Chapter 2
Elements of General Topology

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to.’
‘I don’t much care where -’
‘Then it doesn’t matter which way you go.’
Lewis Carroll, Alice in Wonderland

Let me start this chapter with a simple why-question: Why general topology? What
is the main problem it wishes to solve? The answer is deceivingly simple: general
topology aims at analyzing and describing topological spaces. I will start this chapter
by introducing the basic concepts of this field of research. I define notions like the
axiomatic topology of a space, finite topological spaces, discrete spaces, indiscrete
spaces, open, closed and clopen sets as well as some basic notions about limits and
how various objects easily defined in calculus have to generalize in order to make
sense in a general topological context. I mainly follow here reference [1] for a basic
but very enlightening introduction. Topology, like most of the other branches of
mathematics, can be described axiomatically [2]. In this sense, a topology can be
defined as follows:

Definition 2.1 Let X be a non-empty set. A collection 7 of subsets of X is said to
be a topology on X if

e X and the empty set belong to 7
e the union of any (finite or infinite) number of sets in 7 belongs to 7 and
e the intersection of any two sets in 7 belongs to 7

The pair (X, 7) is called a topological space.

If X is a non-empty set and 7 is the collection of all subsets of X then 7 is
called the discrete topology on the set X. The topological space (X, 7) is called a
discrete space. The indiscrete topology on the other side is given by 7 = {X, ¢} and
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18 2 Elements of General Topology

then (X, 7) is called the indiscrete space. In both these cases each type of topology
satisfies the conditions in the general definition of the topology.

At this point I can remind the reader why an axiomatic definition of a notion is
useful [3]. Axioms are a method of restraining the means used to define an object such
that the validity of the object defined using them is as general as possible. By being
able to axiomatize a definition we become capable of observing the appearance of
the defining axioms even in some unexpected situations [4]. For example, in this case
we can already see that a discrete space connects all the elements of a space to each
other by defining an open set for each and every subset of the original space. The set
of single elements-subsets will also be part of this discrete topology, hence the name
“discrete”. This last property allows therefore the possibility to distinctly specify
each point or subset of points in the space offering the possibility of fine-graining
the space. On the other side, we may think in terms of a coarse topology having only
the empty set and the original set itself in it. This is an “indiscrete topology”. It also
connects all the points in the space but doesn’t allow us to speak of them distinctly
or to specify only certain collection of points in that space.

Instead of referring to “members of 77 we may give to these sets more appropriate
names. Let us call them open sets. The complements of the open sets with respect to
the space X are called “closed sets”. This way of speaking leads to what is known
as “open intervals” and “closed intervals” on the real number line. If (X, 7) is any
topological space then ¥ and X are closed sets. Also, the intersection of any finite or
infinite number of closed sets is a closed set and the union of any finite number of
closed sets is a closed set. The same is valid for open sets. Therefore, one observes
that while any finite or infinite union of open sets is open, only finite intersections
of open sets are open. Infinite intersections of open sets are not always open. I will
show this in the next example:

Example 2.2 Let N be the set of all positive integers and let 7 consist of ¥ and each
subset S of N such that the complement of S in N, N — S, is a finite set. It can be
verified that 7 is a topology on N. It is called the finite-closed topology. For each
natural number n, define the set S, as

S, ={jufn+1JUu{n+2}U{n+3}U..={1}U U m} @21

m=n+1

Clearly each S, is an open set in the topology 7, since its complement is a finite set.
However,

(s = 2.2)
n=1

As the complement of {1} is neither N nor a finite set, {1} is not open. So this shows
that the intersection of the open sets S, is not open.

Itis important to observe that both union and intersection must be verified in order
to prove that a subset is open. Now that the open and closed sets are defined, one
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needs to notice that some open sets can also be closed at the same time. For example
in a discrete space every set is both open and closed while in an indiscrete space
(X, 7) all subsets of X except X and ¢ are neither open nor closed. Hence there is
the

Definition 2.3 A subset S of a topological space (X, 7) is said to be clopen if it is
both open and closed in (X, 7).

