Interactive Text Categorisation:
The Geometry of Likelihood Spaces

Giorgio Maria Di Nunzio

Abstract In this chapter we present a two-dimensional representation of probabil-
ities called likelihood spaces. In particular, we show the geometrical properties of
Bayes’ rule when projected into this two-dimensional space and extend this con-
cept to Naive Bayes classifiers. We apply this geometrical interpretation to a real
machine learning problem of text categorisation and present a Web application that
implements all the concepts on a standard text categorisation benchmark.

1 Introduction

Classification is the task of learning a function that assigns a new unseen object to
one or more predefined classes based on the features of the object [26, Chap. 4].
Among the many different approaches presented in the literature, Naive Bayes (NB)
classifiers have been widely recognised as a good trade-off between efficiency and
efficacy since they are easy to train and achieve satisfactory results [18]. A NB
classifier is a type of probabilistic classifier that uses Bayes’ rule to predict the class
of the unknown object, and it is based on the simplifying assumption that all the
features of the object are conditionally independent given the class. Despite being
comparable to other learning methods, these classifiers are rarely among the top
performers when trained with default parameters [5]. Indeed, the optimisation of the
parameters of NB classifiers is often not adequate, if not missing at all. The usual
approach is to set default smoothing constants to avoid arithmetic anomalies given by
zero probabilities [29]. Moreover, a probabilistic classifier could be greatly improved
by taking into account misclassification costs [14]. The choice of these costs is not
trivial and, as for the case of probability smoothing, default costs are used.

By involving users directly in the process of building a probabilistic model, as sug-
gested by [3], one can obtain a twofold result: first, the pattern recognition capabilities
of the human can be used to increase the effectiveness of the classifier construction
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and understand why some parameters work better than others; second, visualisa-
tion of the model can be used to teach non-experts how probabilistic models work
and improve the overall effectiveness of the classification task. Interactive machine
learning is a relatively new area of machine learning where model updates are faster
and more focused with respect to classical machine learning algorithms; moreover,
the magnitude of the update is small; hence, the model does not change drastically
with a single update. As a result, even non-expert users can solve machine learning
problems through low-cost trial and error or focused experimentation with inputs and
outputs. In this respect, the importance of the design of proper user interfaces for the
interaction with machine learning models is crucial. Recently, an approach named
“Explanatory Debugging” has been described and tested to help end users build
useful mental models of a machine learning system while simultaneously allowing
them to explain corrections back to the system [17]. The authors found a significant
correlation between how participants understood how the learning system operated
and the performance of participants’ classifiers.

Based on the idea of likelihood spaces [24], we present the geometric properties
of the two-dimensional representation of probabilities [7, 8] which allows us to pro-
vide an adequate data and knowledge visualisation for understanding how parameter
optimisation and cost sensitive learning affect the performance of probabilistic clas-
sifiers in a real machine learning setting. We apply this geometrical interpretation
to the problem of text categorisation [21], in particular to a standard collection of
newswires, the Reuters-21578 collection. !

The main objectives of this chapter are:

A geometrical definition of the Bayes’ rule and a discussion on the implications
of the normalisation of posterior probabilities.

An alternative derivation of the likelihood space from the definition of the logit
function.

e A description of the link between Bayesian Decision Theory and Likelihood
spaces.

A geometrical definition of NB classifiers.

An interactive Web application to show how these concepts work in practice both
on a toy-problem and on a real case scenario.

This chapter is organized as follows: In Sect.2, we describe the mathematical
background behind the idea of the two dimensional representation. In Sect.3, we
present the details of the likelihood space applied to the NB classifier, in particular
the multivariate Bernoulli model. Section4 is dedicated to the interactive text cate-
gorization application on a real machine learning problem. In Sect.5, we give our
final remarks and discuss future works and open research questions.

