Adaptive Position Tracking with Hard
Constraints—Barrier Lyapunov Functions
Approach
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Abstract A servo control with unknown system parameters and constraints
imposed on the maximal tracking error is considered. The barrier Lyapunov
functions approach is applied to assure the preservation of constraints in any
condition. The system’s performance is examined for three methods of controller
design based on: quadratic Lyapunov functions; on barrier Lyapunov functions if
only position constraints are imposed; and on barrier Lyapunov functions if both
position and velocity constraints are present. The tuning rules are discussed and
several experiments demonstrating features of the proposed control and the influ-
ence of the parameters are presented.
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1 Introduction

Servo systems are commonly used in various branches of industrial automation and
robotics. The basic aim of a servo system or a robot manipulator is to track the
desired motion trajectory with sufficient precision. For numerous servo systems
rigorous handling of constraints imposed on a position and/or speed during any
dynamic transient is a necessary condition of safe operation. Any violation of the
constraints can lead to damage or destruction of the drive system or destroy any
objects that happen to be in collision with the actuator. For plentiful robot
manipulators, such as medical robots, automatic welding machines, microelec-
tromechanical systems and many others, operation inside constraints is a matter of
safety. It is reasonable to assume that the desired trajectories are planned with
sufficient security margins and hence rigorous constraints must be imposed on the
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tracking errors. In such cases any control method that assumes the constraints are
‘soft’ and that it is possible to neglect constraints in control design and circumvent
the problem through adequate control-parameter selection must be rejected.

Several approaches to control nonlinear systems with constraints were reported.
Among them, the nonlinear model predictive control seems to be promising [1].
From the recent reports the diffeomorphism-based control may be mentioned [2].
As the literature on nonlinear, constrained control is rich, it is out of the scope of
this chapter to provide an exhaustive review.

Nonlinear adaptive control is widely applied to designing high-performance
servo systems in the presence of unknown plant parameters. Usually the controller
derivation is based on control Lyapunov functions (CLF) and backstepping tech-
niques [3]. Quadratic Lyapunov functions (QLF) are commonly used to assure the
stability of the system, but unfortunately with this approach the designer is not able
to impose the hard constraints a priori and to guarantee the constraints are fulfilled
during any transient conditions.

Recently, use of the so-called barrier Lyapunov functions (BLF) in control
synthesis has been proposed for constraint handling in Brunovsky type systems [4],
nonlinear systems in the strict feedback form [5] and with adaptive control [6, 7].
The BLF approach applies the backstepping technique and allows the system output
(or all state variables) to be kept inside the predefined constraints. Although the
theory of stability investigation by BLF is well established, only a few practical
applications are reported [8, 9].

The aim of the presented chapter is to demonstrate the possibility of applications
of BLF in servo systems design to provide a systematic description of the design
procedure and to formulate some rules for the selection of the design parameters.
Particular attention is given to illustrating the problem of interactions among
position and velocity constraints. To present clear and compact derivation we
concentrate on the simplest motion model with one degree of freedom, but gen-
eralizations to many more complex applications are straightforward.

2 Plant Model and Control Objectives

A linear servo is considered and its very simple model is described by:

d
XY (1)

d
m—v = @i — F, 2
d t (rD (2] ( )
where x, v are the forcer position and velocity, m is the forcer mass, ¢ represents the
coefficient converting the motor current i into the thrust force and F, is an external
load force, acting against the motion. The motor current i is supplied by a PWM
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inverter working in a current control mode and it is assumed that this control loop is
much faster than mechanical dynamics, so the motor current i is considered as the
control input. The same approach and the analogous model may be used for the
rotational motors, therefore the liner motion supposition is carried outdone without
the loss of generality.

It is assumed that the parameters m > 0, ¢ > 0, are unknown, constant or slowly
varying. Although the constant ¢ is usually provided by the motor manufacturer,
this information is not accurate. This constant may vary with the motor temperature,
PWM conduction mode or, for some tubular linear motors with permanent magnets
built in the inner part, it may be noticeably lower if the forcer operates near the edge
of the inner part. It is assumed that the load may be modelled as a nonlinear,
memoryless function of the position and the velocity and that this model may be
represented as a linear combination of known nonlinear functions ¢ with unknown
parameters A:

F,(x,v) = AT¢(x,v). (3)

Such models are natural if the load is approximated using any approximation
technique: artificial neural networks, fuzzy modelling, polynomial approximation
and so on. The number of unknown parameters and the approximation basis £ may
be chosen for the particular application.

