the sample rate, as well as the
power needed for any subsequent data processing.

Anti-alias filters are active or passive time-continuous filters. Time-discrete
filters, such as switched-capacitor filters, sample the signal themselves and require
consequently some alias filters. An additional function of the anti-alias filter can
be the suppression of unpredictable interference in the system. Note that interference

f,

s,

ﬁig Vin N sig
0 f

Vsig
Q TN
0 f

Fig. 2.7 Left: sampling of an unfiltered signal leads to lots of unwanted components in the signal.
Right: an alias filter prevents disturbing signals, tones, or spurs to enter the signal band

frequency
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Fig. 2.8 A low-pass filter (upper) or bandpass filter (lower) is used to avoid unwanted components
near other instances of the sample rate
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Fig. 2.9 The attainable suppression of the anti-alias filter depends on the number of poles in the
filter and the ratio of the bandwidth to the sample rate

does not necessarily enter the system via its input terminal, the designer should have
an equal interest in suppressing any interference on supply and bias lines.

Some systems are band-limited by construction. In a radio, the IF filters of a
heterodyne radio architecture may serve as anti-alias filters, and in a sensor system,
the sensor may be band-limited.
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Fig. 2.10 The mathematical description of the relation between frequency domain and time
domain implies that a sharp-limited frequency response generates a ringing response in the time
domain
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Fig. 2.11 Before using the result of the reconstruction the higher harmonic bands must be
removed. In this example it is assumed that the reconstruction provides no filtering

The definition of a filter for alias suppression requires to look at pass-band, rejec-
tion but also at signal ringing. Figure 2.10 shows a brick-wall filter characteristic.

0, w <0
Fw) ={1,0<w < wpw (2.14)
0, w > wpw
f@) =2 [%  Flw)edw (2.15)
fr) = 2o (2.16)

The impulse response is a sin(x) /x function with ringings on both sides of the pulse.
These ringings will be triggered by transitions in the signal and are disastrous in
many applications. On a television screen a vertical stripe would on either side be
accompanied by shadows. In an audio system these ringings lead to phase distortion,
or in more musical terms: blurring of the instrument’s position. These practical
considerations often lead to a sample rate of at least 2.5-3x the bandwidth.
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Alias filtering at the input of a conversion chain is necessary to remove unwanted
components in the spectrum that may fold back into the signal after sampling.
Also at the output side of the conversion chain an alias filter can be necessary as
the sampled data format contains high-frequency components, Fig.2.11. During
reconstruction, see Sect. 2.4, some filtering will occur, but mostly additional filtering
is needed to avoid problems. If these components are processed in a non-linear
fashion, unwanted signals can be produced. Also other failures may occur. For
example, in an audio chain, the speakers are dimensioned assuming that (by far)
most audio energy is in the low frequency range. If too much alias products exist,
the tweeters can be harmed.

Example 2.4. A bandwidth of 2 MHz is sampled at 10 MHz. Determine the order
of an anti-alias filter build as a cascade of equal first order filters, suppressing alias
components by 35 dB.

Solution. Aliasing will occur due to signals in bands around multiples of the
sampling rate. In this case all signals between f; — BW = 8§ and f; + BW = 12 MHz
will appear after sampling in the desired signal band. The task will be to design
a filter that passes a bandwidth of 2 MHz, but suppresses at 8 MHz. The transfer
expression is

1 n/2

10 =i o

where n is the filter order and assuming that wt = 1 for a frequency of 2 MHz, then
a 3th order filter is chosen. This filter will attenuate the signal at 2 MHz by 9 dB. If
only 3 dB attenuation is allowed, the filter order must be increased to 7. It is obvious
that doubling the sample rate eases this trade-off dramatically.

Example 2.5. Comment on the choice of the sample rate in the CD audio standard.

Solution. An example of a critical alias filter is found in the compact-disc music
recording format. Here a sample rate of 44.1ks/s’ is used for a desired signal
bandwidth of 20 kHz. This combination leaves only a small transition band between
20 and 24.1kHz to suppress the alias band by some 90dB. The expensive filter
required to achieve this suppression needs some 11-13 poles. Moreover such a
filter will create a non-linear phase behavior at the high baseband frequencies.
Phase distortions are time distortions (Aphase equals signal frequency xAtime)
and have a strong audible effect. Fortunately the use of “oversampling” allows to
separate baseband and alias band sufficiently, see Sect. 10.1.

"The only storage in the early days of CDs were video recorders. The 44.1 ks/s sample rate was
chosen such that the audio signal exactly fits to a video recorder format (25 fields of 588 lines with
3 samples per line) of 44.1 ks/s.
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2.2.3 Getting Around Nyquist?

An implicit assumption for the Nyquist criterion is that the bandwidth of interest
is filled with relevant information. This is not necessarily true in all systems. In
communication systems like Wifi or GSM, only a few channels in the allocated
band will be used at any moment in time. Video signals are by their nature sampled
signals: a sequence of images consisting of sequences of lines. The spectral energies
are concentrated around multiples of the video line frequency. The intermediate
frequency bands are empty. These systems show “sparsity” in the frequency domain.

In a radar or ultra-sound system a pulse is generated and transmitted. The only
relevant information for the system is the moment the reflected pulse is received.
This is an example of time sparsity.

A sparse signal in a relatively wide bandwidth can be reconstructed after
sampling by a non-uniform sampling sequence. Such a sequence can be generated
by a high-frequency random generator. The information from the few active carriers
is spread out over the band and theoretically it is possible to design algorithms that
recover this information. A first intuitive approach is to assume a high uniform
sampling pattern, from which only a few selected samples are used. In a higher
sense the Nyquist criterion is still valid: the total amount of relevant bandwidth
(Landau bandwidth) is still less than half of the effective sample rate.

Compressive sensing or compressive sampling [22] multiplies the signal with a
high-rate random sequence, which is easier to implement in the analog domain than
sampling. The relevant signals are again spread out over a large bandwidth. After
bandwidth-limiting, a reconstruction (“L1” minimization) is possible if the random
sequence is known and the domain in which the signal is monitored, is sparse. The
theory is promising but requires heavy post-processing. Whether a real advantage
can be obtained remains to be proven.?

Example 2.6. Two sine wave signals at 3.2 and 4.8 MHz each modulated with a
0.1 MHz bandwidth signal are sampled at 1.1 Ms/s. Is the Nyquist criterion violated?

Solution. No, the total band occupied with relevant signal is 0.4 MHz, while the
Nyquist bandwidth is 0.55 MHz. The sample rate must be carefully chosen not to
mix things. Here the sampled bandwidths will span 0-0.2 MHz and 0.3-0.5 MHz.

8Keep track of: dsp.rice.edu/cs for an overview of all compressive sampling developments.
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2.3 Modulation and Chopping

2.3.1 Modulation

Sampling of signals resembles modulation of signals. In both cases the operation
results in the creation of frequency shifted bands of the original signal. A modulator
multiplies the baseband signal with a sine wave, resulting in a pair of upper
bands around the carrier frequency, see Fig. 2.12. Mathematically modulation is the
multiplication of a signal with a pure sine wave of radial frequency wj,cq;:

Gmix(t) = A(t) X Sin(wlacult) (217)

In the simple case of A(f) = A sin(w?):
. . A A
A sm(a)t) X Sln(wlocalt) = 5 COS((wlocal - w)t) - 5 COS((a)lncal + (,())[) (218)

In the result there are no components left at the input frequencies. Only two
distinct frequencies remain. This modulation technique is the basis for the first radio
transmission standard: amplitude modulation.

If A(t) is a band-limited spectrum composed of many sinusoidal signals, mixing
results in two frequency bands:

Gmix(t) = A(t) X Sin(wlocalt)

1 1
Gmix(w) = EA((wlocul - CL)) - EA(wlocal + C())

A(f)

A(t) ® A(t)
sir;(mmt) f=1IT,
modulation 0 f sampling

4 4

0 £ =1IT, 0 f f=1/T, f,=2/T, f=1/T,

Fig. 2.12 Modulation and sampling of signals. Ideally the modulation and sampling frequencies
disappear from the resulting spectrum. Here they are indicated for reference
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The modulated bands appear as mirrored copies of each other around wj,.,. Often
one band is desired and the other band is referred to as the “mirror image.”
If the modulation principle is repeated the original sine wave can be recovered:

Gmix—down (t) = Gmix(t) X Sin(a)localt)

A A
(5 COS((a)local - w)t) - 5 COS((wlocal + C())t)) X Sin(a)lucalt) =
A A A
5 sin(wt) — 1 Sin2wpeait + 1) + 1 SIN(2wjpeqit — wt) (2.19)

The original component is accompanied by a pair of frequencies around 2wjyc,;.
With a low-pass filter these components are removed.