Thttp://www.daviddlewis.com/resources/testcollections/.
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1.1 Related Works

The term “interactive machine learning” was probably coined around the very end of
the 1990s. A work that paved the way for this research area was a paper on interactive
decision tree construction by Ankerst et al. [2]. The same authors also redefined the
paradigm that “the user is the supervisor” in this cooperation between humans and
machine learning algorithms, that is the system supports the user and the user always
has the final decision [3]. In the same years, Ware et al. demonstrated that even
users who are not domain experts can often construct good classifiers using a simple
two-dimensional visual interface, without any help from a learning algorithm [27].
Ben Shneiderman (author of the “eight golden rules for user interfaces” [22]) gives
his impressions on the importance of the effective combination of information visu-
alisation approaches and data mining algorithms in [23]. The first paper that used
“interactive machine learning” in the title was by Fails and Olsen [15] in which the
authors describe the difference between a classical and an interactive machine learn-
ing approach and show an interactive feature selection tool for image recognition.
From the point of view of machine learning/artificial intelligence, an excellent sur-
vey on the methods and approaches used in the last 15 years has been presented by
Amershi et al. [1].

Information visualisation is an important part of the research area of interactive
machine learning, in particular for the parts relative to the design of appropriate user
interfaces and the possible visualisation choices for classification tasks. For exam-
ple, in [4], the authors present a framework for a feedback-driven view exploration,
inspired by relevance feedback approaches used in Information Retrieval, that makes
the exploration of large multidimensional datasets possible by means of visual clas-
sifiers. Although we focus less on this part in this paper, we suggest to refer to [9]
for a survey on visual classification approaches and to [16] for a survey on text
visualisation techniques.’

2 Mathematical Background

We suppose to work with a set of n classes C = {cy,...,c;,...,c,}, and that an
object can be assigned to (and may actually belong to) more than one class; this is
also known as the problem of overlapping categories. Instead of building one single
multi-class classifier, we split this multi-class categorisation into n binary problems;
therefore, we have n binary classifiers [21]. A binary classification problem is a
special case of single-labels classification task in which each object belongs to one
category or its complement. The usual notation to indicate these two classes is: ¢;
for the “positive’ class and ¢; for the ‘negative’ class (we drop the index i and use ¢
and c¢ as long as there is no risk of misinterpreting the meaning).

Zhttp://textvis.Inu.se.
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In this first part, we start building a probabilistic classifier which, given an object
o and a category ¢ € C, classifies o in c if the following statement is true:

P(clo) > P(clo) 6]

that is, if the probability of the class c is greater than the probability of its complement
¢ given the object o.

2.1 The Geometry of Bayes’ Rule

Bayes’ rule gives a simple yet powerful link between prior and posterior probabilities
of events. For example, assume that we have two classes ¢ and ¢ and we want to
classify objects according to some measurable features. The probability that an object
o belongs to ¢, P(c|o), can be computed in the following way?:

likelihood prior
——
P(olc) P(c)

posterior

——

P(clo) = TPy 2
——
evidence

Bayes’ rule tells how, by starting from a prior probability on the category ¢, P(c), we
can update our belief on that category based on the likelihood of the object, P (o|c),
and obtain the so-called posterior probability P(c|o). P (o) is the probability of the
object 0, also known as the evidence of the data. The probability of the complementary
category ¢ is computed accordingly:

P(ol&)P (@
P@Elo) = % 3)

In the two-dimensional view of probabilities, we can imagine the posterior probabil-
ities as the two coordinates of the object o in a Cartesian space, where x = P(c|o)
and y = P(c|o). Since the two classes are complementary, the two conditional prob-
abilities sum to one, therefore:

P(clo) =1— P(clo), or 4)
y=1-x 5)

