Chapter 1
Mathematical Foundation of Quantum
System

Abstract This book covers several topics in quantum information via group repre-
sentation. For this purpose, this chapter introduces basic concepts of quantum theory,
measurement, state, composite system, many-body system, and entanglement. Since
a larger part of this chapter overlaps Chap. 1 of my book, Group Representations for
Quantum Theory [44], the reader who has already read it can skip this part. However,
since Sects. 1.1 and 1.2 contain parts that do not appear in the above book, the reader
need to read such a part. Important notations used in this book are introduced in this
chapter. Chapter 4 of the other book Introduction to Quantum Information Science
[43] can be recommended as the detail of this contents.

1.1 System, State, and Measurement

In quantum theory that describes microscopic physics, the target is called a quantum
system or a system, and mathematically denoted by a complex Hilbert space H with
a Hermitian inner product. A complex vector space H is called a Hilbert space
when it equips a Hermitian inner product. Even when its dimension is finite.! Since
‘H has a Hermitian inner product, there exists a completely orthonormal system
(CONS) {¢;}. Each normalized base ¢; represents a state in the quantum system
that is distinguished from each other. An arbitrary state of the system is given as a
normalized vector x € H, which is called a state vector. Once we fix a CONS as a
standard basis, any vector x describing a state is written as a superposition (a liner
combination) >, x;¢;. Quantum theory has two types of notations for an element x
of H. One is a ket vector |x), and the other is a bra vector (x|. These descriptions are
defined so that they have linearity with respect to real coefficients and they satisfy

lax) = alx), {(ax|=a(x|. (1.1)

for a complex number a € C. In particular, for a standard basis ¢;, |e;) and (e;| are
simplified to |i) and (i|, respectively.

When its dimension is infinite, we assume that the space satisfies the completeness under the given
Hermitian inner product.
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On the other hand, when the Hermitian inner product (x|y) for x, y € H is defined
so that (ax|by) = ab(x|y) for a, b € C, the inner product (x|y) of x and y can be
regarded as the product (x| - |y) of the bra vector and the ket vector. In this case,
the product |y) (x| with the opposite way can be regarded as a linear map from H
to H. When x € H is a normalized vector, |x) (x| is a one-dimensional projection.
We often denote the state corresponding to the normalized vector x € H by the
one-dimensional projection |x)(x|. More generally, a state of quantum system H is
described by a Hermitian matrix p with non-negative eigenvalues and trace 1. Such a
Hermitian matrix p is called a density matrix (density operator). Also, a Hermitian
matrix is called positive semi definite when all of its eigenvalues are non-negative.
In particular, when a density matrix p is given a one-dimensional projection, it is
called a pure state. A density matrix p that is not a pure state is called a mixed state.
Indeed, anormalized vector |x) expresses a pure state |x) (x| in the above sense. When
we use a normalized vector |x) to express the pure state, the normalized vector |x)
is called a vector state. Further, the density matrix ppx := Zfl:, §|i)(i | on the
d-dimensional system H is called the completely mixed state. In particular, when
we need to clarify the quantum system H of our interest, we denote the completely
mixed state by pmix -

A measurement is given as a decomposition {M,},cg of the unit matrix I by
positive semi-definite matrices on H (i.e., Zwea M, = I) [72]. Here, £2 is the
set of possible outcomes,and is called the probability space. When the state of
the system is given as the density matrix p as Fig. 1.1, the probability to obtain
the outcome w € §2 is Tr pM,,. Since p and M, are positive semi definite, the
value Tr pM,, is always non-negative. Further, the above conditions guarantees
that > o TrpM,=Trp» oM, =Trpl =1, we find that Tr pM,, satisfies
the axioms of the probability. This probability distribution is written as P},. Such a
decomposition {M,,},c of the unit matrix I by positive semi definite matrices is
called a Positive operator-valued measure (POVM). Especially, when all of M,,
are projections, it is called a Projection valued measure (PVM).

Next, let us discuss the case when the set of outcomes is a general topological
space £2. In this case, we cannot assign the matrix M,, corresponding to the outcome
w in the same way. When a measure v(dw) on §2, the integral

/ Mv(dw) = 1 (1.2)
2

can be regarded as the decomposition of the unit matrix /. So, {M,,} form a POVM.
However, a POVM on a general topological space §2 does not necessarily have the
above form. Hence, we need to treat a function of a subset of £2 for describing an
arbitrary POVM. Since §2 is a topological space, we consider the Borel sets B(£2)

Fig. 1.1 Measuring process state measurement outcome
P { M a)} weQ @
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that are generated by open sets of £2. Then, amap M from B(£2) to B (H) is called a
POVM when it satisfies the following conditions. Here, we denote the set of positive
semi definite matrices by B, (). When H is infinite-dimensional, B, (H) is the set
of positive semi definite bounded operators.

