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Abstract The development of big data applications is closely linked to the avail-

ability of scalable and cost-effective computing capacities for storing and processing

data in a distributed and parallel fashion, respectively. Cloud providers already offer

a portfolio of various cloud services for supporting big data applications. Large com-

panies like Netflix and Spotify use those cloud services to operate their big data appli-

cations. In this chapter, we propose a generic reference architecture for implementing

big data applications based on state-of-the-art cloud services. The applicability and

implementation of our reference architecture is demonstrated for three leading cloud

providers. Given these implementations, we analyze main pricing schemes and cost

factors to compare respective cloud services based on a big data streaming use case.

Derived findings are essential for cloud-based big data management from a cost per-

spective.

Keywords Big data management ⋅ Cloud-based big data architecture ⋅ Cloud

computing ⋅ Cost management ⋅ Cost factors ⋅ Cost comparison ⋅ Provider

selection ⋅ Case study

1 Introduction

The cloud market for big data solutions is growing rapidly. Besides full-service cloud

providers that offer a large portfolio of different infrastructure as a service (IaaS),

platform as a service (PaaS), and software as a service (SaaS) solutions, there are

also some niche providers focusing on specific aspects of big data applications. In

general, such big data applications are highly dependent on a scalable computing

infrastructure, programming tools, and applications to efficiently process large data
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sets and extract useful knowledge [17]. In this regard, cloud computing represents an

attractive technology-delivery model as it promises the reduction of capital expenses

(CapEx) and operational expenses (OpEx) [11] and further moves CapEx to OpEx,

closely correlating expenses with the actual use of tools and computing resources

[5]. A recent scientometric analysis of cloud computing literature further indicates

that there is a huge research interest in scalable analytics and big data topics [10]. As

cloud-based big data applications are usually composed of several managed cloud

services, it becomes increasingly important to identify important cost factors in order

to evaluate potential use cases and to make strategic decisions, for instance, concern-

ing the choice of a cloud provider (for an extensive overview on decision-oriented

cloud computing, the reader is referred to Heilig and Voß [9]). The variety of possible

configurations and pricing schemes makes it difficult for consumers to estimate over-

all costs of cloud-based big data applications. Often, consumers appear in the form

of cloud application providers, as companies like Netflix and Spotify, outsourcing

operations of their services to third-party cloud infrastructures. To benefit from big

data technologies and applications in companies, it is meanwhile essential to address

the economic perspective and provide means to evaluate the promises cloud com-

puting gives with regard to the use of highly scalable computing infrastructures in

order to unlock competitive advantages and to maximize value from the application

of big data [18]. To the best of our knowledge, a cost perspective for implementing

big data applications in cloud environments has not yet been addressed in the current

literature.

In this chapter, we propose a generic reference architecture for implementing big

data applications in cloud environments and analyze pricing schemes and impor-

tant cost factors of related cloud services. The cloud reference architecture considers

state-of-the-art technologies and facilitates the main phases of big data processing

including data generation, data ingestion, data storage, and data analytics. Both batch

and stream processing of big data is supported. We demonstrate the applicability and

implementation of the proposed architecture by specifying it for the cloud services of

the, according to Gartner’s magic quadrant [6], three leading cloud providers, namely

Amazon Web Service, Google Cloud, and Microsoft Azure. Practical implementa-

tions of large companies like Netflix and Spotify verify the relevancy of the defined

architectures. The individual architectures provide a basis for evaluating important

cost factors. For each of the main phases of big data processing, we identify and

analyze the scope and cost factors of relevant cloud services based on a case study.

In cases a comparison is useful, we compare cloud services of the different cloud

providers and derive important implications for decision making. Thus, the contribu-

tion of this chapter is twofold. First, the chapter provides a blueprint for implement-

ing state-of-the-art cloud-based big data applications and gives an overview about

available cloud services and solutions. Second, the main part is concerned with pro-

viding a cost perspective on cloud-based big data applications, which is essential for

big data management for cloud consumers.