In contrast to modulation, sampling results in upper bands around every multiple
of the sample rate. The sequence of Dirac pulses is equivalent to a summation of
sine waves with frequencies at multiples of the sample rate.

n=00 | X 1 X
Time domain ) 8(t—nTs) =7 > kst — 7- + 7= 2 cos(k2mfst)
n==00 S k=—00 =
. o XX 2k
Frequency domain Ds(w) = 7= > $o—FF) (2.20)
S k=—o00 $

This sequence of Dirac functions in the frequency domain translates back to
sine waves in the time domain with frequencies that are integer multiples of the
sample rate. Therefore sampling can be viewed as a summation of modulations.
The intrinsic similarity between sampling and modulation is used in various system
architectures: an example is found in down-mixing of radio frequency signals.

A particular aspect of sampling and mixing is called “self-mixing.” A mixer can
be seen as a device with two (mathematically) equivalent input ports. If a fraction
of the signal on one port leaks into the other port, self-mixing will occur. If this
leakage is described as o sin(wyyqqt), the resulting output component will contain
terms of the form: /2 + sin(2wj,cqt)/2. In practical circuits mostly the large-
amplitude local-oscillator frequency will leak into the low-amplitude port or the
sample frequency is injected on the input node. A noticeable DC component is the
result that can easily be mistaken for a circuit offset.

2.3.2 Down-Sampling

In the description of signals in the previous paragraphs, implicitly the band of
interest was assumed to be a baseband signal, starting at 0 Hz with a bandwidth
f = BW. This is the situation that exists in most data-acquisition systems. The
mirror bands will appear around the sample rate and its harmonics. The choice for



2.3 Modulation and Chopping 21

this location of the band of interest is by no means obligatory and certainly not
imposed by the Nyquist criterion. A band of interest located at a higher frequency,
or even beyond the sample rate, can be sampled equally well. The signal band can
be regarded as being sampled by the closest multiple of the sample rate. This band
is again copied to all integer multiples of the sample rate, including “0 Hz”. This
process is called “under-sampling” or “down-sampling.”® If there are components
of the signal lying on equal frequency spacings above and below a multiple of the
sample rate, both of these will be sampled into the same frequency region. The
consequence is an overlap of signals and must be avoided.

Deliberate forms of down-sampling are used in radio-communication appli-
cations, where down-sampling is used as a way to perform demodulation, see
Fig.2.13.

Unwanted forms of down-sampling occur if undesired signals are present in the
signal band. Examples are

e Harmonic distortion products of the baseband signal.
¢ Thermal noise in the entire input band, see Sect. 2.5.1.
 Interference signals from other parts of the equipment or antenna.

Example 2.7. Set up a down-sampling scheme for an FM-radio receiver.

Solution. In an FM-radio the IF signal of 100 kHz is located at a carrier frequency
of 10.7 MHz. This signal can be down-modulated and sampled at the same time by
a 5.35 Ms/s signal, Fig.2.13.

Essentially any sample rate that fulfills f; = 10.7/i Ms/s, where i is a positive
integer, will convert the modulated band from 10.7 MHz to DC.

Two dominant considerations play a role in the choice of the sample rate. A low
sample rate results in a low power consumption of the succeeding digital circuitry
and less memory if storage is needed. A high sample rate creates a wide empty
frequency range and allow easy and cheap alias filtering. Sometimes the sample rate

——-

interest

sampling ~

0 f=535MHz  2f;=10.7 MHz 3f, frequency

Fig. 2.13 Demodulation and down-sampling of an IF-FM signal at 10.7 MHz by a 5.35Ms/s
sample pulse

°In this book the term down-sampling is used for sampling an analog signal with the purpose to
perform a frequency shift of the band of interest. Subsampling in Sect. 2.3.3 removes samples in a
predetermined manner from an existing sample stream, but does not change the signal band.
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can be chosen in such a manner that undesired input frequencies end up in an unused
partof f = 0,...,f/2.

Example 2.8. An IF-television signal occupies a bandwidth from 33 to 39 MHz.
Propose a sampling frequency that maps the 39 MHz component on DC. Consider
that the power consumption of the following digital circuit is proportional to the
sampling frequency and must be low.

Fig. 2.14 Three solutions for 4
sampling a bandwidth
between 33 and 39 MHz
f,;=39 Ms/s
+

2f

S

4

f=13Ms/s 2f 3f,

Solution. A sampling rate of 78 Ms/s misses the point in the Nyquist criterion,
as the bandwidth is only 6 MHz and not 39 MHz. The Nyquist rate is 12 Ms/s so
alternatives are shown in Fig. 2.14. A sample rate of 39 Ms/s will work, but causes
a lot of digital power.

A sample rate of 19.5 Ms/s is a viable alternative to 39 Ms/s as it halves the digital
power but leaves enough frequency space for alias filtering.

And a sample rate of 13 Ms/s which will leave only a 1 MHz frequency range
for alias filtering. This might be an expensive solution when the alias has to be
suppressed.

2.3.3 Subsampling and Decimation

In some applications reducing the sample rate is a necessity. In sigma-delta
conversion, decimation or subsampling is a necessity to translate the high-speed
bit-stream signal in normal samples. Another example is in measuring the per-
formance of a very high-speed sample system. This requires a test-setup with
even better specifications at those frequencies. Here too, subsampling reduces the
sampling frequency and allows to measure accurately, without the need for extreme
performance.
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A(t) A(w)
BW
(a) “tme ~ (d) —
frequency
A t) Ay(w)
b T time (e)o f. —— 2f,
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Fig. 2.15 Decimation or subsampling of a sampled signal. Upper: a time-continuous signal in
the time (left) and frequency domain (right). Middle: Time and frequency representation after
sampling. Lower: Time and frequency representation after subsampling by a factor of two

Figure 2.15 shows the basic process of subsampling or decimation. In Fig. 2.15a,
b, d, e the time sequence and frequency representation of a signal sampled at f; are
shown. If this signal is subsampled by an integer factor'® M (in this figure M = 2)
every M-th sample is kept and the unused samples are removed, see Fig. 2.15c, f.

The procedure in Fig.2.15 can be used because the bandwidth of the original
signal is less than half of the new sample rate. Thereby this signal fulfills the Nyquist
criterion for the new sample rate f;/M. In cases where this is not the case, the
bandwidth must be sufficiently reduced, before subsampling is applied. If this is
omitted, serious aliasing will occur with loss of information.

2.3.4 Chopping

Chopping is a technique used for improving accuracy by modulating error-sensitive
signals to frequency bands where the signal processing is free of errors, see also

10Subsampling by a rational factor (a division of two integers) or an irrational factor requires to
calculate the signal at each new sample moment by interpolation of the existing samples. This
technique is often applied in image processing and is used to combine data from sources with
asynchronous clocks. Some fast-running hardware is needed to carry out the interpolation.
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Sect.7.6. In Fig.2.16 first the signal is modulated to a higher frequency band by
multiplication with a chopping signal f..,(f). After signal processing, the signal is
modulated back by multiplying again with fi4, (7). The technique works well with
a sine wave or a block wave as modulator as ﬁwp (¢) contains a DC-term and for the
rest only frequency components far above the band of interest. Chopping can also be
used to move unwanted signals out of the band of interest. For example, alternating
between DC-current sources (also known as dynamic element matching) will move
mismatch and the 1/f noise to higher bands.

In differential circuits, chopping is implemented easily by alternating between
the differential branches. Mathematically this correspondents to a multiplication
with a block wave with amplitude +1, —1. This block wave can be decomposed
into a series of sine waves:

oo .
4sin(n/2)
fclfmp(t) = Z —/ Cos(wchopt) (2.21)
n=135... dd
Now Czhop (r) = 1 and a perfect restoration after chopping back is possible. Note

that a signal f,,(f) composed of any sequence of +1,—1 transitions, at fixed
frequency or at arbitrary time moments, shows this property and can be used for
chopping purposes. As Fig.2.17 shows, chopping with a block wave can be done
with lower frequencies than the bandwidth of the input signal. Chopping does not
compress the signal into one single value, and consequently there is no direct impact
of the Nyquist criterion on chopping. On the other hand, chopping is a form of
modulation and so any unwanted signals entering the chopping chain between the
two modulators may cause problems and alias filtering is a remedy.

The spectrum of a block wave fixed-frequency chopped signal will be composed
of a series of modulated spectra around odd multiples of the chopping frequency:

4sin(nw/2)
ni

A chop (w) = Z

n=1.35..

A(nwchop + w)

l l i v {
. 1
Input ? chop 6?_' Signal ' ? Output
1 proc.
| 1
| |

f

chop

Fig. 2.16 A simple chopping chain: the input signal must be protected against the unwanted DC-
term. Two chopping modulators move the signal band to a high frequency and back, thereby
avoiding the DC term. This configuration was a standard technique in precision electronics of
the 1950s
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input

chopped

sampled

Fig. 2.17 Chopping (middle) and sampling (below) differ fundamentally in their information
contents

E.g. chopping a spectrum from 0 to 1 MHz with a block wave (+1, —1) of 10 MHz,
will remove the spectrum near DC and generate mirror bands at 9—11, 29-31, 49-51
MHz, etc.

The higher bands of the chopped signal should not be removed. This would cause
imperfections after chopping back. Any removed components can be regarded as a
negative addition of signals to a perfectly chopped spectrum. These components
will be treated as new input signals for the chopping back operation. So products
of these components with the signal of Eq.2.21 will appear. The removed parts of
the spectrum A (nwcn,p £ @) will be modulated by the n-th harmonic of Eq.2.21,
resulting is an amplitude contribution at the position of the original signal with a
relative strength of 1/n?.

