
Chapter 2
Sample Controlled Thermal Analysis
(SCTA) as a Promising Tool for Kinetic
Characterization of Solid-State Reaction
and Controlled Material Synthesis

Jose M. Criado, Luis A. Pérez-Maqueda and Nobuyoshi Koga

Abstract The historical development of the thermal analysis methods that imply
an intelligent control of the reaction temperature by the own sample (SCTA) is
outlined. It has been shown that the precise control of the reaction rate involved in
SCTA enables a control, either direct or indirect, of both the partial pressure of the
gases generated/consumed by the reaction and the heat evolution/adsorption rate
associated to the reaction. This control allows to minimize the influences of heat
and mass transfer phenomena and to obtain real kinetic parameters of the forward
reaction that occur under the conditions far from the equilibrium. Moreover, it is
shown that the shape of a–T plots obtained under constant rate of transformation
(CRTA) is strongly dependent on the kinetic model, while the a–T plots obtained
using the conventional linear nonisothermal method represent a sigmoidal shape
irrespective of the kinetic model. Thus, CRTA has a considerably higher resolution
power for discriminating the kinetic model obeyed by the reaction. The applications
of SCTA methods both for the kinetic analysis of solid-state reactions and for the
synthesis of materials with controlled texture and/or structure have been reviewed.
The chapter contains 202 references.

2.1 Introduction to Sample Controlled Thermal Analysis

Sophisticated controls of material synthesis processes are necessary for obtaining
the functional materials with desired chemical and physical properties. Among
others, thermal treatments involving calcination and annealing processes are of
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paramount importance in the synthesis of materials. For developing well-controlled
synthesis procedure of the advanced materials via the thermal treatments of pre-
cursor materials, the chemical and physical processes that occur in the solid state
should be characterized in details. Thermal analysis methods such as thermo-
gravimetry (TG), differential thermal analysis (DTA), differential scanning
calorimetry (DSC), and evolved gas analysis (EGA) are extensively used in
material characterization including the kinetic analysis of solid-state reactions. In
general, all thermal treatments are performed under isothermal or linearly increasing
temperature (linear nonisothermal) conditions. Another alternative to perform
thermal treatments can be designed by controlling the rate of thermally induced
transformation according to predetermined rules, resulting in a smart temperature
control where the transformation kinetics of the reaction governs the temperature
profile during the course of the process. This technique with the inverse concept of
thermal analysis is generally named Sample Controlled Thermal Analysis (SCTA).
This alternative approach is realized by monitoring the rate of thermally induced
variation of a physical property of the sample that is proportional to the reaction
rate. By using a feedback control system, the regulation of variation rate of such
property according to predetermined rules determines the temperature profile during
the reaction. We will refer along this chapter to one of the SCTA methods, that is,
the most generally used technique to control the temperature in such a way that the
reaction rate is maintained constant all over the process. The SCTA technique is
known as Constant Rate Thermal Analysis (CRTA).

Probably, the first CRTA instrument was that proposed by Smith in 1940s [1].
This method referred to as “Smith Thermal Analysis” [2] used a differential ther-
mocouple to establish a constant temperature difference between sample and fur-
nace wall and is continuously employed even in a modernized form to study alloys
systems [3]. The sensitivity of this method has been dramatically improved by
Charsley et al. [2], by applying the advantages of CRTA to DSC, named “Sample
Controlled Differential Scanning Calorimetry (SCDSC)” [2]. However, the great
boost of SCTA methods was driven in the 1960s and 1970s because of the works of
two groups, one in France and the other in Hungary. In France, Rouquerol
developed that called “Constant Rate Thermal Analysis (CRTA)” [4–6]. This
method uses the partial pressure of the evolved gases for monitoring the transfor-
mation rate and as feedback signal for controlling sample temperature. Conversely,
the Paulik brothers, in Hungary, used the derivative TG (DTG) signal for the same
purpose and used the term “quasi-isothermal” for describing the working conditions
of their device [7–9]. Different devices for maintaining the reaction rate to be
constant during the course of the process have been described in literatures [10–13].
Since then, other approaches have been proposed in literatures, it is worth citing
that of Sørensen, called “Stepwise Isothermal Analysis” [14]. In this method, the
sample temperature is increased at a constant heating rate until the reaction rate
reaches a pre-set limit, then the temperature remains constant until the reaction rate
reaches a lower pre-set limit, when the heating is reassumed. Parkes et al. [15]
proposed another approach, in which the sample temperature is maintained at a
constant, while the partial pressure of the reactive gas is adjusted so as to keep the
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reaction rate to be constant. Other authors have proposed a new form where the
reaction rate is steadily accelerated, providing better resolution for kinetic analysis
[16, 17]. Recently, most of commercially available thermal analysis devices are
equipped with the SCTA methodologies in their most modern instruments, while
proposing new modified approaches such as high-resolution thermal analysis
(High-Res™) introduced by TA Instruments® [18] or Max-Res™ included in the
software of Mettler®.

The developments of SCTA techniques are expected to expand the application of
the quantitative analysis for the changes in the physico-chemical properties of
materials during thermally induced transformation process to the complex process
by realizing the higher experimental resolution for deconvoluting partially over-
lapping multistep reaction. An illustrative example is the application of SCTA to
the compositional analysis of multicomponent polymeric materials. Figure 2.1
compares the mass-change curves recorded in flowing N2 under the conventional
linear heating condition at a heating rate b of 1 K min−1 and under CRTA control at
a C (= da/dt) of 3.0 � 10−3 min−1 for PVC blended with a plasticizer, DINCH (1,
2cyclohexane dicarboxylic acid, diisononyl ester) [19]. The temperature profile of
CRTA apparently indicates well separated two-step mass-change process composed
of the evaporation of the plasticizer and the thermal degradation of the polymer,
while the two-step process cannot be distinguished in the conventional TG. Thus,
SCTA can be used to determining the percentage of plasticizers contained in
blended polymers, as well as chromatographic techniques [20, 21].

SCTA is also promising for solving long-discussed methodological problems
inherent in the kinetic analysis of solid-state reaction using thermal analysis and for
precisely controlling the morphology and structure of solid products in the material
synthesis via the thermal treatment of solid precursors. In this chapter, the merits of
SCTA for applying to the kinetic analysis of solid-state reactions and to the mor-
phological and structural controls of solid products during the solid-state reactions
are described as exemplified by some practical examples.