The chapter is structured as follows. Section 2 defines the main phases of big data

processing and presents the generic reference architecture. Moreover, we describe

the implementation of the reference architecture using cloud services of the three
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leading cloud providers. For each big data processing phase, cloud pricing schemes

and relevant cost factors of those cloud services are analyzed based on a case study

focusing on streaming analytics in Sect. 3. In Sect. 4, we discuss main findings

and implications. Finally, we draw conclusions and identify activities for further

research.

2 Big Data Processing in Cloud Environments

The calculation of costs is highly dependent on the utilized cloud services. Major

cloud service providers offer a plethora of different tools and services to address big

data challenges. In this section, we define a common reference architecture for big

data applications. The reference architecture corresponds to the state-of-the-art and

supports main phases of big data processing from data generation to the presentation

of extracted information, as depicted in Fig. 1. After briefly explaining these phases

and the corresponding reference architecture, we give an overview on its implemen-

tations with cloud services of the three leading cloud service providers.

2.1 Generic Reference Architecture

The processing of big data can be divided into five dependent phases. In the first

phase, data is generated in various applications and systems. This might include

internal and external data in various forms and formats. Depending on the rate of

occurrence and purpose of collected data, velocity requirements may differ among

data sources. The second phase involves all steps to retrieve, clean, and transform

the data from different sources for further processing. This may include, for instance,

data verification, the extraction of relevant data records, and the removal of dupli-

cates in order to ensure efficient data storage and exploitation [3]. Typically, the data

is permanently stored in a file system or database. In some cases of streaming appli-

cations, however, value can only be achieved in the first seconds after the data is pro-

duced, making a persistent storage obsolete. Nevertheless, information and results

being extracted during processing and analysis usually need to be stored and man-

aged permanently. In the fourth phase, different methods, techniques, and systems

are used to analyze and utilize the data in order to extract information relevant for
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Fig. 1 Phases of big data processing
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supporting business activities and decision making. The information and results of

the data analytics phase need to be visualized, allocated, distributed, and presented

to its users in the final phase.

To define a generic reference architecture, we reviewed several technical docu-

mentations, recommendations, and use cases provided by cloud providers (see, e.g.,

[2]) and interviewed experts of one of the largest cloud providers. Moreover, we

analyzed practical implementations of cloud-based big data platforms of large cloud

consumers, such as Netflix [12] and Spotify [15], using cloud services of different

large cloud providers. Considering both batch and real-time data stream processing,

we identify a common structure of systems interacting with each other to support

the different phases of big data processing. To express this structure, we present a

state-of-the-art generic reference architecture in Fig. 2. The arrows represent the data

flows. Note that variations of this generic architecture and associated data flows are

possible. In the following, we briefly explain the basic components of the reference

architecture.

Data Generation: The number of data producers and the amount of data being

produced is continuously increasing. This involves business data from internal sys-

tems (e.g., production data, inventory data, sales data, e-commerce platform data,

etc.) and data from external third-party systems (e.g., social network data, govern-

ment data, weather data, finance data, search trends, etc.) being offered through the

Internet. The emergence of the internet of things (IoT), enabling physical objects to

sense and act on their environment by interacting with each other, represents another

big data source.

Data Ingestion: For the data ingestion, it is essential to consider velocity require-

ments, which mainly determine how fast the data is fed into the overall system and the

processing latency between data generation and presentation. Thus, a system archi-

tecture must consist of components that support both real-time and batch processing

of data. The former must be supported by systems that enable a fault-tolerant, scal-

able, and consistent real-time processing of data streams from a large number of
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data sources. To harvest its potential, it is necessary to implement applications and

methods to further process or analyze streaming data immediately, depending on

the processing latency requirements. Therefore, the stream processing component

contains all logic to immediately utilize streaming data, for instance, by generating

alerts or making recommendations based on machine learning tools. If useful for

future processing, streaming data is transferred to the central persistent data storage
component to be stored permanently. This may involve extract, transform, and load

(ETL) jobs that reliably export the data into a central storage or directly to a cen-

tral processing cluster (see, e.g., a recent streaming solution of Spotify using Google
Cloud [15]). Typically static data with a low velocity is initially stored in a database

or file system. To further process and analyze this data, for instance in a data ware-

house, those data sources may need to be consolidated and integrated with additional

ETL jobs.