Example 2.9. A 135MHz sine wave is sampled in a 150 Ms/s sampling system.
Which frequency components will be in the sampled data spectrum? Is it possible to
discriminate the result of this sampling process from sampling a 15 MHz sine wave?

Solution. If an input signal at frequency f; is sampled by a sample rate f; than the
sample data spectrum will contain the lowest frequency from the series: f;, (f; —
I s 1) Qfs—1). Qfs 1) - (nfs = 1), (nfs +£) ... where n = 0, 1,2, ... .c0.
In this case the second term delivers a 15 MHz component.

If directly a 15 MHz sine wave was sampled the sampled data sequence would be
similar and even perfectly identical provided that the mutual phase shift is correct.
In perfect conditions there is no way to tell from which time-continuous signal (in
this case 15 or 135 MHz) this sequence originates. Continued in Example 2.16 on
page 40.
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2.4 Reconstruction of Sampled Data

The sequence of samples (after analog-to-digital conversion and any form of digital
signal processing) that arrives at the input of a digital-to-analog converter is a set
of numerical values corresponding to the frame of sample moments. A spectral
analysis would result in an ideal sampled data spectrum, where all copies of the
signal band at multiples of the sample rate are equivalent. In the time domain the
value of the signal between the sample moments is (mathematically spoken) not
defined.

This stream of samples must at some instant be reconverted in the time-
continuous domain. The first question is what to do with the lacking definition of
a signal in between the samples. The most common implementation to deal with
this problem is to simply use the value of the signal at the sample moment and
to keep it for the entire sample period. Figure 2.18 (left) shows this “zero-order
hold” mode. A more sophisticated mechanism interpolates between two values as
in Fig. 2.18 (middle). An elegant form of interpolation uses higher-order or spline-fit
algorithms, Fig. 2.18 (right).

In most digital-to-analog converters a zero-order hold function is sufficient
because the succeeding analog filters perform the interpolation. Moreover a zero-
order hold operation is often for free as the digital input signal is stored during the
sample period in a set of data latches. The conversion mechanism (ladders or current
sources) simply converts at any moment whatever value the data latches hold. This
option has several additional advantages. Whenever the output signal of a digital-to-
analog converter contains glitches, an explicit sample-and-hold circuit will remove
the glitches and improve the quality of the conversion. In case of algorithmic digital-
to-analog converters the output signal has to be constructed during the sampling
period (see, e.g., Sect. 7.4.4). Then a hold circuit shields any incomplete conversion
results and prevents them to appear at the output.

Holding the signal during a period 7, < T, changes the shape of the signals
passing through a zero-order hold operation. Holding of the signal creates a signal
transfer function. The impulse response of the hold transfer function is found by
considering that the Dirac sequence is multiplied by a function consisting of a
constant term “1” over the hold period T},

Y(nT,) Y(nTy) Y(nTy)

—_—

time

Fig. 2.18 A Dirac sequence can be reconstructed via a zero-order hold (left), a first-order
interpolation (middle) or higher-order reconstruction algorithms (right)
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1 O0<t<Ty,
h(t) = ’ 2.22
® 0, elsewhere ( )
The frequency domain transfer function H(w) of a zero-order hold function
(implemented in Chap. 3 as a sample-and-hold circuit) is calculated via the Fourier
transform. The result of this transform has the dimension time.!! In order to obtain
a dimensionless transfer function, a normalization to T is introduced:

=00 =Ty . .
H(w) = / h(r) x e ¥ dr = / 1 x e 72dt = sinGx/Th) e1oTh/2 & sinG/Ti) h)e—f“’Th/ 2
T 7fT
=0 =0

(2.23)

Figure 2.19 shows the time and frequency response of the zero-order hold function
for various values of the hold time 7j. The mathematical formulation of the
amplitude function is often summarized to “sin(x)/x” behavior. Some authors use
“sinc(x)”. The integral of the function sin(x)/x belongs to the mathematical class of
Dirichlet integrals, with as property:

f Sir;(x) dx = 712 (2.24)

x=0

The last term in Eq.2.23 is ¢ 7°7/2 which represents a delay in the time domain.
This delay 7},/2 is introduced as the value of the signal that was first concentrated
in the sample moment is now distributed over the entire hold period. The average
value moves from the sampling moment (the edge of the clock pulse) to the middle
of the hold period.

A zero response occurs at frequencies equal to multiples of the inverse of the hold
time. Obviously signals at those frequencies complete one or more complete periods
in the hold time and exactly average out. For short hold periods approximating a
Dirac function, this zero moves to infinity and the transfer of the sample-and-hold
circuit is flat over a large frequency range. If 7, becomes equal to the sample period
T, the transfer function shows a zero at the sample rate and its multiples.

The amplitude response in the frequency domain is a representation of the
average energy over (theoretically) infinite time. In the time domain sample values
and consequently zero-order hold values can occur with amplitudes equal to the
maximum analog input amplitude. A signal close to half of the sampling rate can
show in one time period a small amplitude while achieving a value close to the
full range input signal at another time instance depending on the phase relation of
the signal and the sample rate. Still this signal has over infinite time an averaged

"Formally the result of a Fourier transform reflects the intensity of a process or signal at a
frequency. Therefore the result has the dimension “events per Hz” or “Volt per Hertz.”
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“ T H(o)|

1fino"™

Jo=T, [H(w)|
time — f 2f, 3f, frequency

Fig. 2.19 The hold time determines the filter characteristics of a sample-and-hold function

— time

/_\
' 2f's frequency

Fig. 2.20 Time and frequency response of a sample-and-hold signal close to half of the sampling
rate

attenuation of 3.9dB. In that sense the attenuation in Fig.2.20 is different from
a frequency transfer function of, e.g., an R-C network, where the attenuation at a
certain frequency is independent of the phase.

Example 2.10. Can the sin(x)/x frequency behavior of a zero-order hold circuit be
compensated by a high-pass analog filter?

Solution. In the frequency domain the amplitude loss can (partially) be compen-
sated by means of a first-order high-pass filter, e.g., a voltage divider of two resistors,
where the top resistor is shunted with a capacitor. The transfer characteristics are

|Hhigh—17ass(f)| =1+ 47T2f27:2 =1+ anfzrz - 774f4774/2 +...
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|Hzer0—0rder(f)| = % =1- ﬂ2f2T3/3' + ﬂ4f4Tj/5' — ...
TTjls

With ¢ = T,/+/12 both functions will compensate for low frequencies, as both
second terms add up to zero. However, beyond f;/2 the time-continuous nature of
the high-pass filter and the zero-order hold function will no longer match. Moreover
the frequency response is an average over infinite time, and the instantaneous time-
domain response will show at certain phase relations large excursions. Finally in
such a setup the high-frequency noise will be amplified.

Example 2.11. Derive the transfer function for a first-order hold function in
Fig. 2.18 (middle).

Solution. The transfer is now:

Y1) = x(n — DTy + ((nTy) — x(n — I)Ts)Ti, T, <1<+ DT,

N

If the time shift "7 is ignored, the Fourier transform leads to a frequency domain
representation for the transfer function:

t=T; t=T; 2
—joTs —jot —joT, ! —jwt 1 B ewTS
e e dr + (1—e -‘)er/ dt = Ty - (2.25)
t=0

s JoT;

=0

Rearranging the terms, extracting the time delay e 7®7s/2

yields for the amplitude function:

and normalizing with T

. 2
sin(/T, 3)) (2.26)

)| = ()

The first-order reconstruction leads to a better suppression of higher-order aliases.

2.5 Noise

In the previous section the sampling process was analyses from a mathematical
perspective. In microelectronics a sampling circuit is realized with a switch and a
capacitor. And with that, the standard problems of physical implementation start.
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2.5.1 Sampling of Noise

Figure 2.21 and Table 2.2 show an equivalent schematic of the basic sampling circuit
consisting of a switch and a storage capacitor. Compared to the ideal situation
two non-ideal elements have been added to the switch: the switch resistance R
combining all resistive elements between source and capacitor. The resistor is
impaired with thermal noise, 2 consequently a noise source is added e,,,;;. Whose
spectrum reaches far'> beyond the sampling rate of the switch.

€noise = ¥V 4KTRBW 2.27)

with Boltzmann’s constant k = 1.38 x 1072* m?kgs™> K~! and the absolute
temperature 7' in Kelvin. This formulation expresses the noise in the positive
frequency domain from 0 to co.