Remark 1 For the sake of brevity, it is assumed that model (3) is accurate, but it is
also possible to consider an inaccurate approximation with a bounded approxi-
mation error &:

F,(x,v) = AT¢(x,v) +e. (4)

The main consequence of using model (4) or (3) is that under assumption (3) it is
possible to prove the asymptotic stability of the tracking errors system. In case of
the load model (4), one has to introduce a switching control component to obtain
the asymptotic stability, or to accept the stability in the sense of the uniform
ultimate boundedness [10].

To remove the difficulties caused by the unknown control gain ¢, the motion
Eq. (2) is transferred into:

d
pov= i—ATE(x,v), (5)
where:
1
n=", A, =—A. (6)
¢ ¢

The control objective is that the motor position has to follow a smooth, bounded
reference x,(1):
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14 ()] < Xmax- (7)

It is assumed that the derivatives of the reference are bounded as well. It is
required that the tracking error denoted by:

ex =Xg—X (8)
is constrained for any ¢ by a pre-defined, rigorous inequality:
|ex(t)‘ <A, (9)

for any initial conditions that assure |e,(0)| <A,,. It follows from (9) that the
position trajectory will be bounded by a hard constraint:

()] <Ar Ar = Avy + Xar. (10)

3 Quadratic and Barrier Lyapunov Functions

Lyapunov stability theory will be used to construct the stabilizing control for the
discussed problem. For the sake of completeness, some preliminaries are given in
this section.

Definition 1 Let V : R” — R be a continuously differentiable, proper, and positive
definite function defined with respect to the nonlinear system x = f(x,u). Let us
denote V(x,u) = VIf(x,u). V(x) is a control Lyapunov function (CLF) for the
system x = f(x, u) if, for all x # 0, there exists such u that V(x,u) <0. If V(x) =
xT Px for some positive definite P, it is called a quadratic Lyapunov function (QLF).

Definition 2 [5] A Barrier Lyapunov Function (BLF) is a scalar function V(x),
defined with respect to the system x = f(x) on an open region D containing the
origin; that is continuous, positive definite, has continuous first-order partial
derivatives at every point of D, has the property V(x) — oo as x approaches the
boundary of D, and satisfies condition: IM,Vt > OV (x(z)) <M along any system
trajectory starting inside D.

Usually it is assumed that D is a hyper-rectangle defined by D = {x: |x;| <Ay}

Lemma 1 [5] Consider a smooth dynamical system z = f(t,x,w), with the state

variables 7 = [x, W]T. Let V{(x;) be a BLF satisfying Vi(x;) — oo if x; — £A;,
let Q(w) be a QLF. Let V = Z?;T(x> Vi(x;) + Q(w). If the inequality V = %f <0
holds anywhere in the set S = {(x,w) : |x;| <Ay}, then any trajectory that fulfils
the initial constraints Yi|x;(0)| <Ay remains in S for any t.
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In Lemma 1 the state is split into the constrained variables x and the unconstrained
variables w. For each x; a BLF is constructed, while a QLF may be used for w.

It is well known that the selected Lyapunov function heavily influences the
features of the resulting closed loop system. The commonly accepted form of a
single variable BLF corresponding to the interval D = (—A, A) is a logarithmic
BLF [4-7]:

V(x) %log(l_;(l)z>. (11)
A

The motion control with application of such BLFs was investigated in [11]. As
the function (11) does not possess any parameters that may change the shape of the
plot and therefore the resulting system properties, it is interesting and informative to
investigate other possibilities of barrier function selection. In this chapter we
consider BLFs based on trigonometric functions:

V(x) = —tan’ >+ (12)

and

Fig. 1 Plots of a 2tan® &, b & tan(3 (3)°), ¢ log (ﬁ)
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Vix) = A;tan (g (%)2) (13)

The main difference between these Lyapunov functions is their behaviour near
the constraint boundary. As it is shown in Fig. 1, if the scaling factors are ignored,
the function (12) grows up most rapidly, (11) slowly, (13) is the moderate one.
Therefore in the subsequent derivation we concentrate on BLF (13).

