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Abstract A servo control with unknown system parameters and constraints
imposed on the maximal tracking error is considered. The barrier Lyapunov
functions approach is applied to assure the preservation of constraints in any
condition. The system’s performance is examined for three methods of controller
design based on: quadratic Lyapunov functions; on barrier Lyapunov functions if
only position constraints are imposed; and on barrier Lyapunov functions if both
position and velocity constraints are present. The tuning rules are discussed and
several experiments demonstrating features of the proposed control and the influ-
ence of the parameters are presented.
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1 Introduction

Servo systems are commonly used in various branches of industrial automation and
robotics. The basic aim of a servo system or a robot manipulator is to track the
desired motion trajectory with sufficient precision. For numerous servo systems
rigorous handling of constraints imposed on a position and/or speed during any
dynamic transient is a necessary condition of safe operation. Any violation of the
constraints can lead to damage or destruction of the drive system or destroy any
objects that happen to be in collision with the actuator. For plentiful robot
manipulators, such as medical robots, automatic welding machines, microelec-
tromechanical systems and many others, operation inside constraints is a matter of
safety. It is reasonable to assume that the desired trajectories are planned with
sufficient security margins and hence rigorous constraints must be imposed on the
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tracking errors. In such cases any control method that assumes the constraints are
‘soft’ and that it is possible to neglect constraints in control design and circumvent
the problem through adequate control-parameter selection must be rejected.

Several approaches to control nonlinear systems with constraints were reported.
Among them, the nonlinear model predictive control seems to be promising [1].
From the recent reports the diffeomorphism-based control may be mentioned [2].
As the literature on nonlinear, constrained control is rich, it is out of the scope of
this chapter to provide an exhaustive review.

Nonlinear adaptive control is widely applied to designing high-performance
servo systems in the presence of unknown plant parameters. Usually the controller
derivation is based on control Lyapunov functions (CLF) and backstepping tech-
niques [3]. Quadratic Lyapunov functions (QLF) are commonly used to assure the
stability of the system, but unfortunately with this approach the designer is not able
to impose the hard constraints a priori and to guarantee the constraints are fulfilled
during any transient conditions.

Recently, use of the so-called barrier Lyapunov functions (BLF) in control
synthesis has been proposed for constraint handling in Brunovsky type systems [4],
nonlinear systems in the strict feedback form [5] and with adaptive control [6, 7].
The BLF approach applies the backstepping technique and allows the system output
(or all state variables) to be kept inside the predefined constraints. Although the
theory of stability investigation by BLF is well established, only a few practical
applications are reported [8, 9].

The aim of the presented chapter is to demonstrate the possibility of applications
of BLF in servo systems design to provide a systematic description of the design
procedure and to formulate some rules for the selection of the design parameters.
Particular attention is given to illustrating the problem of interactions among
position and velocity constraints. To present clear and compact derivation we
concentrate on the simplest motion model with one degree of freedom, but gen-
eralizations to many more complex applications are straightforward.

2 Plant Model and Control Objectives

A linear servo is considered and its very simple model is described by:

d
dt
x ¼ v ð1Þ

m
d
dt
v ¼ ui� Fo; ð2Þ

where x, v are the forcer position and velocity, m is the forcer mass, φ represents the
coefficient converting the motor current i into the thrust force and Fo is an external
load force, acting against the motion. The motor current i is supplied by a PWM
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inverter working in a current control mode and it is assumed that this control loop is
much faster than mechanical dynamics, so the motor current i is considered as the
control input. The same approach and the analogous model may be used for the
rotational motors, therefore the liner motion supposition is carried outdone without
the loss of generality.

It is assumed that the parameters m > 0, φ > 0, are unknown, constant or slowly
varying. Although the constant φ is usually provided by the motor manufacturer,
this information is not accurate. This constant may vary with the motor temperature,
PWM conduction mode or, for some tubular linear motors with permanent magnets
built in the inner part, it may be noticeably lower if the forcer operates near the edge
of the inner part. It is assumed that the load may be modelled as a nonlinear,
memoryless function of the position and the velocity and that this model may be
represented as a linear combination of known nonlinear functions ξ with unknown
parameters A:

Fo x; vð Þ ¼ ATnðx; vÞ: ð3Þ

Such models are natural if the load is approximated using any approximation
technique: artificial neural networks, fuzzy modelling, polynomial approximation
and so on. The number of unknown parameters and the approximation basis n may
be chosen for the particular application.