When the switch connects to the capacitor, a low-pass filter is formed by the
resistor and the capacitor. The average noise energy on the capacitor is therefore
a filtered version of the noise energy supplied by the resistor and is filtered by the
complex conjugated transfer function of the RC network. Using standard defined
integral tables:

R

e

VoutVire
— kTIC

I Chold noise

Fig. 2.21 Switched capacitor noise sampling: the series resistances act as a noise source

noise " ‘swit

Tal.)le 2.2 kT/C noise for Chold Vire = kT/Chuld at T = 300°C
various capacitor values

10fE | 650 WV,

100£F | 204 WV,

1pF 65 WV s

3pF 35V

10pF | 20.4 1V,

30pF | 11.8 10V,

2Thermal noise in electronics is modeled as a noise source connected to a real impedance. For
circuit calculations this works, but impedances are not noisy, electrons with random energy are.
13As thermal noise is an atomic phenomenon, its frequency span ends where sub-atomic mecha-
nisms, as described by quantum physics, start. A rule of thumb limits the standard noise spectrum
at 1 THz.
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i . f 4KTR df kT N kT (2.28)

VE poise = —_ = Vemoise = \| — .
C,noise 1+ (2]Tf)2R2C2 C G C

f=0

The simple and well-known expression for the noise on a capacitor is called'*:
“kT /C-noise.” Comparing this result to the power of the sine wave vggnu () =
A sin(wt) over the time period 1/w results in the signal-to-noise ratio SNR:

Psignal _ 1;2/2

SNR = =
Pnoise kT/C

(2.29)

The magnitude of the resistor (the origin of the noise) is not part of this first-order
expression. On one hand, an increase of the resistor value will increase the noise
energy proportionally, however, that same increase in resistor value will reduce the
relevant bandwidth also proportionally.

The same result follows from classical thermodynamics. The equipartition
theorem says that in thermal equilibrium, the thermal energy is equally distributed
over all degrees of freedom. For a capacitor there is only one degree of freedom:
its potential. Therefore energy contained in the thermal fluctuation of carriers
CV¢ oise/ 2. €quals the thermal energy for one degree of freedom: k7/2. Solving
the equation results again in Eq.2.28. Obviously there is no resistor involved. In
simple terms one can say that the thermo-energetic electrons on the capacitor plates
will move every now and then to the voltage source and back again due to their
thermal energies. So the voltage over the capacitor fluctuates with time. When the
sample switch opens the charge situation freezes.

If the noise spectrum is sampled in Fig.2.22, each multiple of the sampling
frequency will modulate the adjacent noise back to the base band, where all the noise
bands accumulate. The same happens to all other bands, thereby hugely increasing
the impact of noise.

Equation 2.28 holds for the time-continuous case, where the switch is perma-
nently conductive, but holds equally for the sampled situation. Although the signals
look completely different in the time domain, both the time-continuous and the
sampled noise signal have values taken from a normal distribution with a zero-value
mean and a variance vZ. ., = kT/C.

This kT / C noise can be interpreted as a flat spectrum in the band from DC to f; /2
as long as the RC cut-off frequency largely exceeds the sample rate. The spectral
power noise density (power per Hz) of kT /C noise in a sampled system is equal to
kT /C over half of the sample rate:

4Very annoying “T” for absolute temperature as well as for fixed time periods.
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Fig. 2.22 Noise sampling, voltage on the capacitor: left in the time domain, right in the frequency
domain

Fig. 2.23 Band-limited noise 2
is sampled in a similar |Ns((,0)| H
manner as normal signals. :
Top: this noise has a finite —
bandwidth, bottom: after 2nfRC=1
sampling. The power spectra 1 2 3 : H 5
add up and are mirrored - .
0 f, 2f
INs(c)[?
—5\/__\/_
—— E
3
2
1
0 fs frequency 2f5
S 24T (2.30)
FSH = —— .
Cfs

If the RC cut-off frequency is low with respect to the sample rate, the noise
bandwidth must be treated in a similar fashion as a normal signal band, see, e.g.,
Fig.2.23. The power noise density of the time-continuous network with the same

resistor and capacitor having a cut-off frequency of frgce = 1/27RC in its pass-
band is



2.5 Noise 33

2kT
7 Cfre

Syrc = 4kTR = (2.31)

The comparison of the two noise densities in Eqs.2.30 and 2.31 shows that in
the sampling process the noise density increases by a factor mfgc/fs. This factor
corresponds to the number of bands that stack up in Fig.2.23. This considerable
increase in noise density causes major problems when designing high-resolution
converters.

The switching sequence can influence the total noise accumulated in the circuit.
In switched capacitor circuits, every switch cycle will add one portion of kT/C
noise. As these noise portions mostly are uncorrelated, they will sum in and root-
mean-square way. Root-mean-square is the root of the effective power in a sum of
signals. Also in situations where a switch discharges the charge of a capacitor into a
fixed voltage or even ground potential, K7/ C noise will appear (sometimes referred
to as “reset-noise”).

This kT /C noise term presents a lower boundary in choosing the value for
a sampling capacitance. An analog-to-digital converter is signal-to-noise limited
because of this choice. A circuit with a total sampling capacitance of 1 pF will
be limited by a noise voltage floor of 65 uV,, at room temperature. A larger
capacitance value will require IC area, more charging current and will directly
impact the power budget.

Example 2.12. An uncorrelated white noise source with a total effective value of
1 mV s in the band limited to 120 MHz is sampled at 10 Ms/s. What is the noise
density of the source? What is the noise density after sampling? What is the rms-
value of the noise signal after sampling?

Solution. The effective noise level of 1mV,,s means that the noise has an
accumulated power equal to (1 mV)? over the impedance. That allows a calculation
of the noise density of the noise source: S,, = (1mV)?/120 MHz. After sampling
all noise bands higher than f;/2 are folded back to the baseband. In this case the
frequency range between DC and 5 MHz will contain 24 uncorrelated noise bands.
The noise density is consequently: S,, s = 24 x (1 mV)?/120 MHz. The total noise
after sampling is found from integration of the noise density over the band of 5 MHz,
yielding again an effective noise level of: 1 mV,,,,. What about the noise in the band
beyond 5 MHz? The noise density in those bands is equally high and real, but during
the reconstruction process no more energy can be retrieved than what is available in
one band.

Example 2.13. In a process with a nominal supply voltage of 1.2V a sinusoidal
signal of 100 MHz and 500 mV p.at—pear is sampled. A SNR of 72dB is required.
Calculate the sampling capacitor and estimate the circuit power.

Solution. 500 MV pegt—peax corresponds to a root-mean-square “rms” voltage of
500/2\/@) = 177 mV,,,. With a signal-to-noise ratio of 1072/20 = 4000
(corresponding to a 12 bit ADC performance) the k7'/C noise must be lower than
177 mV,,,;/4000 = 44uV,,;,, and a minimum capacitor of 2.15pF is needed.
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A sinusoidal signal with a frequency of 100 MHz requires a current of i = w X
C x 500mV pegk—peak = 0.675MApoak—peak- This charge on the capacitor has to be
supplied from an electronic circuit that allows only current in one direction, a bias
current of, e.g., 1 mA can be used. Now the current swings from 162.5 to 837.5 L A.
In first order this circuit requirement will consume 1.2 mW.

Example 2.14. A signal is sampled on two parallel connected equal capacitors:
Cy, Cy and C, = (. After sampling the capacitors are stacked in order to double
the signal voltage, see Fig.2.24. Does the signal-to-noise ratio change between the
parallel and stacked connection?

Solution. After sampling a voltage V is stored on each capacitor. A noise contri-
bution v, = kT/(Cy + C,) is added and the signal-to-noise ratio is determined
by the rms value of the signal over the noise. This noise gets “frozen” after the
sample switch is opened, the same value holds for both capacitors, this is a rare
situation where the noise is correlated. In first approximation the stacked capacitor
construction will double the signal and its rms value, but the noise contribution
on both capacitors doubles too, as these are correlated. The signal-to-noise ratio
remains the same.

Ready? Not so fast, time for a second look!

There is another sampling moment that arises when the connection between
both capacitors is opened in order to perform the stacking. Until that moment, the
electrons with their thermodynamic energy can move freely between the capacitors.
When the connection between the capacitors is broken, a new k7/C sampling event
happens. This time the noise between the top plates will be equivalent to the noise
of the series connection of C; and C,, which equals 2kT/C; if the capacitors are
equal. The voltage over every capacitor is k7/C and both voltages are correlated,
but with opposite sign. After stacking these two opposing noise contributions will
cancel! And the signal-to-noise ratio will indeed be the same.

