Chapter 2
Stress

2.1 Cauchy Stress

The concept of stress was conceptualized best by Cauchy (1789) and put in final
form by Saint-Venant (1797). Consider an infinitesimal cubical element (Fig. 2.1)
that is in a state of static equilibrium. The forces per unit area on each face of the
element are the stresses on that face. There are two types of stresses; normal
stresses are perpendicular to the face of the element and shear stresses are parallel to
the element face. Different notations have been used to denote stresses. In this
treatise, o will be used to denote normal stresses, and either ¢ or T will be used to
denote shear stress. The notation is further augmented with subscripts indicating the
face upon which the stress is acting and the direction of the stress. Thus, o, is the
normal stress in the x-direction acting upon a face whose normal is in the
x-direction. The shear stresses on the x-face are denoted t,, and 1y, for shear
stresses acting in the y- and z-directions, respectively.

Normal stresses are considered positive when tensile, and shear stresses are
considered positive when the force vector is in the positive direction of the cor-
responding axis. All stresses shown in Fig. 2.1 are positive. It is noted that the
stresses on a face correspond to the three components of an arbitrary force vector
(per unit area) acting on the face. Further, the normal and shear stresses on opposite
faces (not shown in Fig. 2.1) must be in opposite directions in order to maintain
force and moment equilibrium. There are nine unique components of stress at a
point.
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Fig. 2.1 Stress components

2.2 Plane Stress
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A complete representation of the two-dimensional state of stress (plane stress with
all z-components of stress = 0) at a point is depicted in Fig. 2.2. Note that the shear
stresses on the three sets of opposite faces must be equivalent to couples that are in
moment equilibrium. This establishes the condition that the shear stresses at a point

are of equal magnitude, namely:

Txy = Tyx

(2.1)

For the conditions of plane stress to exist in an x—y plane, it is understood that
the z-components of stress are zero, i.e., 0,; = T, = T, = 0.

Fig. 2.2 Plane stress at a
point
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2.3 Stress Transformation

The plane state of stress at any point is a function of the plane of interest through
that point. Ideally, it is desired to express the state of stress on any arbitrary plane
passing through the point. This can be accomplished through consideration of the
equilibrium equations for an arbitrary section passing through the element in
Fig. 2.2. The resulting equations are called stress transformation equations.

Consider the free body diagram of a section of an element as shown in Fig. 2.3.

Force equilibrium in the x'- and y'-directions results in the following plane stress
transformation equations.

Gy = Gy COSZ0 + Oyy sin’0 + 21y sin0cos 0 (2.2)
Tyy = — (0 — Gyy)sin 0.cos 0+ 1,y (cos?0 — sin’0) (2.3)

Following along similar lines for equilibrium, the normal stress o, is:
Oyyi = Oy sin*0 4 0,y cos?0 — 21,y sin 0 cos 0 (2.4)

These stress transformation equations can be expressed in a more convenient
form through the use of trigonometric identities (see Appendix) with the results:

P ; Ty | T ; T 608 20+ 1 sin 20 (2.5)
Oy = Tux + Oy I 000 — Tyy 8in 20 (2.6)

2 2

Fig. 2.3 Arbitrary section of
plane stress element
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Toy = — (@) sin 20 + 1,y cos 20 (2.7)

Defining m = cos 6 and n = sin 6, the transformation equations (2.2-2.4) can be
written in matrix form as:

Oy m>  n? 2mn Oxx
opy p=| n* m* —mn Oyy (2.8)
Ty —mn mn m*—n? Tyy

2.4 Principal Stresses

The normal stresses at a point vary with the orientation of the plane passing through
the point as determined from equilibrium. The maximum and minimum values of the
normal stresses are called the principal stresses. Taking the derivative of the normal
stress equilibrium equation (2.4) with respect to the angle 6 and equating to zero
gives the angles, 0p, corresponding to the principal planes. The resulting equation is:

21y

tan (20p) = (2.9)

Oxx — Oyy

The two angles 0p from this equation differ by 90°. The planes defined by these
angles are called the principal planes. One of the planes corresponds to the max-
imum normal stress and the other corresponds to the minimum normal stress.
Combining these results (2.4 and 2.6) gives the expression for the principal stresses:

N
0_1131722 _ O-H;GW + \/(O’M . O'y)) +12, (2.10)

Using the (+) sign in this equation gives the maximum normal stress, o}, and
the (-) sign gives the minimum normal stress, gJa".
The maximum shear stress at a point may also be of interest. Setting the

derivative with respect to 0 of the shear stress equation (2.5) equal to zero gives

ey = (75 o

21y,

The two solutions for 0g correspond to the planes of maximum and minimum
shear stress. They are equal in magnitude with the maximum shear stress being
positive and the minimum shear stress being negative. The magnitude of the
maximum shear stress is determined by combining the above equations with the
result:
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Oxx — Oy 2
Tmax — \/(T}y) +T)26y (212)

It can also be shown that the maximum shear stress can be expressed in terms of
the principal stresses as:

g1]1 — O;
Tmax = & 2_22 (213)