4 QLF Control Design

Let us forget for a moment about constraints (9) and design the controller using
QLFs. The adaptive back-stepping scheme [12] will be used to design the con-
troller. The velocity will be the ‘virtual control’ for position tracking. Let us con-
sider the error equation:

ex=2Xq—V (14)
and the desired ‘virtual control’ trajectory v, with the tracking error defined as:

ey, =Vg — V. (15)

The desired ‘virtual control’ v; will be designed to guarantee the required
convergence of the error e,. Considering the following QLF:

Vi =-é? (16)

allows one to conclude that the desired ‘virtual control’ v,:
Va = Xa+ keey, (17)
where k, > 0 is a design parameter, will generate the tracking error dynamics:
ey =Xq — Xg — keey +e, = —ke,+e, (18)
and:
v, = —kxei + eve, (19)
and so will assure stability if v = v,.

During the second stage of the backstepping procedure the velocity error e, is
considered:
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ey, = pig — v = uvg — i+ATE = —i+ATE (20)
where the new variables are defined as:
AT = [wAT], & = [, &), (21)
The derivative of the reference speed is given by:
Va = Xq + ke(—keex +e,), (22)

so, fortunately, it is available for the control algorithm, and hence £; in (21) is a
known function. Parameters A; in (21) are not known, therefore they will be

replaced by adaptive parameters AT = [@i, A7].
The control variable i will be designed using the QLF:

1 1~ ~
Ve Vit bu 4 LATTOA, (23)
where:

A=A — A, (24)
denotes the adaptation error and positive definite I' is the matrix of the design
parameters of appropriate dimensions.

Plugging in (19) and (20) into:
Vz = Vl —+ ewué‘v +Z{r7121 (25)
Allows calculation of the Lyapunov function derivative:

Vo = —k? +ece, + e, (—i+ATE) + ATTTIA,. (26)

The control variable i will be designed to compensate the unnecessary compo-
nents in (26) and to introduce the stabilizing component, so:

i= €x +A\{él +kve\/7 (27)

where k, > 0 is a design parameter. Such control allows the tracking error to be
described by:

ue, = —k,e, — e, — XIT(ZI (28)

and to represent the Lyapunov function derivative as:
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V= kel — kel + A7 (e, +T7'4)). (29)

As ;41 = 7;41, the differential rule describing the adaptation may be used to

guarantee that (29) is non-positive for any, unknown A;. The simplest way is to
cancel the last component in (29) by imposing:

A = e,T¢,. (30)

By using the LaSalle-Yoshizawa theorem [12], (29, 30) guarantees that all errors
ey, ey, Zl are uniformly bounded and e,, e, are regulated to zero. Since the reference
x; is bounded, x is bounded as well. The boundedness of v, follows from the
boundedness of x; and e, in (17). Combining this with (27), we find that the control
is also bounded. Although the boundedness of state variables is proven using QLF,
it is impossible to define the constraints a priori. The maximal value of each state
variable depends on the design parameters and initial conditions.

Remark 2 1t is well known that similar results may be obtained with some other
adaptation rules. For example:

Al :projp(gl,evrfl), (31)

where proj,(*,) is a projection operator assuring that ||x|| < p [12]. Although (31)
allows the maximal values of adaptive parameters to be influenced, it will not
provide a priori constraints for the state variables.

Remark 3 The design parameter k, influences not just the values of e,, but also the
‘virtual control’ v; in (17), and so the error ¢, in (28). Therefore, the maximal value
of the current (27) depends on both design parameters k, and k,, although only &, is
explicitly visible in (27).

Remark 4 State variables may be constrained by the initial value of the Lyapunov
function. As V, <0, V,2(t) <V,(0) along any trajectory of the system (18, 28).