Data Storage: For permanent use in form of batch processing, data should be

persisted as files or data records in file systems or databases designed to provide

scalability, high availability, and low latency. From there on, the data can be used by

several distributed applications in parallel. For data analytics in a data warehouse, it

is necessary to load the data into database tables of the data warehouse using ETL. A

permanent storage of data in an Apache Hadoop cluster is often economically unrea-

sonable as it involves huge costs for using necessary cluster nodes in form of virtual

machines (VM). Large cloud consumers, like Netflix [12], show that the integra-

tion with low cost cloud storage services instead of using local storage based on the

Hadoop Distributed File System (HDFS) [16] can be beneficial. For instance, multi-

ple clusters can access and process the same data for different workloads depending

on the data analysis task [12]. However, reading and writing to a central file system is

slower than using local storage and thus requires a low-latency and high-bandwidth

access. As a compromise, local storage of HDFS is often used for all intermedi-

ate stages of MapReduce processes. Consequently, a mixture of a shared nothing
architecture1

and shared storage architecture2
approach is often used in practice for

operating Hadoop clusters efficiently.

Data Analytics: The generic architecture further supports ad-hoc data queries

and advanced data analytics. For providing related cloud services, cloud providers

leverage their capabilities in providing massive and scalable computing infrastruc-

ture. While a data warehouse aids the processing and analysis of structured data,

a Hadoop cluster can be used to process and transform unstructured and semi-

structured data into structured data for further processing in databases and data
warehouses. For the latter, the Hadoop ecosystem provides several extensions for

data processing, querying, storage in NoSQL databases (e.g., HBase) and data ware-

houses (e.g., Hive) as well as advanced statistical and machine learning algorithms

1
A shared nothing architecture denotes a distributed computing architecture consisting of nodes

that only possess and utilize their own computing resources including memory and disk storage.

This facilitates, inter alia, a large scale horizontal scaling using commodity machines based on a

distributed file system.

2
In a shared storage environment, a central file storage system is shared among the nodes.
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Fig. 3 Reference architectures of leading cloud service providers

(e.g., Mahout). Thus, a data warehouse is often build upon a Hadoop cluster. Instead

of using the MapReduce programming model for processing data in a cluster, it has

been shown that Apache Spark, building on in-memory storage to avoid slow disk

reads/writes as well as directed acyclic graph (DAG) scheduling to better parallelize

processing stages, offers up to two orders of magnitude performance increase [14].

For structured data queries, it is essential that the data warehouse service supports

SQL
3

commands. Moreover, a component that provides machine learning algo-

rithms and technology for supporting artificial intelligence and predictive analytics

shall be provided as a service.

Presentation: Once the data has been analyzed and stored, normally in a data

warehouse, resulting insights and results need to be transformed into rich visualiza-

tions, dashboards, and reports for individual stakeholders in order to avoid informa-

tion overload and decrease transaction costs. Therefore, tools to prepare and manage

rich visualizations and reports need to be provided.

2.2 Implementations of the Generic Reference Architecture

In this section, we show the technical implementation of the proposed generic

big data processing reference architecture. For this purpose, we have reviewed the

technical details and architectures of managed cloud services offered by the three

leading cloud providers, namely Amazon Web Services (AWS), Google Cloud, and

Microsoft Azure. For each cloud provider, we present a reference architecture in

Fig. 3 describing the use of managed cloud services for supporting each phase of

3
Abbr. for Structured Query Language.
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big data processing as described in Fig. 1. A prerequisite for considering a cloud ser-

vice was that it is fully compatible and integrated with other cloud services of the

respective provider. In this regard, all three cloud providers are able to address each

phase of a big data processing lifecycle with at least one managed cloud service and

further support their integration as well as the use of third-party services. The cloud

services conform to the above mentioned requirements (see Sect. 2.1). The proposed

composition and an associated integration of those cloud services is fully supported

and in line with best practices. As the primary focus is on cost management, details

on the implementation of the proposed architectures are out of scope in this chapter.