3We are intentionally simplifying the notation in order to have a cleaner description. In particular,
when we write P(c|o), we actually mean P(C = ¢|O = o), where C and O are two random
variables, and ¢ and o two possible values, respectively.
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which means that the point with coordinates (x, y) lies on the segment with endpoints
(1,0), (0, 1) in the two dimensional space, as shown in Fig. 1. When we want to
classify the object, we compare the two probabilities as already shown in Eq.(1).
When we use Bayes’ rule to calculate the posterior probabilities, we obtain:

P(olc)P(c)  P(0ld)P(@)
P) P

(6)

It can be immediately seen that we assign o to class ¢ when the probability P(c|o)
is greater than 0.5. Since P (o) appears in both sides of the inequality, we can cancel
it without changing the result of the classification:

P(olc)P(c) > P(o|c)P(c) (7
remembering that P (o|c) P(c) # 1 — P(o|c) P(c) since we removed the normalisa-

tion factor. An alternative way to cancel P (o) is considering the problem of classi-
fication in terms of the odds of the probability P (c|o):

P(clo) > P(c|o) (8)
Pelo) ©)
P(clo)
P(o|c)P(c) (10)
P(ol|c)P(c)

P(o|lc)P(c) > P(o|c)P(c) an
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In geometrical terms, the new coordinates x’ and y’ of the point of the object o are:

x' =xP(o) = P(o|c)P(c) (12)
y' = yP(0o) = P(0lc) P(¢) (13)

The new coordinates are the old ones multiplied by P (o) which means that we are
actually ‘pushing’ the points towards the origin of the axis along the segment with
endpoints (0, 0), (P(c|o), P(clo)) since both coordinates are multiplied by the same
positive number between 0 and 1, as shown in Fig. 2.

Equation (11) can also be interpreted as a decision line with equation y' = x’. A
more general classification line takes into account an angular coefficient m

mx’ >y (14)

This non-negative parameter m comes from the introduction of misclassification costs
of a Bayesian Decision Theory approach (see Sect. 2.3). Intuitively, when m = 1 we
count every misclassification (false positives or false negatives) equally. If m > 1,
we give more importance to the positive class and we are willing to accept more
objects in this class; if m < 1, we increase the possibility that a point is above the
line and classified under the negative category. An alternative, but equivalent, way
of looking at this problem is to compare the value of the odds with a threshold k [6]:

x’ 1

y m

P(olc)P(c)

—— >k (16)
P(o|c)P(c)
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where k (inversely proportional to m in this formulation) can be set to optimise clas-
sification, and it is usually tuned to compensate for the unbalanced classes situation,
that is when one of the two classes is much more frequent than the other [19]. This
is often the case for any multi-class problem, since the complementary category ¢
is about n — 1 times bigger than c. This is also the case for real two-class categori-
sation problems, like spam classification, where the difference in proportion of the
number of objects in the two classes ‘spam’ and ‘ham’ is very large. We can incor-
porate this disproportion between the two classes in the angular coefficient m of the
two-dimensional space in the following way:

mx’ >y (17)
mP(o|c)P(c) > P(0ld)P (@) (18)
mmP(mc) > P(o|c) (19)

P(c)
m'x" > y" (20)

ﬁg is the new angular coefficient of the decision line y” = m’x”, and

x" = P(o0|c) and y” = P(o|c). At this point we have defined the coordinates of an
object in terms of the two likelihood functions P (o|c) and P (o|c) as shown in Fig. 3.

where m’ = m

1.0
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|
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Fig. 3 Data space formed by the coordinates P(o|c) and P(o|c). This is an example of an unbal-
anced class situation where the prior P(c) = 0.7 is so high that the object is classified under ¢ (in
accordance with the earlier examples) despite the likelihood of the object of the negative class is
almost three times the one of the positive class. In this example, m = 1 and m’ = £§Z§ If we set
m= %, we would get m" = 1 and rebalance the proportion of classes (and change the classifi-
cation decision). The points of the previous figures are shown in light grey for comparison
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All the alternatives presented so far are equivalent in terms of classification deci-
sions. There are two connections with two relevant works in the literature that we
want to stress: one with the Neyman-Pearson approach [20], and the other with
the work of Pazzani and colleagues on the optimality of NB classifiers [12, 28]. The
Neyman-Pearson lemma states that the likelihood ratio test defines the most powerful
region of acceptance, which is exactly what we have in Eq. (20):

P(o|c) -
P(olc)

2y

where M is a threshold that defines the region of acceptance. In the optimality of
NB classifiers, the authors find an adjustment of the probabilities of the classes P(c)
and P (c) which is again exactly the same idea since we are actually changing the
angular coefficient m’.