Therefore, 1e2<V,(0), so |e] </2V2(0). Unfortunately, V,(0) =

%ez + % ,ue% + %Z{F 1A, depends on the initial guess of the unknown
t=0
parameters and the obtained constraint is not informative.

Although QLF design allows the influence of the error system dynamics by a
proper selection of design parameters, it will not provide any tool to impose hard
constraints for position or velocity a priori.
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5 BLF Design with Position Constraints

To satisfy the position error constraint (9), the BLF will be applied during the first
stage of back-stepping:

Vi = %tan(kei),k - % (32)
The derivative of the BLF is given by:
Vi = eyé (1 + tan®(ke?)), (33)
hence plugging (18) into (33) gives:
Vi = ex(ta — va+e,)(1+ tan®(ke?)). (34)

At this moment of the design procedure we have two possibilities to select the
desired velocity v,: the nonlinear v,;, which makes the Lyapunov function deriva-
tive a quadratic function of the tracking error:

kye,

ke oy 2 20, 2
T an (i) =V ke, + exe, (14 tan® (key) ), (35)

Vg = Xg+

or linear vy, as in (17), which gives nonlinear V1:
va =X+ ke = Vi = —keel (1 + tan® (ke})) +eyex (1 + tan (key)).  (36)

Both approaches give a theoretical possibility to derive stable control systems,
but it must be noticed that in case of nonlinear v; (35) the negative gain

Oley) = Hmﬁm’ which is responsible for the stability of the tracking error

dynamics:
ex=Xx4—vqite = 7Q(€x)€x + ey, (37)

tends to zero if |e;| — A.y. Therefore, the linear form (36) of v, is selected.
As the constraints are imposed only on the first state variable (the position
tracking error), the control variable i will be designed using the Lyapunov function:

1 lape 4~
Va =V + Eue§+ EA{r—‘Al, (38)

where V| defined in (32) is a BLF. Substitution of (20, 34) allows the calculation of
the Lyapunov function derivative as:
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Vy = ke (1+ tan? (ke2)) + eyey (1 + tan® (ke?))

S (39)
+e,(—i+A]E) +AT A,

The control variable i will be designed to compensate the unnecessary compo-
nents in (39) and to introduce the stabilizing component, so:

i= Zlel +€X(1 + tan? (kef)) + ke, (40)
where k, > 0 is a design parameter. This control gives the velocity tracking error:
pé, = —kye, + AT¢, — e (1+ tan? (ke?)) (41)
and the Lyapunov function derivative fulfils:
Vy = —kee2 (1 + tan® (ke?)) — kye? + AT (evé L+ r-‘?xl). (42)
Either of the adaptation rules (30) or (31) assures that:
Vo< — kel (14 tan®(ke?)) — kel <O. (43)

The following corollary abstracts the main features of the obtained system.

Corollary 1 Consider the closed loop system (18), (41) with any of the adaptation
laws (30) or (31) and the reference position trajectory, under all assumptions for-
mulated above. Consider any trajectory with initial conditions fulfilling
lex(0)| <A.x. Then the following properties hold along this trajectory:

1. The variables e, eV,AlT remain inside a compact set and the tracking error e,
fulfils the constraint |e,(7)] <A...

2. All closed loop signals are bounded.

3. The tracking errors ey, e, converge to zero asymptotically.

Sketch of the proof:

1. V,(0) is bounded and as V» <0, V,(¢) < V»(0) along the considered trajectory.
Lemma 1 yields that |e,(r)| <A,.. Another constraint for the tracking error may

be obtained noticing that » tan (ke?) < V5(0) and thus |ey| < A,, w.

Similarly, we may derive that |e,| < , /%VZ(O) and HAlH < /%, where

Jmin(*) denotes the smallest eigenvalue of the symmetric matrix *.

2. As ex,eV,ZlT are bounded, Kl are bounded also. From (17), (22), the desired
‘virtual control’ and its derivative are bounded as well. Therefore, the functions
¢, are bounded and from (40) the control is bounded.
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3. The tracking error asymptotic convergence may be obtained by demonstrating
that V, is bounded and making use of Barbalat’s lemma [2].