(M1) When the sets B; € B(£2) satisfy B; N B; = § for distinct elements j, [, we
have Zj M(B,) = M(Uij).

M2) M(@) =0.

M3) M(2) =1.

In particular, M is a PVM when M (B) is a projection for any B € B(§2). Given a
POVM M, we can extend the Hilbert space so that M can be written as a restriction
of a PVM E on the enlarged system [99].

Here, we introduce notations for probability. We denote the probability that the
occurring event belongs to the set S under the distribution Q by Q(S). When S is
given as {w| condition for w}, this notation is simplified to Q{w| condition for w}.
When we focus on the random variable X (w), we denote its expectation under the
distribution by Eg[X (w)].

For a Hermitian matrix A, we denote the eigenvalues by {a;}, and the projection
to the eigenspace with the eigenvalue a; by E;. Then, we have a PVM E = {E;};.
Further, we have the relation A = Zi a; E;, which is called the spectral decomposi-
tion of the Hermitian matrix A. When the state is given as a density operator p, the
expectation and the variance are given by Tr Ap and Af)A :=Tr(A — (Tr Ap)I)?p,
respectively. That is, we have Eps [a;] = Tr Ap and Epo [(a; — Tr Ap)*] = A7 A.

When H is infinite-dimensional, using a PVM, we can define the spectral decom-
position of an operator on H, which can be regarded as the infinite-dimensional
extension of diagonzalization. In this case, a self-adjoint operator A on H does not
necessarily have an eigenvector. However, for a self-adjoint operator A on H, there
uniquely exists a PVM E with the probability space R such that

A :/xE(dx). (1.3)
R

Here, this fact holds even when the self-adjoint operator A is not bounded [109].
When A is a unitary, the same fact holds by replacing R by the unit circle U = {z €
Cl|z| = 1}. In this way, we describe a measurement of a physical quantity given as a
self-adjoint operator A on a infinite dimensional space H. When the state is given as
a density operator p, the expectation and the variance are similarly given by Tr Ap
and A%A, respectively.

In fact, a POVM not only gives a probability distribution for the measurement
outcome, but also gives a convex decomposition of a density matrix p. That is, since
>w M., =1, wehave

JoMoB

(Tr Myyp) D T i

= > oMo Jp = plJp =p. (1.4)
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For a convex decomposition p = >_ p.,p. of a density matrix p, we can define the
POVM M, = p’% PoPo p’%. Then, we can reconstruct the convex decomposition
P =2, PuPw by using (1.4).

11 11
Exercise 1.1 Consider the case when M; =|{ 2 ‘1‘), M, = ( 4 14), M; =
48 T4 3

(8 g) and p = 1 (i }) Calculate the distribution Py,

Exercise 1.2 Give the spectral decomposition of A = ((1) (1))

Exercise 1.3 Calculate the average when the measurement is the spectral decom-

position of A given in Exercise 1.2 and the state is p = % ( (1) (1))

Exercise 1.4 Calculate the variance in Exercise 1.3.

Exercise 1.5 Focus on the probabilistic decomposition of density matrix (

):

A==
B — =

11
% (; z ) + J—‘ ((1) 8) + }‘ (8 (1)) Give a POVM based on the decomposition.

1.2 Composite System

Consider two quantum systems H 4 and H p that are distinguishable from each other.
For example, when the quantum system H 4 expresses the internal system of a particle
and the quantum system Hp expresses the position of the particle, we need the
quantum system that describes the freedom of the whole particle. Such a quantum
system is called the composite system of the systems 4 and Hp. The composite
system is given by the tensor product space H4 ® Hp. The tensor product space
‘Ha ® Hp is defined as the space spanned by the CONS {|v;, u)}1<i<k 1<j<; When
{|vi)}ff=1 and {|uj)}lj=1 are CONS of H4 and Hp, respectively.

Next, we consider the case when the states of the systems 4 and Hp are pre-
pared to be the density matrices p and o, respectively. In this case, when p =
Zfii/:l a; i|vi) (v and o = Zl,-,j/:1 bj j/luj)(ujl, the state of the composite sys-
tem is the tensor product state p ® o := >\ ,_, le,j’:l ai b jlvi,uj) (i, ujl.
A state of the composite system H 4 ® Hp cannot be restricted to a tensor product
state p ® o or its convex combination ipjpj®0j, which is called a separable
state. (Here, p; expresses the probability distribution and p; and o; express density
matrices on H 4 and H g, respectively.) For example, when a state is given by the pure
state corresponding to the vector > ; JPi [vj, u;), it cannot be written as a convex
combination of tensor product state, then, is not separable. Such a state is called