Remark 1 For the sake of brevity, it is assumed that model (3) is accurate, but it is
also possible to consider an inaccurate approximation with a bounded approxi-
mation error ε:

Fo x; vð Þ ¼ ATn x; vð Þþ e: ð4Þ

The main consequence of using model (4) or (3) is that under assumption (3) it is
possible to prove the asymptotic stability of the tracking errors system. In case of
the load model (4), one has to introduce a switching control component to obtain
the asymptotic stability, or to accept the stability in the sense of the uniform
ultimate boundedness [10].

To remove the difficulties caused by the unknown control gain φ, the motion
Eq. (2) is transferred into:

l
d
dt
v ¼ i� AT

onðx; vÞ; ð5Þ

where:

l ¼ m
u
; Ao ¼ 1

u
A: ð6Þ

The control objective is that the motor position has to follow a smooth, bounded
reference xdðtÞ:
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xdðtÞj j � xmax: ð7Þ

It is assumed that the derivatives of the reference are bounded as well. It is
required that the tracking error denoted by:

ex ¼ xd � x ð8Þ

is constrained for any t by a pre-defined, rigorous inequality:

exðtÞj j\Dex; ð9Þ

for any initial conditions that assure exð0Þj j\Dex. It follows from (9) that the
position trajectory will be bounded by a hard constraint:

xðtÞj j\Dx Dx :¼ Dex þ xmax: ð10Þ

3 Quadratic and Barrier Lyapunov Functions

Lyapunov stability theory will be used to construct the stabilizing control for the
discussed problem. For the sake of completeness, some preliminaries are given in
this section.

Definition 1 Let V : Rn ! R be a continuously differentiable, proper, and positive
definite function defined with respect to the nonlinear system _x ¼ f ðx; uÞ. Let us
denote _Vðx; uÞ ¼ VT

x f ðx; uÞ. V(x) is a control Lyapunov function (CLF) for the
system _x ¼ f ðx; uÞ if, for all x 6¼ 0, there exists such u that _V x; uð Þ\0. If V xð Þ ¼
xTPx for some positive definite P, it is called a quadratic Lyapunov function (QLF).

Definition 2 [5] A Barrier Lyapunov Function (BLF) is a scalar function V(x),
defined with respect to the system _x ¼ f ðxÞ on an open region D containing the
origin; that is continuous, positive definite, has continuous first-order partial
derivatives at every point of D, has the property VðxÞ ! 1 as x approaches the
boundary of D, and satisfies condition: 9M; 8t[ 0V xðtÞð Þ\M along any system
trajectory starting inside D.

Usually it is assumed that D is a hyper-rectangle defined by D ¼ x: xij j �Dxif g.
Lemma 1 [5] Consider a smooth dynamical system _z ¼ f ðt; x;wÞ, with the state
variables z ¼ x;w½ �T . Let Vi(xi) be a BLF satisfying Vi xið Þ ! 1 if xi ! �Dxi,

let Q(w) be a QLF. Let V ¼PdimðxÞ
i¼1 Vi xið ÞþQðwÞ. If the inequality _V ¼ @VT

@z f � 0
holds anywhere in the set S ¼ x;wð Þ : xij j\Dxif g, then any trajectory that fulfils
the initial constraints 8i xið0Þj j\Dxi remains in S for any t.
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In Lemma 1 the state is split into the constrained variables x and the unconstrained
variables w. For each xi a BLF is constructed, while a QLF may be used for w.

It is well known that the selected Lyapunov function heavily influences the
features of the resulting closed loop system. The commonly accepted form of a
single variable BLF corresponding to the interval D ¼ �D;Dð Þ is a logarithmic
BLF [4–7]:

VðxÞ ¼ 1
2
log

1

1� x
D

� �2
 !

: ð11Þ

The motion control with application of such BLFs was investigated in [11]. As
the function (11) does not possess any parameters that may change the shape of the
plot and therefore the resulting system properties, it is interesting and informative to
investigate other possibilities of barrier function selection. In this chapter we
consider BLFs based on trigonometric functions:

VðxÞ ¼ D
p
tan2

px
2D

ð12Þ

and
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VðxÞ ¼ D2

p
tan

p
2

x
D

� �2� �
: ð13Þ

The main difference between these Lyapunov functions is their behaviour near
the constraint boundary. As it is shown in Fig. 1, if the scaling factors are ignored,
the function (12) grows up most rapidly, (11) slowly, (13) is the moderate one.
Therefore in the subsequent derivation we concentrate on BLF (13).