2.2 Bayes’ Rule on Likelihood Space

So far, we have described the two-dimensional representation of the Bayes’ rule in the
so-called ‘data space’ which is the space in which the original data resides. The like-
lihood space, however, is the space formed by the log-likelihood probabilities [24].
The likelihood space can be derived directly by applying the logs of Eq. (20). In this
section, we present an alternative way, which is different from the original paper, to
obtain the likelihood space which starts from the classification decision given by the
log-odds, or logit function, compared to the logarithm of the threshold &:

P(clo)
log (P(E|o)) > log(k) (22)
P(olc)P(c)
og <—P(0|5)P(E)) > log(k) (23)
P(o|c) P(c)
og (P(0|E)) + log <%) > log(k) 24)
P(o) 1 _
log (P(o|c)) + log (ﬁ%) > log (P (0|c)) (25)
XL +qL > yr (26)

The likelihood space coordinates of an object o, x, = log (x”) and y;, = log (y”), are
the logarithms of the coordinates of the data space. An interesting relation between
the data space and the likelihood space is that, while in the data space we ‘rotate’
the decision line around the origin of the axis (y” = m’x"”), the same decision line
in the likelihood space correspond to a parallel line to the bisecting line of the first
and third quadrant y; = x; + ¢g; where q; = log(m’) is the intercept of this line. In
Fig.4, we show an example of the likelihood space relative to the point of Fig. 3.
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Fig. 4 Bayes’ rule on likelihood space. The red point corresponds to the one shown in Fig. 3. Note
that the decision line (solid grey line) is above the red point as expected. The decision line moves
parallel to the bisecting line of the third quadrant. In light grey, the points relative to Figs. 1 and 2.
Non normalised points move parallel to the bisecting lines and towards minus infinity, instead of
going towards the origin. The segment with endpoints (0, 1), (1, 0) becomes a logarithmic curve in
the likelihood space

2.3 Bayesian Decision Theory on Likelihood Spaces

In Bayesian Decision Theory, the objective is to quantify the trade-off between
various classification decisions using probabilities and the costs that accompany
such decisions [13, Chap. 2]. Whenever we have an object to classify, if we take the
decision to classify it under ¢, we are actually “taking a risk” because we may choose
the wrong category. In this framework, the classification of an object becomes the
problem of choosing the ‘less risky’ category; for a binary classification problem,
the Bayes decision rule corresponds to selecting the action for which the risk is
minimum:

R(clo) < R(clo) (27)

R(c|o) and R(c|o) are the conditional risks defined as:

R(clo) = Acle) P(clo) + Alc|c) P(clo) (28)
R(clo) = A(c|c) P(clo) + A(c|c) P(clo) (29)

where A(-|-) is the loss function of an action given the true classification. For example,
A(c|c) quantifies the loss in taking the decision ¢ when the ‘true’ decision is ¢. The
new classification decision becomes:
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Alcle) P(clo) + Alc|c) P(clo) < A(clc)P(clo) + A(c|c) P(clo) (30)
We can group common terms and obtain:

[A(clc) = A(clo)]P(clo) < [Alcle) — Alcle)]P(clo) 3D

_ [A(cle) — Alele)]
P = e —weren " >
S peam _ Aele) = Alcle)]
P(olc)P(c) < A eld) —)»(EIE)]P(()'C)P(C) (33)
o, _ [A(cle) = Alele)] P(c)
P(o0l¢) < elo) — @] P(E)P(0|C) (34)

y// < m/x// (35)

So the ratio of the costs can be interpreted as the angular coefficient m included in
m’ of Eq.(20). When a zero-one loss function is used, we have A(c|c) = A(c|c) =0
which means that we have no loss when we give the correct answer, and A(c|c) =
A(c|c) = 1 which means that we have a cost equal to one every time we assign the
object to the wrong category.