For an overview and technical details, the reader is referred to the documentation of

each cloud service given by the respective cloud provider.
4

Generally, those exam-

ples demonstrate the applicability of the proposed generic reference architecture.

3 Cloud Pricing and Cost Perspective

After defining the reference architectures for each cloud provider, we investigate

possible configurations and the pricing schemes for each category of cloud service

in this section. In doing so, we identify main cost factors. Based on a real-time data

streaming example, we present a cost comparison for the cases where similar pricing

schemes and configurations are possible.

3.1 Data Streams and Stream Processing

By analyzing the cost models of data streaming cloud services, we identify two dif-

ferent approaches. Amazon Kinesis Streams charges for each message event occur-

ring during data ingestion and delivery, whereas no additional costs are charged for

the required throughput. Although volume-tiered pricing is supported, the prices per

million message events are comparatively high. Kinesis Streams and Azure Event
Hubs use a common cost model that calculates the costs based on the volume of

incoming message events and required throughput. That is, the stream is grouped into

smaller streams (i.e., substreams) with a maximum throughput. Thus, the number of

substreams needs to be scaled according to the current message load for achieving

real-time processing. Consequently, both volume and speed scaling is covered in the

cost models of those cloud providers.

In Table 1, we see that Kinesis Streams has competitive prices and is therefore

able to provide the most inexpensive solution, also in terms of scaling. A differ-

ence between Kinesis Streams and Event Hubs is the maximum message event size.

4
The technical documentation and pricing details can be found on the website of the respective

cloud providers: AWS (https://aws.amazon.com), Google Cloud (https://cloud.google.com), and

Microsoft Azure (https://azure.microsoft.com/).

https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com/
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Table 1 Cost comparison of cloud streaming services (Scenario 1: 100 data records/s, 35 KB

record size, 3.42 MB/s input stream, 1 subscriber)

Configuration/pricing Kinesis

streams

Pub/sub
∗

Event

hubs

Max. message event size in KB 25 64 64

Max. thoughput ingress in MB/s per substream 1 N/A 1

Max. thoughput egress in MB/s per substream 2 N/A 2

Message retention in days 1 7
∗∗

1

Pricing scheme Fixed Tiered Fixed

Price per million message events per hr ($) 0.014 0.40/0.20/0.10/0.05
∗∗∗

0.028

Price streaming per throughput unit per hr ($) 0.015 N/A 0.03

Required number of substreams (ingress) 4 N/A 4

Additional number of substreams (egress) 0 N/A 0

Number of message events per day in million 17.28 17.28 8.64

Costs ($)

Overall costs per day 1.68 6.91 3.12

Overall costs per month 52.14 214.27 96.78

∗
Assuming that the push subscription mode is used

∗∗
If the subscriber is not present; otherwise, messages are dropped after delivery/failure

∗∗∗
First to 250M/next 500M/next 1000M/next 1750M message events

Assuming that the prices of the two providers would be the same, Event Hubs would

provide a cost advantage for data records sizes greater than 25 KB due to the smaller

amount of message events (see Table 1). Thus, also the size of data records of an

application may need to be taken into account for cost considerations. When assum-

ing that Google Cloud Pub/Sub would provide more attractive prices, the service

might be economically advantageous in terms of throughput scaling. In general, we

identify two main cost factors: throughput capacity (ingress and egress) and number

of message events.