In general in every topological space (X, 7) both X and ¥ are clopen, in a discrete
space all subsets of X are clopen and in an indiscrete space the only clopen subsets
are X and .

In what follows I will discuss the notions that can be defined generally on a
topological space. The analogy with the real line has its limits. First, on the real line
we have a notion of “closeness”. For example, if we have a sequence of the form

0.1,0.01,0.001, ..., (2.3)

every element of this sequence is closer to zero than the previous. This means one
can say that O is the limit point of this sequence. However, the interval (0, 1] is not
closed as it does not contain the limit of any sequence in it, in particular it does not
contain the element 0.

A topological space is in some sense a general notion. For example we do not need
to have notions like a metric over a topological space and the distance is therefore
not always well defined. If we do not have a distance we must define the limit point
differently, without considering the distance between two points as has been done in
standard calculus.

Also, the topological spaces are defined by employing the concept of connected-
ness. This will also be defined in what follows. Let me start with a topological space
(X, 7). The elements of this space are referred to as points. Let A be a subset of a
topological space (X, 7). A point x € X is said to be a limit point (or accumulation
point or cluster point) of A if every open set, U, containing x contains a point of A
different from x.

In general a test whether a set is closed or not is the following

Proposition 2.4 Let A be a subset of a topological space (X, 7). Then A is closed
in (X, 7) if and only if A contains all of its limit points.

Proposition 2.5 Let A be a subset of a topological space (X, T) and A’ the set of
all limit points of A. Then A U A’ is a closed set.

Definition 2.6 Let A be a subset of a topological space (X, 7). Then the set A U A’
consisting of A and all its limit points is called the closure of A and is denoted A.

Definition 2.7 Let A be a subset of a topological space (X, 7). Then A is said to be
dense in X or everywhere dense in X if A = X. As an example Q is a dense subset
of R.
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As an example consider again the discrete topological space (X, 7). Then, every
subset of X is closed (since its complement is open). Therefore the only dense subset
of X is X itself, since each subset of X is its own closure.

Proposition 2.8 Let A be a subset of a topological space (X, 7). Then A is dense
in X if and only if every non-empty open subset of X intersects A non-trivially (that
is, ifUeTand U # P then ANU # ().

In what follows we need the concept of neighborhood. Again, for topological spaces
where a metric is not defined and there is no notion of distance, this concept will
prove to be not only important for what follows, but also interesting from a logical
point of view.

Definition 2.9 Let (X, 7) be a topological space, N a subset of X and p a point in
N. Then N is said to be a neighborhood of the point p if there exists an open set U
suchthat p e U C N.

As an example, the closed interval [0, 1] € R is a neighborhood of the point % since
5e(1.39) <o, 1]

Proposition 2.10 Let A be a subset of a topological space (X, 7). A point x € X
is a limit point of A if and only if every neighborhood of x contains a point of A
different from x.

As asetis closed if and only if it contains all its limit points we deduce the following

Corollary 2.11 Let A be a subset of a topological space (X, T). Then the set A is
closed if and only if for each x € X — A there is a neighborhood N of x such that
N CX— A

Corollary 2.12 Let U be a subset of a topological space (X, 7). Then U € T if and
only if for each x € U there exists a neighborhood N of x such that N C U.

Corollary 2.13 Let U be a subset of a topological space (X, 7). Then U € T if and
only if for each x € U there existsaV € T suchthatx € V C U.