Remark 5 The component tan” (kef) in (40) suggests the control variable increases
if e, — +A,,. Although the inequality |e,| <A., is always fulfilled and the control
is bounded, the maximal value of the control variable depends on all design
parameters (similarly as it was explained in Remark 3) and initial conditions and
requires careful investigation.

6 BLF Design with Position and Velocity Constraints

The hard constraint imposed on the position tracking may cause rapid variations of
the trajectory near the constraint boundary and unacceptable velocity values. The
maximal velocity may be restricted if (a) the tracking error of the desired velocity e,
will be limited by a hard constraint, and (b) the desired velocity v; will be moderate.
The constraints imposed on the velocity tracking error e, may be preserved if a BLF
will be used also during the second stage of the back-stepping design. Therefore,
instead of (38), the Lyapunov function:

T

1
2A2,

ZZ{F*IZI, K=

Va = Vi + 2o tan(Ke?) +

K (44)

will be used, where V; defined in (32) is a BLF and A,, is a constraint imposed on
the tracking error e,. The Lyapunov function derivative may be represented as:

Vy = Vi + e, (1 +tan? (Ke2) ) e, + ATT 1A, (45)
and plugging in (36) and (20) results in:
V, = —kxei (1 + tan? (kef)) + evex(l + tan? (kei)) (46)
+ey(1+tan? (Ke2)) (—i+ATE) + ATT A,

Once again, the control variable i will be designed to compensate the unnec-
essary components in (46) and to introduce the stabilizing component, so:

1 + tan? (keﬁ)

f= ATE, 4o L (k)
1€te 1 +tan2(Ke%)

+ ke, (47)

where k, > 0 is a design parameter. This control gives the velocity tracking error:
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1 + tan? (kef)

ue, = —kye, + Xlrfl - exm (48)
and the Lyapunov function derivative fulfils:
Vo = —keel (1 +tan® (ke?)) — kel (1 +tan*(Key))
+ZIT (ev(l + tan? (Ke%))fl + F_IALl). (49)
As ;X] = —;\1, the differential rule describing the adaptation may be used to

guarantee that (49) is non-positive for any, unknown A;. The simplest way is to
cancel the last component in (49) by selecting:

Ay = e, (1+tan?(Ke2)) T &, (50)
which results in:
V) = —keel (1 +tan? (ke?)) — kye? (14 tan*(Kez)). (51)
Therefore:
V2 <0inS = {(ex,ev,zl) lex| <Aer, o] <Am,,}. (52)

The following corollary summarizes the main features of the obtained system.

Corollary 2 Consider the closed loop system (18), (48) with adaptation laws (50).
Assume there is a trajectory with initial conditions fulfilling |e.(0)] <A,
le,(0)] <A,y. Then the following properties hold along this trajectory:

1. The variables ey, e,, ZIT remain inside a compact set and state variables fulfil the
constraints |e,(7)| <Ay, |e(t)] <A,

2. All closed loop signals are bounded.

3. The tracking errors ey, e, converge to zero asymptotically.

Sketch of the proof:

1. V,(0) is bounded and as V, <0, hence V,(r) < V,(0) along the considered tra-
jectory. Lemma 1 yields that |e,(7)| <A, and |e, ()| <A.,. Another constraint

for the tracking error may be obtained noticing that zl—ktan (keﬁ) < V,(0) and thus

lex] < Aex 220aN 24V (0)), Similarly, ftan(Ke?) < V5(0) and o)

n

ley] < Ay w. Using analogical reasoning, it can be derived that
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A< %, where Amin(*) denotes the smallest eigenvalue of the sym-

metric matrix .

2. As ex,ev,ZIT are bounded, A | are also bounded. The desired ‘virtual control’
and its derivative are bounded as well. Therefore the functions &; are bounded
and from (47) the control is bounded.

3. The tracking error asymptotic convergence may be obtained by demonstrating
that V, is bounded and making use of the Barbalat’s lemma [2].

Remark 6 The property (52), and therefore Corollary 2 will hold with other
adaptation rules, corresponding to (31), for example:

;\1 = proj, <21, ev(l + tan? (Kef))l"él), (53)

where proj,(*,-) is a projection operator assuring that ||*|| < p.