Next, we analyze the portfolio of cloud services for real-time stream process-

ing and analytics. All cloud services allow an individual creation of jobs to read,

transform, and analyze streaming data. While Google’s Dataflow has established a

programming model to simplify the implementation of data processing jobs, Azure
Stream Analytics focuses on structured data processing and allows running SQL-like

queries. Although AWS has announced that the managed service Kinesis Analytics
will be available soon, consumers currently have to implement applications using the

Kinesis Client Library (KCL) and different connectors for establishing a link to other

cloud services (e.g., S3), similar to the Dataflow approach. All three cloud services

allow an integration with both their own and third-party machine learning cloud ser-

vices. In general, the costs of running all three cloud solutions are highly dependent

on the computational demands of processing and analytics tasks in terms of compute

and storage requirements.
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Table 2 Cost factors of streaming analytics cloud services

Kinesis analytics ∙ Number and types of VM cluster nodes

∙ Storage capacity

Dataflow ∙ Number and types of VM cluster nodes

∙ Number of GCEU (batch/streaming)

∙ Storage capacity

Stream analytics ∙ Volume of streaming data to be processed

∙ Compute capacity in streaming units

Besides costs for using available VM instance types and local storage capacity,

Dataflow additionally charges per GCEU
5

and differentiates between streaming and

batch mode. As shown in a recent implementation of Spotify’s event delivery sys-

tem, the streaming mode considerably decreases end-to-end latency for exporting

message events from Pub/Sub to Cloud Storage [15]. Applying KCL further implies

costs for using a DynamoDB that tracks state information in a cluster of workers that

process the data from the stream and transfer the result to respective applications.

In general, we see that both cloud providers offer a great flexibility regarding the

configuration of the infrastructure and streaming application, but also require a high

expertise. The approach of Stream Analytics aims to abstract from the infrastructure

and defines a price per streaming unit
6

and data volume. Due to the different mea-

sures and approaches, it is difficult to compare those cloud services. Estimating the

costs requires the collection of empirical data concerning the use of infrastructure for

different processing and analytics jobs. However, the flexibility implied by Dataflow
and KCL allows consumers to adapt infrastructure to their individual requirements,

e.g., for achieving cost reductions and/or performance boosts. Due to complexity

reasons, it is important to implement brokerage mechanisms for supporting related

decisions (see, e.g., [8]). To analyze costs, simulation studies that consider different

workload scenarios and configurations may provide more insights. In Table 2, the

different cost factors of all solutions are shown. In general, we can identify two main

cost drivers: compute and storage capacity.

3.2 Data Storage

The costs for storing data in a cloud are a critical aspect to be considered when plan-

ning cloud-based big data applications. All three cloud providers offer a variety of

5
The Google Compute Engine Unit (GCEU) is used as a measure to calculate the total capacity of a

virtual central processing unit (vCPU). Google’s Compute Engine defines the GCEU for each VM

instance type depending on the number of vCPUs.

6
A streaming unit is a measure for expressing the computing capacity in terms of CPU and memory

with a maximum throughput of 1 MB/s.
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storage options and database systems. In our cost analysis, we focus on inexpensive

standard object storage services that can be used to persist data in different formats

and massive quantities. Implementations of Netflix [12] and Spotify [15] further

emphasize the critical role of a central data object storage component for big data

processing. Both volume-tiered and unit pricing schemes are used, as depicted in

Table 3. We see that Azure Storage undercuts the prices of its competitors. More-

over, it is not differentiated between different types of object requests. The price per

request is considerably low. While cost savings of 34.8 % on average can be achieved,

the percentage of cost savings slightly increases by the amount of storage capacity.

Fig. 4 shows the increase of costs dependent on the volume of data to be persisted.

Thus, in particular in terms of scaling, Azure Storage offers attractive pricing.

Comparing Amazon S3 and Google’s Cloud Storage, we see that the high costs

for “expensive” requests (e.g., PUT, LIST, etc.) greatly influence the overall storage

costs. Thus, the costs are highly dependent on the use intensity and access patterns

of consumers. This emphasizes the importance of data preprocessing activities (e.g.,

based on ETL). Moreover, all three cloud providers charge for data transfers. Incom-

ing data flows and data transfers within a region is generally free; outgoing data flows

and inter-regional data transfers are charged based on different unit prices. The latter

needs to be considered, for example, if third-party services, such as machine learning

services, are used. In general, we identify three main cost factors of cloud storage

services: amount of virtual storage capacity, number and type of data requests, and

data transfer.