4 QLF Control Design

Let us forget for a moment about constraints (9) and design the controller using
QLFs. The adaptive back-stepping scheme [12] will be used to design the con-
troller. The velocity will be the ‘virtual control’ for position tracking. Let us con-
sider the error equation:

_ex ¼ _xd � v ð14Þ

and the desired ‘virtual control’ trajectory vd with the tracking error defined as:

ev ¼ vd � v: ð15Þ

The desired ‘virtual control’ vd will be designed to guarantee the required
convergence of the error ex. Considering the following QLF:

V1 ¼ 1
2
e2x ð16Þ

allows one to conclude that the desired ‘virtual control’ vd:

vd ¼ _xd þ kxex; ð17Þ

where kx [ 0 is a design parameter, will generate the tracking error dynamics:

_ex ¼ _xd � _xd � kxex þ ev ¼ �kxex þ ev ð18Þ

and:

_V1 ¼ �kxe
2
x þ exev ð19Þ

and so will assure stability if v ¼ vd:
During the second stage of the backstepping procedure the velocity error ev is

considered:
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l _ev ¼ l _vd � l _v ¼ l _vd � iþAT
on ¼ �iþAT

1n1; ð20Þ

where the new variables are defined as:

AT
1 ¼ l;AT

o

� 	
; nT1 ¼ ½ _vd; nT �: ð21Þ

The derivative of the reference speed is given by:

_vd ¼ €xd þ kx �kxex þ evð Þ; ð22Þ

so, fortunately, it is available for the control algorithm, and hence ξ1 in (21) is a
known function. Parameters A1 in (21) are not known, therefore they will be
replaced by adaptive parameters bAT

1 ¼ ½bl; bAT
o �.

The control variable i will be designed using the QLF:

V2 ¼ V1 þ 1
2
le2v þ

1
2
eAT
1C

�1eA1; ð23Þ

where:

eA1 ¼ A1 � bA1 ð24Þ

denotes the adaptation error and positive definite C is the matrix of the design
parameters of appropriate dimensions.

Plugging in (19) and (20) into:

_V2 ¼ _V1 þ evl _ev þ eAT
1C

�1 _~A1 ð25Þ

Allows calculation of the Lyapunov function derivative:

_V2 ¼ �kxe2x þ exev þ ev �iþAT
1n1

� �þ eAT
1C

�1 _~A1: ð26Þ

The control variable i will be designed to compensate the unnecessary compo-
nents in (26) and to introduce the stabilizing component, so:

i ¼ ex þ bAT
1n1 þ kvev; ð27Þ

where kv [ 0 is a design parameter. Such control allows the tracking error to be
described by:

l _ev ¼ �kvev � ex � eAT
1n1 ð28Þ

and to represent the Lyapunov function derivative as:
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_V2 ¼ �kxe
2
x � kve

2
v þ eAT

1 evn1 þC�1 _~A1

� �
: ð29Þ

As _~A1 ¼ � _̂A1, the differential rule describing the adaptation may be used to
guarantee that (29) is non-positive for any, unknown eA1. The simplest way is to
cancel the last component in (29) by imposing:

_̂A1 ¼ evCn1: ð30Þ

By using the LaSalle-Yoshizawa theorem [12], (29, 30) guarantees that all errors
ex; ev; eA1 are uniformly bounded and ev, ex are regulated to zero. Since the reference
xd is bounded, x is bounded as well. The boundedness of vd follows from the
boundedness of _xd and ex in (17). Combining this with (27), we find that the control
is also bounded. Although the boundedness of state variables is proven using QLF,
it is impossible to define the constraints a priori. The maximal value of each state
variable depends on the design parameters and initial conditions.

Remark 2 It is well known that similar results may be obtained with some other
adaptation rules. For example:

_̂A1 ¼ projq bA1; evCn1
� �

; ð31Þ

where projq �;ð Þ is a projection operator assuring that �k k� q [12]. Although (31)
allows the maximal values of adaptive parameters to be influenced, it will not
provide a priori constraints for the state variables.

Remark 3 The design parameter kx influences not just the values of ex, but also the
‘virtual control’ vd in (17), and so the error ev in (28). Therefore, the maximal value
of the current (27) depends on both design parameters kx and kv, although only kv is
explicitly visible in (27).

Remark 4 State variables may be constrained by the initial value of the Lyapunov
function. As _V2 � 0;V2ðtÞ�V2ð0Þ along any trajectory of the system (18, 28).

Therefore, 1
2 e

2
x �V2ð0Þ, so exj j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V2ð0Þ
p

. Unfortunately, V2ð0Þ ¼
1
2 e

2
x þ 1

2 le
2
v þ 1

2
eAT
1C

�1eA1

h i
t¼0

depends on the initial guess of the unknown

parameters and the obtained constraint is not informative.

