
Chapter 2
Stress

2.1 Cauchy Stress

The concept of stress was conceptualized best by Cauchy (1789) and put in final
form by Saint-Venant (1797). Consider an infinitesimal cubical element (Fig. 2.1)
that is in a state of static equilibrium. The forces per unit area on each face of the
element are the stresses on that face. There are two types of stresses; normal
stresses are perpendicular to the face of the element and shear stresses are parallel to
the element face. Different notations have been used to denote stresses. In this
treatise, r will be used to denote normal stresses, and either r or s will be used to
denote shear stress. The notation is further augmented with subscripts indicating the
face upon which the stress is acting and the direction of the stress. Thus, rxx is the
normal stress in the x-direction acting upon a face whose normal is in the
x-direction. The shear stresses on the x-face are denoted sxy and sxz for shear
stresses acting in the y- and z-directions, respectively.

Normal stresses are considered positive when tensile, and shear stresses are
considered positive when the force vector is in the positive direction of the cor-
responding axis. All stresses shown in Fig. 2.1 are positive. It is noted that the
stresses on a face correspond to the three components of an arbitrary force vector
(per unit area) acting on the face. Further, the normal and shear stresses on opposite
faces (not shown in Fig. 2.1) must be in opposite directions in order to maintain
force and moment equilibrium. There are nine unique components of stress at a
point.
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2.2 Plane Stress

A complete representation of the two-dimensional state of stress (plane stress with
all z-components of stress = 0) at a point is depicted in Fig. 2.2. Note that the shear
stresses on the three sets of opposite faces must be equivalent to couples that are in
moment equilibrium. This establishes the condition that the shear stresses at a point
are of equal magnitude, namely:

sxy ¼ syx ð2:1Þ

For the conditions of plane stress to exist in an x–y plane, it is understood that
the z-components of stress are zero, i.e., rzz ¼ szx ¼ szy ¼ 0.

Fig. 2.1 Stress components

Fig. 2.2 Plane stress at a
point
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2.3 Stress Transformation

The plane state of stress at any point is a function of the plane of interest through
that point. Ideally, it is desired to express the state of stress on any arbitrary plane
passing through the point. This can be accomplished through consideration of the
equilibrium equations for an arbitrary section passing through the element in
Fig. 2.2. The resulting equations are called stress transformation equations.

Consider the free body diagram of a section of an element as shown in Fig. 2.3.
Force equilibrium in the x′- and y′-directions results in the following plane stress

transformation equations.

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy sin h cos h ð2:2Þ

sx0y0 ¼ � rxx � ryy
� �

sin h cos hþ sxy cos2h� sin2h
� � ð2:3Þ

Following along similar lines for equilibrium, the normal stress ry0y0 is:

ry0yi ¼ rxx sin2hþ ryy cos2h� 2sxy sin h cos h ð2:4Þ

These stress transformation equations can be expressed in a more convenient
form through the use of trigonometric identities (see Appendix) with the results:

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h ð2:5Þ

ry0y0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2h� sxy sin 2h ð2:6Þ

Fig. 2.3 Arbitrary section of
plane stress element
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sx0y0 ¼ � rxx � ryy
2

� �
sin 2hþ sxy cos 2h ð2:7Þ

Defining m ¼ cos h and n ¼ sin h, the transformation equations (2.2–2.4) can be
written in matrix form as:

rx0x0
ry0y0
sx0y0

8<
:

9=
; ¼

m2 n2 2mn
n2 m2 �mn

�mn mn m2 � n2

2
4

3
5 rxx

ryy
sxy

8<
:

9=
; ð2:8Þ

2.4 Principal Stresses

The normal stresses at a point vary with the orientation of the plane passing through
the point as determined from equilibrium. The maximum and minimum values of the
normal stresses are called the principal stresses. Taking the derivative of the normal
stress equilibrium equation (2.4) with respect to the angle θ and equating to zero
gives the angles, hP, corresponding to the principal planes. The resulting equation is:

tan 2hPð Þ ¼ 2sxy
rxx � ryy

ð2:9Þ

The two angles hP from this equation differ by 90°. The planes defined by these
angles are called the principal planes. One of the planes corresponds to the max-
imum normal stress and the other corresponds to the minimum normal stress.
Combining these results (2.4 and 2.6) gives the expression for the principal stresses:

rP11;22 ¼
rxx þ ryy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy

2

� �2
þ s2xy

r
ð2:10Þ

Using the (+) sign in this equation gives the maximum normal stress, rmax
11 , and

the (–) sign gives the minimum normal stress, rmin
22 .