Fig. 2.1 Comparison of mass-change traces of a blended PVC–DINCH recorded in flowing N2:
a under linear heating condition at b of 1 K min−1 and b under constant transformation rate
condition at C (= da/dt) of 3.0 � 10−3 min−1 [19, 22]
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2.2 Advantages of SCTA for Recording Kinetic Rate Data

The kinetic analysis of the solid-state reactions is a scientific methodology con-
structed with different components involving the measurement of kinetic rate data,
kinetic theory, and kinetic calculation [23]. As the measurement technique, various
thermal analysis methods have widely been used for tracking of the reaction pro-
cesses of solid-state reactions. The simplified kinetic equation with the assumption
of the single step reaction regulated by a specific rate-limiting step is used in many
kinetic studies [24, 25].

da
dt

¼ A exp � Ea

RT

� �
f ðaÞ ð2:1Þ

where a is the reacted fraction at time t; Ea is the apparent activation energy; A is the
pre-exponential factor of Arrhenius; T is the absolute temperature; and f(a) is a
function depending on the physico-geometrical mechanism of the reaction [26].
Many different calculation methods have been proposed for determining the kinetic
parameters, i.e. Ea, A, f(a), and kinetic exponents in f(a), by applying Eq. (2.1) to
the analysis of experimentally resolved thermoanalytical curves [27, 28]. The
experimentally determined kinetic parameters are used for discussing the kinetic
characteristics of the reaction, for evaluating possible change in the kinetics
depending on reaction conditions, and for comparing the kinetic characteristics
among a series of samples and reactions. In this scheme, any drawbacks in each
methodological component possibly affect the physical significance of the apparent
kinetic parameters. Therefore, further developments of each methodological com-
ponent are necessary for promoting the methodology to be more powerful tool for
researches in modern material sciences [23, 25]. At the same time, each method-
ological component should compensate the drawbacks in the others for establishing
the logically coordinated methodology for kinetic analysis that is fully supported by
chemistry and physics.

The measurement of kinetic rate data is essential for the reliable kinetic analysis.
The precise measurements realized using modern thermoanalytical instruments do
not necessarily provide the reliable kinetic rate data. This relates to the other
methodological components, that is, the kinetic theory illustrated by the funda-
mental kinetic equation and the kinetic calculation method employed for the data
analysis. In the fundamental kinetic equation Eq. (2.1), the reaction rate is
expressed only as the functions of T and a, and no other factors that affect the
reaction rate is assumed. This simplified assumption is rarely realized in the actual
solid-state reactions, because of the heat evolution/absorption and
generation/consumption of gases during the reaction. The apparent reaction rate is
more or less influenced by the self-generated reaction conditions and those changes
during the reaction, which is not considered in the fundamental kinetic equation.
Therefore, careful considerations of the sample and measurement conditions are
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requested for minimizing the influences of mass and heat transfer phenomena on the
apparent reaction rate behaviour [29]. SCTA have important advantages for
tracking of the kinetic rate data of solid-state reactions with regard to the con-
ventional linear nonisothermal and even isothermal methods. The precise control of
the reaction rate involved in SCTA enables a control, either direct or indirect, of
both the partial pressure of the gases generated/consumed by the reaction and the
associated heat evolution/adsorption rate during the course. This control allows to
minimize the influences of heat and mass transfer phenomena and to obtain real
kinetic parameters of the forward reaction that occur under the conditions far from
the equilibrium.

Figure 2.2 compares the TG–DTG curves for the thermal decomposition of
NaHCO3 under isothermal, linear nonisothermal, and CRTA conditions [30] drawn
as a function of time, which is in accordance with that illustrated conceptually by
Reading [31, 32] and clearly describes the differences of the experimentally
resolved thermoanalytical data as a source of kinetic rate data in view of the control
of self-generated reaction conditions during the reaction. The shape of the DTG
curves is directly correlated to the variations in the rates of gaseous evolution and
heat exchange during the reaction. It is thus apparent that the variations in the rates
of gaseous evolution and heat exchange are the most significant for the thermo-
analytical data recorded under linear nonisothermal conditions, although the mag-
nitudes change depending on the applied measurement conditions involving sample
mass, heating rate, flow rate of inert gas, and so on. The variations are largely

Fig. 2.2 TG–DTG curves for the thermal decomposition of NaHCO3 (100–170 mesh, sample
mass m0 = 5.0 mg, in flowing N2 (80 cm3 min−1)) recorded under a isothermal (T = 398 K),
b linear nonisothermal (b = 2 K min−1), and c CRTA (C = 10.0 lg min−1) conditions [30]

2 Sample Controlled Thermal Analysis (SCTA) as a Promising Tool … 15



diminished in the isothermal measurements, but still cannot be ignored. If the
variation rate of a physical property for a single step reaction, mass-change rate in
the example of Fig. 2.2, was controlled to be constant as in CRTA, no variations of
the rates of gaseous evolution and heat exchange are practically found. The dif-
ferences among the thermoanalytical data recorded under different temperature
control modes produce different self-generated reaction conditions during the
reaction and possibly cause the different influences of the mass and heat transfer
phenomena on the apparent kinetic behaviour. Even under such different reaction
conditions produced by the reaction, all of the kinetic rate data recorded under
different temperature control modes are equally useful for the kinetic analysis based
on Eq. (2.1), if the reaction rate of a single step reaction was not sensitive to the
variations in the partial pressure of the evolved gas, and the appropriate measure-
ment conditions were selected for realizing negligible temperature gradient within
the sample. The establishment of the ideal situation is confirmed by examining the
isoconversional relationship (Eq. 2.2) among the data points at a fixed a extracted
from a series of kinetic rate data recorded under different temperature control modes
and the constancy of the evaluated Ea values at different a during the course of
reaction, because Eq. (2.1) is applicable to all of the kinetic rate data under different
temperature controlled modes [33, 34].

ln
da
dt

� �
a

¼ ln Af ðaÞ½ � � Ea

RTa
ð2:2Þ

Such ideal kinetic behaviour in view of simplicity of the kinetic analysis is
actually observed in the practical reactions as is illustrated in Fig. 2.3 for the kinetic
analysis of the thermal decompositions of NaHCO3 [30], In(OH)3 [35], and
Na2CO3�(3/2)H2O2 [36]. In these examples, the isoconversional plot of ln(da/dt)
versus T−1, known as the Friedman plot [37], for the data points at the fixed a are
appreciably linear and the Ea values are practically constant in a wide range of a. In
the isoconversional kinetic relationship, the data points obtained from the mea-
surements using CRTA take over the lower reaction rate and temperature part in the
kinetic relationship. In general, the lower the reaction rate is the higher the chance
to diminish the gradients of temperature and partial pressure of evolved gas in the
sample matrix. Therefore, the data points of CRTA can be used as the reference for
examining the applicability of the thermoanalytical data recorded using the con-
ventional isothermal and linear nonisothermal methods and appropriate range of the
temperature program parameters, T and b.

