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Abstract The anaerobic phototrophic purple bacteria are a phylogenetically highly
diverse group of bacteria with the common physiological property of performing
anoxygenic photosynthesis under anaerobic conditions. They are representatives of
the Alpha-, Beta-, and Gammaproteobacteria. More than 160 known species are
classified into 57 genera, 12 families, and 7 orders of the Proteobacteria. A short
historical review on the systematic treatment of the phototrophic purple bacteria and
the actual state is presented. The phylogenetic relationship of the cultured photo-
trophic purple bacteria based upon 16S rRNA gene sequences of the type strains is
shown in a comprehensive phylogenetic tree. Correlation and differences between
taxonomic treatment and phylogenetic relatedness are discussed. As the 16S rRNA
gene is only of limited value for biodiversity studies of functional groups of bacte-
ria, the application of functional genes for these purposes gains importance and
genes coding for bacteriochlorophyll synthesis (bchY), and reaction center proteins
(pufL and pufM) have been applied for biodiversity studies of phototrophic purple
bacteria. The correlation of phylogenetic relationships based on pufLM gene
sequences with that of 16S rRNA gene sequences, the appropriate information con-
tent in the pufLM sequences (>1400 nt), and a database of pufLM sequences from
many of the cultured purple bacteria make these genes a preferred target to study
environmental communities of phototrophic purple bacteria.

Studies on the diversity of phototrophic purple bacteria in three representative
habitats are discussed: an exceptionally well-developed microbial mat in a salt
marsh from which a number of new phototrophic purple bacteria have been isolated
(Sippewissett Salt Marsh, MA), the chemocline of a meromictic freshwater lake
from which new species have been isolated and in which genetic diversity studies
have been performed (Lake Cadagno, Switzerland), and a coastal lagoon (Baltic Sea
lagoon at Stein, Germany) in which the diversity of phototrophic purple bacteria
and the impact of changes in temperature and salinity on the community composi-
tion was studied using almost complete sequences of the pufLM genes.

J.E. Imhoff (04)

GEOMAR Helmbholtz Center for Ocean Research Kiel, Marine Microbiology,
24105 Kiel, Germany

e-mail: jimhoff@geomar.de

© Springer International Publishing Switzerland 2017 47
P.C. Hallenbeck (ed.), Modern Topics in the Phototrophic Prokaryotes,
DOI 10.1007/978-3-319-46261-5_2


mailto:jimhoff@geomar.de

48 J.F. Imhoff

Keywords Phototrophic purple bacteria ¢ Biodiversity ¢ Species list « Phylogeny
e Functional genes e pufLM genes ° Biodiversity analysis ¢ Environmental
selection ® Purple sulfur bacteria ¢ Purple nonsulfur bacteria ¢ Chromatiaceae ©
Ectothiorhodospiraceae

Introduction

Among the bacterial phyla with phototrophic bacteria, the Proteobacteria harbor the
phototrophic purple bacteria with representatives of phototrophic purple sulfur bac-
teria in the Gammaproteobacteria and members of the purple nonsulfur bacteria in
the Alpha- and Betaproteobacteria (Imhoff 2001d; Imhoff et al. 2005; Imhoff 2006a,
b, ¢, d). The so-called aerobic phototrophic purple bacteria are close relatives of the
anaerobic anoxygenic phototrophic purple bacteria. They have a primarily chemo-
heterotrophic metabolism and are aerobic respiring bacteria forming bacteriochloro-
phyll and a photosynthetic apparatus in the presence of oxygen.

Anaerobic anoxygenic phototrophic bacteria are major players in ecological
niches, which primarily are strictly anoxic but extend to microoxic and even oxic
conditions in the light (Pfennig 1977, 1989; Imhoff 1995; Imhoff et al. 2005; Madigan
1988; van Gemerden and Mas 1995). Their primary ecological niche is in stratified
environments with countercurrent gradients of sulfide and oxygen, in freshwater,
marine, and hypersaline habitats; in salt and soda lakes; in hot springs, cold waters,
and sea ice; in coastal sediments; and in the chemocline of many lakes, fjords, and
stratified water bodies. The habitats of purple sulfur bacteria generally are the lower
part of the chemocline in sediments and waters, in which sulfide is present and light
is available. More oxygen-sensitive representatives develop in the lower part where
oxygen is absent, while more oxygen-tolerant species may occur in the upper part
and even may make use out of the oxygen for respiratory purposes.

In this chapter, we will focus on the anaerobic phototrophic purple sulfur and pur-
ple nonsulfur bacteria and the advances in studies of their biodiversity over the past
decades. We will use the term purple nonsulfur bacteria for all anaerobic anoxygenic
purple Alpha- and Betaproteobacteria and the term purple sulfur bacteria for the
Gammaproteobacteria.