Table 3 Cost comparison of cloud storage services (assuming that 10 % of the streaming data

collected in scenario 1 is persisted in the same region and requires a PUT request and a GET request

for each data record)

Pricing ($) S3 Cloud

storage

Azure storage

Pricing model Tiered Fixed Tiered

Storage per GB per month 0.03/0.0295/0.029
∗

0.026 0.024/0.0236/0.0232
∗

PUT, COPY, POST, LIST requests 0.005
∗∗

0.10
∗∗∗

0.0036
∗∗∗∗

GET and other requests 0.004
∗∗∗

0.01
∗∗∗

0.0036
∗∗∗∗

Data transfer (same region) Free Free Free

Costs
Storage 784.03 680.06 617.69

GET requests 10.71 26.78 0.96

PUT/POST/other requests 133.92 267.84 0.96

Overall costs per day 29.96 31.44 19.99
Overall costs per month 928.66 974.69 619.62
∗
First 1 TB/next 49 TB/next 450 TB per month

∗∗
Per 1000 requests

∗∗∗
Per 10000 requests

∗∗∗∗
Per 1000000 requests
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3.3 Hadoop Cluster

For running a Hadoop cluster, all three cloud providers allow to use a wide range of

different VM types and follow comparable pricing schemes. While for Amazon EMR
and Google Cloud Dataproc, it is possible to choose among all VM types provided

by Amazon EC2 and Google Cloud Compute Engine, respectively, Azure HDInsight
limits the range to certain VM types. As shown in Table 4, the price per VM node

includes already the costs for usingHDInsight and is about two times more expensive

than using regular nodes of the same VM type. In the other two cases, extra costs

for using the Hadoop service occur. EMR charges an individual fee per VM type and

Dataproc calculates an extra fee per vCPU per hour. Thus, three main cost factors

need to be considered: number and VM type of cluster nodes, additional usage fee

(if applicable), and running time.

To approximately compare costs, we choose a comparable cluster configuration

for each cloud provider (see Table 4). In general, we see that the increased price

per cluster node leads to considerably higher costs in the case of HDInsight. While

comparably low storage costs attract consumers to store their data in Azure Storage,

the inherent comparative cost advantages disappear when it comes to large-scale

processing of this data. This further emphasizes the need for an overall cost estimate.

We further see that Dataproc offers competitive prices for using Google’s Compute
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Table 4 Cost comparison of Hadoop cluster services (clusters with 50 nodes, operated 5 h per day

for processing 10 % of the streaming data)

Configuration/pricing EMR Dataproc HDInsight

VM type m3.xlarge n1-standard-4 D3 v2

Number of vCPU 4 4 4

Memory in GB 15 15 14

Local SSD storage in GB 80 N/A 200

Additional SSD storage 120 200 N/A

Price VM per hour 0.27 0.20 Incl.

Price SSD per GB per month 0.10 0.22 Incl.

Price Hadoop per hour 0.07 0.04
∗

Incl.

Price per EMR node per hour 0.35 0.30 0.62

Costs
Costs for VMs per day 88.03 74.65 155.50

Overall costs per month 2729.00 2314.17 4820.50

∗
Number of vCPU × Price per vCPU per hour

Engine services. However, the costs for additional SSD
7

storage are twice as high as

the costs in EMR. Although the cluster configurations are comparable, the running

time needs to be measured in order to estimate costs more accurately.

3.4 Data Warehouse

All three cloud providers offer managed solutions with data warehouse functional-

ity for large-scale data analytics. Querying of massive amounts of data with SQL

queries is one of their main features. Besides, the solutions support ETL processes

based on different file formats. While the three cloud services offer similar func-

tionality, different pricing approaches are used, as depicted in Table 5. In Amazon
Redshift consumers define a computing cluster and are charged for the number and

hours of utilized VM types. The available VM types are specifically designed for

the purposes of Redshift. Each node comes with a fixed amount of local storage and

it is not possible to separate storage capabilities. Consequently, a trade-off concern-

ing the utilization of processing power and storage capacity will likely occur. That

is, increasing the number of nodes for improving the querying performance might

lead to unused storage capacities. Instead of charging for infrastructure components,