The advantage of CRTA in terms of maintaining constant the partial pressure of
product gas and the reaction rate at a possibly small constant value is of paramount
importance in the case of the kinetic analysis of reversible reactions in the thermal
decomposition of solids; A(s) � B(s) + C(g). In such a case, the reaction rate
should be expressed by considering the partial pressure, P, of the gaseous product
and the equilibrium pressure, Peq, of the reaction [24, 38]:
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da
dt

¼ A exp � Ea

RT

� �
f ðaÞ 1� P

Peq

� �
with Peq ¼ exp

DrS
R

� �
exp �DrH

RT

� �
ð2:3Þ

where ΔrS and ΔrH are the entropy and the enthalpy of the reaction, respectively. It
is clear from Eq. (2.3) that the term (1 − P/Peq) should be maintained close to unity
in order to obtain reliable kinetic parameters for the forward reaction represented by
Eq. (2.1). If the value of P were strictly controlled or precisely measured through
the overall reaction, it would be possible to carry out a meaningful kinetic analysis
using Eq. (2.3), for which SCTA is a proper method. On the other hand, the
isothermal and linear nonisothermal temperature control methods (Fig. 2.2) would
lead to significant changes in the reaction rate and in the partial pressure of the
product gas, which generally cannot be controlled and could modify the shape of
the thermoanalytical curves leading to a meaningless interpretation of the reaction
mechanism. Owing to the good control of both the atmosphere surrounding the
sample and the real temperature of the sample bed exerted by SCTA methods, the
Ea values determined for either reversible [39–52] or irreversible [53] thermal
decompositions of solids were sometimes independent of the starting sample mass
m0 in a wider range, while a similar behaviour was not observed when the mea-
surements under linear nonisothermal conditions were concerned. For example,
Criado et al. [39] reported that the Ea value for the thermal decomposition of
CaCO3; CaCO3 � CaO + CO2, as determined under a high dynamic vacuum

Fig. 2.3 Isoconversional
kinetic analyses for the
thermal decompositions of
NaHCO3 (SHC) [30], in(OH)3
(IHO) [35], and Na2CO3�(3/2)
H2O2 (SPC) [36]: a Friedman
plots at a = 0.5 and b Ea

values at different a
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using SCTA experiments, was independent of m0 in the investigated range, i.e. from
0.5 to 50 mg. However, the Ea value determined from conventional linear heating
TG curves under high vacuum is strongly depending on the experimental condi-
tions. For obtaining the relevant Ea value with reference to that determined using
SCTA, the measurement conditions using m0 less than 2 mg and b lower than
1 K min−1 were necessary in the linear nonisothermal measurement. These results
are consistent with those reported later by Reading et al. [42] for the same reaction.
Koga and Criado [51] investigated more critically the range of m0 where the
influence of the mass transfer phenomena is practically negligible during CRTA
measurements for the thermal decomposition of CaCO3 under high vacuum, in
which a series of CRTA curves under high vacuum was recorded by controlling the
evolution rate of CO2 to be a fixed constant value and by changing m0. As shown in
Fig. 2.4, the effect of the mass transfer phenomena on the apparent kinetic beha-
viour appears to be practically negligible in a smaller m0 range (m0 < 10 mg),
where the isoconversional relationship was actually established. This ideal situation
was suddenly broken due to the influence of the mass transfer phenomena when m0

was attained a certain value, although the critical m0 value is the empirical value
that varies with the size of sample pan, sampling conditions, and controlled
vacuum.

In the case of the thermal decomposition of CdCO3 and PbCO3, it was further
difficult to obtain Ea values independent of m0 and b from conventional linear
nonisothermal measurements, while the Ea values obtained from SCTA were
practically constant in a wide range of m0 [41]. The similar conclusion was derived
by Ortega et al. [44, 49] through the kinetic study of the thermal decomposition of
dolomite. From those results, SCTA can be recognized as one of the most reliable
approaches for obtaining meaningful kinetic parameters for the thermal decompo-
sition of solids. The influence of the partial pressure of the product gas around the
sample on the kinetic results analyzed by several authors [46, 55, 56] indicated that,
in the case of reversible reaction, a poor control of the pressure would lead to

Fig. 2.4 Friedman plots at
different a for the thermal
decomposition of CaCO3

under high vacuum
(5.0 � 10−3 Pa) examined for
a series of CRTA curves
recorded by controlling the
transformation rate to be a
fixed constant value and by
changing m0 [51, 54].
(Reproduced from [54] with
permission)
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artificially high Ea values as is expected from Fig. 2.4, although reliable kinetic
parameters of the forward reaction could be obtained by introducing an accom-
modation function for the partial pressure of product gas [56] in the general kinetic
equation as in Eq. (2.3), if the partial pressure of the product gas around the sample
is known or measured.