A Short Historical Review on Systematic Studies
of Phototrophic Purple Bacteria

Since the pioneering work of Winogradsky (1888) and the systematic treatments of
phototrophic purple bacteria by Molisch (1907), who for the first time distinguished
between the purple sulfur (Thiorhodaceae) and purple nonsulfur bacteria
(Athiorhodaceae), more than a century ago, several important key steps in advanc-
ing our knowledge on the diversity of phototrophic purple bacteria have to be
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mentioned. After the important contributions to the physiology of phototrophic bac-
teria by van Niel (van Niel 1931, 1944), the formulation of a suitable culture
medium for phototrophic sulfur bacteria by Norbert Pfennig (Pfennig 1965; Pfennig
and Lippert 1966; Pfennig and Triiper 1992; Imhoff 2006c) significantly stimulated
the work on the physiology, ecology, and biodiversity of these bacteria (Pfennig
1967, 1977, 1989). The studies of Pfennig over the following decades resulted in the
description of a number of new purple sulfur and purple nonsulfur bacteria (see
Tables 1, 2, and 3) and also green sulfur bacteria. Together with Hans-Georg Triiper,
a consequent systematic treatment of these bacteria based on phenotypic properties
was implemented. Reevaluation of historical data on the taxonomy of phototrophic
bacteria, formal description of species and definition of type and neotype strains of
the phototrophic bacteria formed the fundament for all future taxonomic work on
these bacteria (Pfennig and Triiper 1969, 1971, 1974). A key for the recognition of
genera and species was established which basically used easily recognized pheno-
typical properties that could in part also be determined by microscopic examination
of environmental samples or enrichment cultures. Oxidation of sulfide and deposi-
tion of elemental sulfur globules (inside or outside the cells) were major criteria to
distinguish not only purple nonsulfur from purple sulfur bacteria but also the genus
Ectothiorhodospira from other purple sulfur bacteria. Motility by flagella, forma-
tion of gas vesicles, shape and size of the cells, and structure of internal photosyn-
thetic membrane systems were other criteria used for differentiation of the species
and genera. A culture collection of type strains and reference cultures of anoxygenic
phototrophic bacteria established by Pfennig and Triiper still is a reference for stud-
ies today (most of these strains are maintained in the author’s lab and also available
through DSMZ, Braunschweig, Germany). It is interesting to see that at that time
only the genera Rhodopseudomonas, Rhodospirillum, and Rhodomicrobium were
recognized in the Rhodospirillaceae family (purple nonsulfur bacteria) and ten gen-
era (Ectothiorhodospira, Thiospirillum, Chromatium, Thiocystis, Thiosarcina,
Thiocapsa, Lamprocystis, Thiodictyon, Thiopedia, and Amoebobacter) in the
Chromatiaceae family (Pfennig and Triiper 1971, 1974). Altogether less than 40
species of phototrophic purple bacteria were known at that time (Pfennig and Triiper
1971). Today, more than 160 species of anoxygenic phototrophic purple bacteria are
recognized in 28 genera (95 species) of purple nonsulfur bacteria and 29 genera (74
species) of purple sulfur bacteria. They are members of seven orders and more than
11 families of the Proteobacteria (Tables 1, 2, and 3).

The introduction of ribosomal RNA sequences (at the beginning oligonucleotide
catalogues, later complete sequences) by Carl Woese into microbial phylogeny
opened up completely new possibilities in diversity studies and systematics also of
the phototrophic bacteria. Woese actually considered the Proteobacteria as “photo-
trophic purple bacteria and their relatives,” presuming a crucial role of phototrophic
purple bacteria in the evolution of Proteobacteria and the origin of Proteobacteria
from phototrophic ancestors (Woese et al. 1984a, b, 1985; Woese 1987). The purple
sulfur bacteria were Gammaproteobacteria and the purple nonsulfur bacteria repre-
sentatives of Alpha- and Betaproteobacteria (Woese 1987).

The implementation of 16S rRNA gene sequences and phylogenetic considerations
into the systematic treatment of phototrophic bacteria led to major changes in the
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taxonomy of these bacteria. First of all, in a reclassification of the purple nonsulfur
bacteria, the Betaproteobacteria were separated from the Alphaproteobacteria. Several
new genera were formed, with the recognition of some bacteria previously classified as
Rhodopseudomonas and Rhodospirillum species included into the new genera
Rhodocyclus, Rhodopila, and Rhodobacter (Imhoff et al. 1984). Also the genus
Ectothiorhodospira was recognized as a separate family, the Ectothiorhodospiraceae
besides the Chromatiaceae (Imhoff 1984), and later the two genera Ectothiorhodospira
and Halorhodospira were distinguished in this family (Imhoff and Siiling 1996). After
these first fundamental changes in systematics of phototrophic purple bacteria and
based on more extensive analyses of the phylogeny of 16S rRNA genes in these bacte-
ria, a number of additional modifications have been proposed in the years that fol-
lowed. The Chromatiaceae were rearranged according to their phylogenetic relations,
and several new genera were proposed to distinguish the known species according to
both phenotypic and genetic similarities (Imhoff et al. 1998b; Guyoneaud et al. 1998).
Also a number of purple nonsulfur bacteria were reclassified in order to achieve better
congruence between systematic treatment and phylogeny. The great heterogeneity of
species treated in the genus Rhodopseudomonas was recognized, and two species with
bacteriochlorophyll b were transferred to a new genus as Blastochloris viridis and
Blastochloris sulfoviridis (Hiraishi 1997). Rhodopseudomonas acidophila was trans-
ferred to Rhodoblastus acidophilus (Imhoff 2001b), and Rhodopseudomonas blastica
was transferred to Rhodobacter blasticus (Kawasaki et al. 1993). Also the marine spe-
cies of Rhodobacter were removed to the genus Rhodovulum (Hiraishi and Ueda
1994a); Rhodopseudomonas rosea was recognized as a member of the new genus
Rhodoplanes (Hiraishi and Ueda 1994b), and Rhodospirillum centenum was trans-
ferred to Rhodocista centenaria (Kawasaki et al. 1992). The heterogeneity of species
recognized as members of the genus Rhodospirillum was further resolved by removing
a number of these species into new genera (Imhoff et al. 1998a). More recently,
Rhodospirillum photometricum and related species were transferred to the new genus
Pararhodospirillum as Pararhodospirillum photometricum (Lakshmi et al. 2014).
These reclassifications and the general conformity of the new systematic treatment
with phylogenetic relations paved the way for biodiversity studies and species recogni-
tion in the environment based on genetic sequence information. The current systematic
treatment of the species of phototrophic purple bacteria is shown in Tables 1, 2, and 3.

The Diversity of Phototrophic Purple Bacteria

Much of the motivation to study bacterial systematics comes from the desire to
understand the phylogeny and evolution of the bacteria; their species-specific diver-
sity in the environment, including aspects of adaptation of species to changing envi-
ronmental conditions; their competition in the environment; and the biogeographic
distribution on a species-specific level.

Several approaches are used to obtain information on the biodiversity of micro-
bial communities. The classical approach involves the separation and isolation of
microbial strains, the characterization of pure cultures, and the identification and
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description of species. This approach is appropriate to identify and characterize
components of the community and to determine their physiological properties but is
less suited to depict the species diversity within a sample.