The last corollary provides a practical test of whether a set is open or not. A set is
open if and only if it contains an open set about each of its points. In what follows,
a brief discussion about connectedness [5] will be given. Some simple definitions
and facts are given in an informal way, mainly following reference [1] which is a
source of inspiration for the major part of this section. Let therefore S be a set of real
numbers. If there is an element b € S such that x < b, for all x € S then b is said to
be the greatest element of S. Similarly if S contains an element a such that a < x
for all x € S then a is called the least element of S. A set S of real numbers is said to
be bounded above if there exists a real number ¢ such that x < ¢ for all x € S, and
c is called an upper bound for S. Similarly, the terms “bounded below” and “lower
bound” are defined. A set which is bounded above and bounded below is said to be
bounded [6].
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Least Upper Bound Axiom 2.14 Let S be a non-empty set of real numbers. If S is
bounded above, then it has a least upper bound.

The upper bound also called the supremum of S, denoted sup(S), may or may
not belong to the set S. Indeed the supremum of § is an element of S if and only if
S has a greatest element. Any set S of real numbers which is bounded below has a
greatest lower bound which is also called the infimum and is denoted by inf ().

Lemma 2.15 Ler S be a subset of R which is bounded above and let p be the
supremum of S. If S is a closed subset of R, then p € S.

Proof See appendix.
Proposition 2.16 Let T be a clopen subset of R. Then either T =R or T = (.
Proof See appendix.

Definition 2.17 Let (X, 7) be a topological space. Then it is said to be connected if
the only clopen subsets of X are X and ¥J. As an example, the topological space R is
connected.

From the definition follows that a topological space (X, 7) is not connected (i.e.
disconnected) if and only if there are non-empty open sets A and B suchthat A N B =
¢#and A U B = X. This factis important because it constitutes the basis for the future
generalizations to connected manifolds, groups, etc.

In what follows I will briefly discuss what means when we say that two structures
are equivalent [7]. The distinction between objects implies two items: the objects
themselves and the criteria by which the notion of “distinctiveness” is defined. In
set theory, two sets are said to be equivalent from the perspective of set theory if
there exists a bijective function which maps one set onto another. Two groups are
equivalent, also said to be isomorphic, if there exists a homomorphism of one to the
other which is one-to-one and onto. Two topological spaces are equivalent, also said
to be homeomorphic if there exists a homeomorphism of one onto the other. Hence,
first we need a definition for the objects we want to compare. Then we need to explain
what means “equivalent” in our theory. I will start by defining the objects that are
important in this context, and these objects are the topological spaces. Hence, we
will want to compare subspaces of a given space.

Definition 2.18 Let Y be a non-empty subset of a topological space (X, 7). The col-
lectionTy = {O UY : O € 7} of subsets of Y is a topology on Y called the subspace
topology (or relative topology, or induced topology on Y by 7). The topological space
(Y, 7y) is said to be a subspace of (X, 7).

One can check that 7y is indeed a topology on Y. Now we turn to the notion of
equivalence defined for the topological spaces. We may start with an example

X ={a,b,c,d,e}, Y ={g,h,i, j, k} 2.4)
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T ={X, 0, {a},{c,d}, {a,c,d},{b,c,d,e}} (2.5)

and
i =A{Y,0,{g}, i, j}. {9, 1, j}, th, i, j, k}} (2.6)

It is intuitively clear that (X, 7) is equivalent to (Y, 77). The function f : X — Y
defined by f(a) =g, f(b) =h, f(c) =i, f(d) = j and f(e) =k, provides the
equivalence.

Definition 2.19 Let (X, 7) and (Y, 71) be topological spaces. Then we say they
are homeomorphic if there exists a function f : X — Y which has the following
properties:

e f is one-to-one (thatis f(x;) = f(xp) implies x; = x3).

e f isonto (that is, for any y € Y there exists an x € X such that f(x) = y)
e foreach U € 7y, f’l(U) € 7 and

e forecachV e 7, f(V) e

Further, the map f is said to be a homeomorphism between (X, 7) and (Y, 71). We
write (X, 7) = (Y, 11).