Rouquerol et al. [57, 58] proved that even a relatively small change of the partial
pressure of the product gas in the high vacuum range could influence on the
reaction mechanism of the thermal dehydration of inorganic hydrates. This beha-
viour would explain that the Ea values obtained from SCTA methods are inde-
pendent of m0 in an appreciably wide range, while the kinetic parameters obtained
from conventional linear nonisothermal method very often depend on m0 and b.
This is because all the kinetic analyses of reversible reactions referred in the pre-
vious paragraph had been carried out using experimental SCTA data recorded under
vacuum and at a low constant partial pressure of the product gas during the course
of reaction. The ideal reaction conditions were realized by employing instruments
based on the method originally developed by Rouquerol [4–6], where the sample
temperature was regulated so as to control the residual pressure to be a low constant
value. As the results, the influence of the mass transfer phenomena on the exper-
imentally resolved thermoanalytical curve is minimized and the accommodation
function for the partial pressure of the product gas in Eq. (2.3), (1 − P/Peq), can be
treated approximately as unity or a constant. It has been shown by Criado et al. [39]
that it is difficult to maintain the partial pressure of CO2 during the thermal
decomposition of CaCO3 to be a constant in the conventional linear nonisothermal
measurement, even if a dynamic starting vacuum of 2.6 � 10−4 Pa was applied
using a high pumping rate vacuum system. For example, when the TG curve for the
thermal decomposition of CaCO3 with m0 of 21 mg was measured at a b of
10 K min−1 in the dynamic vacuum system, the partial pressure of CO2 increased
up to approximately 10−1 Pa. To keep the starting pressure of 2.6 � 10−4 Pa during
the thermal decomposition, m0 and b should be decreased to 1 mg and
0.5 K min−1, respectively. However, mass-loss curves at a constant pressure as low
as 5 � 10−4 Pa during entire course of the thermal decomposition were recorded,
under SCTA conditions, irrespective of m0. Furthermore, the thermal decomposi-
tion of BaCO3 was studied using SCTA under constant residual partial pressures of
CO2 lower than 10−5 Pa by using a high vacuum system equipped with a mass
spectrometer attached to a thermobalance [59]. In this case, the partial pressure of
CO2 evolved by the reaction was directly monitored during the entire experiment by
means of the mass spectrometer, and even partial pressures lower than the total limit
vacuum of the system are used for the feedback control of the sample temperature.
Using this procedure, the thermal decompositions of very stable compounds with
low equilibrium pressures could be studied in conditions far from equilibrium.
Further complex cases can be found for the thermal decomposition of solids that
evolves more than one gas and each evolved gas influences differently on the
apparent kinetic behaviour. Koga et al. [13, 54, 60–63] approached to the complex
kinetic behaviour observed for the thermal decompositions of NaHCO3,
Cu2CO3(OH)2 (synthetic malachite), and Zn5(CO3)2(OH)6 (synthetic hydrozincite),
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using an instrument of constant rate EGA (CREGA) coupled with TG, in which the
concentrations of CO2 and H2O in the inlet gas to TG were systematically varied
and the changes in CO2 and H2O concentrations in the outlet gas from TG were
controlled to be constant values using CRTA technique. Through examining the
thermal decomposition processes that simultaneously evolve CO2 and H2O under
systematically varied conditions of applied and controlled concentrations of CO2

and H2O, it was revealed for the thermal decompositions that CO2 indicates normal
effect on the apparent kinetic behaviour in view of chemical equilibrium, while H2O
exhibits the inverse effect.

The possible thermal gradient within the sample matrix induced by self-cooling
or self-heating by the enthalpy of the reaction and the influences of heat transfer
phenomena on the experimentally resolved shape of thermoanalytical curves can
also be diminished by the application of SCTA. This advantage is used for studying
significant exothermic reactions that lead ignition of the sample under conventional
thermal analysis method. In SCTA, the self-heating effect by the exothermic
reaction can be regulated by controlling the transformation rate during the entire
course of the reaction; therefore, preventing thermal runaway and ignition as was
demonstrated by Charsley et al. [2] in the study of metal–oxidant pyrotechnics.
Paulik [64] has reviewed the successful applications of SCTA for the study of
exothermic reactions.

Despite of the problems concerning mass and heat transfer phenomena, appli-
cation of periodical rate jump during the CRTA measurement proposed by
Rouquerol [65–67] can be used for determining reliable Ea value even using a larger
m0. The CRTA jump method imposes periodical jumps between two pre-set
reaction rates, C1 and C2, and records the accompanied change in the sample
temperature from T1 to T2. Because the transformation rate is originally controlled
at a low constant rate in CRTA, the fraction reacted at times just before and after the
rate jump can be approximated to a constant value. Then, using the two data sets of
controlled rate and temperature, (C1, T1) and (C2, T2), the Ea value can be calculated
in an isoconversional scheme.

Ea ¼ RT1T2
T2 � T1

ln
C2

C1
ð2:4Þ

As in the Friedman plot based on Eq. (2.2), the kinetic model function is can-
celled between the two states. It was reported in many kinetic studies of the thermal
decomposition of solids, the Ea values at different rate jump points are practically
constant and reasonable in comparison with other data sources [44, 68], indicating
the practical usability to determine the Ea value from a single CRTA rate jump
measurement.

The above review results support our primary statement concerning the advan-
tage of SCTA and allow us to conclude that SCTA methods are a more reliable
approach than conventional linear nonisothermal methods in order to obtain reliable
Ea values for the thermal decomposition of solids.
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2.3 Merits of Kinetic Calculation Using CRTA Curves

The resolution power of SCTA for discriminating among the reaction kinetic
models of solid-state reactions listed in Ref. [24] is somewhat more favourable than
that of isothermal methods and considerably higher than that of conventional linear
nonisothermal methods. This analysis will be mainly based on CRTA that has been
the most extensively and systematically studied among different SCTA methods in
literatures, as shown in previous reviews on the topic [31, 32, 69]. The charac-
teristic of CRTA is especially important when a single thermoanalytical curve is
subjected to the kinetic analysis. However, various kinetic calculation methods
using a single thermoanalytical curve recorded under linearly increasing tempera-
ture have been proposed and widely used because of less laborious procedure.
However, the single run methods have an apparent drawback of mutually correlated
apparent variations of calculated kinetic parameters involving Ea, A, and f(a) [70].
This problem is clearly illustrated by curve fittings of a single a–T plot under linear
nonisothermal condition using different kinetic models as shown in Fig. 2.5 [71,
72]. By assuming F1, A2, and A3 models, the uniform a–T plot can be reproduced
within an error lower than 10−5%, where different sets of Arrhenius parameters, Ea

and A, are estimated for the respective f(a) assumed. Therefore, the mutual corre-
lation of the calculated kinetic parameters leads the distortion of the calculated Ea

and A values due to the wrong choice of f(a) and a superficial linear correlation
between Ea and ln A values calculated by assuming different kinetic model func-
tions [70, 73–77]. The distortion of the Arrhenius parameters by the wrong choice
of the kinetic model function can be explained as a simple mathematical relation-
ship using an approximation of exponential temperature integral under linearly
increasing temperature condition [78, 79].