Google’s BigQuery prices storage capacity, streaming inserts,
8

and querying. Data

operations like loading, copying, and exporting are free of charge. While BigQuery
calculates costs based on the query capacity, which is dependent on the processed

7
Abbr. for Solid-State Drive.

8
Allows a direct transfer of data from Pub/Sub to BigQuery.
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Table 5 Cost factors of data warehouse cloud services

Redshift BigQuery SQL data warehouse

∙ Number and type of VM

cluster nodes

∙ Queries per capacity
∗ ∙ Querying in DWU

∗∗

∙ Amount of storage capacity ∙ Amount of storage capacity

∙ Amount of streaming data
∗∗∗

∗
According to the total amount of data processed in the selected columns

∗∗
A Database Warehouse Unit (DWU) measures the query performance

∗∗∗
Applies if streaming data is directly transferred to BigQuery

data volume per column and the column’s data type, Azure SQL Data Warehouse
(DW) charges in terms of query performance. Thus, the consumer is able to scale

the speed of queries in SQL DW. As storage is charged separately per volume, con-

sumers are only charged for the exact amount of storage needed to store table data.

Due to the differences in the used pricing approaches, it is not possible to compare

costs without determining the requirements of individual data analytics tasks. In gen-

eral, we identify two main cost factors: compute and storage capacity.

3.5 Machine Learning

For predictive analytics, all three cloud providers provide managed machine learning

engines that are integrated with both the storage and data warehouse solution of the

respective cloud provider. Amazon Machine Learning (ML) and Google’s Predic-
tion API9

focus on basic features to support common activities like the selection of

data sources, explorative data analysis, model training, model evaluation, and model

deployment. Less rigid is the approach of Azure ML, which provides an integrated

SaaS application, referred to as Azure ML Studio, to individually define all steps of

the data mining process as known from other data mining tools (e.g., RapidMiner).
Besides, artificial intelligence algorithm APIs for vision, language, speech, and rec-

ommendations are available.

In general, we can identify three main cost factors: amount of computing capacity,

number of transactions, and subscription fees. In Table 6, we give an overview of the

individual cost factors per cloud service and provide two cost examples. Although

the pricing approach is quite similar between Amazon ML and Prediction API, the

main difference is that the latter calculates computing costs for training based on

the volume of datasets. As the running time is closely linked to both the volume of

training data and the complexity of the chosen learning algorithm, Google’s pricing

approach might be beneficial for the consumer as it does not consider complexity.

9
Abbr. for Application Programming Interface.
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Table 6 Cost factors and examples of machine learning cloud services (15 GB dataset size, 15000

streaming updates per day, 150 MB model size, 36 h of model generation, 30000 predictions per

month)

Amazon ML ∙ Hours of data analysis and model training

∙ Number of batch predictions

∙ Number of real-time predictions

∙ Amount of reserved memory capacity

Example ($) Price per hour data analysis model training 0.42

Price per real-time prediction 0.0001

Price for reserved memory per 10 MB per hour 0.001

Costs for computing capacities per month 15.12

Costs for real-time predictions per month 41.16

Overall costs per month 56.28

Prediction API ∙ Data volume for model training

∙ Number of streaming updates

∙ Number of predictions

∙ Number of projects (subscription)

Example ($) Monthly usage fee per project 10.00

Price per MB bulk trained 0.002

Price per streaming update 0.00/0.50
∗

Price per prediction 0.00/0.05
∗

Costs for computing capacities per month 30.00

Costs for streaming updates per month 7.75

Costs for predictions per month 145.00

Overall costs per month 182.75

Azure ML ∙ Number of users (subscription)