The molecular, metagenetic approach uses genetic tools to separate DNA mole-
cules or amplified PCR products and uses the sequence information to determine the
genetic diversity within a sample. With this approach, the diversity of a community
can be approached and known species can be recognized on the basis of their sequence,
but identification and characterization of unknown species are not possible.

Ideally diversity studies of phototrophic bacteria combine aspects of both
approaches, and culture-dependent studies that include the characterization of the
isolates are accompanied by genetic analyses determining the phylogenetic relation-
ship of the bacteria within the sample. If untreated environmental samples are diluted
in agar deeps or on agar plates with a proper medium for phototrophic bacteria, the
cultured biodiversity can be estimated by selection of representative colonies and
their characterization by microscopic examination and sequence analysis of the 16S
rRNA gene or other suitable genes. If the number of colonies are counted and associ-
ated to phylotypes according to sequence information and phenotypic properties, a
rough estimation of the diversity of phototrophic bacteria is possible with this method
(Imhoff 2006c¢). Although not commonly used, this combined approach is a valuable
alternative to pure metagenetic approaches with the advantage of better resolution
and higher specificity and the possibility to approach ecological questions.

The Cultured Diversity of Phototrophic Purple Bacteria

Over the decades, the presence, abundance, and activities of phototrophic purple
bacteria were studied in freshwater and marine habitats on the basis of microscopic
observations and culture studies. For these analyses, a systematic treatment based
on morphological and easily recognizable phenotypic characteristics (motility by
flagella, formation of gas vesicles, shape and size of the cells, and structure of inter-
nal photosynthetic membrane systems, gas vesicles, absorption spectra and photo-
synthetic pigments, substrate utilization in particular oxidation of sulfide and
thiosulfate) was a solid basis (Pfennig and Triiper 1974; Imhoff 2001d). These cri-
teria maintain to be of major relevance for the taxonomic characterization of species
and are included in the guidelines for the description of new species of phototrophic
bacteria (Imhoff and Caumette 2004). Most of the species descriptions since the
1970s used these criteria, later with additional support by molecular analysis of cel-
lular components and sequence information of the 16S ribosomal RNA molecule.
Much of the work on the systematics of phototrophic purple bacteria over the
past decades has been made, and the overwhelming majority of species have been
described by a few experts in this field, with a clear habitat focus related to the loca-
tion of their research laboratory. In the lab of Pierre Caumette (Arcachon and Pau,
France), the focus was on the work on coastal lagoons and marine salterns in south-
ern France and on the isolation of new moderately halophilic purple sulfur bacteria
including, among others, Halochromatium salexigens, Thiohalocapsa halophila,
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and Halorhodospira neutriphila from marine salterns and Thiorhodococcus minor
and Roseospira species from coastal lagoons (Tables 1 and 3). The work of Mike
Madigan (Carbondale, IL) had a clear focus on phototrophic bacteria from hot
springs in the USA but included other extreme habitats such as permanently cold
Antarctic lakes, soda lakes, and the Dead Sea with new species descriptions of
Thermochromatium  tepidum, Thiocapsa imhoffii, Rhodoferax fermentans,
Rhodobaca bogoriensis, and Rhodovibrio sodomensis (Tables 1, 2, and 3). Japanese
freshwater and marine sources were studied by Akira Hiraishi (Toyohashi, Japan),
and several new genera and species were described such as Rhodoferax fermentans,
Rhodovastum atsumiense, Rhodobium orientis, Rhodoplanes elegans, and Rpl.
serenus (Tables 1 and 2). Many of the saline and hypersaline waters, alkaline soda
lakes, and other extreme environments of Russia (Siberia) and also of Mongolia and
Kasachstan were studied by the group of Vladimir Gorlenko (Moscow, Russia) (to
a great part together with Elena Kompantseva and Irina Bryantseva). Most of his
isolates of new genera and species were derived from alkaline soda lakes and from
salt lakes, e.g., Thiorhodospira sibirica, Ectothiorhodosinus mongolicus,
Thioalkalicoccus limnaeus, and Rubribacterium polymorphum (Tables 1, 2, and 3).
The focus of the author’s group (Bonn and Kiel, Germany) was on marine habitats
and African soda lakes, and a number of species were described, many in coopera-
tion with P. Caumette, V. Gorlenko, and Ch. Sasikala (Tables 1, 2, and 3). In more
recent years since 2005, more than 40 new species have been isolated from Indian
sources by the groups of Ch. Sasikala and Ch.V. Ramana (Hyderabad, India) (in part
together with A.P. Kumar and T.N.R. Srinivas) (Tables 1, 2, and 3).

Based on 16S rRNA gene sequences of the type strains, the phylogenetic rela-
tionship of the species is depicted in Fig. 1. Data on the species including refer-
ences, previous names, and habitats are compiled in Tables 1, 2, and 3 for the
Alpha-, Beta-, and Gammaproteobacteria. Also the higher taxonomic ranks, fami-
lies, and orders in which the genera are grouped are included. The type species of
the genera are shown in bold face and recommended genus abbreviations are
depicted. This three-letter code is in conformance with the recommendations of the
subcommittee on the taxonomy of phototrophic bacteria of the International
Committee on Systematics of Prokaryotes (Imhoff and Madigan 2004; Madigan
and Imhoff 2007). The following abbreviations were added as suggestions to the
three-letter code for the recently described genera: Ceb. Cereibacter, Rhb.
Rhodobaculum, Rub. Rubribacterium, Afi. Afifella, Pas. Pararhodospirillum, Phv.
Phaeovibrio, Rva. Rhodovastum, Pha. Phaeobacterium, Tpc. Thiophaeococcus,
and Pch. Phaeochromatium.