It can be shown that = is an equivalence relation and that all open intervals
(a, b) are homeomorphic to each other. Length is not a topological property [8]. In
particular, an open interval of finite length such as (0, 1) is homeomorphic to one of
infinite length such as (—oo, 1). In fact, all open intervals are homeomorphic with
R. There is an important aspect related to the methods of proof. In order to prove
that two topological spaces are homeomorphic we have to find a homeomorphism
between them. However, to prove that two topological spaces are not homeomorphic
is often much harder as we have to show that no homeomorphism exists. In order to
show this difficulty the next example is important.

Example 2.20 We want to prove that the interval [0, 2] is not homeomorphic to the
subspace [0, 1] U [2, 3] or R. Let for this (X, 7) = [0, 2]and (Y, 1) = [0, 1] U [2, 3].
Then [0,1] =[0,1]NY = [0, 1]is closed in (¥, 71) and [0, 1] = (—1, 1%) ny =
[0, 1]isopenin (Y, 71). Thus Y is not connected as it has [0, 1] as a proper non-empty
clopen subset.

Suppose that (X, 7) = (Y, 7). Then there exists a homeomorphism f : (X, 7) —
(Y, 7). So, f" ([0, 1]) is a clopen subset of X, and hence X is not connected. This
is false as [0, 2] = X is connected. So we have a contradiction and thus the two
topological spaces are not homeomorphic. Hence, we can observe the following

Proposition 2.21 Any topological space homeomorphic to a connected space is
connected.

This observation is extremely important in simplifying the proofs that objects (hence
also topological spaces) are not homeomorphic with each other [9]. Instead of actually
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searching every possible homeomorphism and eliminating each of them, it is far
easier to find one single property preserved by homeomorphisms which can be proven
that one space has and the other does not. In this way, the “checking” of all possible
homeomorphisms is avoided leading to a major simplification. There are several such
properties preserved by homeomorphisms that can be used. However, when faced
with a specific problem we may not be able to find the best property we would like
to use. The art is to decide when it is easier to check all homeomorphisms and when
it is easier to check all preserved properties [10]. One can however make statements
about the real line for which we have the following

Definition 2.22 A subset S of R is said to be an interval if it has the following
property: if x € S,z € Sand y € Raresuchthatx < y < ztheny € S.

Connectedness for the real line is easily prescribed by the following
Proposition 2.23 A subspace S of R is connected if and only if it is an interval.

Up to now we discussed the objects and the equivalence relations. The next structure,
specific to category theory is called the set of arrows [11]. They represent different
things when analyzed in different branches of mathematics. In linear algebra we
have as objects the vector spaces and as arrows the linear transformations. In group
theory the objects are the groups while the arrows are the homomorphisms, while in
set theory the objects are sets and the arrows are functions. In topology the objects
are the topological spaces and the arrows are the continuous mappings. However,
how can we define a notion such as “continuity” in a general topological space? Of
course for functions from R to R this is simple: a function f : R — R is said to be
continuous if for each a € R and each positive real number ¢, there exists a positive
real number § such that |x — a| < § implies | f(x) — f(a)| < €. This construction
however is very dependent on the definition of absolute value, subtraction and in
general distance [12]. All these notions do not need to exist (although can certainly be
defined for some cases) in general topological spaces [13]. Hence we need a different
definition of continuity, more suitable for generalizations. We can see that f : R — R
is continuous iff for each a € R and each interval (f(a) — ¢, f(a) +¢), for e > 0
thereexistsad > Osuchthat f(x) € (f(a) — ¢, f(a) + ¢)forallx € (a — §,a + 9).
This definition does not involve the notion of distance or of absolute value but it
still involves the notion of subtraction which may not make sense in general i.e. the
inversion of addition may not be defined [ 14]. In order to avoid subtraction completely
we can introduce the following

Lemma 2.24 Let f be a function mapping R into itself. Then f is continuous if and
only if for each a € R and each open set U containing f (a), there exists an open set
V containing a such that f(V) C U.