Although QLF design allows the influence of the error system dynamics by a
proper selection of design parameters, it will not provide any tool to impose hard
constraints for position or velocity a priori.
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5 BLF Design with Position Constraints

To satisfy the position error constraint (9), the BLF will be applied during the first
stage of back-stepping:

V1 ¼ 1
2k

tan ke2x
� �

; k ¼ p

2D2
ex

: ð32Þ

The derivative of the BLF is given by:

_V1 ¼ ex _ex 1þ tan2 ke2x
� �� �

; ð33Þ

hence plugging (18) into (33) gives:

_V1 ¼ ex _xd � vd þ evð Þ 1þ tan2 ke2x
� �� �

: ð34Þ

At this moment of the design procedure we have two possibilities to select the
desired velocity vd: the nonlinear vd , which makes the Lyapunov function deriva-
tive a quadratic function of the tracking error:

vd ¼ _xd þ kxex
1þ tan2 ke2x

� �) _V1 ¼ �kxe
2
x þ exev 1þ tan2 ke2x

� �� �
; ð35Þ

or linear vd , as in (17), which gives nonlinear _V1:

vd ¼ _xd þ kxex ) _V1 ¼ �kxe
2
x 1þ tan2 ke2x

� �� �þ evex 1þ tan2 ke2x
� �� �

: ð36Þ

Both approaches give a theoretical possibility to derive stable control systems,
but it must be noticed that in case of nonlinear vd (35) the negative gain
QðexÞ ¼ kx

1þ tan2 ke2xð Þ, which is responsible for the stability of the tracking error

dynamics:

_ex ¼ _xd � vd þ ev ¼ �QðexÞex þ ev; ð37Þ

tends to zero if exj j ! Dex. Therefore, the linear form (36) of vd is selected.
As the constraints are imposed only on the first state variable (the position

tracking error), the control variable i will be designed using the Lyapunov function:

V2 ¼ V1 þ 1
2
le2v þ

1
2
eAT
1C

�1eA1; ð38Þ

where V1 defined in (32) is a BLF. Substitution of (20, 34) allows the calculation of
the Lyapunov function derivative as:
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_V2 ¼ �kxe
2
x 1þ tan2 ke2x

� �� �þ evex 1þ tan2 ke2x
� �� �

þ ev �iþAT
1n1

� �þ ~AT
1C

�1 _~A1:
ð39Þ

The control variable i will be designed to compensate the unnecessary compo-
nents in (39) and to introduce the stabilizing component, so:

i ¼ bAT
1n1 þ ex 1þ tan2 ke2x

� �� �þ kvev; ð40Þ

where kv [ 0 is a design parameter. This control gives the velocity tracking error:

l _ev ¼ �kvev þ eAT
1n1 � ex 1þ tan2 ke2x

� �� � ð41Þ

and the Lyapunov function derivative fulfils:

_V2 ¼ �kxe
2
x 1þ tan2 ke2x

� �� �� kve
2
v þ bAT

1 evn1 þC�1 _~A1

� �
: ð42Þ

Either of the adaptation rules (30) or (31) assures that:

_V2 � � kxe
2
x 1þ tan2 ke2x

� �� �� kve
2
v � 0: ð43Þ

The following corollary abstracts the main features of the obtained system.

Corollary 1 Consider the closed loop system (18), (41) with any of the adaptation
laws (30) or (31) and the reference position trajectory, under all assumptions for-
mulated above. Consider any trajectory with initial conditions fulfilling
exð0Þj j\Dex. Then the following properties hold along this trajectory:

1. The variables ex; ev; eAT
1 remain inside a compact set and the tracking error ex

fulfils the constraint exðtÞj j\Dex.
2. All closed loop signals are bounded.
3. The tracking errors ex; ev converge to zero asymptotically.

Sketch of the proof:

1. V2ð0Þ is bounded and as _V2 � 0; V2ðtÞ�V2ð0Þ along the considered trajectory.
Lemma 1 yields that exðtÞj j\Dex. Another constraint for the tracking error may

be obtained noticing that 1
2k tan ke2x

� ��V2ð0Þ and thus exj j �Dex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2atanð2kV2ð0ÞÞ

p

q
.