V+Vnoise,C1

V+Vnoise,C2

et
C, |+ c2|+ C1 |+ C2|+ C, |+-
Fig. 2.24 A signal is sampled on two equal capacitors, after which the capacitors are stacked to
double the signal
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2.6 Jitter

2.6.1 [Jitter of the Sampling Pulse

In the previous analysis it is assumed that the sample moments are defined with
infinite precision. In practice all signals that define time moments have limited
bandwidths, which means that there is no infinitely sharp rising edge. Oscillators,
buffers, and amplifiers are all noisy devices [23-26], so consequently they add noise
to these edges in Fig.2.25. If noise changes the switching level of a buffer, the
outgoing edge will have a varying delay with respect to the incoming edge. This
effect is called: jitter. Jitter causes sample moments to shift from their position, and
consequently the sampling circuit will sample the signal at another time moment.
Next to noise-like components also signal-related components may influence the
clock edge through limited power supply rejection, capacitive coupling, etc. Jitter
from noisy sources will result in noise contributions to the signal, jitter from
deterministic sources leads to tones (from fixed carriers) or to distortion (if the jitter
source is correlated to the signal). Examples of systematic offsets in timing are:
skews due to unequal propagation paths of clocks, interference from clock dividers,
and clock doubling by means of edge detection. Random “jitter” variations occur not
only during the generation of clock signals in noise-sensitive oscillators and PLLs,
but also during transportation of timing signals jitter can be added, e.g., in long
chains of clock buffers fed by noisy digital power supplies, capacitive coupling,
and varying loading. A practical value for jitter on a clock edge coming from a
digital CMOS environment'> is 30-100 ps,,,s. If an advanced generator is used in
combination with bandpass filters, the sampling pulse jitter can be reduced to levels
below 100 fs,,,;. The contributions of dedicated high-power on-chip circuits can be

Ideal sample
moment

Real sample
moment

e
T — time

Fig. 2.25 The ideal sampling moments (dashed) shift in an arbitrary fashion in time if the sample
clock is disturbed by jitter

15 A peak—peak value is often used for jitter, but peak—peak values for stochastic processes have no
significance if the process and the corresponding number of observations are not identified.
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Fig. 2.26 The ideal sampling
moment is affected by jitter
and an amplitude error occurs
At) AT
/| AA(T,)
s

/At

nTs — time

brought back to a similar level. For example, Ali et al. [219] reports an overall jitter
of 83 fs, .

The above description specifies the cycle-to-cycle deviation. In some systems
a long-term jitter component can be relevant, e.g., for the display of a signal on
a screen via a scanning mechanism, the jitter between two samples in the scan
direction is determined by cycle-to-cycle jitter, while two samples arranged above
each other are given by a long-term jitter. In monitors these samples can be some
1000 clock cycles apart. This jitter is specified over a longer period and requires
some extensions of the following analysis. Some more in the discussion of phase-
noise in Sect. 2.6.2.

Figure 2.26 shows the effect of shifting a sample moment. If a sinusoidal signal
A(f) = A sin(wr) with a radial frequency w is sampled by a sample pulse with jitter,
the new amplitude and the amplitude error are estimated as:

AT, + At(f)) = Asin(w x (nTs + At())  (2.32)

dA sin(wt)

7 x At(nTy) = wA cos(wnTy) At(nT;) (2.33)

AA(nTy) =

The time error is a function of the time itself. The amplitude error is proportional to
the slope of the signal wA and the magnitude of the time error.

If the time error is replaced by the standard deviation o describing the timing
jitter variance, the standard deviation of the amplitude o, is estimated as:

dA(nTy)\’ R
o2 (nT,) = ( EZ )) 02 = w?A? cos®(wnTy)o} (2.34)
Averaging this result over all values of nT§ gives a jitter error power of:
2322
w-A’o,
o2 = J (2.35)

2

When the origin of the jitter is a flat spectrum as for thermal noise, this jitter noise
will appear as a flat spectrum between 0 and f;/2 and repeats at every higher band.
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Fig. 2.27 With increasing signal amplitude over a fixed thermal noise level the signal-to-noise
ratio increases. However when the amplitude is such that jitter becomes the dominant error, the
signal-to-noise ratio flattens

Comparing this result to the power value of the sine wave A?/2 over the time period
T = 1/w results in the signal-to-noise ratio due to jitter:

P, A2/2 1\2 1 \2
SNR = el _ é:(_) :( ) (2.36)

itter o wo; 2nfo;

or in deciBel'® (dB):

1
SNR = 20 '%log (—) = 20"%og (

wOo;

2nfo,) (2.37)

For sampled signals the above relations hold for the ratio between the signal power
and the noise in half of the sampling band: O...f;/2. This simple relation estimates
the effect of jitter, assuming no signal dependencies. Nevertheless it is a useful
formula to make a first order estimate. For wide-band signals with a uniform power
distribution between O, . .., f [27] gives a 3x higher signal-power to noise ratio or
a 4.8 dB more favorable jitter SNR. Note that the jitter power is independent of the
sample rate, consequently the jitter power density (power per Hertz) is inversely
related to f;

The linear dependence of jitter noise to the input frequency and to the signal
amplitude often allows a rapid identification of jitter in a time-discrete system. For a
given signal frequency the jitter power increases linearly with the amplitude, leading
to the flattening of the SNR versus input amplitude curve [28], see Fig. 2.27.

16For some reason deciBel is spelled with single “I” although it was named after A.G. Bell.
Similarly the letter “a” was lost in “Volta.”
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Fig. 2.28 The signal-to-noise ratio depends on the jitter of the sampling signal and the frequency
of the time-continuous signal
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Fig. 2.29 The signal-to-noise ratio versus the signal frequency of analog-to-digital converters
reported on the International Solid-State Circuits conferences in the years 2000, 2004, 2008,
2012, and 2016. (from: B. Murmann, “ADC Performance Survey 1997-2016,” Online: http://web.
stanford.edu/~murmann/adcsurvey.html)

Figure 2.28 shows the signal-to-noise ratio as a function of the input frequency
for three values of the standard deviation of the time jitter.

Figure 2.29 compares the jitter performance of analog-to-digital converters
published on the International Solid-State Circuits conferences in the years 2000,
2004, 2008, and 2012. It is obvious that a jitter specification better than o; < 1 ps
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Table 2.3 Jitter

i Part Description Jitter
specifications of some ” "
commercially available parts 20117 | Quartz 50-170 MHz 3 PSrms
“8002” | Programmable oscillator 25 PSms
“1028” | MEMS+PLL combi 100 MHz | 95 pSs
“6909” | RC oscillator 20 MHz 0.2%
“555” | RC oscillator/timer >50 18,5
Signal
frequency
f
Sample |  TTTTHTTTTTTTTC I CNR
frequency B }7"1’&{ ******
f-f, f .+,
Output CNR x fif
spectrum S S M s
ff, f ff f.-f ff —
" m s S frequency

Fig. 2.30 lJitter around the sampling frequency will produce side spectra around the input tone

is a challenge. The comparison of the best converters in every year shows that little
progress was made over the last decade.

Table 2.3 indicates some jitter numbers from commercial timing components.

From a spectral point of view, the jitter spectrum modulates the input tone.
Therefore the jitter spectrum around the sampling pulse will return around the input
frequency as in Fig. 2.30. Translated to a lower frequency the time error due to jitter
will produce a proportionally smaller amplitude error. Therefore the carrier-to-noise
ratio (CNR) improves.

Equation 2.35 has been derived for a single sine wave as a signal. In commu-
nication systems (from ADSL to 5G) multi-tone signals are applied. These signals
contain large number of carriers N, up to 1024. All carriers behave as independent
sine waves, and the probability that all carriers are at a maximum is far below the
system error level of 107*—1079, as is typical for these systems. Instead of allowing
an individual carrier amplitude of just A /N, more commonly the amplitude of the
i-th carrier is approximated by Zogakis and Cioffi [29] and Clara and Da Dalt [30]

Cr is the so-called crest-factor: the ratio between the maximum signal and the rms
value. In ADSL Cr & 5.6. The jitter error power per carrier is given by Eq.2.35.
Summing the power over all N, carriers yields
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i=Nc i=Nc 92720 2 2 12,2
2 W;A0] Wi A0y 238
GAc,i - C2N ~ C2 ( ) )
i=1 i=1 £ F
In this coarse approximation w4 is the frequency of the tone at i = N./2.

Obviously the jitter error power is far lower than in the sine wave case. More
accurate analysis is found in [29, 30].

If jitter is caused by delay variations in digital cells as shown in Fig.2.31,
the jitter can also contain signal components and strong spurious components,
e.g., linked to periodic processes in the digital domain. These contributions are
demodulated similar as in Fig. 2.30 and are the source for spurious components and
signal distortion. Therefore digital circuits that generate and propagate the sample
pulse must be treated as if these were analog blocks.

Example 2.15. The clock buffer in Fig. 2.31 has edge transition times of 70 ps. How
much jitter can be expected if a random noise of 60 mV,,, is present on the power
supply of 1.2V.

Solution. Due to voltage changes on the power supply lines, the currents inside
the buffer will change, in first order proportional to the voltage change. As a
consequence the slope of the transition will vary linearly. The mid-level switching
point is now reached after 35 ps delay from the input mid-level passing. A voltage
change of 60mV/1.2V= 5% will create a 5% delay variation on the slope and
the delay of 35 ps. So the expected jitter is 1.75 ps,,,s per edge. As the same voltage
variation applies to two inverters, the overall jitter is 3.5 pS;u;s-

Example 2.16. In Example 2.6 the sample sequence is distorted by a random jitter
component of 5ps,,,. Is it possible to discriminate in the sampled data domain
between a 15 MHz input sine wave or a 135 MHz input sine wave?