Proof See appendix.

One could use the property described in the above lemma to define continuity but
the following lemma makes the definition more elegant.
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Lemma 2.25 Let f be a mapping of a topological space (X, T) into a topological
space (Y, 7). Then the following two conditions are equivalent:

o foreachU e, f'(U) e
e for each a € X and each U € 7' with f(a) € U, there exists a V € T such that
aeVand f(V)CU.

Proof See appendix.
Hence the notion of continuity for a function between two topological spaces becomes

Definition 2.26 Let (X, 7) and (Y, 1) be topological spaces and f a function from
X into Y. Then f : (X, 7) — (¥, 71) is said to be a continuous mapping if for each
Uemn, f_'(U) €T.

Now we can write the following

Proposition 2.27 Let f be a mapping of a topological space (X, T) into a space
(Y, 7). Then f is continuous if and only if for each x € X and each U € 7" with
f(x) € U, there existsa 'V € T such that x € V and f(V) C U.

Proposition 2.28 Ler (X, 1), (Y, 71) and (Z, ) be topological spaces. If f :
X, 1) = (Y,m)and g : (Y, 71) = (Z, 1) are continuous mappings, then the com-
posite function go f : (X, T) — (Z, 1) is continuous.

Of course, the next result shows that we can interchange closed sets with open sets
in the definition of continuity

Proposition 2.29 Let (X, 7) and (Y, 11) be topological spaces. Then f : (X, T) —
(Y, 7y) is continuous if and only if for every closed subset S of Y, f~'(S) is a closed
subset of X.

Proof See appendix.

There is a connection between continuous maps and homeomorphisms. If f :
(X, ) = (Y, 1) is a homeomorphism then it is a continuous map. Obviously not
every continuous map is a homeomorphism.

Proposition 2.30 Let (X, 7) and (Y, ") be topological spaces and f a function
from X to Y then f is a homeomorphism iff

e [ is continuous
e f has an inverse
o s continuous

Proposition 2.31 Ler (X, 7) and (Y, 1) be topological spaces, f : (X, 7) — (Y, 1)
a continuous mapping, A a subset of X and , the induced topology on A. Further, let
g: (A, ) — (Y, 1) be the restriction of f to A, thatis g(x) = f(x) forall x € A.
Then g is continuous.
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An important result is given by the following

Proposition 2.32 Let (X, 7) and (Y, 11) be topological spaces and f : (X, T) —
(Y, 1) surjective and continuous. If (X, T) is connected then (Y, 1) is connected.

Proof See appendix.

Otherwise stated this proposition says that any continuous image of a connected set is
connected. It also says that if (X, 7) is a connected space and (Y, 7') is not connected
then there exists no mapping of (X, 7) onto (Y, 7/) which is continuous. There exists
a stronger definition of connectedness [15]:

Definition 2.33 A topological space (X, 7) is said to be path-connected if for each
pair of distinct points @ and b of X there exists a continuous mapping f : [0, 1] —
(X, 7) such that f(0) = a and f(1) = b. The mapping f is said to be a path joining
atob.

Every path connected space is connected. At this point, I can introduce Weierstrass’
Intermediate value Theorem [16], an application of topology to the theory of functions
of areal variable. The topological concept important for this is that of connectedness.

Theorem 2.34 Let f : [a,b] — R be continuous and let f(a) # f(b). Then for
every number p between f(a) and f (D) thereis apointc € [a, b] suchthat f(c) = p.

Proof See appendix.

Corollary 2.35 If f : [a, b] — Riscontinuous and such that f(a) > Oand f(b) <
0 then there exists an x € [a, b] such that f(x) = 0.

Corollary 2.36 (The fixed point theorem) Let f be a continuous mapping of [0, 1]
into [0, 1]. Then there exists a z € [0, 1] such that f(z) = z. The point is called a
fixed point.

Proof See appendix.