1.2 Composite System 5

entangled, and has been studied very actively. Especially, such a property of a state
is called entanglement.
When a state of the composite system H 4 ® Hp is given by

Kool
p= D > cijirjlviu) (i ugl,
L=l j =1

there exists a density matrix Try;, p on the system H 4 such that the relation
Tr(Tryg, p)X = Tr p(X ® Ing,)

holds for a matrix X on the system H4. In this case, when we focus on only the
system H 4, it is suitable to consider that the state of the system H 4 is the density
matrix Try, p. The state Tryy, p is called the reduced density matrix of p, and is
calculated by

koo
Tryg, p = Z Zci,j,i’,jlvi><vi’|-

ii'=1 j=1

The operation of taking the reduced density matrix is called the partial trace. When
the density matrix o is diagonal with respect to the basis {|v;, u;)}; ;, the reduced
density matrix is the same as the marginal distribution of the probability distribution
composed of the diagonal elements. When there is a possibility of confusion, we
simplify Try, p to Trp p.

Further, if there is a possibility of confusion, for a matrix X on H,4 and a matrix
Y on Hp, we simplify the matrices X ® Iy, and Iy, ® Y on Hs @ Hp to X and
Y, respectively. So, the matrix X ® Y is simplified to XY. Now, we explain our
abbreviations that are applied to the case when standard bases of the systems H 4
and H . In this case, we denote the ket vectors of standard basis of both systems by
|7)a and |j)p so that the system of the ket vector can be distinguished. Hence, the
standard basis of the composite system H, @ Hp is given by |k) 4 ® |j) g, which is
simplified to |k, j)a. 5.

In the following discussion, for a matrix X = (xy ;), we denote the matrix com-
posed of the complex conjugate X; ; of each entries with respect to the standard
basis by X, and denote the transposed matrix with respect to the standard basis
by X”. Then, X" expresses the transposed complex conjugate matrix of X. The
matrices X and X7 depend on the choice of the standard basis, however, the matrix
X' depends only on the definition of the Hermitian matrix. Then, we denote the
vector Zk,j Xk jlk, j)a,p on the composite system H, ® Hp by |X)4.p. So, we
have

Y®ZIXWap=IYXZ" ) 5. (1.5)
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The inner product of two vectors | X)) 4 g and | Y)) 4 g is calculated tobe 4 g (X|Y ) a5
= Tr X'Y. Hence, a vector | X)), p is normalized (the norm is 1) if and only if
Tr X" X = 1. Thus, we have the following formula with respect to the partial trace:

Trg | XVap (Xl =XX", TralXNasas(Xl=X"X. (1.6)

Next, let us diagonalize the matrices X X and X'X by using the isometries U
and V in the following way:

U'xvvixX'vu =u'xx'v =b, viXTuuTxv =vixX'xv =D,

where D is the diagonal matrix whose diagonal elements are in the decreasing order
and are non-negative. The rank of D is equal or less than the dimensions of H 4 and
‘H . In this composite system, the rank of the matrix D is called the Schmidt rank
of the state vector |X)). So, the Schmidt rank is equal or less than the dimensions
of H4 and Hp. The diagonal elements of /D is called the Schmidt coefficient of
the state vector | X)). Since the matrix U XV and its transposed complex conjugate
matrix VI XTU are commutative with each other, the squares of the absolute values
of the diagonal elements of U XV equal the eigenvalues of ~/D. Then, consider-
ing a diagonal matrix D’ whose diagonal elements have the absolute value 1, we
obtain X = UD'/DVT, Rewriting the isometry U D’ to U, we obtain the Schmidt
decomposition of X as

X =U~DV". (1.7)

Let us apply this fact to an arbitrary state vector |a) on the composite system H, ®
‘H p. There exist a CONS {|v;)}, {|u;)} and Schmidt coefficients i, . . ., dj such that

k
la) = Zdj|v,-> ® luj) (1.8)
j=1

when the dimension k of H 4 is not greater than the dimension [ of Hp. In some
literatures of quantum information, (1.8) is often called the Schmidt decomposition
rather than (1.7). The bases {|v;)} and {|u;)} given in (1.8) are called the Schmidt
bases.

Given a mixed state p on the system H 4, a vector state | X)) 4, 5 on the composite
system Ha ® Hp is called a purification of p with the reference system H g when

p=Trg|X)ap as(X]. (1.9)

Hence, a state vector |X)) 4 p is a purification of p if and only if XX = p. This
condition is equivalent to the following condition: There exists a partial isometry V
such that the support of V is the range of XX and X is written as
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X = JpV. (1.10)

This fact shows that the purification of p is uniquely determined up to the freedom
with respect to application of the partial isometry on the reference system.

