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Abstract Mass spectrometry imaging (MSI) is a rapidly growing field of research,
with applications in proteomics, lipidomics, and metabolomics. The benefit of MSI
is its capacity to measure spatially resolved molecular information. Computational
methods are important to extracting information from MSI data for basic and
translational research. In this chapter, we examine current and emerging methods
for analysis of MSI data, and highlight associated challenges and opportunities in
computational research for MSI.

Introduction

Mass spectrometry imaging (MSI) is a large-scale experimental technique that can
yield spatially resolved information about the molecular composition of a biological
sample. MSI datasets are generated by acquiring the complete mass spectrum at
multiple points across the sample surface, yielding a three-dimensional (x, y: spatial,
e.g., tissue, and z: spectral or m/z) dataset as shown in Fig. 1.

The MSI dataset includes valuable information which is not obtainable through
similar analyses using immunohistochemistry staining or non-imaging mass spec-
trometry. In traditional histological analysis, tissue is typically stained for a small
number of molecular targets; in contrast, MSI is capable of simultaneously tracking
thousands of m/z (mass-to-charge ratio) values. Depending on the MSI acquisition
modality, each m/z value can be interpreted as a molecule or molecular fragment.
Additionally, staining can only identify known molecular targets, while the
large-scale data acquired by MSI enables discovery of sample components (and
hence, potential biomarkers). Compared to mass spectrometry alone, MSI preserves
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the sample’s spatial and morphological information. Thus, spectra corresponding to
different regions of organs, or to tumor, marginal, or normal sections of biopsies,
can be differentiated, enabling more detailed and target-specific analysis. Due to
these benefits, MSI is emerging as a popular experimental technique in proteomics
[1], lipidomics [2], and metabolomics [3] research.

Because MSI is spatially resolved, it is particularly relevant for research into
diseases which have spatially localized characteristics—particularly cancer.
Recent MSI studies have investigated cancers of the head and neck [4], brain [5],
breast [6], renal [7], stomach [8], prostate [9], colon [10], pancreas [11], and bladder
[12]. Other recent MSI studies have targeted diseases including Tay-Sachs/Sandhoff
disease [13], Behçet disease [14], Parkinson’s disease [15, 16], Alzheimer’s disease
[17], Duchenne muscular dystrophy [18, 19], Fabry disease [20], atherosclerosis
[21], and stroke and ischemic injury [22–24]. In addition, MSI has been used to
study bio-implant interfaces [25, 26] and drug distribution within tissues [27–32].

The spectral dimension of MSI data can be very large (e.g., tens of thousands of
m/z values), making computational analysis essential to interpretation. It is critical
to identify and to develop effective analytical methods for large-scale data mining,
pattern recognition, and exploration. This chapter begins by discussing several key
open challenges in MSI research. Next, the current state-of-the-art in MSI analysis
will be described, including techniques such as principal component analysis,
clustering, and classification. Additionally, several emerging methods for MSI
analysis, such as non-negative matrix factorization, will be introduced. All methods
are discussed in the context of recent MSI studies which apply them, spanning
several MSI modalities, such as Matrix-Assisted Laser Desorption/Ionization
(MALDI)-MSI and Desorption Electrospray Ionization (DESI)-MSI. Finally, a case
study in applying unsupervised analysis methods for pattern detection in MSI will
be provided.
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Fig. 1 (Left) Three-dimensional structure of MSI data. (Right) False-color visualizations of
multiple m/z values from MSI datasets of mouse models of Tay-Sachs/Sandhoff disease
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Challenges

As will be described in greater detail in the following sections, much progress has
been made in identifying and developing analytical methods for pattern detection in
MSI data. Research on this topic is still highly active. In particular, we highlight
three new areas of interest in computational MSI research.