Similarly, we may derive that evj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
lV2ð0Þ

q
and ~A1

�� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2 0ð Þ

kmin C�1ð Þ
r

, where

kmin �ð Þ denotes the smallest eigenvalue of the symmetric matrix �.
2. As ex; ev; eAT

1 are bounded, bA1 are bounded also. From (17), (22), the desired
‘virtual control’ and its derivative are bounded as well. Therefore, the functions
n1 are bounded and from (40) the control is bounded.
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3. The tracking error asymptotic convergence may be obtained by demonstrating
that €V2 is bounded and making use of Barbalat’s lemma [2].

Remark 5 The component tan2 ke2x
� �

in (40) suggests the control variable increases
if ex ! �Dex. Although the inequality exj j\Dex is always fulfilled and the control
is bounded, the maximal value of the control variable depends on all design
parameters (similarly as it was explained in Remark 3) and initial conditions and
requires careful investigation.

6 BLF Design with Position and Velocity Constraints

The hard constraint imposed on the position tracking may cause rapid variations of
the trajectory near the constraint boundary and unacceptable velocity values. The
maximal velocity may be restricted if (a) the tracking error of the desired velocity ev
will be limited by a hard constraint, and (b) the desired velocity vd will be moderate.
The constraints imposed on the velocity tracking error ev may be preserved if a BLF
will be used also during the second stage of the back-stepping design. Therefore,
instead of (38), the Lyapunov function:

V2 ¼ V1 þ l
2K

tan Ke2v
� �þ 1

2
eAT
1C

�1eA1; K ¼ p

2D2
ev

ð44Þ

will be used, where V1 defined in (32) is a BLF and Dev is a constraint imposed on
the tracking error ev. The Lyapunov function derivative may be represented as:

_V2 ¼ _V1 þ lev 1þ tan2 Ke2v
� �� �

_ev þ eAT
1C

�1 _~A1 ð45Þ

and plugging in (36) and (20) results in:

_V2 ¼ �kxe
2
x 1þ tan2 ke2x

� �� �þ evex 1þ tan2 ke2x
� �� �

þ ev 1þ tan2 Ke2v
� �� � �iþAT

1n1
� �þ eAT

1C
�1 _~A1:

ð46Þ

Once again, the control variable i will be designed to compensate the unnec-
essary components in (46) and to introduce the stabilizing component, so:

i ¼ ÂT
1n1 þ ex

1þ tan2 ke2x
� �

1þ tan2 Ke2v
� � þ kvev; ð47Þ

where kv [ 0 is a design parameter. This control gives the velocity tracking error:
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l _ev ¼ �kvev þ eAT
1n1 � ex

1þ tan2 ke2x
� �

1þ tan2 Ke2v
� � ð48Þ

and the Lyapunov function derivative fulfils:

_V2 ¼ �kxe
2
x 1þ tan2 ke2x

� �� �� kve
2
v 1þ tan2 Ke2v

� �� �
þ eAT

1 ev 1þ tan2 Ke2v
� �� �

n1 þC�1 _~A1

� �
:

ð49Þ

As _~A1 ¼ � _̂A1, the differential rule describing the adaptation may be used to
guarantee that (49) is non-positive for any, unknown eA1. The simplest way is to
cancel the last component in (49) by selecting:

_̂A1 ¼ ev 1þ tan2 Ke2v
� �� �

C n1; ð50Þ

which results in:

_V2 ¼ �kxe2x 1þ tan2 ke2x
� �� �� kve2v 1þ tan2 Ke2v

� �� �
: ð51Þ

Therefore:

_V2 � 0 in S ¼ ex; ev; eA1

� �
: exj j\Dex; evj j\Dev

n o
: ð52Þ

The following corollary summarizes the main features of the obtained system.

Corollary 2 Consider the closed loop system (18), (48) with adaptation laws (50).
Assume there is a trajectory with initial conditions fulfilling exð0Þj j\Dex,
evð0Þj j\Dev. Then the following properties hold along this trajectory:

1. The variables ex; ev; eAT
1 remain inside a compact set and state variables fulfil the

constraints exðtÞj j\Dex, evðtÞj j\Dev.
2. All closed loop signals are bounded.
3. The tracking errors ex; ev converge to zero asymptotically.