7 Feasibility Conditions

The set of design parameters that must be selected by the designer consists of

Aexy Aey, kyy ky, T and initial conditions for adaptive parameters Zl. The constraints
Acx, A, are imposed by the designer to limit the tracking errors, the gains k,, &, are
responsible for tracking error convergence and I is in charge of the adaptation
speed. The Corollary 2 is derived under the feasibility condition that ‘there exists a
trajectory with initial conditions fulfilling |e,(0)| <A,, |e,(0)] <A.,’. This condi-
tion implies that k, and A,, cannot be selected independently. As:

ev(o) = xd(o) + kxgx(o) - V(O)a (54)
A., must be chosen according to the inequality:
|%4(0) + kyex(0) — v(0)] < [x4(0) — v(0)] + kyAex < Aey. (55)

Similarly, as imposing A, allows |x(¢)| to be constrained by the inequality (10),
the choice of A,, provides constraints for the maximal velocity:

V(0] < [xa (1) 4 kvex(1) ]|+ [en(1)] < Iln>a€)(|)'cd(t)| FhBer + Aoy = A, (56)

The designer may be interested in constraining the gap between the desired
position derivative and the actual velocity:
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E(t) = ia(1) — v(t). (57)

E| = [ta — V| = [va = v — keex| = |ey — kees], (58)
it may be bounded by a proper choice of A, and A,,:
|E| < Aoy + kiAey. (59)

Therefore it is evident that a larger k,, which allows the faster convergence of the
tracking error, requires greater maximal velocity and a bigger gap between the
desired position derivative and the actual velocity. Also the maximal value of the
control variable (47) depends on the selected design parameters and must be
checked carefully before implementation in a real drive.

8 Numerical Experiments

The linear actuator with the parameters m = 8 kg, and ¢ = 39 N/A is supposed to
track the desired position provided by the filtered sinusoid:

xalt) = cl{% £{0.3 sin (3;)}} [m, (60)

T2s2 +2Ts+ 1

where 7= 0.1 s and £ denotes the Laplace transform. The desired trajectory is
presented in Fig. 2.
It is assumed that the actuator works against the load described by:

F,(x,v) = Av’sign(v) + B|v| sin(27x) [N]. (61)

with unknown coefficients A and B, hence, according to (21):

Al = 1 [m, A, B]
@ (62)

& = [va,Vsign(v), |v| sin(2nx)].

If it is assumed that none of the motor or load parameters are known, the initial
values of adaptive parameters are selected as:

~

1
Al = P [0.5m,0,0], (63)

while the real values are KIT = é [m,A, B] = 558, 10,6].
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Fig. 2 Desired position trajectory x; and its derivative X,

8.1 Known-Parameter Case

If all parameters A are known exactly, the problem is simplified by taking A 1 =A;
and T~! = 0. The adaptive loop is inactive. The two-dimensional state-space
allows simple comparisons of the system behaviour under all discussed control
strategies. The final Lyapunov functions for the non-adaptive case are:

1 1
V2 = 563 + Eﬂef (64)

for the QLF approach;

T

“oaL (65)

1 1
Vo = ﬁtan(kei) + i,uef, k

for the position constrained BLF approach; and
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1 n T T
Vo = —tan(ke) + —tan(Ke}), k=——>, K=——> 66
2 = pptan(ke) + g tan(Key). 202, 20, (¢6)
for the position and velocity constrained BLF approach.
The control signal is given by:
i=Al¢ +e+he, (67)
i=AT¢ +e (14 tan®(ke?)) + kvey (68)
1 + tan?(ke?
i= AlTél +ex ( X) + ke, (69)

1 + tan?(Ke?)

for the discussed strategies respectively, where e, = x; + ke, — v. The main dif-
ference between the approaches (67-69) lies in the coefficient of e,. The ‘gain’ of e,
1+ tan? (keﬁ)

equals Korp =1, Ky = 1 + tan?(ke?) and K, = T ()

respectively. The

gains are plotted in Fig. 3.