Challenge 1: Integration of MSI Data with Complementary
Imaging Modalities

An emerging area of interest in MSI data analysis is the integration of MSI data to
other images, such as those acquired via different MSI modalities or non-MSI data
types. One example is the combination of MALDI-MSI data with magnetic reso-
nance images [33]; another is integration of DESI-MSI data with histology images
[34]. This type of integration harnesses the different strengths of the data types—for
example, MRI imaging yields much higher resolution data than MSI, but does not
measure molecular information like MSI. Similar reasoning is behind efforts to
combine different MSI modalities: PCA and CCA have also been used to link
low-mass SIMS-MSI data with high-mass MALDI-MSI data from the same brain
tissue sample [35]. Because of the inherent differences in imaging modalities,
several important computational challenges are in the image processing domain: for
example, image alignment algorithms used to ‘stich together’ multiple
MALDI-MSI images obtained from a large sample [36], and registration algorithms
to map consecutive optical images in order to construct MSI datasets for
three-dimensional samples [37].

Challenge 2: Movement Toward MSI
from Three-Dimensional Samples

The movement toward MSI analysis of three-dimensional samples, as just men-
tioned, is an important development in the field. The studies described thus far have
all implemented MSI on two-dimensional samples, e.g., very thin slices of tissue. If
multiple spatially consecutive slices are taken from an organ or tumor, m/z images
from multiple MSI datacubes can be stitched together to track the spatial distri-
bution and expression of an m/z value through the original three-dimensional
sample. We refer readers to the recent publication [4–32] for an example of this
technique and discussion of the computational challenges associated with MSI for
three-dimensional data.
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Challenge 3: Reproducibility, Data Standardization,
and Community Resources

MSI also provides a rich opportunity for biomarker identification. However,
reproducibility of results is a major challenge. Many MSI studies consider a small
number of samples, making it difficult to generalize the suitability of the analytical
methods used. It would be valuable to examine alternative analytical pipelines for
MSI data in a systematic manner on a variety of different MSI datasets, similar to
the MAQC-II study conducted for microarray-based predictive modeling [38].
However, in addition to the obstacle of scale, such efforts are hindered because
unlike microarray and RNA sequencing data, MSI data is not readily shared in
public repositories. The development of community resources and infrastructure—
as well as standards for quality control and transparency like Minimum Information
protocols (http://mibbi.sourceforge.net/)—would facilitate this process. The recent
release of mzML [39], a standardized data format for mass spectrometry, and the
PRIDE proteomics data repository from the European Bioinformatics Institute for
MS/MS proteomics datasets (http://www.ebi.ac.uk/pride/archive/), are therefore
encouraging developments.

Current Techniques in MSI Analysis

Analytical methods for data and knowledge mining are divided into two main
classes: supervised and unsupervised learning. In supervised learning, a predictive
model is constructed from annotated training data, such that when a new sample is
provided, the model can correctly predict the annotation of the sample. Supervised
methods are further divided into two main categories: classification, in which the
predicted annotation is a group label (e.g., “healthy” or “diseased”), or regression,
in which it is a numerical value. For example, classification models have been
developed using MALDI-MSI data to distinguish HER2 positive and
HER2-negative tissues [6]; to distinguish cancerous and non-cancerous prostate
tissue [40]; and to classify breast cancer sample regions as necrotic, viable/active
tumor, or tumor interface region, while distinguishing them from embedding gelatin
and glass or holes, using SIMS-MSI data [41]. In contrast, unsupervised learning
requires no annotation or prior knowledge of the data structure. Unsupervised
methods are used for exploration of the data and the identification of potential
patterns; the results of these analyses can be a precursor to supervised analysis.
Common unsupervised methods include dimensionality reduction and clustering.
The remainder of this section will introduce unsupervised methods for MSI data
analysis.
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A. Dimensionality reduction