∙ Number of compute hours

∙ Number of transactions

∗
First 10000 predictions/10001 + predictions

Amazon ML does not imply any subscription fees and further differentiates between

batch and real-time predictions. For allowing real-time predictions, reserved mem-

ory capacity needs to be rented for storing the model. However, streaming updates to

further train the model, as supported by the Prediction API, are not possible. Azure
ML charges a monthly subscription fee as well as an hourly fee for using its data

mining tools. For its ML APIs, an additional fee per transaction and per computing

hour occurs. Due to the different pricing approaches and functionality, it is not possi-

ble to precisely compare the cloud services with each other. However, our examples

indicate that the number of predictions is an essential cost factor while the cost for

generating the model are comparatively low. This emphasizes the need for estimating

the business value, i.e., impact of predictions (e.g., for justifying, guiding, and pre-

scribing business actions [13]), which becomes increasingly important, for instance,
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to calculate the return of investment (ROI) of cloud-based big data applications. A

comprehensive cost and performance benchmark study (as shown in, e.g., [4, 7]) is

necessary to further evaluate the different machine learning cloud services.

4 Discussion

In the previous sections, we have shown that the proposed generic cloud-based big

data architecture can be implemented in the cloud environments of the three mar-

ket leading cloud providers. In general, we see that the cloud pricing approaches

are quite similar, but also strongly differ in some aspects. To strategically select

a cloud provider, consumers have to specify and estimate the characteristics and

resource demands of use cases. Given the identified cost factors, a total cost of own-

ership (TCO) approach will help to better estimate the overall costs of using big data

cloud services, for instance, to compare it with an inhouse solution. Besides costs for

operating the cloud environment, a TCO approach may need to consider additional

costs including costs for installing and configuration, support, and backsourcing. In

general, we have seen that each cloud provider has its strengths and weaknesses,

for instance, in terms of costs and flexibility. Cost benefits achieved in one cloud

service can be exhausted by another cloud service, as shown in the previous sec-

tions. All cloud providers support linear scalability in such a way that cost functions

are linear. Common pricing schemes for on-demand cloud services are unit-based

and tiered pricing, mainly based on the compute or storage capacity. Other pricing

schemes, such as for reserved cloud services, have not been considered in this study.

Regarding our cost comparisons, we see that the cloud market leader, AWS, gener-

ally performs well and may be the best choice for implementing a big data streaming

application. To better estimate and evaluate total costs, however, the dynamics of big

data applications in terms of resource requirements need to be taken into account, for

instance, using simulations. For this purpose, application profiling might be neces-

sary [1]. Moreover, benchmark studies are necessary to evaluate the running time of

computing clusters for performing certain data processing and data analytics tasks

in order to be able to better compare associated costs. The study furthermore empha-

sizes the need of measures for estimating the value of big data analytics, for instance,

in terms of ROI or service quality.

5 Conclusions and Outlook

While the demand for big data applications is growing with the continuous increase

of digital data, cloud computing has become essential for meeting infrastructure

requirements for big data in terms of computational power and storage capacity. The

rapid development of managed big data cloud services makes it possible to support

certain activities of big data processing in an on-demand fashion. These cloud ser-
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vices need to be integrated to implement sophisticated big data application environ-

ments. Likewise, it is important to estimate the costs and value of those environments

in order to make strategic decisions.

In this paper, we have presented a generic reference architecture for implement-

ing big data application in cloud environments based on best practices. Moreover,

we have defined three specific implementations of this reference architecture, apply-

ing cloud services of three leading cloud providers, and analyze important pricing

schemes and cost factors. In particular for big data streaming analytics, we iden-

tify differences and similarities as well as strengths and weaknesses between cloud

providers. Taking a cost perspective, important implications can be derived from

the applied case studies. The case studies indicate the importance of an integrated

view on big data application environments for estimating and evaluating the over-

all costs. Therefore, the contribution of this chapter is twofold. First, we proposed

a state-of-the-art reference architecture and explained important aspects for imple-

menting big data applications in cloud environments. Second, we analyzed relevant

cloud services from a cost perspective and derived important implications for big

data management.

Given the insights and implications of this study, the development of a holistic

TCO model for big data applications is the object for future research. Moreover, we

aim to integrate this model into a simulation framework in order to provide a tool

for decision support that is able to consider the dynamics of big data applications in

terms of usage patterns and resource demands.
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