The high diversity of phototrophic Alphaproteobacteria is demonstrated by their
presence in three orders and a number of families. Their phylogenetic relations are
well represented by the distribution in the Rhodobacterales (Rhodobacteriaceae),
Rhizobiales (Bradyrhizobiaceae, Hyphomicrobiaceae, and Rhodobiaceae), and
Rhodospirillales (Rhodospirillaceae and Acetobacteraceae) as shown in the phylo-
genetic tree in Fig. 1 and in Table 1. While most of the species and genera are well
aligned phylogenetically, an apparent lack of clear association to any of the etsab-
lished families within the Alphaproteobacteria is given for Rts. salexigens, Rss.
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l:‘ Rhodospirillaceae . Hyphomicrobiaceae . Rhodothalassiaceae . Comamonadaceae
l:‘ Acetobacteraceae D Rhodobiaceae . uncertain affiliation D Rhodocyclaceae
l:' Bradyrhizobiaceae . Rhodobacteraceae . uncl. Burkholderiales . Chromatiaceae

]_‘ Ectothiorhodospiraceae

Fig. 1 Phylogenetic relationship of the species of anaerobic anoxygenic phototrophic purple bacte-
ria based on 16S rRNA gene sequences of their type or neotype strains. Sequences used were 1459 nt
in length and were aligned using SILVA and the alignment was corrected manually. A maximum
likelihood (ML) phylogenetic tree was calculated from the edited alignment with the program
IQ-TREE6 v1.4.2. The optimal substitution model given the data under consideration was deter-
mined by IQ-TREE to be TN +F+RS5. “Ultrafast bootstrap approximation” 8 (UFBoot) was used to
provide branch support values with 1000 bootstrap replicates. Branch support values were assigned
onto the original ML tree. The calculated phylogenetic tree was midpoint-rooted using the R package
phangorn 9 v2.0.3 and bootstrap values >95 % are indicated in the tree by light blue circles

parvum, and the two Rhodovibrio species, all of which are well adapted to marine/
saline or even highly saline habitats. Their exact affiliation in the phylogenetic tree
remains unclear. The genera of the Betaproteobacteria are assigned to the families
Rhodocyclaceae (Rhodocyclus) and the Comamonadaceae (Rhodoferax), while
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Rubrivivax is not clearly affiliated to a family so far (Imhoff 2005). Also the separa-
tion of the families Chromatiaceae and Ectothiorhodospiraceae in the Chromatiales
is well depicted in the phylogenetic relationship of the 16S rRNA gene (Fig. 1).

However, the taxonomic treatment is not always well represented in the phyloge-
neticrelations: Onthebasis of the depicted phylogeneticrelationship, Ectothiorhodosinus
mongolicus clusters between species of Ectothiorhodospira, Lamprobacter modesto-
halophilus is highly similar to Halochromatium species, the genus Thiorhodococcus
forms two or three clusters, and the two species of Thiophaeococcus are clustering
within two of these groups. Also, species of Rhodobaca, Rhodobaculum, and
Cereibacter cluster within the Rhodobacter clade (Fig. 1). These examples need care-
ful further studies for clarification of their systematic treatment.

There are also some ambiguities on the level of the species identification. Several
pairs of species have almost identical sequences. Rps. rutila has a sequence identical
to that of Rps. palustris (0.03 % difference) and is regarded as a later subjective syn-
onym of Rps. palustris (Hiraishi et al. 1992). Quite similar the sequence of Rps. julia
is identical to that of Afi. marina, and this species should as well be regarded as a
subjective synonym of Afi. marina. Also 16S rRNA gene sequences of Alc. vinosum
and Alc. minutissimum are identical (0.00 % difference) as has been noted earlier
(Serrano et al. 2011). Further couples of species with highly similar 16S rRNA gene
sequences (less than 0.05 % dissimilarity) are Rdv. viride/Rdv. visakhapatnamense,
Rba. sphaeroides/Rba. megalophilus, Rba. megalophilus/Rba. johrii, Rps. thermo-
tolerans/Rps. pentothenatexigens, Rmi. vannielii/Rmi. udaipurense, and Pas. oryzae/
Pas. sulfurexigens. As far as the used sequence information is concerned, the species
within the indicated couples may be regarded as identical at the species level, i.e.,
represent subjective synonyms. A careful reevaluation of these species is required in
order to confirm the existence of two separate species in the given examples.

In parts, the phylogenetic relationship correlates with some phenotypic properties
that are common to close neighbors. For example, three species of bacteriochloro-
phyll b-containing Chromatiaceae are close relatives, and the internal photosynthetic
membrane structure is a distinctive property of these three bacteria (tubules) to other
Chromatiaceae (vesicles) and to the Ectothiorhodospiraceae (lamellae). Though cell
morphology is not a core property for identification of species, even morphological
properties maybe common features at least of some phylogenetically related groups,
e.g., the budding mode of cell division (Rhodopseudomonas and Rhodoblastus species)
and the spiral shape in some purple nonsulfur bacteria (Rhodospirillum, Phaeospirillum,
Roseospira, Pararhodospirillum, Rhodospira, and Rhodocista species).

In addition, habitat preferences are depicted in the phylogenetic relatedness. For
many of the genera, a specific preference for a special type of habitat is visible
(Tables 1, 2, and 3). A few examples of the Alphaproteobacteria can demonstrate
this observation: Phaeospirillum, Rhodoplanes, and Rhodobacter species prefer
freshwater habitats; Roseospira, Rhodovibrio, Rhodovulum, and Rhodobium spe-
cies preference marine and saline habitats; Rhodoblastus species live in acidic peat
bogs; and Rhodobaca species live in alkaline soda lakes. The preference of all
Ectothiorhodospiraceae for saline and alkaline conditions and of Halorhodospira
species for highly saline and alkaline habitats is well known. Many Chromatiaceae,
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e.g., Marichromatium and Thiorhodococcus species, have a clear preference for
marine habitats, while species of other genera such as Thiocystis, Chromatium, and
Lamprocystis were found in freshwater habitats and a group around Halochromatium
and Thiohalocapsa species includes species with elevated salt tolerance (see
Table 3). Obviously, the preference for a specific set of physicochemical conditions
in the environment preselects species of phototrophic purple bacteria with a poten-
tial to thrive in a particular habitat. Most obvious in this context is the clear differ-
ence between purple bacteria found in the chemocline of freshwater lakes and in
marine coastal sediments or lagoons.