Edis

Ea
¼ f ap

� �
F0 ap
� �

F ap
� �

f 0 ap
� � with f 0ðaÞ ¼ df ðaÞ

da
and F0ðaÞ ¼ dFðaÞ

da
ð2:5Þ

Fig. 2.5 A single TG curve
at b of 1 K min−1 drawn by
assuming three different
kinetic models with different
Arrhenius parameters (f(a),
Ea/kJ mol−1, A/s−1) = (F1,
172.3, 2.30 � 1013), (A2,
118.1, 1.24 � 108), and (A3,
100.0, 1.66 � 106) [71, 72,
84]

2 Sample Controlled Thermal Analysis (SCTA) as a Promising Tool … 21



ln
Adis

A

� �
¼ Ea

RTp

f ap
� �

F0 ap
� �� F ap

� �
f 0 ap
� �

F ap
� �

f 0 ap
� �

" #
þ ln

f ap
� �

F ap
� � ð2:6Þ

where Edis and Adis are the distorted Arrhenius parameters caused by the use of
wrong kinetic model function F(a). The subscript p denotes the values at the peak
top of the transformation rate under linearly increasing temperature condition. To
avoid this problem, it is generally recommended to use a two-step kinetic calcu-
lation procedure using a series of thermoanalytical data recorded under different
measurement conditions, which is composed of the determination of Ea value as
the first step using the isoconversional method and subsequent determination of
A and f(a) using the master plot method [28, 34, 80–82]. The single step kinetic
calculation based on Eq. (2.1) using multiple thermoanalytical data proposed by
Pérez-Maqueda et al. [83] as the combined kinetic analysis method is also useful to
avoid the problem. In connection with this problem, the higher power of CRTA for
discriminating the kinetic model function provides the possible opportunity of the
determination or estimation of the kinetic model function in the first step using a
single CRTA curve.

Because in CRTA, the transformation rate is kept constant at a programmed
value C, Eq. (2.1) can be rewritten in the following form

C ¼ A exp � Ea

RT

� �
f ðaÞ ð2:7Þ

In the scheme of constant transformation rate, the shape of CRTA curves
characterized by T–a plots (inverse to a–T plots of linear nonisothermal measure-
ments because of inverse measurement logics) are strongly depending on the typical
kinetic model functions for the solid-state reactions [71, 85], while the a–T plots
obtained using the conventional linear nonisothermal method at a b represent a
sigmoidal shape irrespective of the kinetic model. Thus, it is quite impossible to
discern the reaction mechanism from the shape analysis of a single TG curve
recorded under linear nonisothermal condition [86–93]. The shape analysis of T–a
plots of CRTA curves with respect to different f(a) would be very illustrative for
demonstrating the power of CRTA for discriminating the most appropriate f(a) from
a single experimental curve. Figure 2.6 compares the shapes of T–a plots of CRTA
curves drawn by assuming different f(a) functions [54, 72, 94]. It is clearly seen that
the T–a plots for the phase boundary controlled models (Rn) are concave with
regards to a axis, while those of diffusion controlled models (Dn) present an
inflection point. From the difference in the shape of T–a plots, the reactions that
obey to Rn and Dn models are distinguishable. However, this observation is
applicable to the reaction of the uniformly sized reactant particles, because the
shape of CRTA curves for the reaction of interface shrinkage type including Rn and
Dn changes depending on the degree of distribution in the particle size [95, 96].

The T–a plots for the Avrami–Erofeev (Am) equation that describes a
nucleation-growth model show a minimum temperature midway through the
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reaction when m > 1. By this characteristic of the shape of CRTA curve, the
reaction of Am models can be distinguished from Rn and Dn models. The a value at
the minimum temperature (am) has the specific values for respective Am equations
with different kinetic exponents (am = 0.393; 0.486; and 0.528 for the models A2,
A3 and A4, respectively) [71]. The am values calculated for CRTA curves for Am
model are perfectly in agreement with the calculated a value at the maximum
transformation rate under isothermal conditions [38, 97]. The relationship between
the rate behaviour under isothermal condition and the T–a profile of CRTA for Am
models was clearly described by Tiernan et al. [98]. The initial temperature
decreasing part in the T–a profile of CRTA would correspond to the acceleratory
period under isothermal condition, where the total area of the reaction interface
increases by the nucleation and growth of the nuclei. In CRTA, the acceleration
would be offset by a diminution of the temperature in order to maintain the
transformation rate constant. The later rising temperature stage of CRTA would
correspond to the decay period under isothermal condition, where the reaction rate
decelerated by the overlapping of the growing nuclei. The deceleration must be
compensated by increasing the temperature in CRTA. The specific value of am for
each Am model can be used for discriminating the most appropriate kinetic
exponent among different Am models. A similar T–a profile with the minimum
temperature midway through the reaction would be observed for the reaction that
indicates a sigmoidal mass-change trace under isothermal condition. The typical
examples are the consecutive surface reaction and subsequent shrinkage of the
reaction interface towards the centre of the reacting particle as have been formalized
under isothermal condition by Mampel [99], autocatalytic reaction formalized by
Prout and Tompkins [100, 101], and random scission mechanism of the thermally
induced polymer degradation [102, 103]. For effectively using the model dis-
crimination power of CRTA, different master plot methods applicable to shape
analysis of CRTA curves have been proposed as reviewed previously [72].

Fig. 2.6 T–a profiles of CRTA curves corresponding to different kinetic models simulated
assuming Ea = 100 kJ mol−1, A = 5.0 � 108 s−1, and C (= da/dt) = 1.0 � 10−4 s−1 [54, 72, 94].
(Reproduced from [54] with permission)
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Many practical examples substantiate the higher model discrimination power of
CRTA. For example, the thermal decomposition of anhydrous nickel nitrate obeys
Am model with m = 2 under isothermal conditions [104]. As shown in Fig. 2.7a, the
T–a profile of CRTA for the reaction apparently indicates the minimum temperature
midway through the reaction at am = 0.38 [71], which closely corresponds to the
specific am value for A2 model (am = 0.393). The T–a profiles of CRTA that are
characteristic for Am models have been very often reported in literature for different
reactions [57, 58, 62, 64, 105–113], which involves the thermal dehydration of
uranyl nitrate trihydrate reported by Bordère et al. [58] as shown in Fig. 2.7b.