This corollary is a special case for another theorem called the Brouwer fixed point
theorem [17] which says that every continuous function from a convex compact
subset /C of a Euclidean space to K itself has a fixed point. Most proofs are of
algebraic topological nature [18]. However, this theorem has many applications,
from theoretical economics [19] to applied mathematics [20].

As I mentioned several times until now, the discussion in this first part was inten-
tionally as general as possible. This implied the definition of notions like continuity
such that they do not depend on notions related to metric spaces like distances,
absolute values, etc. In what follows I will particularize the discussion a bit, making
however as clear as possible that most of the interesting applications appear when the
notions of metric and distance are not readily available. One may ask if there are sit-
uations when we do not wish to measure distances or distances are not well defined.
Indeed, the basic question in topology is to describe structures that do not depend on
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continuous deformations, and obviously, distance is one concept that changes in con-
tinuous deformations. Therefore, topological notions are in the most general sense
not dependent on structures like distance. Additional structure must be added to the
topological structure so that we are capable of discussing about distances. However,
there do exist situations where distance is not necessary, for example quantum entan-
glement is a correlation which does not, a-priori, depend on distance. Once topology
itself becomes uncertain, the notion of distance will become even more ambiguous.
Most of the applications of topology to analysis are via metric spaces [21]. Because
of this I will start with a definition

Definition 2.37 Let X be a non-empty set and d a real valued function defined on
X x X such that fora, b € X:

e d(a,b) >0andd(a,b) =0ifandonly ifa = b
e d(a,b) =d(b,a)
e d(a,c) <d(a,b)+d(b,c)foralla,b,c e X

Then d is said to be a metric on X, (X, d) is a metric space and d (a, b) is the distance
between a and b.

Having a metric space (X, d) and r a positive real number we can define the open
ball about @ € X of radius r as the set

B, ={x:xeX;d(a,x) <r} 2.7

In what follows I wish to connect the metric spaces to the topological spaces. For
this I will need the following

Lemma 2.38 Let (X, d) be a metric space and a and b points of X. Further, let
01 and 9, be positive real numbers. If ¢ € Bs,(a) N Bs, (b) then there exists a § > 0
such that B;(c) € Bj,(a) N Bg, (b).

Corollary 2.39 Let (X, d) be a metric space and By and B, open balls in (X, d).
Then By N B, is a union of open balls in (X, d).

Proposition 2.40 Let (X, d) be a metric space. Then the collection of open balls in
(X, d) is a basis for a topology T on X. This is the topology induced by the metric
d and (X, T) is called the induced topological space [22] or the corresponding
topological space.

As an example consider d the euclidean metric on R. Then a basis for the topology
7 induced by the metric d is the set of all open balls. But Bs(a) = (a — §, a + 9).
From this it is easy to see that 7 is the euclidean topology on R. Hence the euclidean
metric on R induces the euclidean topology on R.

From the perspective of how a set of numbers can be completed, there exist other
types of metrics. Among non-euclidean metrics one can cite the non-Archimedean



2 Elements of General Topology 27

metric which gives rise to the so called p-adic numbers. This is one of the three
possible completions of the rationals, the other two being the real numbers and the
complex numbers. The p-adic numbers do not obey the Archimedean axiom, one
of the axioms introduced by Hilbert in his general approach to geometry. The basic
formulation of Archimedes’ axiom is that given two magnitudes having a ratio, one
can find a multiple of either which will exceed the other. This multiple must be finite.
By this one excludes the existence of differential objects. Just as the real numbers
are a completion of the rationals with respect to the usual norm, the p-adic numbers
are the completion of the rationals with respect to the p-adic norm.

Let me now consider d the discrete metric on a set X. Then for each x € X,
B% (x) = {x}. So, all the singleton sets are open in the topology 7 induced on X by
d. As a consequence, T is the discrete topology.

Definition 2.41 Metrics on a set X are equivalent if they induce the same topology
on X.