If the position tracking error is the only constrained variable, the control effort
increases illimitably if the error approaches the constraint boundary. If both errors
are restricted, the current increase is moderated if the velocity error is large.

In Fig. 4 the state trajectories of the tracking error system under all discussed
control strategies are compared for the same control gains k;, k,. The trajectories are
plotted on the background of constant-level curves of the Lyapunov function. The
plots illustrate how the barrier Lyapunov function acts to preserve the constraints.

Figure 5 demonstrates the time history under QLF and BLF control starting with
the same initial conditions e,(0) = —0.018, ¢,(0) = —0.04, lying inside the con-
straints |e,| <0.02, |e,| <0.05. It is visible that even in the non-adaptive case the

SRR

L

‘
08 06 04 02 0 02 04 06 08

ex/Aex

K, =1+ tan?(ke?2)

_ 1a tan®(ke})
¥ 71 + tan2(Ke2)

Fig. 3 The ‘gain’ of e, for BLF strategies
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(a) o1
0.08
0.06
0.04
0.02

0F
-0.02
-0.04
-0.06
-0.08

-0.1
-0.03

e [m/s]

Fig. 4 State trajectories of the tracking error: a the QLF design, b position constrained BLF
design and ¢ position and velocity constrained BLF approach

QLF-based control does not guarantee that the position tracking error will remain
inside the predefined bounds. Therefore the BLF approaches will be investigated
for the adaptive case.

8.2 BLF-Based Adaptive Control with Position Constraints

The command (67) is presented under initial conditions x(0) = —0.019 [m] and
v(0) = —0.09 [m/s], so e (0)=0.019, E(0) =0.09, ¢,(0) = 0.019%, +0.09
according to (54). The control (40) and the adaptive law (30) with I" = diag(1, 10,
1000) were applied with design coefficients k, = 0.1, k, = 1. The influence of the
imposed constraint on the system performance was tested in three cases: A, =
0.04,A,, =0.03 and A, =0.02, close to the initial condition e,(0) = 0.019
(Fig. 6). The asymptotic stability of all errors is observed. The imposed constraint is
preserved in all cases with a sufficient, save distant between the extremal value and
the barrier.

If the constraint gets tighter more rapid movements near the boundary are
observed and thus the maximal ‘virtual control’ tracking error and the ‘velocity gap’
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Fig. 5 Time history under QLF and BLF control

increase. The maximal current increases significantly, which is not surprising.
Because large oscillations of e, are observed, this system requires a careful tuning
of adaptation gains in (30). Therefore, considering all the above, the application of a
velocity constraint that will contribute to current restriction and will damp the
oscillations is highly recommended.

8.3 BLF-Based Adaptive Control with Position and Velocity
Constraints

The control (47) and the adaptive law (50) were applied with design coefficients
k. = 0.1, k, = 1. For the initial conditions we can select any A,, > e,(0) = 0.019
and A,, > e,(0) = 0.019&, — (—0.09) = 0.0919. We select A,, = 0.02 [m] and
A., = 0.2; 0.15; 0.1 [m/s]. As demonstrated in Fig. 7, in all the cases the imposed
bounds are preserved during the transient. Tightening the bound A,, allows to
decrease the ‘velocity gap’ and the maximal current as well.
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Fig. 6 Position tracking error e,, ‘virtual control’ tracking error e,, ‘velocity gap’ E and control
i for different constraints A,, (k, = 0.1, k, = 1)

8.4 System Performance with Bounded Adaptive Parameters

All systems tested above demonstrate robustness against imperfect reconstruction
of the load. Selection of the adaptive gains /" in (30) was not difficult and the
maximal values of adaptive parameters were reasonable. In spite of this, the system
performance with a priori constraints imposed on adaptive parameters was tested.
The control strategies (27), (40), (47) were applied with constraints A,, = 0.02 [m]
and A,, = 0.1 [m/s] with appropriate adaptive laws (30), (50). The adaptive loop
coefficients were I" = diag(1, 10, 1000) as previously, also the design coefficients k,
and k, remained unchanged. Estimated parameters were bounded to be larger than 0
and smaller than 300 % of their exact value. The results are plotted in Figs. 8, 9 and
10. The adaptive parameters’ bounds are respected and the tracking errors are
asymptotically stable for any applied controller. As in the non-adaptive case, the
QLF design does not assure the position tracking error respects the constraint.
The BLF designed system with position constraints demonstrates rapid changes of
velocity near the constraint boundary accompanied by high values of the current.
To sum up, the worse transient of the position error is observed for the
QLF-designed system and the best transient is obtained for the BLF-designed
system with position and velocity constraints.
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theoretical derivation. The effects of discrete in time controller implementation,