Barnes et al. reported an example that effectively utilized the deconvolution
power of partially overlapping reaction processes and the discrimination power of
kinetic models of SCTA for the thermally induced successive reduction of V2O5 to
V2O3 in hydrogen atmosphere [106, 114]. The reaction steps involved cannot be
separated in the conventional linear nonisothermal measurement, while possible
three reaction steps, V2O5 ! V4O9 ! VO2 ! V2O3, are expected from the
overall a–T profile of CRTA as shown in Fig. 2.8. At the same time, Am models
are estimated for the respective reaction steps, because the a–T profiles of all the

Fig. 2.7 T–a profiles of
CRTA for a the thermal
decomposition of anhydrous
nickel nitrate under vacuum at
C (= da/dt) = 4.17 � 10−5 s−1

[71] and b thermal dehydration
of uranyl nitrate trihydrate
under vacuum at
C (= da/dt) = 2.77 � 10−6 s−1

[58]

Fig. 2.8 a–T profiles of
thermally induced hydrogen
reduction of V2O5 under
linear nonisothermal
condition at b = 1 K min−1

and under CRTA condition at
C (= da/dt) = 1.8 � 10−5 s−1

[106, 114]
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reaction steps indicate the characteristic shape for Am model with the minimum
temperature midway through the reaction. Tierman et al. [98] have reported the
similar effective use of CRTA in their comparative study for the thermal reduction
of different iron oxides involving hematite and magnetite. The thermal reduction of
hematite to metal iron under conventional conditions are recorded as two over-
lapping processes, while in CRTA, the two reaction steps are observed separately as
a complete conversion to magnetite before the reduction of magnetite to iron takes
place. It was also revealed that the reductions of hematite to magnetite and of
magnetite to metal iron follow an Rn model and an Am model, respectively.
Similarly, the thermal reductions of NiO and CuO have also been studied using
CRTA by the same authors, concluding that the shape of the curves is characteristic
of an Am model [98, 115].

In some kinetic studies of the thermal decomposition of inorganic solids reported
recently, the characteristic T–a profile in CRTA curves with the minimum tem-
perature midway through the reaction were interpreted in relation to
physico-geometrical reaction mechanisms other than Am models. For the thermal
decomposition of FeC2O4�2H2O [116], the T–a profile of CRTA was explained by
the consecutive process of surface reaction regulated by the first order law (F1) and
subsequent phase boundary reaction with two dimensional shrinkage of the reaction
interface (R2), which is expressed by a kinetic equation of Mampel type under
isothermal conditions.

(a) t � 1/kPBR

da
dt

¼ �2kPBR 1þ kPBR
kSR

� �
exp �kSRtð Þþ kPBRt � 1þ kPBR

kSR

� �� �
ð2:8Þ

(b) t � 1/kPBR

da
dt

¼ �2kPBR exp �kSRtð Þ 1þ kPBR
kSR

� kPBR
kSR

exp
kSR
kPBR

� �� �
ð2:9Þ

where kSR and kPBR are the rate constants for the surface and phase boundary
reactions, respectively. Differently, the similar T–a profile of CRTA observed
for the thermal decomposition of Na2CO3�(3/2)H2O2 was interpreted by a
physico-geometrical model that assumes the acceleration of linear advancement
rate of reaction interface in the scheme of contracting geometry [36]. This type
of reaction also indicates a sigmoidal shape of the integral kinetic curve
(a–t) under isothermal conditions and expressed by the kinetic model function
originally proposed by Galwey and Hood [117].

f ðaÞ ¼ 2n 1� að Þ1�1=n 1� 1� að Þ1=n
h i1=2

ð2:10Þ
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where n is the dimension of interface shrinkage. Many other examples of the
successful use of SCTA and CRTA for the study of kinetics and mechanisms of
solid-state reaction can be found in literatures [10, 13, 22, 50, 61, 63, 118–144],
which involve the kinetic studies of solid–gas reactions in the framework of the
CO2 capture from the atmosphere [136, 137].

SCTA methods have also been applied to the thermal degradation of polymers
[84, 103, 145–154]. The T–a profile of CRTA for the typical reaction mechanism of
polymer degradation known as the random scission mechanism is similar to those
of Am models [103, 149]. The reaction mechanism of the thermal degradation of
polybutylene (PBT) has been characterized as a random scission of the polymer
chains using CRTA [146]. Another example of the polymer degradation studied
using CRTA is for polyvinyl chloride (PVC). In many previous studies that used
the conventional thermal analysis [155–160], F1 model has been selected as the
most appropriate kinetic model for the dehydrochlorination reaction. However, the
a–T profile of CRTA does not fit to F1 model as shown in Fig. 2.9 [11, 146] and
clearly indicate the two-step feature of the process, which cannot be deconvoluted
in the conventional linear nonisothermal method. The a–T profile of CRTA for the
first reaction step is characterized by the appearance of the minimum temperature
midway through the reaction. Therefore, the reaction mechanism of the first reac-
tion step of the thermal dehydrochlorination of PVC can be interpreted either by an
Am model [11, 146] or a random scission model [150].

The potential of CRTA for the kinetic model discrimination would be approved
by the above review. Once the appropriate kinetic model function was selected from
a single CRTA curve through the shape analysis of T–a profile of CRTA and using
available master plot methods, the Arrhenius parameters can separately be deter-
mined based on Eq. (2.1) from the same CRTA curve [85, 161]. In addition, the
reliability of the calculated Arrhenius parameters can be confirmed by the com-
parison with the Ea value determined using the rate jump CRTA method [65–67].
Therefore, two CRTA measurements, one is the ordinal and the other is the rate
jump measurements, are the minimum requirement for the kinetic analysis. Of

Fig. 2.9 Comparison of
mass-change traces for the
thermal dehydrochlorination
of PVC recorded under
linear nonisothermal
condition at b = 2 K min−1

and CRTA condition at
C (= da/dt) = 5 � 10−4 s−1

[11, 84, 146]
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course, a systematic kinetic approach with the measurements of a series of CRTA
curves under different measurement conditions of m0 or C are preferable. Using the
series of CRTA curves, the recommended two-step kinetic analysis, determination
of Ea by the isoconversional method and the subsequent analysis of the experi-
mental master plot for determining f(a) and A, can be performed using the uni-
versally applicable procedures of kinetic calculation [28, 34, 80–82].