3 Naive Bayes on Likelihood Space

In real case scenarios, projecting objects into likelihood spaces becomes a necessity
since the conditional probabilities P(o|c) and P (o|c) rapidly go to zero. This prob-
lem becomes evident when we use a Naive Bayes assumption. For example, if o is
represented by a set of k features F = {f1, ..., fj, ..., fr}, aNaive Bayes approach
allows us to factorize P(o|c) as:

k
P(ole) =[] P(filo) (36)

J=1

where features are independent from each other given the class. Suppose that, on
average, the probability of a feature given a class is P(fj|c) = 1072 and all the
features have a probability greater than zero to avoid P (o|c) = 0. With 100 features,
the likelihood of an object will be, on average, P (o|c) >~ 1072%° which is very close
to the limit of the representation of a 64 bit floating point number. In real situations,
probabilities are much smaller than 10~2 and features can be easily tens of thousands;
hence, all the likelihood functions would be equal to zero by approximation. Instead,
in likelihood spaces, the product becomes a sum of logarithms of probabilities:
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Fig. 5 An interactive demo to show how a multivariate Bernoulli NB model works on a two-
dimensional space

k k
log(P(ole) =log [ [ P(file) | = D log(P(fjle) (37)

j=1 j=1

In the following section, we derive the mathematical formulation of a NB model
that represents features with binary variables, known as multivariate Bernoulli NB
model. In Fig.5, we show a screenshot of an interactive demo of this type of NB
classifier.* The aim of this toy example is to show the geometric interpretation of this
classifier rather than study the optimal parameters for classification. The user can
change the conditional probability of each single feature ( f1, f>, and f3) and the prior
probability of class ¢ (the positive class). The points represent the eight possible
combinations (three binary features, hence 23 =38 objects); when the conditional
probability of a feature given the positive class equals that of the negative class,
some points overlap in the data space (because we are not able to use that feature to
discriminate the objects of one class from the others). The selection widgets allow for
choosing normalised probabilities and working in the likelihood space (‘log space’).

“http://gmdn.shinyapps.io/bayes2d/.
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3.1 Multivariate Bernoulli NB Model

In the multivariate Bernoulli NB model, an object is a binary vector over the space
of features. Given a set of features F', each object o of the class c is represented as a
vector of k Bernoulli random variables o = (fi, ..., fj, ..., fi) such that:

fi ~ Bern (6y,) - (38)

where 0, . is the parameter of the Bernoulli distribution for the j-th feature of class c.
We can re-write the probability of an object by using the NB conditional independence
assumption, this time by considering the parameter 6 of the distribution’:

k k
Pole;6) = [T P(file: ) = [0 (1= 6700)' ™"
=1

j—l
_ 9f/|C _
H (1 _ijlc) (l efj\ﬂ) ’ (39)

where £ is either 1 or 0 indicating whether feature f; is present or absent in object
0. When we project this probability into the likelihood space, we obtain:

6 k
log(P(o|c; 9)) = Zh log (lf—'gfl) + ZIOg(l —0f1c)s (40)
jl¢ j=1

In terms of the likelihood projections, each object of class ¢ has a coordinate com-
posed by: (i) a variable part, the first sum, that depends on the features that are present
in the object, and (ii) a fixed part, the second sum, that considers all the features F
independently from the features that appear in the object. This second part is very
important because, in many works, it is ignored (actually canceled) with the justi-
fication that it is a constant independent from the object and, therefore, it does not
change the classification decision. This is true only if we do not fix ¢g; in advance
but, on the contrary, we find the optimal parameter g, of the decision line of Eq. (26).
In fact, once ¢ is fixed, including or excluding the second sum in the computation
of the coordinates would result in a different decision since the points would have
different coordinates. The two solutions are equivalent ‘only’ when we choose an
appropriate threshold:

log (x”) + log (m’) > log(y") (41)
log(x{) + log(x)) + log (m') > log(y}) + log(y5) (42)
1.
log(x!) + log (m e ) > log(v}) (43)
h)

SWe use the notation P (o|c; 0) to indicate the probability parametrised by 6.
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Orjlc ” /
where x| = z];:l hjlog (l_fe’»‘w) and xJ = Z];‘:l log(1 —6y,c) (y/ and y; are
defined accordingly). For example if we set m’ = 1 in Eq.(41), then we must set
m’ = y! /x to obtain the same classification in Eq. (43).

3.2 Probability Smoothing

The parameter 6. of each Bernoulli random variable can be estimated in different
ways. A common solution is a maximum likelihood approach:
n fic

O = L (44)

ne

where n s . is the number of objects of category ¢ in which feature f appears, and . is
the number of objects of category c¢. However, this approach generates arithmetical
anomalies; in particular, a probability equal to zero when the feature is absent in
category c¢,ny. =0 (or a probability equal to one when nys. =n. but it is less
frequent). A zero in one of the features of the objects corresponds to a likelihood
equal to zero (or a minus infinity in the log space). To avoid these arithmetical
problems, smoothing is usually applied. For example, Laplacian smoothing or add-
one smoothing:

nge+ 1

ne+2

Ofic = (45)

In this chapter, instead of a maximum likelihood approach, we estimate the parameter
0| by using a conjugate prior approach which, in this case, corresponds to finding
a beta function with parameters « and 8 [11]:

betaf‘c = 9‘;‘:1(1 — 9f|c)ﬁ_l. (46)

The result of this choice is that the estimate 67| is now governed by the two hyper-
parameters o and g in the following way:

nge+o

= — 4
n.+oa+p “47)

Ol

note thatfora = B = 1, we obtain the Laplacian smoothing. It is possible to optimise
o and B for each feature, but in this work we choose to use the same parameters for
all the features.
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3.3 Decision Line in Likelihood Spaces

As suggested by the authors of the original paper of likelihood spaces [24], one
advantage with working in likelihood spaces is that we can devise new strategies for
classifying objects. In fact, if we do not limit ourselves to the Bayesian Decision
Theory, we can find other linear or non-linear solutions that work much better in
terms of classification. The first improvement would be to add a ‘rotation’ to the
decision line in the likelihood space. The authors of the seminal paper discuss this
problem and show that polynomial decision lines in the likelihood space can obtain a
significant improvement in terms of classification accuracy. However, a polynomial
line in the likelihood space corresponds to a complex curve in the data space. Suppose
that we find a decision function of this type

yL <mpxp +qg (48)

where y;, x, q; are the same as Eq.(26) and m is the angular coefficient of the
new decision line. This corresponds to:

e’ < Mt 49)
2102(P©I0) . ymilog(P(ole)+qr (50)
P(o|c) < P(o]c)™ et (&29)]

which is a sort of exponential curve in the data space. Alternatively, it is also pos-
sible to show that a rotation and a shift of the decision function in the data space
corresponds to a non-linear curve in the likelihood space [8]. However, it is not our
main objective to discuss the possible extension of Bayesian Decision Theory in this
chapter. However, we want to stress the fact that, for the interactive text categori-
sation problem, we use a decision line in the likelihood space like the one shown
Eq. (48) but this choice does not have an immediate interpretation in the data space
in terms of Bayesian Decision Theory.