The application of the proposed controller design to a real plant allows the checking
of the robustness against several phenomena that were not consider during the

Fig. 8 Position tracking error e, and ‘virtual control’ tracking error e,

9 Real Plant Experiment
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Fig. 10 Estimates of load parameters A, B (the second and the third component of A 1 multiplied
by 39)

error of quantization during any digital measurement of an analogous signal,
measurement noise and outliers are present in any real drive. The fast part of the
drive dynamics—the current generation—was neglected during the derivation, but,
most importantly, the load model (3) is idealized. Therefore the BLF design was
tested with a real drive.

The electric linear drive (Fig. 11) system includes: TB2510 linear motor, total
weight: m = 8 kg, long-term force 104 N, current-force coefficient ¢ = 39 N/A,
1 um resolution encoder, XTL-230-18 Xenus PWM inverter with built-in current
controller, modular set based on DS1006 dSpace processor card for control and data
acquisition.
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Fig. 11 Linear drive

The load is mostly the friction and pulling forces from the cables. It is very
difficult to propose a realistic model for such resistance force, hence it will be
described by the simplest possible friction model:

F,(v) = AT¢(v) = S - sign(v) +b-v (70)

with unknown parameters S, b for static and Coulomb friction respectively. A very
rough guess for these parameters is 5 N and 25Ns/m respectively. The desired
position trajectory is:

x(t) = Ll{mc{o.:«; sin (2z)}} [m]. (71)

The control strategies (27), (40), (47) with appropriate adaptive laws (30), (49)
were applied with the design coefficients k, = 1; k, = 1, constraints A., = 0.01 [m]
and A,, = 0.05 [m/s]. The initial conditions for the presented plots were ¢,(0) =
0.008 and ¢, (0) = 0.008k, = 0.008. The adaptive loop gains were I" = diag(1, 10,
1000). Estimated parameters A were constrained to be positive and smaller than
300 % of their initial value. The results of experiments are plotted in Figs. 12, 13,
14, 15, 16 and 17.

As is visible in Figs. 12, 13 and 14, the constraints are violated under the QLF
design and respected if the BLF approach is used. If the position tracking constraint
is applied alone, the system requires high control effort (high motor current), while
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Fig. 12 The error system
state-space trajectories:

‘virtual control’ tracking error
e, versus position tracking
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changing the direction of movement near the constraint boundary (see Fig. 15).
Position and velocity constraints applied together assure the best performance. The
resistance force is changing (because of movement of cables mostly), so no steady
state of the entire system is achieved. The adaptive parameters are continuously
trying to fit to the inexact model (70) (Figs. 16, 17) and this is visible in the
oscillations in the tracking errors (Fig. 13). As a matter of fact, the uniform ultimate
boundedness is achieved (see Remark 1) rather than the asymptotic stability.
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10 Conclusions

A systematic motion controller design procedure based on barrier Lyapunov
functions was described. The method ensures the tracking errors remain inside the
predefined constraints in spite of unknown system parameters and along any tra-
jectory starting inside the constraints. Even if preliminary requirements impose the
bounds for the position tracking error only, it is advantageous to constrain the
velocity tracking error as well. This provides a smoother trajectory and allows the
avoidance of rapid movements near the position-constraint boundary, requiring
high values of the control. Proper choice of control system parameters is easier in
the case of coexisting position and velocity constraints.

The experiment with real linear drives demonstrates that the application of the
proposed approach in real servos is possible and all expected features of the control
system are preserved.

The proposed approach may be easily generalized to include inexact models like
in (4) and cover motion control with many degrees of freedom, particularly control
of robotic manipulators.
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