The Biodiversity of Environmental Communities of Purple
Bacteria

Sequence information is predestined to link bacterial systematics and environmen-
tal biodiversity studies of phototrophic bacteria because sequence information is
now well established as a property in systematics of phototrophic bacteria. A first
important step for the possible identification of species of phototrophic purple bac-
teria in environmental DNA sequences was the establishment of a phylogenetic-
based taxonomy supported by 16S rRNA gene sequences (Imhoff 1984; Imhoff
et al. 1984; Imhoff and Siiling 1996; Imhoff et al. 1998a, b; Guyoneaud et al. 1998;
Kawasaki et al. 1992, 1993; Hiraishi 1997; Hiraishi and Ueda 1994a). Because
sequence information becomes easily available from environmental communities,
from individual clones, as well as from complete metagenomes, it can supply
information about the diversity of a particular genetically targeted function in a
species-specific resolution.

In order to establish a measure for the species diversity in environmental samples
based on genetic sequence information, phylotypes can be defined on the basis of
environmental 16S rRNA gene sequences. If a distinction of phylotypes is made at
a sequence level that compares to the level of distinction between species with pure
cultures (Stackebrandt and Ebers 2006), phylotypes can be used to approach the
species diversity of environmental communities. If environmental clone sequences
are sufficiently similar to known species, represented by their type strains, it is quite
likely that they are belonging to this species or are close relatives thereof. If consid-
erations concerning sequence similarities as a rough guide for species differentia-
tion of pure cultures are transferred to sequences from the environment, species
recognition and an estimate of the species diversity in environmental samples can
be achieved with phylotypes as an equivalent to the taxonomic defined species.

However, pitfalls of applying 16S rRNA-based approaches to the analysis of
communities of anoxygenic phototrophic bacteria, in particular the phototrophic
Proteobacteria, were realized and are due to the close phylogenetic relationship
between phototrophic and non-phototrophic Proteobacteria. Even close phylo-
genetic neighbors may perform different physiological functions. Specific
sequence stretches of the 16S rRNA gene that would clearly allow identification
of phototrophic representatives in complex mixtures of environmental samples
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and distinguish these from non-phototrophic relatives could not be identified.
Therefore, many metagenetic studies that focus on sequences of the 16S rRNA
gene do not supply clear information on the presence and diversity of photo-
trophic bacteria in the studied samples. In consequence, increasing research
activities are concerned with the application of functional genes to characterize
the diversity of functional microbial groups, including anoxygenic phototrophic
bacteria (Imhoff 2016).

Functional Gene Studies

In order to specifically study the biodiversity of phototrophic bacteria and their
responses to environmental factors, genetic tools were established targeting pufL
and pufM genes of the reaction center proteins (Nagashima et al. 1997; Achenbach
et al. 2001; Karr et al. 2003; Tank et al. 2009) and the bchY gene of the biosynthesis
of bacteriochlorophyll (Yutin et al. 2009).

The bchY gene, encoding the Y subunit of chlorophyllide reductase, is at a branch
point in the biosynthesis of chlorophyll and bacteriochlorophyll (Chew and Bryant
2007). This gene is present in all known anoxygenic phototrophic bacteria, but absent
inoxygenic phototrophs, and therefore, it is suited for targeting the bacteriochlorophyll-
containing anoxygenic phototrophic bacteria (Yutin et al. 2009). The comparable low
information in the amplified sequences (approx. 500 nt) is certainly a limitation of the
used primers. The phylogenetic diversity of phototrophic bacterial communities based
on these bchY gene sequences was studied in Lake Kinneret and in the Mediterranean
Sea (Yutin et al. 2009), but extended studies on environmental samples and in particu-
lar a comprehensive database with reference sequences from type strains of cultured
anoxygenic phototrophic bacteria are so far lacking.

The pufLM genes encode for the light (L) and medium (M) subunit of the photo-
synthetic reaction center type II structural proteins of all phototrophic Proteobacteria
(purple sulfur bacteria, purple nonsulfur bacteria, as well as aerobic phototrophic
purple bacteria producing bacteriochlorophyll and forming a photosynthetic appa-
ratus) and in addition of the phototrophic members of the Chloroflexi (Nagashima
et al. 1997; Tank et al. 2009). A primer system which amplifies the combined
sequence information of pufL and pufM genes (products of >1450 nt length) was
used to build a comprehensive database of pufLM gene sequences of most of the
recognized type strains of the purple sulfur bacteria (Tank et al. 2009) and to study
the biodiversity of phototrophic purple bacteria in the environment (Tank et al.
2011; Thiel et al. 2010). The phylogenetic relationship demonstrated by pufLM
gene sequences of the purple sulfur bacteria (Gammaproteobacteria) was in good
correlation to that of 16S rRNA gene sequences (Tank et al. 2009). In context with
the phylogenetically based taxonomy of the purple sulfur bacteria (Imhoff et al.
1998a, b; Guyoneaud et al. 1998) and based on the established pufLM sequence
data, this correlation very much supports the recognition of species in environmen-
tal samples using pufLM gene sequences.

Molecular genetic studies to characterize the communities of phototrophic purple
bacteria based on sequences of the pufM gene revealed a remarkable high diversity
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in different habitats (Achenbach et al. 2001; Karr et al. 2003; Asao et al. 2011; Hirose
et al. 2012), although the sequence information obtained was quite low (less than
400 nt). Two case studies of salt lakes in the Chilean highland (Thiel et al. 2010, see
Chap. 13) and of a coastal lagoon of the Baltic Sea (Tank et al. 2011) highlight the
possibilities of this approach to study the diversity of communities of phototrophic
purple bacteria. In order to compare the sequence data from environmental samples
with those from type and reference strains on a systematic level, phylotypes were
defined for the pufLM sequences. Considering different evolutionary rates of the
pufLM genes compared to the 16S rRNA gene, borderlines of 86 and 95 % sequence
similarity of the pufLM genes were proposed for the distinction of genera and species
of the purple sulfur bacteria (Tank et al. 2009, 2011).