4 An Example of Interactive Text Categorization

In the previous sections, we presented the geometric interpretation of probabilistic
classifiers on a two-dimensional space, and we described a set of parameters that can
be tuned to optimise classification. In particular:

e We can change the estimates of the probability of the features by modifying the
values o and B of the prior beta function.

e We can adjust the classification line by changing the intercept ¢; and the angular
coefficient m in the likelihood space.
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Table 1 Number of training

Category Training

documents for each class of

the Reuters-21578 collection Acq 1650
Corn 182
Crude 391
Earn 2877
Grain 434
Interest 347
Money-fx 539
Ship 198
Trade 369
Wheat 212
Total 6494

In a real machine learning setting these parameters need to be trained and validated
using portions of the dataset available to train the classifier. For example, a k-fold
cross validation can be used to find the parameters that minimise the error of the
classifier [13, Chap. 9]. For this reason, we have developed an interactive application
that allows users to see how the tuning of these parameters affects classification on
a real text classification problem.®

The top 10 most frequent categories of the Reuters-215787 corpus were chosen
as a benchmark. In particular, we chose the 6494 training documents. Table 1 shows
the number of training documents for each category. Some text preprocessing was
done: a first cleaning was done to remove all the punctuation marks and convert all
the letters to lowercase. A stoplist of 571 words and contractions (that is, 're, don’t,
etc.) was used to remove the most frequent words of the English language.® Finally,
the English Porter stemmer’ was used as the only method to reduce the space of
terms.

Standard classification measures are calculated for the k-fold cross validation and
shown real time as parameters are tuned [25].

4.1 Description of the Interface

The main window is split into two parts: the sidebar on the left and the main panel on
the right, as shown in Fig. 6. On the left side, the user can interact with the classifier
and see the results on the right in terms of both the accuracy of the classification and
the visualisation.

Shttp://gmdn.shinyapps.io/shinyK.
http://www.daviddlewis.com/resources/testcollections/.
8http://jmir.org/papers/volume5/lewisO4a/al 1-smart-stop-list/.
“http://www.tartarus.org/~martin/PorterStemmer/.
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Fig. 6 Interactive text categorisation. Default values of a multivariate Bernoulli NB classifier on
the Reuters-21578 dataset

4.1.1 Interaction

The user can interact with the classifier by adjusting and changing the values of the
following widgets (we describe them from top to bottom, but the user can interact in
any order):

1.

2.

The user chooses the category of documents to classify with a selection input
menu.

The number of k-folds, between 2 and 10, to train and validate on are selected by
a slider; the user can also switch from one k-fold to the other (for example, with
five folds, the first fold is used for validation while the other four folds are used
to train the classifier), or re-sample the folds (documents are randomly sampled
to create a new k-fold cross validation) by using the two buttons below the slider
of the number of folds.

The number of features (terms) can be selected with a slider from 5 up to 30,000
features.

The parameters of the beta prior can be adjusted by the two sliders Alpha, from
1073 to 2, and Beta, from 0.5 to 300.

The decision line can be adjusted with the two sliders Angular coefficient, values
from 0.5 to 2, and Intercept, values in the range —300, 300.
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6. The user can reset all the parameters to the default values, or go back to the best
settings found for the training set or the validation set by using one of the three
buttons.

4.1.2 Visualization

The main panel is divided into two columns: the first column shows the results on
the training set, the second column the results on the validation set. Both columns
contain the following information (from top to bottom):

1. The text box shows the total number of objects and the number of positive exam-
ples (red points, the documents of the chosen category). The box in the validation
column also tells the user on what fold we are validating.

2. The table shows performance measures in terms of Recall, Precision and F1. The
first row displays the performance of the classifier when only the parameter of
the priors are used, while the second row gives the results when both the prior
and the coefficient of the decision line are taken into account.