Sketch of the proof:

1. V2ð0Þ is bounded and as _V2 � 0, hence V2ðtÞ\V2ð0Þ along the considered tra-
jectory. Lemma 1 yields that exðtÞj j\Dex and evðtÞj j\Dev. Another constraint
for the tracking error may be obtained noticing that 1

2k tan ke2x
� ��V2ð0Þ and thus

exj j �Dex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2atanð2kV2ð0ÞÞ

p

q
. Similarly, l

2K tan Ke2v
� ��V2ð0Þ and so

evj j �Dev

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2atanð2KV2ð0Þ=lÞ

p

q
. Using analogical reasoning, it can be derived that
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eA1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2ð0Þ

kmin C�1ð Þ
r

, where kmin �ð Þ denotes the smallest eigenvalue of the sym-

metric matrix �.
2. As ex; ev; eAT

1 are bounded, bA1 are also bounded. The desired ‘virtual control’
and its derivative are bounded as well. Therefore the functions n1 are bounded
and from (47) the control is bounded.

3. The tracking error asymptotic convergence may be obtained by demonstrating
that €V2 is bounded and making use of the Barbalat’s lemma [2].

Remark 6 The property (52), and therefore Corollary 2 will hold with other
adaptation rules, corresponding to (31), for example:

_̂A1 ¼ projq bA1; ev 1þ tan2 Ke2v
� �� �

Cn1
� �

; ð53Þ

where projq �; �ð Þ is a projection operator assuring that �k k� q.

7 Feasibility Conditions

The set of design parameters that must be selected by the designer consists of
Dex;Dev, kx; kv, C and initial conditions for adaptive parameters bA1. The constraints
Dex;Dev are imposed by the designer to limit the tracking errors, the gains kx; kv are
responsible for tracking error convergence and C is in charge of the adaptation
speed. The Corollary 2 is derived under the feasibility condition that ‘there exists a
trajectory with initial conditions fulfilling exð0Þj j\Dex, evð0Þj j\Dev’. This condi-
tion implies that kx and Dev cannot be selected independently. As:

evð0Þ ¼ _xdð0Þþ kxexð0Þ � vð0Þ; ð54Þ

Dev must be chosen according to the inequality:

_xdð0Þþ kxexð0Þ � vð0Þj j � _xdð0Þ � vð0Þj j þ kxDex\Dev: ð55Þ

Similarly, as imposing Dex allows xðtÞj j to be constrained by the inequality (10),
the choice of Dev provides constraints for the maximal velocity:

vðtÞj j � _xdðtÞþ kxexðtÞj j þ evðtÞj j � max
t[ 0

_xdðtÞj j þ kxDex þDev :¼ Dv: ð56Þ

The designer may be interested in constraining the gap between the desired
position derivative and the actual velocity:
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EðtÞ ¼ _xdðtÞ � vðtÞ: ð57Þ

As:

Ej j ¼ _xd � vj j ¼ vd � v� kxexj j ¼ ev � kxexj j; ð58Þ

it may be bounded by a proper choice of Dex and Dev:

Ej j �Dev þ kxDex: ð59Þ

Therefore it is evident that a larger kx, which allows the faster convergence of the
tracking error, requires greater maximal velocity and a bigger gap between the
desired position derivative and the actual velocity. Also the maximal value of the
control variable (47) depends on the selected design parameters and must be
checked carefully before implementation in a real drive.

8 Numerical Experiments

The linear actuator with the parameters m = 8 kg, and φ = 39 N/A is supposed to
track the desired position provided by the filtered sinusoid:

xdðtÞ ¼ L�1 1
T2s2 þ 2Tsþ 1

L 0:3 sin 3tð Þf g
� 


½m�; ð60Þ

where T = 0.1 s and L denotes the Laplace transform. The desired trajectory is
presented in Fig. 2.

It is assumed that the actuator works against the load described by:

Fo x; vð Þ ¼ Av2sign vð ÞþB vj j sin 2pxð Þ N½ �: ð61Þ

with unknown coefficients A and B, hence, according to (21):

AT
1 ¼ 1

u
m;A;B½ �

nT1 ¼ _vd; v
2signðvÞ; vj j sin 2pxð Þ� 	

:

ð62Þ

If it is assumed that none of the motor or load parameters are known, the initial
values of adaptive parameters are selected as:

bAT
1 ¼ 1

u
0:5m; 0; 0½ �; ð63Þ

while the real values are bAT
1 ¼ 1

u m;A;B½ � ¼ 1
39 8; 10; 6½ �.
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8.1 Known-Parameter Case

If all parameters A1 are known exactly, the problem is simplified by taking bA1 ¼ A1

and C�1 ¼ 0. The adaptive loop is inactive. The two-dimensional state-space
allows simple comparisons of the system behaviour under all discussed control
strategies. The final Lyapunov functions for the non-adaptive case are:

V2 ¼ 1
2
e2x þ

1
2
le2v ð64Þ

for the QLF approach;