Solution. With perfect sampling both signals will result in equivalent wave forms
in the sampled data domain. However, the presence of jitter allows to discriminate,

€hoise €hoise

\)
out

bl

Fig. 2.31 A clock buffer for generating the digital sample signal can add to an ideal sample signal
some noise of the buffer transistors. Also fluctuations on the power supply will affect the switching
behavior of the buffer, causing uncertainty on the edges and jitter in the sampling
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as the resulting SNR for a 15MHz input signal is SNR = 1/2nf;o, = 66.5dB,
while the SNR for 135 MHz equals 47.5 dB.

Example 2.17. Calculate the jitter due to thermal noise that an inverter with
dimensions of NMOST 0.2/0.1 and PMOST 0.5/0.1 in a 90-nm CMOS process adds
to an edge of 50 ps (bottom-top).

Solution. Every transistor adds noise that is related to the transconductance in
the channel: i,y = ~/4kTBWg,,. If the inverter is at its mid-level point (0.6 V)
both transistors will be contributing to a total noise current of: inpisentp =
\/ 4kTBW (m.n + &m,p)- This noise corresponds to an input referred noise voltage of
Vnoise.n+p = inoise,n+p/(gm,n + gm,p) = \/4kTBW/(gm.n + gm,p)- With the help of the
parameters in Table 4, an equivalent input noise voltage is found of 0.62 mV,,,, in
a 10 GHz bandwidth. This bandwidth is an approximation based on the observation
that an rising edge of 50 ps followed by a similar falling edge limits the maximum
frequency of the inverter to 10 GHz. The jitter order of magnitude is estimated as:
Ot/fedge = vnoi.ve,n+p/VDD and o; = 25 fs,,,.

2.6.2 Phase-Noise and Jitter

For sampling systems the variation in time moments or jitter is an important
parameter. Jitter is here described as a random time phenomena. In RF systems
the same phenomenon is observed in the frequency domain and is called “phase-
noise.” The events in oscillator and PLL spectra, such as in Fig.2.32, are specified
at the offset frequency with respect to the ideal oscillation frequency f,,. A spectrum
of the signal from a phase-locked loop or oscillator circuit shows some typical
components, see Fig. 2.32:

*  White noise in the output (no dependency on the frequency).

e White noise that modulates the oscillator shows up in the power spectrum
with a decreasing frequency slope in the oscillation offset frequency. 1/f noise
generates an even faster decreasing slope in the spectrum with a low offset
frequency.

Carrier
To Noise
Ratio

f

o

frequency time

Fig. 2.32 Left: the frequency spectrum of an oscillator, right: time jitter
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e PLLs multiply a reference frequency. Often spurious tones are visible on both
sides of the generated frequency at an offset frequency equal to the reference
frequency.

* Undesired tones entering the PLL via substrate coupling can modulate the output.

An instantaneous phase deviation A6 offsets the zero-crossings of a sinusoidal
signal of frequency w, to yield a time deviation. The time variation At for a radial
frequency w, with a corresponding frequency period T,, and the phase deviation

A0 = w,Ar of the same signal, essentially describe the physical phenomena
[28, 31]:
At A6
—_— = — (2.39)
T, 21

From this instantaneous relation between time offset and phase offset, a first-order
indication of the relation between jitter and phase-noise is obtained. Both originate
from the same stochastic source. Now the time-domain offset At is replaced by its
time-averaged variance: otz,rm_v. In order to obtain the phase-error variance 092.”7”, the
spectral noise density Sg(f) must be integrated over both side lobes to give the total
equivalent phase noise power!”:

Jhigh
2 [ syar
2 2
Ot,rms _ (09,rms) _ Jiow (2.40)
T, 27 (2n)?

The span of integration is limited by a lower and higher boundary of the offset
frequency. The integration cannot start at « = w, Hz due to the singularity in
the spectral density. Leaving out the frequencies below 10~% means ignoring 3-
years repetitive effects, but more often a lower boundary is chosen in the Hz to
kHz range. Obviously one should not expect a 99.9 % prediction level. The choice
for f,,, also depends on whether the cycle-to-cycle jitter is required or longer-term
jitter variations. The energy in the low-frequency second-order lobes of the phase
spectrum is responsible for the increase of long-term jitter over cycle-to-cycle jitter.
In the extreme case of only white phase noise, the contribution of the low-frequency
band would be negligible and the long-term jitter would be comparable to the
cycle-to-cycle jitter. Translating various forms of phase-noise densities in time jitter
clearly requires an assumption of spectral density function for the phase noise [23—
26, 31].

Example 2.18. Calculate the jitter from the spectrum in Fig. 2.33.

"Here a strictly formal derivation requires some 10 pages, please check out specialized literature,
e.g., [31].
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Fig. 2.33 The phase-noise spectrum of an oscillator signal at 2 GHz

Solution. f is the offset frequency from the carrier. The spectrum shows four typical
regions: from f = 1kHz to 10kHz the slope is f > corresponding to the 1/f noise
in the oscillator, the next section with a slope of f_2 is due to thermal noise in
the oscillator. The two right most regions with slope f~! and the floor are due to 1/f
noise and thermal noise in buffers. This spectrum appears on either side of oscillator
frequency fy. The level of the floor is given as —144 dBc/Hz. Corresponding to a
power of 4.107!° of the carrier per Hz bandwidth. The curve is approximated with
the following equation:

2 3
Sy(f) = [1 +J;—j + (]—f) + (J;) }sﬂw(f) 2.41)

where fi = 1MHz, f, = 100kHz, f; = 10kHz and the range of interest is
limited from 1kHz to 2 GHz. Formally the phase area under the curve is found
by integration and substitution of the frequencies.

2GHz

(f AW + 15/ +F312%) Spoor|;—y e (2.42)

A coarse approximation allows to determine the contribution in each section of the
curve, which gives an insight where optimization of the circuit is most beneficial:

((2.10° = 10°) + £i(In(10%) — In(10°)) + £7(1/10* — 1/10°)
+£5(1/10° — 1/10%)/2) 4.107"
= (1999 x 10° 4+ 2.3 x 10° + 0.9 x 10° + 450 x 10°) 10~ "
=98x107°
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With the help of Eq.2.40 the time jitter is found: 0.35 ps,,;. This is a real coarse
estimate, e.g., a popular spread sheet called the “Allen Variance” simply adds 3 dB
to the noise density to compensate for underestimations. Note that the thermal noise
and the 1/f noise in the oscillator dominate.

2.6.3 Optical Sampling

The o, = 0.1,...,10 ps,y,s range for jitter is typical for electronic design and
ultimately linked to physical processes such as thermal noise and 1/f noise.
Mode-locked lasers can generate pulse trains with 200 ps width and a jitter of
approximately ten femtoseconds. Building sampling devices triggered by these
lasers is a challenge, as the straight-forward solution to capture the laser pulses with
diodes would immediately affect the performance. An alternative solution [32] uses
GaAss finger structures and attributes o, = 80 fs,,,; jitter to the sampling process.

2.7 Time-Discrete Filtering

Time-discrete filtering forms a subset of the time-discrete signal processing tool
box, see, e.g., [16, 17] and can be found in oversampled digital-to-analog converters,
Sect. 10.1, and in sigma-delta modulators, Sect. 10.4. Time-discrete filters play a
role in the conversion architecture decisions as well as in the necessary post-
processing.

2.7.1 FIR Filters

Sampled signals can easily be delayed in the time-discrete domain. In the analog
time-discrete domain, switched capacitors transfer charge packets from one stage
into another stage. By means of appropriate switching sequences various time delays
are implemented. After amplitude quantization samples can also be delayed in the
digital domain via digital delay cells, registers, and memories. Frequency filters
in each domain are realized by combining the time-delayed samples with specific
weighting factors or multiplying coefficients.

Operations and functions in the discrete-time domain are described in the z-
domain. If f(n) = f(nT;),n = 0...00 is a sequence of values corresponding to
the sample value of f(¢) at points in time ¢ = nTj, this sequence can be described in
the z-domain as:
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n=oo

f@ =) fmz"

n=0

where z is a complex number in polar representation z = re/*:, which resembles the
Laplace parameter s = « + jo with r < €%, © < .. The important difference
is that the z-domain describes a sampled system where the maximum frequency is
limited to half of the sample rate. While w is expressed in rad/sec, w, <> Ty is
expressed in radians and abstracts from physical frequencies. The s-plane and the
z-plane can be mapped on each other. Due to the polar description the jo axis in the
s-domain becomes a unity circle in the z-domain, with the DC point at z = 1e° = 1.
Poles and zeros in left-side of the s-plane resulting in stable decaying exponential
functions in the time domain move to the inner part of the unity circle in the z-
domain, Fig.2.34 (right).

A delay of one basic sample period is transformed into the function z~'.
A frequency sweep from O to f;/2 results in a circular movement of the z vector
in a complex plane from +1, via 0 4 j to —1. For the frequency range f;/2 to f; the
z vector will turn via the negative imaginary plane and return to z = 1. Figure 2.35
shows two integrators described in the z domain. The left structure adds the present
sample to the sum of the previous samples. After the next clock the output will equal
that sum and a new addition is performed. The right topology does the same, here
the sum is directly available. The transfer functions for both structures are

w f
Laplace I z-domain

Fig. 2.34 The complex plane for the Laplace transform (s-plane) and the time-discrete plane (z-
plane). A real pole, a pair of imaginary poles and a pair imaginary zeros are depicted

o)y e Vel ? Voul)

N .