2.4 Application of SCTA to Material Synthesis

2.4.1 Controls of Porosity and Specific Surface Area

The potential of SCTA to control the self-generated reaction conditions in a
sophisticated manner can be applied to the synthetic reactions of materials. The
application of SCTA to material synthesis was first attempted by Rouquerol et al.
[162, 163] for the thermal decomposition of Al(OH)3 (gibbsite) crystals to form
Al2O3, where the influence of partial pressure of the self-generated water vapour on
the variation of specific area of reacting sample was examined using CRTA under
vacuum. The thermal decomposition process was controlled at a constant decom-
position rate C (= da/dt) of 5.5 � 10−4 min−1 under different residual pressures of
water vapour within the range from 5.3 to 667 Pa. As shown in Fig. 2.10a, the
variation of specific surface area of the reacting sample largely depends on the
residual pressure of water vapour, where the initial increase in the specific surface
area dramatically increases with increasing the residual pressure. The maximum
value of the specific surface area attained during the thermal decomposition varied
from 40 m2 g−1 at 5.3 Pa up to 450 m2 g−1 at 667 Pa. On further heating, the
specific surface area turns to decrease at the temperature in the range of 250–300 °C
irrespective of the residual pressure. The diminution of the specific surface also
depends on the residual pressure, indicating the higher the residual pressure is the
lower the decrease degree. As the results, the final product of Al2O3 with the larger
specific surface area was obtained when the sample was decomposed at a constant
reaction rate under higher residual pressure of water vapour. The phenomena were
lately reconfirmed by Stacey [164, 165] and Barnes and Parkes [166] for the
thermal decompositions of Al(OH)3 (gibbsite) and AlO(OH) (boehmite) and
explained with experimental evidence of the formations of slit-shaped micropores,
mesopores, and macropores and the variations of those contributions to the specific
surface area depending on the residual pressure of water vapour during the course
of reaction. With decreasing the residual pressure, the specific surface area attrib-
uted to the microporosity increases accompanied with a decrease in the width of the
slit pores, while the specific surface area attributed to mesoporosity and macrop-
orosity decreases. The significant low specific surface area when the thermal
decomposition was subjected under lower residual pressure was interpreted by the
formation of slit pores with narrow width that cannot be accessed by nitrogen
during the measurement of specific surface area using the Brunauer–Emmett–Teller
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(BET) method. The decrease in the specific surface area on further heating the
sample at a temperature higher than 300 °C has been explained by the effective
annealing temperature for the microporosity being lower than that of mesopores and
macropores. A comparison of the changes in the specific surface area during the
thermal decomposition of synthetic bayerite (Al(OH)3) under linear heating con-
dition in air (100 kPa) and under CRTA condition of controlled residual pressure at
6.0 � 10−3 Pa also indicated the lower maximum specific surface area under the
CRTA condition in reduced pressure (Fig. 2.10b), where the maximum specific
surface area of each process was approximately 350 m2 g−1 at a = 0.9 and
25 m2 g−1 at a = 0.4 under the linear heating condition and the CRTA condition,
respectively [138, 167]. η-Al2O3 was obtained as the decomposition product under
the linear heating condition, while the product was amorphous to XRD under the
CRTA condition.

Possible control of porosity of reacting sample during the thermal decomposition
of solids under vacuum was also demonstrated by controlling the decomposition
rate and residual pressure of water vapour for the thermal decomposition of a-FeO
(OH) (goethite to form a-Fe2O3 (hematite) [168, 169], in which an independent
control of both constant reaction rate and constant residual pressure of water vapour
was applied using SCTA. By the SCTA control under vacuum, the porosity of the
hematite product can be controlled by the formations of two different types of pore
structures as shown in Fig. 2.11. Those are the isolated round pores formed at
higher residual pressures (Fig. 2.11a) and slit pore channels oriented along the c-
lattice axis (the long axis of the particle) formed at very low water vapour pressures
(Fig. 2.11b). The specific surface area of the produced hematite was significantly
increased with decreasing the controlled residual pressure of water vapour during

Fig. 2.10 Variation of the specific surface area during the thermal decompositions of A1(OH)3:
a gibbsite (grain size 1 lm) at a constant reaction rate C (= da/dt) of 5.5 � 10−4 min−1 under
different water vapour pressures [162] and b bayerite (m0 = 300 mg) under linear heating
condition at b = 2 K min−1 in air and under CRTA at a controlled water vapour pressure of
6.0 � 10−3 Pa (C = 18.4 lg min−1), together with the powder XRD patterns of the product solids
[138, 167]
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the thermal decomposition of goethite [168, 169]. A similar behaviour was also
found for the thermal decomposition of c-FeOOH (lepidocrocite) to form c-Fe2O3

(maghemite) when both the rate and the water vapour pressure were controlled
during the thermal decomposition using CRTA [170]. However, the trend of the
residual pressure-specific surface area relationship observed for the thermal
decomposition of goethite and lepidocrocite is apparently opposite to those
described above for the thermal decompositions of gibbsite, bayerite, and hematite,
although the respective hydroxides and oxyhydroxides have the similar crystal
structures. It is noteworthy to point out that the microporosity increases in both
isostructural oxyhydroxides by decreasing the water partial pressure during the
dehydroxylation reaction, but the size of the slit-shaped microporous generated
from iron oxyhydroxides are larger than those generated from aluminium oxyhy-
droxides; therefore, they are accessible to the nitrogen adsorption. This behaviour
would explain that the BET surface of iron oxides obtained from the dehydration of
oxyhydroxides increases by increasing the microporosity, contrarily what occurs in
the case of the alumina obtained from aluminium oxyhydroxide. The size of the
structural microporous generated during the dehydroxylation of these compounds
perhaps would be controlled by the cation size in such a way that the lower is the
cation radius the lower is the size of the microporous.

The potential of SCTA for controlling the porosity and specific surface area of
the oxides produced by the thermal decomposition of precursor compounds under
controlled vacuum and reaction rate can be applicable to the syntheses of adsor-
bents and catalysts as have been reported in many works [113, 124, 171–177].
Those works have previously been reviewed by Llewellyn et al. [178], Fesenko
et al. [114], and Pérez-Maqueda et al. [179].