V2 ¼ 1
2k

tan ke2x
� �þ 1

2
le2v ; k ¼ p

2D2
ex

ð65Þ

for the position constrained BLF approach; and

Fig. 2 Desired position trajectory xd and its derivative _xd
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V2 ¼ 1
2k

tan ke2x
� �þ l

2K
tan Ke2v
� �

; k ¼ p

2D2
ex

; K ¼ p

2D2
ev

ð66Þ

for the position and velocity constrained BLF approach.
The control signal is given by:

i ¼ AT
1n1 þ ex þ kvev ð67Þ

i ¼ AT
1n1 þ ex 1þ tan2 ke2x

� �� �þ kvev ð68Þ

i ¼ AT
1n1 þ ex

1þ tan2 ke2x
� �

1þ tan2 Ke2v
� � þ kvev ð69Þ

for the discussed strategies respectively, where ev ¼ _xd þ kxex � v. The main dif-
ference between the approaches (67–69) lies in the coefficient of ex. The ‘gain’ of ex

equals KQLF ¼ 1; Kx ¼ 1þ tan2 ke2x
� �

and Kxv ¼ 1þ tan2 ke2xð Þ
1þ tan2 Ke2vð Þ respectively. The

gains are plotted in Fig. 3.
If the position tracking error is the only constrained variable, the control effort

increases illimitably if the error approaches the constraint boundary. If both errors
are restricted, the current increase is moderated if the velocity error is large.

In Fig. 4 the state trajectories of the tracking error system under all discussed
control strategies are compared for the same control gains kx; kv. The trajectories are
plotted on the background of constant-level curves of the Lyapunov function. The
plots illustrate how the barrier Lyapunov function acts to preserve the constraints.

Figure 5 demonstrates the time history under QLF and BLF control starting with
the same initial conditions exð0Þ ¼ �0:018; evð0Þ ¼ �0:04, lying inside the con-
straints exj j\0:02; evj j\0:05. It is visible that even in the non-adaptive case the
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Fig. 3 The ‘gain’ of ex for BLF strategies
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QLF-based control does not guarantee that the position tracking error will remain
inside the predefined bounds. Therefore the BLF approaches will be investigated
for the adaptive case.

8.2 BLF-Based Adaptive Control with Position Constraints

The command (67) is presented under initial conditions x(0) = −0.019 [m] and
vð0Þ ¼ �0:09 [m/s], so exð0Þ ¼ 0:019; Eð0Þ ¼ 0:09; ev 0ð Þ ¼ 0:019kx þ 0:09
according to (54). The control (40) and the adaptive law (30) with Γ = diag(1, 10,
1000) were applied with design coefficients kx = 0.1, kv = 1. The influence of the
imposed constraint on the system performance was tested in three cases: Dex ¼
0:04;Dex ¼ 0:03 and Dex ¼ 0:02, close to the initial condition exð0Þ ¼ 0:019
(Fig. 6). The asymptotic stability of all errors is observed. The imposed constraint is
preserved in all cases with a sufficient, save distant between the extremal value and
the barrier.

If the constraint gets tighter more rapid movements near the boundary are
observed and thus the maximal ‘virtual control’ tracking error and the ‘velocity gap’
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Fig. 4 State trajectories of the tracking error: a the QLF design, b position constrained BLF
design and c position and velocity constrained BLF approach
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increase. The maximal current increases significantly, which is not surprising.
Because large oscillations of ev are observed, this system requires a careful tuning
of adaptation gains in (30). Therefore, considering all the above, the application of a
velocity constraint that will contribute to current restriction and will damp the
oscillations is highly recommended.

8.3 BLF-Based Adaptive Control with Position and Velocity
Constraints

The control (47) and the adaptive law (50) were applied with design coefficients
kx = 0.1, kv = 1. For the initial conditions we can select any Dex [ exð0Þ ¼ 0:019
and Dev [ evð0Þ ¼ 0:019kx � �0:09ð Þ ¼ 0:0919: We select Δex = 0.02 [m] and
Δev = 0.2; 0.15; 0.1 [m/s]. As demonstrated in Fig. 7, in all the cases the imposed
bounds are preserved during the transient. Tightening the bound Dev allows to
decrease the ‘velocity gap’ and the maximal current as well.
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8.4 System Performance with Bounded Adaptive Parameters