The maximum shear stress at a point may also be of interest. Setting the
derivative with respect to θ of the shear stress equation (2.5) equal to zero gives

tan 2hsð Þ ¼ � rxx � ryy
2sxy

� �
ð2:11Þ

The two solutions for hS correspond to the planes of maximum and minimum
shear stress. They are equal in magnitude with the maximum shear stress being
positive and the minimum shear stress being negative. The magnitude of the
maximum shear stress is determined by combining the above equations with the
result:
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smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy

2

� �2
þ s2xy

r
ð2:12Þ

It can also be shown that the maximum shear stress can be expressed in terms of
the principal stresses as:

smax ¼ r11 � r22
2

ð2:13Þ

2.5 Pure Shear Stress

The condition of pure shear is a most interesting state of stress. As shown in
Fig. 2.4, pure shear in an x–y plane is equivalent to positive and negative, pure,
normal stresses, of the same magnitude as the shear stress, on the planes at angles
45° to the x–y axes. This explains why a brittle material such as a piece of chalk
fails along a 45° plane when subjected to pure torsion (Chap. 7). The brittle material
is relatively weak in tension and thus it fails along the plane that has the highest
level of tensile, normal stresses.

Fig. 2.4 Pure shear stress
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2.6 Stress Tensor

The nine components of stress can be represented as a tensor quantity that obeys
tensor transformation laws as described in the Appendix. The standard notation for
the stress tensor is:

rij ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 ð2:14Þ

In (2.14), the indices 1, 2, 3 represent x, y, z in the rectangular Cartesian
coordinate system. Further, we note that equilibrium requires that the stress tensor is
symmetric with:

rij ¼ rji ð2:15Þ

2.7 Units of Stress

Stress is the force per unit area. Thus, stress can be expressed as pounds per square
inch (psi) or Pascals [Pa, which is defined as newtons per square meter in the
International (SI) System of units]. The units on force are derived from Newton’s
second law of motion which states that F = m ∙ a. One newton (N) is the force
required to accelerate one kilogram (kg) of mass (m) at the rate (a) of one meter per
second squared (m/s2). Thus 1 N = 1 kg ∙ 1 m/s2. The unit of mass in the Imperial
and United States customary systems is called a slug. It is the mass that accelerates
at one ft/s2 when a force of one pound (lb) is exerted on it. Thus, a slug has the units

1 slug ¼ 1 lb�s
2

ft .

For many applications, stresses are often expressed as ksi [kips (103 lb) per
square inch] or MPa (mega pascals, where mega = 106). These notations are
employed simply to reduce the number of zeros (or digits) required to express the
value of large numbers. Note that 1.0 MPa = 145.0 psi = 0.145 ksi.

2.8 Exercises

2:8:1 Confirm equation 2.2.
2:8:2 Confirm equation 2.5.
2:8:3 Confirm equation 2.7.
2:8:4 Confirm equation 2.9.
2:8:5 Plot the variation of normal stress on planes passing through a point if it is

known that the state of stress is planar with rxx ¼ 40; ryy ¼ �20; sxy ¼ 10.
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Appendix: Solutions

2:8:1 Confirm equation 2.2.

Solution
Equation (2.2) )

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy sin h cos h

Summation of forces in the x0 � x0-direction gives:

X
Fx0x0 ¼ 0

rx0x0A ¼ rxx cos hAcos hþ ryy sin hAsin hþ sxy cos hAsin hþ sxyA cos h sin h

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy coshAsinh

2:8:2 Confirm equation 2.5.

Equation (2.5) )

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h
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Solution
Using the trigonometric identities in (2.2):

sin2h ¼ 2sinhcosh

sin2h ¼ 1� cos2h
2

cos2h ¼ 1þ cos2h
2

)

rx0x0 ¼ rxx
1þ cos2h

2
þ ryy

1� cos2h
2

þ sxysin2h

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos2hþ sxysin2h

2:8:3 Confirm equation 2.7.

Equation (2.7) )

sx0y0 ¼ � rxx � ryy
2

� �
sin 2hþ sxy cos 2h

Solution
Summation of forces in the y

0 � y
0
-direction and using trigonometric identities

gives:

X
Fy0y0 ¼ 0 )

sx0y0A ¼ A cos h rxx sin h� sxy cos h
� �þA sin h ðsxy sin h� ryy cos hÞ

sx0y0 ¼ ðrxx � ryyÞ sin h cos hþ sxy sin2h� cos2h
� �

sx0y0 ¼ ðrxx � ryyÞ sin 2h2
þ sxy cos 2h

2:8:4 Confirm equation 2.9.

Equation (2.9) )

tan 2hPð Þ ¼ 2sxy
rxx � ryy
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Solution
Normal stress on arbitrary plane is from (2.5) )

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h

Setting derivative with respect to h ¼ 0 for maximum and minimum )

drx0x0

dh
¼ 0 ¼ �2rxx sin h cos hþ 2ryy sin h cos hþ 2sxy cos2h� sin2h

� �

0 ¼ �rxx sin 2h
2

þ ryy sin 2h
2

þ sxy
1þ cos 2h

2
� 1� cos 2h

2

� �

0 ¼ sin 2h
2

ryy � rxx
� �þ sxy cos 2h

tan 2h ¼ 2sxy
rxx � ryy

2:8:5 Plot the variation of normal stress on planes passing through a point if it is
known that the state of stress is planar with rxx ¼ 40; ryy ¼ �20; sxy ¼ 10

Solution
Plotting Eq. (2.2) )
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