Selected Habitats of Phototrophic Purple Bacteria

Much of the work on the ecology and the communities of anoxygenic phototrophic
bacteria has been made in freshwater lakes; in stratified water bodies of fjords and
even the Black Sea; also in coastal habitats including coastal lagoons, microbial
mats, and sediments; and of course in extreme habitats such as hot springs, salt and
soda lakes, and cold habitats such as Antarctic waters and sea ice. From these habi-
tats but also from peat bogs and from waste water treatment plants, paddy soils, and
others, purple bacteria have been isolated (Tables 1, 2, and 3). The work on the gen-
eral ecology of phototrophic bacteria, their ecological relevance, their occurrence in
various types of habitats, and their physiology have been discussed in a number of
reviews before (Madigan 1988; Imhoff 1988, 1992, 2001c; Pfennig 1989; van
Gemerden and Mas 1995). In the following, representative examples are presented

1. of microbial mats from coastal marine habitats, which are well characterized,
and from which a diverse number of new species have been isolated (Sippewissett
Salt Marsh, MA),

2. of a freshwater chemocline in which cultivation-dependent approaches and
molecular diversity studies have been successfully combined (Lake Cadagno,
Switzerland), and

3. of a coastal lagoon, in which a most comprehensive analysis of the diversity of
phototrophic purple sulfur bacteria has been made using pufLM gene sequences
specifically targeting the phototrophic purple bacteria (Baltic Sea lagoon at
Stein, Germany).

Sippewissett Salt Marsh, MA, USA

Phototrophic purple bacteria are common to marine coastal habitats, and in tidal sedi-
ments of estuaries and the Wadden Sea, diverse communities of these bacteria develop
worldwide. One of the most prominent examples of such a marine habitat where
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phototrophic bacteria occur in visible masses and from which several new species
have been isolated is represented by the sandy sediments of the Great Sippewissett
Salt Marsh and its intertidal flats (MA, USA) (Triiper 1970; Nicholson et al. 1987,
Pfennig et al. 1997; Glaeser and Overmann 1999; Imhoff and Pfennig 2001). A
detailed analysis of the different layers of these well-developed microbial mats based
on microscopic studies and pigment analysis revealed three distinct layers of photo-
trophic bacteria between a top layer of algae and cyanobacteria and the black bottom
sediment with actively sulfate-reducing bacteria (Nicholson et al. 1987).

The uppermost of these three layers was pink and dominated by spherical purple
sulfur bacteria most likely representatives of Thiocapsa (Thiocapsa roseopersicina and
Thiocapsa rosea, including former Amoebobacter species) and also forms resembling
Marichromatium and Thiocystis species (Nicholson et al. 1987). The layer below was
distinctive peach-colored and largely contained bacteria with bacteriochlorophyll b,
which were supposed to represent Thiococcus pfennigii (the only purple sulfur bacte-
rium with bacteriochlorophyll b known at this time). The bacteria of the lowermost
green and thinnest layer, which was not always present, were identified as green sulfur
bacteria of the genus Prosthecochloris (Nicholson et al. 1987). This described pattern
of layers very well reflects the properties of the different phototrophic bacteria, in par-
ticular concerning their pigmentation and physiological properties.

Thiocapsa roseopersicina and other purple bacteria of the top layer contain bac-
teriochlorophyll a, while the peach-colored layer contains predominantly bacteria
with bacteriochlorophyll b (which have a special advantage in sandy sediments
where long wavelength radiation penetrates especially deep) and the green sulfur
bacteria in the lower layer contain bacteriochlorophyll c. All of these pigments have
different absorption windows (700—750 nm for bchl ¢, 805-930 nm for bchl a,
>1000 nm for bchl b), and the bacteria can therefore easily develop below the chlo-
rophyll a-containing top layer (absorption maximum at 680 nm) and independent
from each other. As not only the quality but also the quantity of light matters, it is
interesting to see that the bacteriochlorophyll b-containing bacteria with their long-
range absorption maxima beyond 1000 nm have a special niche in the sandy sedi-
ments below those purple bacteria having behl a. In addition, the lowermost position
of the green sulfur bacteria matches with known experiences in sediments and
waters and relates to the special antenna organelles, the chlorosomes, which enable
these bacteria to grow at the lowermost amounts of light available for photosynthe-
sis. Also, the relations to sulfide and oxygen perfectly match with the distribution of
the phototrophic bacteria in different layers. While the green sulfur bacteria are the
most sulfide-tolerant and most sensitive to oxygen, many purple sulfur bacteria not
only tolerate oxygen but also can perform oxic respiration (Kdmpf and Pfennig
1980, 1986). In particular Thiocapsa roseopersicina is metabolically highly flexible
and known to be well adapted to diurnal changes of oxic and anoxic conditions,
performing photosynthesis in the presence of sulfide during (the onset of) daytime
and performing aerobic respiration after depletion of sulfide, also growing as a
chemolithotroph or chemoorganotroph in the dark (Kdmpf and Pfennig 1980, 1986;
De Wit and Van Gemerden 1987, 1990; Schaub and Van Gemerden 1993). These
properties predestine this bacterium as a major player in the topmost layer of the
phototrophic bacterial mats. The possibility to consume diffusing oxygen, including
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the oxygen produced in the top layer of the microbial mat, by the upper layer of
purple sulfur bacteria protects the layers below with more oxygen-sensitive bacte-
riochlorophyll b-containing purple sulfur bacteria from the oxygen (Pfennig 1989).