All systems tested above demonstrate robustness against imperfect reconstruction
of the load. Selection of the adaptive gains Γ in (30) was not difficult and the
maximal values of adaptive parameters were reasonable. In spite of this, the system
performance with a priori constraints imposed on adaptive parameters was tested.
The control strategies (27), (40), (47) were applied with constraints Dex ¼ 0:02 [m]
and Dev = 0.1 [m/s] with appropriate adaptive laws (30), (50). The adaptive loop
coefficients were Γ = diag(1, 10, 1000) as previously, also the design coefficients kv
and kx remained unchanged. Estimated parameters were bounded to be larger than 0
and smaller than 300 % of their exact value. The results are plotted in Figs. 8, 9 and
10. The adaptive parameters’ bounds are respected and the tracking errors are
asymptotically stable for any applied controller. As in the non-adaptive case, the
QLF design does not assure the position tracking error respects the constraint.
The BLF designed system with position constraints demonstrates rapid changes of
velocity near the constraint boundary accompanied by high values of the current.
To sum up, the worse transient of the position error is observed for the
QLF-designed system and the best transient is obtained for the BLF-designed
system with position and velocity constraints.
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9 Real Plant Experiment

The application of the proposed controller design to a real plant allows the checking
of the robustness against several phenomena that were not consider during the
theoretical derivation. The effects of discrete in time controller implementation,
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error of quantization during any digital measurement of an analogous signal,
measurement noise and outliers are present in any real drive. The fast part of the
drive dynamics—the current generation—was neglected during the derivation, but,
most importantly, the load model (3) is idealized. Therefore the BLF design was
tested with a real drive.

The electric linear drive (Fig. 11) system includes: TB2510 linear motor, total
weight: m = 8 kg, long-term force 104 N, current-force coefficient φ = 39 N/A,
1 μm resolution encoder, XTL-230-18 Xenus PWM inverter with built-in current
controller, modular set based on DS1006 dSpace processor card for control and data
acquisition.
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Fig. 9 Control i and estimate of parameter m (the first component of bA1 multiplied by 39)
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by 39)
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The load is mostly the friction and pulling forces from the cables. It is very
difficult to propose a realistic model for such resistance force, hence it will be
described by the simplest possible friction model:

FoðvÞ ¼ ATnðvÞ ¼ S � signðvÞþ b � v ð70Þ

with unknown parameters S; b for static and Coulomb friction respectively. A very
rough guess for these parameters is 5 N and 25Ns/m respectively. The desired
position trajectory is:

xdðtÞ ¼ L�1 1
0:12s2 þ 0:2sþ 1

L 0:3 sin 2tð Þf g
� 


½m�: ð71Þ

The control strategies (27), (40), (47) with appropriate adaptive laws (30), (49)
were applied with the design coefficients kx = 1; kv = 1, constraints Dex = 0.01 [m]
and Dev = 0.05 [m/s]. The initial conditions for the presented plots were exð0Þ ¼
0:008 and evð0Þ ¼ 0:008kx ¼ 0:008. The adaptive loop gains were C = diag(1, 10,
1000). Estimated parameters bA were constrained to be positive and smaller than
300 % of their initial value. The results of experiments are plotted in Figs. 12, 13,
14, 15, 16 and 17.

As is visible in Figs. 12, 13 and 14, the constraints are violated under the QLF
design and respected if the BLF approach is used. If the position tracking constraint
is applied alone, the system requires high control effort (high motor current), while

Fig. 11 Linear drive
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changing the direction of movement near the constraint boundary (see Fig. 15).
Position and velocity constraints applied together assure the best performance. The
resistance force is changing (because of movement of cables mostly), so no steady
state of the entire system is achieved. The adaptive parameters are continuously
trying to fit to the inexact model (70) (Figs. 16, 17) and this is visible in the
oscillations in the tracking errors (Fig. 13). As a matter of fact, the uniform ultimate
boundedness is achieved (see Remark 1) rather than the asymptotic stability.
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current) time history
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10 Conclusions

A systematic motion controller design procedure based on barrier Lyapunov
functions was described. The method ensures the tracking errors remain inside the
predefined constraints in spite of unknown system parameters and along any tra-
jectory starting inside the constraints. Even if preliminary requirements impose the
bounds for the position tracking error only, it is advantageous to constrain the
velocity tracking error as well. This provides a smoother trajectory and allows the
avoidance of rapid movements near the position-constraint boundary, requiring
high values of the control. Proper choice of control system parameters is easier in
the case of coexisting position and velocity constraints.

The experiment with real linear drives demonstrates that the application of the
proposed approach in real servos is possible and all expected features of the control
system are preserved.

The proposed approach may be easily generalized to include inexact models like
in (4) and cover motion control with many degrees of freedom, particularly control
of robotic manipulators.
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