Principal component analysis

Principal component analysis (PCA) is currently one of the most popular techniques
for exploratory data analysis in MSI. The utility of PCA is in its ability to highlight
different spatial patterns present in the data, and the m/z values which contribute to
them. Given a data matrix X of dimensions M � N (i.e., M mass spectra each
containing N m/z values), PCA performs a linear transformation that projects the
data into a different, potentially more meaningful, spectral coordinate space. The
axes directions in this transformed space are defined by a set of orthogonal M-
dimensional basis vectors (the principal components), and are related to the variance
in X. The first principal component is the direction in which the variance of the data
is maximized, and can be interpreted as the most prominent pattern in the data. The
second principal component corresponds to the direction of the second highest
variance in the data, and so on. After performing PCA, the p principal components
which contribute to the majority of the variance in the dataset are retained. Since p is
typically chosen to be �N, PCA produces a dimensionally reduced M � p dataset.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is another method that can be used for
dimensionality reduction. In NMF, a data matrix X of dimensions (M � N) is fac-
tored into two matrices W (M � k) and H (k � N), such that X � WH. This is done
iteratively by minimizing the residual X �WHk k2 such that W ;H� 0 [42]. The
user-selected parameter k is the number of components into which the data is sep-
arated. The matrix W is a set of basis vectors describing the m/z values which
comprise each component. The k columns of matrix W can be interpreted as
groupings of m/z values corresponding to prominent spatial patterns in the data.
NMF has been assessed on both MALDI and DESI-MSI data [43–46]. A web-based
tool, omniSpect, is also available for performing NMF on MSI data [47].

Other Dimensionality Reduction Methods

Independent component analysis (ICA) separates a mixture into components, based
on the assumption that the mixture is a linear combination of statistically inde-
pendent components with non-Gaussian distributions [48]. ICA has been assessed
for studying intratumor heterogeneity via MSI data [46] and compared with PCA
and NMF on MALDI-MSI data [43]. Like PCA, ICA presents an obstacle in terms
of interpretation of the components, which can be negative. In canonical correlation
analysis (CCA), two datasets, each with different dimensions, may be projected
onto the feature space of the other such that the project data has maximum corre-
lation [49]. CCA has also been used to correlate low-mass SIMS-MSI data with
high-mass MALDI-MSI data, which improved image contrast and interpretation of
the data [35]. Parallel factor analysis (PARAFAC) is another method often used in
chemometrics for decomposing high-dimensional data; it has been tested on SIMS
and LDI MSI datasets [50].
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B. Clustering

Clustering is an unsupervised method for data analysis in which a sample (e.g., an
individual mass spectrum) is allocated into a specific group (e.g., a cluster) based on
a quantitative measure of the similarity. Clustering can reveal potentially mean-
ingful structures and patterns within the data. For example, using MALDI-MSI data
of gastric cancer, hierarchical clustering was used both to cluster spectra within a
single tissue dataset, and also to cluster tumors from different patients [51].
LA-ICP-MSI data of rat brain tissue was analyzed by k-means clustering, revealing
meaningful patterns in which clusters corresponded to known anatomical features
[52]. Similarly, high dimensional discriminant clustering (HDDC) was applied to
MALDI-MSI data of a rat brain and an intestinal-invading neuroendocrine tumor to
find spectral clusters corresponding to morphological structures [53]. This type of
mapping, termed spatial segmentation, is discussed further in a recent review [54].
While numerous algorithms exist for separating data into clusters [55], two of the
most commonly applied methods are hierarchical and k-means approaches. In
hierarchical clustering, a dataset X is separated into different levels of clusters,
culminating in a dendrogram or cluster tree. The terminal leaf nodes each corre-
spond to a single sample. In k-means, the dataset is separated into a predefined
number k of clusters.

C. Spatial similarity

While similarity measures (in the spectral dimension) are utilized in clustering,
another independent application of similarity measures is to identify m/z images
with similar expression patterns in the spatial dimension. Figure 2 shows an
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Fig. 2 Highly similar m/z images, as identified by the multivariate hypergeometric similarity
measure [58]
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example of similarity measure-based retrieval of m/z images with a spatial pattern
similar to that of the m/z value of interest. For MALDI-MSI data, the similarity of
m/z images to each other has been assessed using Pearson correlation [56] and using
similarity measures based on the hypergeometric and multivariate hypergeometric
distributions [57, 58]. Multivariate least-squares-based query has also been applied
for this task [59].