Fig. 2.35 Two integrators in the z-domain




46 2 Sampling

Z_]

H@) =17

HE) = ——
1

These integrator formulas indicate a mathematical pole at z = 1. The transform
to the Laplace domain z < ¢'7s shows that z = 1 corresponds to s = 0 or DC
conditions. And indeed a DC signal on an ideal integrator will lead to an unbounded
output. Close to z = 0 the left integrator has zero output while in right-hand
integrator just passes the signal.

The most simple filter in the time-discrete domain is the comb filter. The addition
of a time-discrete signal to an m-sample periods delayed signal gives a frequency
transfer that can be evaluated in the z-domain:

Hz=1xz"

This function has zeros at all frequencies where z7™" = =1, resulting in m zeros
distributed over the unity circle. Using the approximation z <> €'’ results in:

H(S) =1+ e—Sme — e—meS/Z(e+smTJ/2 + e—smTS/Z)
|H(w)| = 2| cos(wmT,/2)|, addition
|H(w)| = 2| sin(wmT,/2)|, subtraction (2.43)

where the sign at the summation point determines whether the cosine response (with
equal signs) or the sine response (with opposite signs) applies, see Fig. 2.36. In this
plot the zeros are observed in the frequency domain.

Comb filters are mostly applied in systems where interleaved signals have to be
separated. An example is the analog composite video signal, where the frequency
carriers with the color information are interleaved between the carriers for the
luminance signal.

The comb filter adds signals to their delayed versions. A more general approach
uses a delay line where each delayed copy is multiplied with its own weight factor,

H(w) 20
—+1 indB
Vin(nTy) Vou(nT)
N st —+/>_O—> 0
—+1© @
V,u(z
Vin(z) —= zm + °

- -40

0.0 frequency f./2

Fig. 2.36 The comb filter as sampled data structure and in the z-domain. The frequency response
shows with a solid line the sine response (minus-sign at the summation), while the dotted line
represents the cosine response (plus-sign)
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Vout(nTs)

Fig. 2.37 The general structure of a finite impulse filter

see Fig.2.37. A filter with this structure is known as a “Finite Impulse Response”
filter (FIR-filter). The term “finite” means that any input disappears from the filter
after passing through the N delay elements. In the summation the signals from the
different delay elements can enhance or extinguish each other depending on the
periodicity of the signal with respect to the delay time and the multiplication factor.
The filter designer can adapt the filter characteristic through these multiplication
coefficients or weight factors. Similar to the time-continuous filters the discrete-
time transfer function defines the relation between input, filter transfer function,
and output in the time domain with a convolution:

k=00

Y(Ty) = Y h(k)x(nT, — kT,) (2.44)
k=0

Applied to the filter in Fig. 2.37, this gives:

k=N—1

Vou(nTe) = Y axVin((n — k)T, (2.45)
k=0

An intuitive way of realizing what happens in an FIR filter is to imagine an endless
row of delayed samples. Over this row a window defined by the FIR filter length is
moved.'® The z-transform results in a description of the transfer of an FIR filter:

k=N—1

Vout(z) — H(Z) — Z ClkZ_k (246)
k=0

Vin(2)

In order to transform this transfer function from the discrete time domain to the
frequency domain, the term z ™! is substituted by e77s which results in:

181n financing a monthly moving average is a very simple FIR filter with 12 taps and simply “1” as
multiplication factor.
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k=N—1

Hw)= Y ae ™" (2.47)
k=0

This time-continuous approximation is only applicable for a frequency range much
smaller than half of the sample rate.

Some important properties of this filter are related to the choice of the weighting
factors. Suppose the values of the coefficients are chosen symmetrical with respect
to the middle coefficient. Each symmetrical pair will add delayed components with
an average delay equal to the middle position. If the delay of each pair equals
NT;/2, then the total filter delay will also equal N7,/2. The same arguments
holds if the coefficients are not of equal magnitude but have an opposite sign
(“anti-symmetrical”). This “linear phase” property results in an equal delay for all
(amplified or attenuated) signal components and is relevant if the time-shape of the
signal must be maintained, e.g., in quality audio processing."’

Mathematically the constant delay or linear phase property can be derived from
Eq. 2.47 by substitution of the Euler’s relation’:

el = cos(wTy) — jsin(wTy) (2.48)

After moving the average delay NT,/2 out of the summation, real and imaginary
terms remain:

k=N/2—1
H(w) = N2 3™ (g + ay—y) cos(kaT,y/2) — jla — ay—y) sin(koTy/2)
k=0

(2.49)
Without violating the general idea, N has been assumed here to be even. If the
coefficients a; and ay—; are equal as in the symmetrical filter the sine term
disappears. The cosine term is removed by having opposite coefficients in an
asymmetrical filter. Both filters have a constant delay. Depending on the symmetry
and the odd or even number of coefficients the filters have structural properties, e.g.,

an asymmetrical filter with an even number of coefficients has a zero DC-transfer.
A filter that averages over N samples is designed with coefficients of value 1/N.
A simple transfer characteristic can be determined by hand for a small number of
coefficients. More complex filters require an optimization routine. A well-known
routine was proposed by McClellan, Parks, and Rabiner (MPR or the “Remez
exchange algorithm”) [33]. This routine optimizes the transfer based on a number

of filter requirements.

9The human ear is sensitive to delay variations down to the microsecond range.

20The definition for Euler’s relation is: ¢™ 4+ 1 = 0. According to Feynman this is the most
beautiful mathematical formula as it is relates the most important mathematical constants to each
other.
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Fig. 2.39 A low-pass FIR filter with 48 coefficients, left is the impulse response of the filter and its
analog realization (dashed). Right is the frequency response of both plotted on a linear frequency
scale

Figure 2.38 shows a number of terms to define various specification points. Next
to that the number of delay elements N, the number of pass and stop bands, and the
form of the transition between the bands are required. Some variants of filter design
programs allow to compensate alias filters or zero-order hold-effects.

Figure 2.39 shows the impulse response for a somewhat more elaborate filter with
48 coefficients. An impulse response is obtained by shifting a “1” value through the
structure preceded and followed by zero samples. An impulse response reveals all
filter coefficients. A 2-pole RLC filter transfer function with a quality factor of 0.5
is drawn in dotted lines as a comparison. The delay time is of course much shorter
than the 24 cycles of the FIR filter. However the suppression of the digital filter is
superior to a simple analog filter>! or a 7-tap filter as in Fig. 2.41.

Redesigning this filter with the same 10Ms/s sample rate and 48 coefficients
creates a bandpass filter, Fig. 2.40.

The digital time response highly resembles the ringing of a high-Q analog filter of
the same specification. The accuracy in which required filter characteristics can be

2! An equivalent analog filter would require 1012 poles.
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Fig. 2.40 A bandpass FIR filter with 48 coefficients, left is the impulse response of the filter and
its analog realization. Right is the frequency response of both

Table 2.4 Coefficient values
for the low-pass FIR filter of

Coefficient | Value

Fig.2.41 ap = as —0.06
ap = as 0.076
ay) = day 0.36
as 0.52

defined with FIR filters is clearly illustrated here. In practical realizations the price
for an accurately defined filter is the large hardware cost of the delay elements, the
coefficients and their multipliers, and the associated power consumption.

The FIR filter has been described in this section as a mathematical construction
and no relation was made with the physical reality. Some examples of fully
analog FIR realizations are found in switched capacitor circuits and charge-coupled
devices.?? Most FIR filters are implemented in the digital domain: from IC building
blocks to FPGA and software modules. In digital-to-analog conversion the semi-
digital filter uses digital delays with analog coefficients, see Sect.7.3.7.

Example 2.19. Determine with a suitable software tool the coefficients for the
structure in Fig. 2.37 to create a low-pass filter.

Solution. If the transition for the low-pass filter is chosen at approximately f;/4
coefficients as in Table 2.4 is found.

Figure 2.41 shows the time response and the frequency transfer function from
Fig. 2.37 with the coefficients of Table 2.4. In this example of a time-discrete filter
the frequency transfer is symmetrical with respect to half of the sampling rate, which
was chosen at 10 Ms/s. The spectrum repeats of course at multiples of the sampling
rate.

2In the period 1970-1980 the charge-coupled device was seen as a promising candidate for
storage, image sensing, and signal processing. Analog charge packets are in this multi-gate
structure shifted, split and joint along the surface of the semiconductor. Elegant, but not robust
enough to survive the digital era.
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Fig. 2.41 The impulse response and the frequency transfer function of a seven coefficient filter
from Fig.2.37 at a 10 Ms/s sample rate

2.7.2 Half-Band Filters

In order to reduce the complexity of digital FIR filters additional constraints are
needed. Introducing the symmetry requirement:

H() + H(w,/2 — w) = 1 (2.50)

leads to such a complexity reduction. At a frequency @ = w,/4 this constraint
results in H(w,/4) = 0.5, while the simplest fulfillment of the symmetry require-
ment around w,/4 forces a pass-band, on one side, and a stop band, on the other
side, of this quarter sample rate. Consequently these filters are known as “half-
band” filters. Substitution of the transfer function for symmetrical filters with an
odd number of N coefficients k = 0,1,...,m,....,N — 1 and with the index of the
middle coefficient equal to m = (N — 1)/2, leads to:

a, = 0.5
Amti = au—i = G, i=1,3,5...
am+i=a,,,,[=0, i=2,4,6,...
Half of the filter coefficients are zero and need no hardware to implement.