Especially, when the dimensions of both systems H4 and Hp are d and all of
the diagonal elements of D satisfying (1.7) are %, the state vector | X)) 4 p is called a
maximally entangled state. This condition is equivalent to the condition of X being
a unitary matrix.

Exercise 1.6 Calculate the Schmidt rank and the Schmidt coefficients of | X)!) when
x - L cos 6 sinf

~ V2 \ —sinf cosh )°
Exercise 1.7 Show (1.5).

Exercise 1.8 Show TI'B |X)>AB A,B«Y| = XYT

Exercise 1.9 Give a purification of p = (g | _O p)'

Exercise 1.10 Let p be a full-rank density matrix on H 4, and | X)) be its purifica-
tion with the reference H, whose dimension equal that of H 4. Show that for any
probabilistic decomposition p = >, p; p;, there exists a POVM M = {M;}; on Hp
such that pPipi = Trp M,' |X» «X|

Exercise 1.11 Let p be a density matrix on H 4. Show that, for any probabilistic
decomposition p = >, p;|x;)(x;| with pure states, there exist another system 3, a
purification | X)) of p on Hp, and a PVM E = {E;}; on Hp such that p;|x;)(x;| =
Trp E: | X)(X].

Exercise 1.12 Calculate the distribution of the outcome when H, and Hp are d-
dimensional systems, the state is p4 ® pPmix, 5, and the measurement is written as
{HUN (U}, by using d* unitaries U;.

1.3 Many-Body System

Let us consider the case when n particles are given and these particles are charac-
terized by the quantum systems H; (i = 1,...,n). When these particles are dis-
tinguishable from each other, the composite system corresponding to n particles is
given by ((H; ® H») - --) ® H,). Since the tensor product does not depend on the
order of the tensor product, the above space is the same as (H; (- - - (H,—1 @ H,))).
Hence, we simplify it to H; ® H, ® - - - ® H,,. Especially, when each system H; is
isometric to H, the tensor product space is simplified to H®". When the state of
each system H; is independently prepared to be the density matrix p;, the state of the
composite system is given as the density matrix (((p; ® p2)---) ® p,). Since the
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tensor product of the matrices does not depend on the order of the tensor product,
this density matrix is denoted by p; ® ps - - - ® p,. Especially, when p; = p, i.e.,
the n particles are independently prepared in the same p, the density matrix of the
total system is denoted by p®”, and is called the n-fold tensor product state of the
density matrix p. The above notation will be applied to the case when p and p; are
not necessarily density matrices, i.e., are general matrices.

Given a tensor product system H; ® Hy ® - - - ® H,, and matrix A on the tensor
product system, when we take the partial trace with respect to the specific system H;,
the reduced density matrix of A is denoted by Try;, A. Conversely, when we take the
partial trace with respect to all of other systems except for the specific system H;,
the reduced density matrix of A is denoted by Try; A. When A is a density matrix
p, the reduced density matrix Try; p is simplified to p, or p;.

On the other hand, when a matrix A; on the system H;, the matrix / -l A ®
1®"=1 on the tensor product system H; ® H, ® - - - ® H,, is simplified to A;. Then,
when A; = A, we simplify > A; to A™.

In fact, this kind of description can be applied to more general case. That is, when
we have n systems, we can define the composite system composed of these  systems.
when n > 3, such a system is called a many-body system, a multipartite system,
or a multi-party system. The term “many-body system” is mostly used when each
system is given as one particle. Other two terms are used for a more general case.
The term “multi-party system” is more used in the viewpoint of information science.
The term “multipartite system” is used more often in quantum information. So, this
book mainly uses the term “multipartite system”. To identify the number n, we use
the term “n-partite system” to express the multipartite system. In contrast, when
n = 2, to distinguish the case with n > 3, this system is called, a two-body system,
a bipartite system, or a two-party system.

1.4 Guide for Related Literatures

Here, we introduce literatures that treat quantum information in the viewpoint of the
representation theory. Although there are many books for quantum information [12,
42,43, 45,97, 101, 129], books with this viewpoint are limited. The first book with
this viewpoint is Holevo’s book [72], whose Chaps. 3 and 4 discuss the optimization
problems with respect to quantum measurement by using the representation theory
on a finite-dimensional system. After Holevo’s book, several papers employed the
representation theory for analysis of quantum information. As the next book of this
viewpoint, we can list Christandl [22], which deals with quantum information based
on the representation theory on a finite-dimensional system. Chapters5 and 6 of
[72] deals with quantum information in the Bosonic system. Latest progress of this
direction is reviewed in Wang [125].
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