Fig. 2.11 TEM micrographs of the hematite products obtained by the thermal decomposition of
goethite under CRTA conditions: a P = 1.1 kPa and C = 7.6 � 10−4 min−1 and
b P = 7.3 � 10−3 Pa and C = 3.3 � 10−3 min−1 [168, 169]
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2.4.2 Controls of Particle Morphology, Size, and Phase
Composition

The SCTA control of both the residual pressure under dynamic vacuum and
the reaction rate has also been applied to the synthesis of barium titanate (BaTiO3)
from the thermal decomposition of its oxalate and citrate precursors [180–183] and
it was reported the successful controls of particle morphology, particle size, and
phase composition of BaTiO3 polymorphs. The crystal size and the stabilization of
the cubic phase with regards to the tetragonal phase of BaTiO3 were controlled by
changing the controlled residual pressure to different constant values in the range
from 10−2 Pa to 10 kPa, in which the crystal size of BaTiO3 was decreased and the
cubic phase was stabilized by decreasing the constant residual pressure.
Figure 2.12 shows the electron microscopic views of the citrate precursor
(Fig. 2.12a) and BaTiO3 products (Fig. 2.12b–d). Round powder particles of
BaTiO3 were obtained by the conventional isothermal annealing treatment
(Fig. 2.12b). Under some selected conditions of constant residual pressure and
reaction rate using CRTA method, BaTiO3 fibres constituted by welded
nanocrystals (Fig. 2.12c, d) were obtained through the thermal decomposition of
acicular shaped particles of barium titanyl citrate [184].

A successful control of the phase composition and the crystal and particle sizes
has also been reported for the synthesis of Si3N4 through the carbothermal
nitridization of silica using SCTA by controlling both the reaction rate and the
partial pressure of CO generated by the carbothermal reduction of silica [185–187].
Figure 2.13 compares the SEM images of two Si3N4 products obtained through the
carbothermal reduction of silica in flowing a mixed N2–H2 gas (95% N2) and by
controlling the reaction rate to be constant at C (= da/dt) of 1.1 � 10−3 min−1

under different controlled partial pressures of CO generated by the carbothermal
reduction of silica, which was subsequently annealed isothermally at 1450 °C for
5 h in flowing the mixed gas [187]. The Si3N4 produced by the thermal decom-
position at the lowest constant residual concentration of CO is constituted by a
mixture of b-Si3N4 ribbons and small hexagonal crystallites of a-Si3N4

(Fig. 2.13a), while that obtained at the higher residual CO concentration is con-
stituted by hexagonal crystallites of pure a-Si3N4 with homogeneous size
(Fig. 2.13b). The application of SCTA to the synthesis of other ceramic materials
has also been reported [188–193].

2.4.3 Controls of Debinding and Curing Processes

Multilayer capacitors (MLCs) or in general multilayer actuators (MLAs) constituted
by layers of ferroelectric ceramics separated by electrode metal layers are manu-
factured by stacking the different layers by a tape casting technology, generally
using an organic binder, followed by debinding and sintering processes by co-firing
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treatment. The possible crack formation during the co-firing treatment is the main
problem in the manufacturing of these devices. Therefore, the debinding process is
a rather cumbersome process that very often takes several weeks [194]. The control
of debinding rate at a low constant rate using SCTA is one of the possible solutions
for avoiding the crack formation as demonstrated by Speyer et al. [194, 195].
Figure 2.14 illustrates the optical microscopic views of the polished surfaces of
MLAs obtained by debinding at different controlled rates. It is clearly shown that
the delaminating damage is dramatically reduced by decreasing the debinding rate.

The SCTA technique has also been applied to the thermal curing of concretes
[196]. During the curing process, crystallization of xonotlite and other hydrates can
be hindered by the control of the thermal dehydration rate at a low constant rate and

Fig. 2.12 Electron microscopic views of the citrate precursor and its thermal decomposition
product, BaTiO3: a barium titanyl citrate (SEM); b BaTiO3 obtained by isothermal annealing at
700 °C for 5 h (SEM). c BaTiO3 obtained by the thermal treatment under CRTA conditions
(P = 1.3 � 10−3 Pa) and subsequent isothermal annealing at 700 °C for 5 h (SEM) d as in
(c) (TEM) [184]
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maintain the partial pressure of water vapour in the close vicinity of the samples at a
lower value. SCTA techniques were also useful for controlling the interfibre
porosity and for eliminating the structural microporosity of sepiolites [197] and for
synthesising oxide systems with tailored specific surface [198–200]. A study of the
thermal dehydration of the hydrated rare earth polyphosphates using SCTA for
obtaining the anhydrous salts, which is of great interest as catalysts and luminescent
materials, has been reported in literature [201, 202]. A novel Ce(PO3)3 phase with a
crystal structure, different from those of the other lanthanide polyphosphates, has
been obtained by controlling the thermal dehydration at a constant reaction rate so
as to maintain the partial pressure of self-generated water vapour to be a constant
value of 5 kPa [201].

Fig. 2.13 SEM images of Si3N4 obtained from carbothermal reduction of silica at the constant
reaction rate C (= da/dt) of 1.1 � 10−3 min−1 under different constant concentration of CO:
a 20 Pa and b 1 kPa [187]

Fig. 2.14 Optical microscopic views of the polished surfaces of MLAs obtained under different
controlled debinding rates [195]
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2.5 Conclusions

In addition to the higher resolution power for the thermally induced multistep
processes, SCTA techniques represent higher potentials for applying to the kinetic
analysis of the solid-state reactions and polymer degradations and for controlling
the synthetic and manufacturing processes of materials and devices. The special
performance of SCTA to control the reaction rate at a small constant value and the
partial pressure of the evolved gas at a low constant value offers the measurements
of the kinetic rate data for the reaction under the controlled reaction conditions
involving the conditions self-generated by the reaction itself. In modern SCTA
instruments, the reaction rate is controlled precisely even for the process with a
small total change of the measured physical properties, for example several hundred
lg in TG. The SCTA measurement using a small amount sample provides ideal
kinetic rate data, in which the gradients in temperature and partial pressure within
the sample matrix are largely diminished in comparison with conventional
isothermal and linear nonisothermal measurements. When applying the data to
kinetic calculation, the T–a profile of CRTA are characteristic for the respective
kinetic models; therefore, the appropriate kinetic model function can easily be
estimated using available master plot methods. This is the significant merit to avoid
possible distortions of the calculated Arrhenius parameters by the wrong choice of
the kinetic model function. In applying SCTA for material synthesis processes, both
the reaction rate and the partial pressure of gases can be controlled to be different
constant values in wide ranges by changing the applied reaction atmosphere,
pumping rate to vacuum, sample mass, controlled transformation rate, and so on.
The performance of SCTA can be used for obtaining the solid products with the
desired chemical and physical properties in the more sophisticated manner in
comparison with the empirical annealing treatments. The advantages of SCTA have
been evidenced by the previous works reviewed in this chapter, and the techniques
can further contribute to the promising advancement of modern material sciences.
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