In a preliminary characterization of the diversity of the green sulfur bacteria in
samples from Sippewissett Salt Marsh using finoA and 16S rRNA gene sequences,
clone sequences related to Prosthecochloris aestuarii and to Chlorobaculum spe-
cies were identified (Alexander and Imhoff 2006), supporting and extending the
previous findings. A corresponding analysis of the phototrophic purple bacteria in
these mats has not been made so far. However, a number of new phototrophic purple
bacteria were isolated from these mats suggesting a high, so far unrecognized diver-
sity of phototrophic purple bacteria in the mats. The isolated purple sulfur bacteria
from this habitat include strains of Thiocystis violascens (formerly Chromatium vio-
lascens) and Thiocystis violacea (Triiper 1970) and a number of new species.
Bacteriochlorophyll b-containing bacteria first isolated from these microbial mats
include the purple sulfur bacterium Thioflavicoccus mobilis (Imhoff and Pfennig
2001), which is a close relative of Thiococcus pfennigii, and the purple nonsulfur
bacterium Rhodospira trueperi (Pfennig et al. 1997). Also Rhabdochromatium
marinum, which is an obligate phototrophic and strictly anaerobic bacterium, was
isolated from a microbial mat of Great Sippewissett Salt Marsh (Dilling et al. 1995).
In addition, Thiorhodococcus drewsii was isolated from Sippewissett Salt Marsh
(Zaar et al. 2003), and finally the purple nonsulfur bacterium Roseospirillum par-
vum with antenna bacteriochlorophyll complexes absorbing at approx. 930 nm orig-
inated from this salt marsh (Glaeser and Overmann 1999). It is amazing to see the
high degree of novelty in the isolated phototrophic bacteria from this habitat, and a
comprehensive study on the metagenomic diversity of the communities of photo-
trophic bacteria in this salt marsh would be a highly demanding task.

Lake Cadagno, Switzerland

Meromictic lakes represent the most important freshwater habitat of phototrophic
sulfur bacteria. In these lakes a more or less stable chemocline is formed, and if light
penetrates down to this zone, massive developments of phototrophic sulfur bacteria
(generally in company with purple nonsulfur bacteria) develop. In a number of
recent studies, phototrophic purple sulfur bacteria from Lake Cadagno were iso-
lated, and in addition the community was characterized by sequence analysis of the
16S rRNA gene.

Lake Cadagno is a small meromictic lake located at 1923 m elevation in the
Swiss Alps. It is 21 m deep, and during spring and summer time a permanent che-
mocline exists at approx. 10 m depth in which phototrophic purple bacteria develop
(Fischer et al. 1996; Schanz et al. 1998). Based on microscopic studies and photo-
pigment analysis, the predominance of the okenone-containing Chromatium okenii
and Lamprocystis purpurea forming a 2 m deep zone at the sulfide/oxygen interface
was found (Schanz et al. 1998). In agreement with these studies, the molecular
analysis of the bacterial community composition at the chemocline revealed clone
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sequences closely related to Chromatium okenii, Lamprocystis purpurea, and
Lamprocystis roseopersicina (Bosshard et al. 2000a; Tonolla et al. 1999) and a sea-
sonal dominance of Chromatium okenii during the summer months and of
Lamprocystis purpurea during autumn (Bosshard et al. 2000b). Later, also clone
sequences related to Thiocystis species were found (Tonolla et al. 2005), and two
new species were described from isolates of this lake, Thiocystis chemoclinalis and
Thiocystis cadagnonensis (Peduzzi et al. 2011). Despite seasonal and long-term
changes, the diversity of the phototrophic bacterial community of Lake Cadagno
appears typical of low-light chemocline habitats with the dominance of okenone-
containing purple bacteria and green sulfur bacteria. More detailed molecular stud-
ies targeting specifically the phototrophic purple and green bacteria are expected to
demonstrate a more diverse community in this lake as is known till now.

Baltic Sea Coastal Lagoon, Germany

Coastal lagoons are habitats related to typical coastal sediment habitats not perma-
nently covered by water (coastal sediments in estuaries and the Wadden Sea) and
also to marine salterns. Whenever sea water and organic matter is locked into coastal
lagoons, the onset of active sulfate reduction rapidly creates conditions suitable for
the development of anoxygenic phototrophic sulfur bacteria not only in the sedi-
ment but also in the water body. The reservoirs of phototrophic bacteria within the
coastal sediments provide the initial “feeding” of the populations that develop in the
lagoons. Often phototrophic sulfur bacteria are forming massive colored blooms in
coastal sediments and lagoons accompanied by purple nonsulfur bacteria (Imhoff
1988, 2001c). Depending on the strength of the sun light and the water regime
(evaporation versus dilution with fresh seawater or rain), the concentration of salts
in the lagoons may increase and species with increased salt tolerance or salt require-
ment may be favored. Such changes can create conditions comparable to the situa-
tion in the intermediate concentration range of marine salterns. Therefore, it is
expected that the three different types of habitats share a number of common species
of phototrophic bacteria. Indeed, a number of moderately halophilic Chromatiaceae
have been isolated from and are considered common inhabitants of both marine
coastal lagoons and salterns (Table 3).

In a coastal lagoon of the Baltic Sea in the Kiel Bight, the biodiversity of photo-
trophic purple bacteria was studied on the basis of pufLM gene sequences (Tank et al.
2009, 2011). In order to establish the species diversity, the sequences were arranged
in phylotypes. The great majority of pufLM phylotypes of the community from this
lagoon belonged to the purple sulfur bacteria. A few single clones from aerobic pho-
totrophic Proteobacteria were also present in the habitat. The purple sulfur bacteria
were affiliated to genera and species typically found in such or similar habitats,
including the genera Marichromatium, Thiorhodovibrio, Thiorhodococcus,
Allochromatium, Thiocapsa, and Thiocystis (Fig. 2). Some sequences were also
related to moderately halophilic Halochromatium and Thiohalocapsa species first
isolated from solar salterns (Caumette et al. 1988, 1991, 1997). From a total of 20
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Fig. 2 The contribution of different phylotypes to the community of purple sulfur bacteria in a
Baltic Sea lagoon on the basis of pufLM gene sequences is shown. The figure depicts the relative
composition in the sample and under experimental conditions with variation of temperature and
salt concentration as indicated (From Tank et al. 2011)

identified phylotypes of purple sulfur bacteria, five could be clearly assigned to type
strains of known species, ten additional phylotypes to a genus, and only five phylo-
types had sequence similarities (83.4-85.6 %) slightly below the proposed limit of
86 % pufLM sequence similarity to the closest known type strain, which was pro-
posed as a borderline value for the inclusion into genera (Tank et al. 2011). Thus,
most of the purple sulfur bacteria of this lagoon more or less were known at the genus
level, but novelty of these bacteria was high at the species level. In contrast, pufLM
sequences of aerobic phototrophic purple bacteriaof Alpha- and Gammaproteobacteria
were generally below 84 % similar to the next known relative type strain, in most
cases even far below 80 % similarity (Tank et al. 2011).