2.5 Pure Shear Stress

The condition of pure shear is a most interesting state of stress. As shown in
Fig. 2.4, pure shear in an x—y plane is equivalent to positive and negative, pure,
normal stresses, of the same magnitude as the shear stress, on the planes at angles
45° to the x—y axes. This explains why a brittle material such as a piece of chalk
fails along a 45° plane when subjected to pure torsion (Chap. 7). The brittle material
is relatively weak in tension and thus it fails along the plane that has the highest
level of tensile, normal stresses.
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Fig. 2.4 Pure shear stress
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2.6 Stress Tensor

The nine components of stress can be represented as a tensor quantity that obeys
tensor transformation laws as described in the Appendix. The standard notation for
the stress tensor is:

o1 012 013
O',‘j = 021 022 023 (214)
031 032 033

In (2.14), the indices 1, 2, 3 represent X, y, z in the rectangular Cartesian
coordinate system. Further, we note that equilibrium requires that the stress tensor is
symmetric with:

gjj = 0jj (215)

2.7 Units of Stress

Stress is the force per unit area. Thus, stress can be expressed as pounds per square
inch (psi) or Pascals [Pa, which is defined as newtons per square meter in the
International (SI) System of units]. The units on force are derived from Newton’s
second law of motion which states that F = m + a. One newton (N) is the force
required to accelerate one kilogram (kg) of mass (m) at the rate (a) of one meter per
second squared (m/s%). Thus 1 N = 1 kg + 1 m/s”. The unit of mass in the Imperial
and United States customary systems is called a slug. It is the mass that accelerates
at one ft/s* when a force of one pound (Ib) is exerted on it. Thus, a slug has the units
1 slug = 1lbf_-ts2.

For many applications, stresses are often expressed as ksi [kips (10° Ib) per
square inch] or MPa (mega pascals, where mega = 10%). These notations are
employed simply to reduce the number of zeros (or digits) required to express the
value of large numbers. Note that 1.0 MPa = 145.0 psi = 0.145 ksi.

2.8 Exercises

2.8.1 Confirm equation 2.2.

2.8.2 Confirm equation 2.5.

2.8.3 Confirm equation 2.7.

2.8.4 Confirm equation 2.9.

2.8.5 Plot the variation of normal stress on planes passing through a point if it is
known that the state of stress is planar with o, = 40, ¢,, = —20, 1, = 10.
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Appendix: Solutions

2.8.1 Confirm equation 2.2.

Solution
Equation (2.2) =

Gyy = Gy COSZ0 + Oy sin0 + 27,y sin6cos 0
Summation of forces in the x’ — x’-direction gives:

ZFM =0

OyyA = 0y c0s 0 Acos 0 + gy, sin 0 Asin 0 + 1., cos 0 Asin 0 + 7,,A cos 0 sin 0

Oy = Oy cOS20 4 Oyy sin0 + 21,y cost Asin0

2.8.2 Confirm equation 2.5.
Equation (2.5) =

Oxx + Oyy Oxx —

7 O cos 20 + 1., sin 20

Oxy =
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Solution
Using the trigonometric identities in (2.2):

sin20 = 2sinfOcos

1 — cos26
)
0=——
sin >
1
0520 — -+ cos20
2
=
1+ cos26 1 — cos26 )
Oyy = Oxy > + oy 3 + Tyysin20
Gyy = Oax —; Ow 4 Ju ; I 0526 + Tyysin20

2.8.3 Confirm equation 2.7.
Equation (2.7) =

’L'X/y/ = — <w) sin 20 —+ 'L'xy COS 20

Solution

2 Stress

Summation of forces in the y — y-direction and using trigonometric identities

gives:

ZFyfy/:O =

ToyA = Acos 0 0y sin 0 — Ty cos 0) + A sin 0 (1, sin 0 — 7,y cos 0)

Tyy = (Gu — Gyy) 8in 0 cos 0 + 7y, (5in”0 — cos®0)

in20
Toy = (O — oyy)% + T,y c0s 20

2.8.4 Confirm equation 2.9.
Equation (2.9) =

27y
tan(20p) = Do

Oxx — Oyy
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Solution
Normal stress on arbitrary plane is from (2.5) =

Cyy = Tx ; Ow 4 O ; IV 0820 + Tyy Sin 260

Setting derivative with respect to 0 = 0 for maximum and minimum =

d X . . .
ZOXJ =0 = —20ysin0cos 0+ 20, sin 0 cos 0 + 21y, (00520 — sin? 0)
—0xSin20 oy, sin20 1+cos20 1—cos20
0= + —= Tyy —
2 2 2 2
sin 20
0=—— (0yy — Gax) + Tay COS 20
2
tan 260 = — 22
Oxx = Oyy

2.8.5 Plot the variation of normal stress on planes passing through a point if it is
known that the state of stress is planar with g, = 40, 7,, = —20, 1,, = 10

Solution
Plotting Eq. (2.2) =

90
120 60

150 30

sn(0) 180 —+—+—+F 0
— 10 20 30 40
210 330

240 300

270
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