3. The two-dimensional plot shows in red the documents of the chosen class and in
black all the other documents of the collection. The blue line changes according
to the parameters Angular coefficient and Intercept, m and g respectively, while
the green line (visible only when the previous parameters are not the default ones)
remains fixed to the bisecting line of the third quadrant.

4.2 Example of Usage

Figure 6 shows an example of one category ‘corn’ that is quite unbalanced, since
the number of positive examples of this category is around 180 and the total number
of training examples is about 6400. In order to recover this disproportion, we can
change the value of the intercept of the decision line and increase it to 200. In this
way, we get an almost perfect recall but the precision is low, as shown in Fig. 7. This
situation shows how the intervention of the loss function (which influences the shift
of the line in the likelihood space) is good but not optimal. A rotation of the line can
significantly improve the situation as shown in Fig. 8.

This optimisation can continue iteratively by slightly changing the intercept and
the angular coefficient. Additionally (or alternatively), the user can change the
smoothing of the probabilities with the sliders alpha and beta. As surprising as it
may seem, for small values of alpha and high values of beta, the points in the like-
lihood space change their distribution and ‘move’ around the zero-one loss decision
function (bisecting line third quadrant, green line). This particular behaviour can be
explained by the fact that for « = 8 = 1 we are actually giving as input a uniform
distributed prior which is very unlikely in real situations; in other words, we are
saying that any value for the parameter 6|, is equally probable. Instead, it is much
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Fig. 7 Interactive text categorisation. Increase the value of intercept to recover the disproportion
of the two classes
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Fig. 8 Interactive text categorisation with R. Adjust angular coefficient to decrease the number of

false positives
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Fig. 9 Interactive text categorisation with R. Change the value of the smoothing parameters to see
how points move around the zero-one loss function

more likely to observe a very small value close to zero. This is expressed by a beta
function whose parameters have the values suggested in the figures.

This incremental process, as the interactive machine learning approach suggests,
can significantly improve the initial results of the classifier. With this interactive
application, we can also show how overfitting may generate very poor classifiers.
This situation is shown in Fig. 10, where we set the alpha and beta values to their
extremes and slightly adjusted the intercept and the angular coefficient to obtain
an almost perfect score on the training data (F; = 0.956). With these parameters,
the performance on the validation set is very low. Compared to Fig.9, the F} score
decreased from 0.7 to 0.4.

5 Final Remarks and Future Works

In this chapter we have presented a geometrical interpretation of likelihood spaces
and an interactive text categorisation problem that makes use of this interpretation.
We have explained the possible relations that exist between likelihood spaces and
Bayesian Decision Theory; moreover, we have derived the same interpretation of the
two-dimensional logarithmic space from the definition of classification in terms of
the logit function. The interactive application shows, in a real machine learning set-
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Fig. 10 Interactive text categorisation. Example of overfitting with an almost perfect score on the
training data

ting, how human pattern recognition capabilities can immediately steer the learning
algorithm towards one possible solution.

The importance of the visualisation approach becomes more evident when the
result is used as input for the optimisation of a classifier. Theoretically, we could
find the solution found with the interactive approach (if not a better one) by means
of a classical full-automatic machine learning approach that searches for the best
combination of parameters. The problem is that the space of the vector of parameters
ishuge. Although areduction of the space can be obtained with a correct interpretation
of the problem in geometrical terms [7, 10], the interactive approach can be crucial
in setting the initial parameters of the function that optimises the automatic classifier.

From a theoretical point of view, there are interesting open questions about the
meaning of the decision line found in the likelihood space. In particular, whether the
solution has an equivalent form in the data space and in Decision Theory in general,
or whether the new solution defines a completely new decision theory in the data
space. Another important aspect that was not discussed in this chapter is that the
smoothing parameters « and 8 should be optimised for each single feature instead
of being equal for all the features. This problem alone would require a completely
different user interface, or, in terms of classical machine learning, a study on how to
choose parameters individually in an efficient way.
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