Optimizing the filter transfer for a minimum deviation of an ideal filter results in
a sin(x)/x approximation:

sin(in/2)
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Apti = i=-m,...—2,-1,0,1,2,...,m (2.51)
Table 2.5 lists the coefficients for four half band filters designed for a pass-band
from O to f;/8 and a stop band from 3f;/8 to f;/2. Figure 2.42 compares these four
half-band filter realizations. The filter with the least suppression has three non-zero
coefficients increasing to nine for 72 dB suppression.
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Table 2.5 The non-zero
coefficients for four half band
filters in Fig. 2.42 (courtesy:
E.E. Janssen)

2 Sampling
Coefficients Suppression (dB) | Ripple (dB)
a, = 0.5 20 0.8
ap—1 = am41 = 0.2900
a, = 0.5 38 0.1
Ap—1 = am41 = 0.2948
apm—3 = Ap+43 = —0.0506
a, = 0.5 55 0.014
ap—1 = ap41 = 0.3016
ap—3 = ap+3 = —0.0639
ap—5 = Ap+5 — 0.0130
a, = 0.5 72 0.002
ap—1 = Apm+1 — 0.3054
ap—3 = A3 = —0.0723
ap—s = apts = 0.0206
ap—7 = Apm+7 = —0.0037

20
[H(w)] i
indB 0 TN T
3 coeff.
-20 \\\\ ////
-40
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-80 | |\(' |
-100 I |
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120, 2 4 6 8
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frequency (MHz) —

Fig. 2.42 Four half-band filters, with 3, 5, 7, and 9 non-zero coefficients (courtesy: E.E. Janssen)

In order to obtain a small-area implementation the coefficients are rounded
integers. With integer filter coefficients no full multiplier circuit is needed but
dedicated shift and add circuits create the weighting of the signal samples.

2.7.3 IIR Filters

A drastic solution to the hardware problem of FIR filters is the “infinite impulse

response” IR filter.
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Fig. 2.43 The structure of an infinite impulse response (IIR) filter containing a feedback path from
output to the summation nodes

Figure 2.43 shows the general or canonical form of a digital IIR filter. Coef-
ficients ap to as perform the same function as in an FIR filter. In addition the
coefficients b; to by feed the output back into the delay chain. This feedback
modifies the FIR transfer. If all coefficients b; equal zero, again an FIR filter will
result.

A similarity to the RLC filter is that in both filter types the signal is circulating
in the filter. In the RLC filter the signal swings between the electrical energy in the
capacitor and the magnetic energy in the coil. In an IIR filter the signal circulates
via the feedback path. The signal frequency in relation to the delay of the loop and
the coefficients will determine whether the signal is amplified or attenuated and for
how long. The transfer function of an IIR filter is (for the mapping from z-domain
to frequency domain the approximation z = ¢/*7s is applied):

k=N—1 k=N—1 _
> a7t 3 agekeTs
k= =
H(z) = ——— & H(o) = ——— (2.52)
1— Y b* 1— Y breikels
k=1 k=1

The numerator specifies the FIR filter part, while the denominator describes the
feedback path. Both are formulated as a polynomial in z~'. For absolute stability
(a bounded input results in a bounded output signal) the zeros of the denominator
polynomial must be smaller than 1, they reside inside the unity circle of Fig. 2.34.
In theory the signal will never fully extinguish in an IIR filter. In practice, a signal
that experiences a feedback factor 1 — A will pass in the order of 1/A times through
the filter. A filter with A < 1 is called a resonator and resembles a high-Q RLC
filter. An IIR construction where the denominator has a zero term equal to “1” will
oscillate.

A sharp low-pass filter with just four delay elements as in Fig.2.44 realizes
between 2 and 4 MHz a suppression of 40 dB, which is comparable with a seventh
order analog filter.
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Fig. 2.44 The impulse response of this 4-tap IIR continues beyond four sample periods. The
frequency response of this 4-tap filter is much steeper than the response of the 7-tap FIR filter

Table 2.6 Comparison of discrete filter realization techniques

Implementation | Switched capacitor | Semi-digital filter Sect. 7.3.7 | Digital hardware

Delay Analog Digital Digital
Coefficients Analog Analog Digital
Most used As IIR/resonator As FIR Both FIR and IIR
Accumulates in sig-
Noise nal range Only from coefficients Related to word width
Tolerance Capacitor matching | Current source matching Unlimited
Depends on system require-
Alias-filter Required ments Required
Power Moderate Output related High
Performance Limited by noise Limited by noise Limited by word width

Time-discrete filters can be realized in various implementation technologies.
Table 2.6 compares three realization forms of time-discrete filters. The switched
capacitor filters are mostly used in medium specification circuits. The realization is
practically limited to 40-50 dB signal-to-noise levels.

Exercises

2.1. A sinusoidal signal of 33 MHz is distorted and generates second and third
harmonics. It is sampled by a 32 Ms/s system. Draw the resulting spectrum.

2.2. A signal bandwidth from DC to 5 MHz must be sampled in the presence of an
interferer frequency at 20 MHz. Choose an appropriate sampling rate.

2.3. An image sensor delivers a sampled-and-held signal at a fixed rate of 12 Ms/s.
The succeeding digital signal processor can run at 10 MHz. Give an optimal
theoretical solution. What is a (non-optimal) practical solution?

2.4. What is a stroboscope? Explain its relation to sampling.
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2.5. Must the choice for a chopping frequency obey the Nyquist criterion?

2.6. Set up a circuit where the signal is stored as a current in a coil. What is the
meaning of i,y = KT /L?

2.7. In Example 11.6 the available equipment can only measure signals up to
5 MHz. What can be done in order to measure the harmonic distortion of the analog-
to-digital converter at roughly 5 GHz?

2.8. The signal energy of the luminance (black-and-white) signal of a television
system is concentrated around multiples of the line frequency (15,625 Hz). Although
the total television luminance signal is 3 MHz wide, a sample rate of around 4 Ms/s
is possible. Give an exact sample rate. Why will this sampling not work for a
complete television signal with color components added?

2.9. An audio system produces samples at a rate of 44.1 ks/s. With a maximum
audio signal of —6 dB of the full-scale between 10 and 20 kHz, propose an alias filter
that will reduce the frequency components over 20 kHz to a level below —90 dB.

2.10. How much SNR can be obtained if a signal of 10 MHz is sampled with a
sample rate of 80 Ms/s with 5 ps,,,, jitter. What happens with the SNR if the sample
speed is increased to 310 Ms/s at the same jitter specification. Compare also the
SNR in a bandwidth between 9 and 11 MHz.

2.11. Design a half band filter with 19 non-zero coefficients to get a pass-band stop
band ratio of 100 dB. Use a computer program.

2.12. An analog-to-digital converter is sampling at a frequency of just 2.5x the
bandwidth. Due to the large spread in passive components, the problem of alias
filtering is addressed by placing before the converter a time-discrete filter running
at twice the sample rate and before that time-discrete filter a time-continuous filter.
Is this a viable approach? There are twice as many samples coming out-of the filter
then the converter can handle. Is there a problem?

2.13. Make a proposal for the implementation of the filters in the previous exercise
if the bandwidth is 400 kHz and a attenuation of better than 60 dB must be reached
starting from 500 kHz.

2.14. In Example 2.14 the second capacitor is twice the size of the first: C, = 2C;.
Will the signal-to-noise ratio remain the same?

2.15. A sinusoidal signal of 33 MHz is distorted and generates second and third
harmonics. It is sampled by a 32 Ms/s or a 132 Ms/s system. Draw the resulting
spectra. What sample rate do you favor?

2.16. A signal source delivers a signal that consists of three components: at 3, 4,
and 5 MHz. The signal is processed by a sampling system with an unknown sample
rate. The output contains in the 0-0.5 MHz band only frequencies at 0.27, 0.36,
0.45, and 0.46 MHz. What sampling frequency was used? Complete the spectrum
till 1 MHz.
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2.17. An RF oscillator at 2.45 GHz contains harmonic distortion products at 2x
and 3x time the oscillation frequency. The available spectrum analyzer can measure
up to 10 MHz, but has a 10 GHz input bandwidth sampling circuit with variable
sampling rate up to 10 GS/s. Advice how to measure the harmonic distortion.

2.18. A 2MHz signal is sampled by a 100 Ms/s clock with 10 ps,,; jitter. In the
digital domain the band of interest is limited to DC-5 MHz, Calculate the SNR. The
digital circuits repeat a process every 10 ms and this is the cause of the 10 ps jitter.
What is the resulting spectrum in DC —5 MHz?
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