Proposition 2.42 Let (X, d) be a metric space and T the topology induced on X by
the metric d. Then a subset U of X is open in (X, ) if and only if for each a € U
there exists an € > 0 such that the open ball B.(a) C U.

Proof See appendix.

It was noticed that every metric on a set X induces a topology on the set X. However,
the reverse is not always true i.e. not every topology on a set is induced by a metric.

Definition 2.43 A topological space (X, 7) is said to be a Hausdorff space (or a
T»-space) if for each pair of distinct points a and b in X, there exist open sets U and
Vsuchthata e U,be VandU NV = 0.

It can be seen that R, R? and all discrete spaces are Hausdorff [23]. However, any set
with at least 2 elements which has the indiscrete topology is not a Hausdorff space.
It may be relevant to note that Z with finite-closed topology is also not a Hausdorff
space.

Proposition 2.44 Let (X, d) be any metric space and T the topology induced on the
X byd. Then (X, 7) is Hausdorff.

Proof See appendix.

We can see out of this proposition that an indiscrete space with at least two points
has a topology which is not induces by any metric. Also, Z with the finite-closed
topology 7 is such that 7 is not induced by any metric on Z.

Proposition 2.45 A space (1, X) is said to be metrizable if there exists a metric d
on the set X with the property that T is the topology induced by d.
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For example the set Z with the finite-closed topology is not a metrizable space.
One should not believe that any Hausdorff space is metrizable. In fact there exist
Hausdorff spaces which are not metrizable [24].

In what follows, I will review briefly the notions surrounding the convergence
of sequences. It is clear what a convergent sequence of real numbers is. In order to
remind the reader, the definition is as follows. The sequence xi, x3, ..., X, ... of
the real numbers is said to converge to the real number x if given any ¢ > 0, there
exists an integer ng such that for all n > ny, |x, — x| < €. The generalization of this
definition from R to any metric space is obvious

Definition 2.46 Let (X, d) be ametric spaceand xy, ..., x,, .. .asequence of points
in X. Then the sequence is said to converge to x € X if given any € > 0 there exists
an integer ng such that for all n > ng, d(x, x,) < €. This is denoted by x, — x. The
sequence yi, 2, ..., Yn - .. of points in (X, d) is said to be convergent if there exist
apoint y € X such that y, — y.

Proposition 2.47 Let xy, x5, ..., X,, ... be a sequence of points in a metric space
(X, d). Further, let x and y be points in (X, d) such that x, — x and x,, — y. Then
X =y.

We say that a subset A of a metric space (X, d) is closed (resp. open) in the
metric space (X, d) if it is closed (resp. open) in the topology T induced on X by the
metric d.

In fact, the topology of a metric space can be described entirely in terms of its
convergent sequences.

Proposition 2.48 Let (X, d) be a metric space. A subset A of X is closed in (X, d)
if and only if every convergent sequence of points in A converges to a point in A.
This means that A is closed in (X, d) if and only if a, — x where x € X and a,, € A
for all n, implies x € A.

Proof See appendix.

This finishes the introduction in general topology required for this work. Further
information on the subject can be found in [25-31]. While the results seem triv-
ial, they by themselves are only marginally the reason for this chapter. I introduced
this chapter mainly because the method of thinking derived from it reflects back to
algebraic topology and more advanced mathematical subjects. In fact, during my
independent research I started precisely with these constructions the formal study
of topology. This proved very useful mainly because I understood the distinction
between mathematical proofs and physical proofs. In general physicists tend to per-
form robust and numerically intensive calculations and to regard those as proofs in
a very specific sense. The mathematical proofs, no matter how rigorous are often
regarded with skepticism. On the other side, mathematically oriented researchers
tend to see physical proves as inelegant, dull and sometimes plain inefficient. How-
ever, in what follows I show that the two ways of thinking may fruitfully coexist.
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