As this type of habitat is subjected to considerable changes in temperature and salt
content during daily and seasonal cycles, the impact of these parameters on the com-
munity composition was measured under controlled conditions in the laboratory
(Tank et al. 2011). In these experiments, a considerable impact on the community
structure was found within studied ranges of temperature (13—44 °C, at 2 % salts) and
salinity (0-7.5 % NaCl, at 23.5 °C). The highest diversity of identified phylotypes was
observed in the natural sample (at 23.5 °C and 2 % salinity), the lowest diversity at
temperatures of 26 °C and higher and in the absence of salt (Fig. 2). With the excep-
tion of three phylotypes found as single clones in the environmental sample, all others
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were retrieved at least from one of the experimental conditions. In addition, six phy-
lotypes that were not detected in the environmental sample showed up alongside the
applied salt and temperature gradients (Tank et al. 2011). Among these were phylo-
types most similar to the type strains of Trc. mannitoliphagus (99.8 % similar), Trc.
kakinadensis (98.2 % similar), and Mch. gracile (100 % similar). This result is quite
remarkable and indicates an even higher diversity in the environmental sample than
resolved by its direct molecular analysis. It also points out the general limitation of
molecular, metagenetic/metagenomic biodiversity studies in environmental samples.

Significant changes in the relative composition of the phylotypes were seen
along the range of salt concentrations but more drastic changes in response to the
temperature (Fig. 2). Five phylotypes related to Allochromatium vinosum (PT1,
PT2), Halochromatium roseum (PT12, PT14), and Trc. mannitoliphagus (PT3) rep-
resented approx. 45 % of the clone sequences in the habitat and the majority of
sequences under all conditions, except at temperatures above 40 °C (Fig. 2). They
were the exclusive representatives found at 26 °C, with the exception of a single
clone related to Thiorhodovibrio winogradskyi (PT17). The major phylotype in the
environmental sample (40% abundance of PT15) was distantly related to
Thiorhodovibrio winogradskyi and apparently was dependent on the presence of
salt (not found at 0 % NaCl) and low temperatures (only present at 13 °C).

Most dramatic changes of the community were seen with the increase of tem-
perature. A single phylotype of Mch. gracile (100 % similar), which was not detected
at lower temperatures and not in the habitat sample, absolutely dominated the com-
munities at temperatures above 40 °C (Fig. 2, Tank et al. 2011). Mch. gracile has
been repeatedly isolated from marine coastal habitats before, but the preference for
elevated temperatures was not noted as a general property of this species (Imhoff
1988, 2001a). However, the dominance at 40 °C supports findings of Serrano et al.
(2009) who characterized a slightly thermophilic strain of this species as a biotype.
The clear preference of Mch. gracile for elevated temperatures points to an obvious
competitive advantage in shallow-water habitats which are heated during daytime.

A remarkable aspect of this work is the finding that media and cultivation condi-
tions used were appropriate for all purple sulfur bacteria which were found in the
environmental sample by the genetic approach. It also demonstrates the great advan-
tage of functional genes in biodiversity studies but also the high flexibility and
diversity of purple sulfur bacteria communities in the coastal habitats and their
potential to adapt to changing environmental conditions.

Conclusions

A common property of all phototrophic purple bacteria is the presence of a photo-
synthetic apparatus and the performance of phototrophic growth under anaerobic
conditions, though phylogenetically they are members of Alpha-, Beta-, and
Gammaproteobacteria and found in several orders and families of these classes
(Fig. 1, Tables 1, 2, and 3).
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They are important ecological players at the light-receiving chemocline in all
types of habitats. Different phototrophic purple bacteria are living in freshwater and
in marine and hypersaline habitats; special species are adapted to alkaline or acidic
conditions, to cold or hot temperatures. In addition, different light conditions, con-
centrations of sulfide and oxygen, and different physicochemical conditions define
their ecological niches. In reflection of all of these factors that determine distribu-
tion and occurrence of the species and in consideration of the results of first detailed
metagenetic studies specifically targeting the phototrophic purple bacteria, a much
higher diversity of species very likely exists than known to date.

The possibility to approach the diversity of phototrophic purple bacteria with
genetic methods specifically targeting the photosynthetic reaction center proteins
opens up possibilities to specifically study the environmental diversity of this group
of bacteria with high resolution. Probably one of the most detailed diversity studies
of a community of phototrophic purple sulfur bacteria and also one with the highest
resolution toward detection of members of this group of bacteria (longest used
sequence stretch and highest specificity for the group) has been performed with
pufLM genes as a target (Tank et al. 2011). The results on the analysis of the com-
munity from a coastal lagoon are remarkable for different reasons.

1. Despite the highly selective specificity of the pufLM target, almost a third of the
total phylotypes recognized was detected only after experimental modification
of the environmental conditions but not in the environmental sample itself. This
incomplete coverage of the environmental community even by highly specific
functional gene probes quite likely demonstrates a general limitation of metage-
netic and metagenomic biodiversity studies.

2. Changes in physicochemical conditions, especially of the temperature, can cause
dramatic shifts in the community composition. This indicates a quite specific
adaptation of individual species to selected environmental conditions. It also
reflects a high flexibility of the environmental community to adapt to changing
conditions and thereby may explain the incomplete coverage of the metagenetic
approach, which comes to its limits if certain bacteria are present at very low
abundance.

A few relevant case studies using pufLM sequences demonstrate that the broad
application of this approach is suited to deliver diversity profiles of many different
habitats and to study the dynamic changes therein. In a long-term perspective, the
comparison of communities using pufLM genes allows to address questions of bio-
geographic distribution, habitat specificity, and ecological niche identification of
species on a global scale. We are currently at the beginning of this era.
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