Case Study

The following case study compares and contrasts PCA and NMF for finding
potentially relevant patterns in MSI data. The data used in this example is
MALDI-MSI, from a mouse model of Tay-Sachs disease [17].

Example 1 A step-by-step implementation of PCA in MATLAB R2014a to find
patterns in MSI data.

Step 1: After loading the three-dimensional MSI dataset into MATLAB, restruc-
ture it into a two-dimensional matrix. Here, a and b are the spatial
dimensions (i.e., the number of pixels in the horizontal and vertical
directions), and c is the spectral dimension (i.e., the number of m/z values).
In the restructured M � N matrix, M is the number of spectra ðM ¼ a�bÞ
and N = c.

[a,b,c] = size(data);
reshaped = double(reshape(data,a*b,c));
[M,N] = size(reshaped);

Step 2: Mean-center the data by subtracting the mean in the spectral dimension
(i.e., the average of each m/z value).

mean_reshaped = mean(reshaped,1);
reshaped = reshaped − repmat(mean_reshaped,M,1);

Step 3: Calculate the covariance matrix and the find its eigenvectors and eigen-
values; these are the principal components and their weights. Sort the
principal components in order of descending eigenvalue magnitude.

covariance_matrix = (1 /(N−1)) * (reshaped’ *
reshaped);
[PC,V] = eig(covariance_matrix);
V = diag(V);
[*, indices] = sort(−1*V);
V = V(indices); PC = PC(:,indices);

Step 4: Retain the top 3 principal components, and project the original data onto
these components. The reduced dataset will have dimensions a � b � 3.
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projected = reshaped * PC(:,1:3);
PCA_datacube = reshape(projected,a,b,3);

The plots in Fig. 3 show the three images in the PCA-processed datacube (top
row), and the principal components themselves (bottom row). PCA reveals different
structures within the data—primarily the tissue versus non-tissue regions in PC 1
and PC 3, and cerebellum structure in PC 2.

Example 2 A step-by-step implementation of NMF in MATLAB to find patterns
in MSI data.

For brevity, the MATLAB function ‘nnmf’ is used to perform the analysis in this
example.

Step 1: Load and reshape the datacube into an M � N matrix as before.

[a,b,c] = size(data);
reshaped = double(reshape(data,a*b,c));

Step 2: Define k, the number of components, and perform NMF:

k = 3;
[w,h] = nnmf(reshaped,k);
NMF_datacube = reshape(w,a,b,k);

Figure 4 shows the three images in the NMF-processed data, i.e., the component
matrix w (top row), and the corresponding row of the weight matrix h (bottom row).
Similar to PCA, NMF reveals tissue versus. non-tissue patterns in the Factor 1 and
Factor 2, and the cerebellum structure in Factor 3. Factor 2 also contains some
information on the tissue interior. Unlike in PCA, the numerical labeling of NMF
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Fig. 3 The first three principal components reveal different spatial patterns and associated m/z
values in an MSI dataset (false-color visualization)
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factors is arbitrary. Additionally, as its name indicates, the spectral profiles found
by NMF are constrained to be non-negative. This is a useful property for MSI, since
the data is also non-negative. In contrast, the negative values in the PCA-generated
components in Fig. 3 can be difficult to interpret in terms of biology or chemistry.

Conclusion

MSI is a rapidly developing area of research with exciting implications for our
understanding of numerous biological processes and diseases. In this chapter, we
have described the key role of computational analyses in extracting meaningful
information from MSI data. State-of-the-art techniques were described and a case
study was examined. Finally, we have highlighted several challenges for compu-
tational research for MSI. In conclusion, there exist numerous opportunities for
researchers to become involved in the development of computational methods and
tools for MSI. Ongoing research into more effective and informative analytical
techniques will help to harness the power of MSI for accelerating both basic and
translational research.
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MSI dataset (false-color visualization)
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