Chapter 2
On the Linearization Band

In this chapter we will review the linearization process, following the general
approach of T. Krarup, as presented in his famous three letters on Molodensky’s
Problem (see [1]), but adapted to the case of the Scalar Molodensky Problem, as
introduced in Chap. 1 and discussed also in [2], Sect.2.3.

There are several reasons to do that:

(1) First of all, from a general theoretical point of view, we aim at clarifying that
in the linearization procedure, although the normal potential U and “some tel-
luroid”, {h = h(o)}, are introduced as approximations respectively of the grav-
ity potential W and of the Earth surface {h = h(o)}, so that the increments
T=W-Uand¢=h— I can be considered as “first-order” infinitesimals,
such a hypothesis cannot be considered as acceptable, unless a suitable com-
patibility condition is introduced relating the orders of magnitude of the two
quantities.

(i) Based on the above remark, once the order of magnitude of T and ¢ are assessed,
the Molodensky BVP can be expanded up to second-order terms with the pur-
pose of verifying that they can be neglected for the level of accuracy we aim at.
This defines the linearization band.

(ii1) Finally, we shall establish the principle of equivalence stating that all the prob-
lems formulated by linearization of the same scalar non-linear Molodensky
problem, with approximate reference potential and telluroid chosen in the lin-
earization band, are essentially equivalent, up to second order of magnitude
eITorS.

A similar problem has already been analyzed in literature (see [3]) with a strong
numerical apparatus, taking into account also the spatial behaviour of the gravity field.
However, in the quoted paper the purpose was more to compare different formula-
tions of the GBVP, arriving at the conclusion that the scalar non-linear Molodensky
problem was the most natural and useful formulation for geodetic purposes. So we
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build here in a sense on this conclusion. Our approach however is more elementary,
though sufficient to achieve the most important result of the chapter, namely the
definition of a “linearization band”.

Before we get started, let us comment on the meaning of what we will use as
“order of magnitude” for the different quantities, g, usually defined on the Earth
sphere, namely the projection of the Earth surface on the unit sphere.

One first rigorous definition could be the mean square value of the distribution of
q (o), namely

1
0(q) =0 (q) = {E/qz(a)da}]/z @1

(o = (A, @) spherical coordinates) .

In (2.1) o is used with two different meanings: to represent spherical coordinates,
but also to mean the r.m.s. of some quantity on the sphere. The two concepts however
should be clear by the context. The disadvantage of using this measure though, is that
the extreme value max, |¢(o)| is not easily related to o (q), in particular considering
that every quantity has generally a different spectral signature when expressed in
terms of spherical harmonics ([2], Sect. 3.8). For instance the value of 30 (¢) is not
always a good guess of the maximum value of ¢g. So, since in the present reasoning
we want to be on the safe side in evaluating the error we should try to find an index
more related to the maximum of g. For this purpose we shall use a value Oy (g),
which is a very high value of ¢, only seldom met on the Earth globe and even more
rarely exceeded. For instance a 90 % quantile. Generally we shall agree on a value
that at least satisfies the following relation

Ou(g) <max|q(o)] <20u(q) . (2.2)

To avoid ambiguity, in the rest of the Chapter we shall use the following table of
orders of magnitudes:

Table 2.1 Orders of

. - Quantity ¢ Ou(q)

magnitude of various -

geodetic quantities a,b, R 6 x 10° m
&2 1501 =6.71073
w 6 x 10° Gal x m
V.8 103 Gal
& % 0.3 Gal km™"
5L, 8¢, Ag 0.1 Gal
ez 6 x 104 Gal km™!
B 3 x 10~* rad
H 6 x 10> m
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where a, b are the semi-axes of the ellipsoid, R the mean Earth radius, e> the square
of the first eccentricity, W, g are potential and gravity on the Earth surface, T is the
anomalous potential, §g, Ag are gravity disturbance and anomaly, § is the deflection
of the vertical, H is the topographic height.

We shall use the symbol ~ to express that Oy, (¢g) attains a certain numerical value,
for instance y ~ 10° Gal. Noteworthy, with the figures of Table 2.1, the following
relations hold

T ~1.6x107°W (2.3)
Ag ~1x 107y (2.4)
T w
—~16x107°— ~10°m (2.5)
14 14

After these remarks let us go back to the linearization of the scalar Molodensky
problem. We introduce the approximate potential U and some telluroid S = {h =
h(o)}, with o = (X, @) ellipsoidal coordinates, such that

W—Ulz=Tl3 (2.6)
¢(0) = h(o) — k(o) 2.7)

should be considered as first-order infinitesimals. Note that by taking U, the normal

potential, as an approximate solution for W, we will define a certain linearization

band, that however could change with a different approximate potential, typically

becoming narrower. Note also that with (2.6), Oy (T) is fixed by Table2.1 and (2.3).
The free-boundary relations to be linearized are

Wo(o) = U(o, h(o)) + T (o, h(o)) (2.8)
go(0) =|VU(o, h(0)) + VT (0, h(0))| = (2.9)
= |y (o, h(0)) + VT (o, h(0))] .

In order to appreciate the order of magnitude of the errors committed by substitut-
ing (2.8) and (2.9) with the linearized relations, we will push the Taylor development
to the second order. For the sake of conciseness we shall use the symbol ¢’ to express
the vertical or radial derivative of g, according to the context.

Linearization of (2.8): we have

Wo=Uh+)+Th+¢) = (2.10)
= UG+ U'(ye + 30" @
+TH) + T ()¢ + 0.
We call geodetic anomaly of the potential W the quantity

DW =Wy,—U(h). (2.11)
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We also note that
U'(h) ~ —y(h)
U"(h) ~ —y'(h)

so that (2.10) can be reorganized as

~ _ 1 ~
DW =Th) —yh) — EJ/(h)g“2 (2.12)
+T' (W) + O3

Now consider that in (2.12) we expect T, y¢ to be the first-order terms, while
%y’{z, T’¢ should be the second-order terms, candidate to be neglected.

But this is true only if both 7" and y ¢ are of the same order of magnitude; since
Oy (T) is fixed, we must introduce then a compatibility condition stating that

ye~T, (2.13)
which, on account of (2.5), implies
¢ ~10*m. (2.14)

Notice that (2.13) is not the Bruns relation (1.7), because in general i doesn’t
need to be the Marussi telluroid defined by (1.4), i.e., by the condition DW = 0,
yet Oy (¢) has to be 100m, i.e., the telluroid has to be in a band of 100-200m
from the Earth surface at most, if we want the linearization procedure to work. A
larger height anomaly might bring us to false conclusions. The fact that the Marussi
telluroid satisfies the compatibility condition is a lucky empirical fact that is verified
a posteriori, once the solution 7" has been found and not an a priori statement.

Given the above, we can pass to evaluate the second-order terms and decide
whether they are negligible or not. Before we do that, we must fix the order of
magnitude of the negligible errors, ¢, in potential. We state the rule that ¢, is
negligible if

Oy(ey) =lcem-y =10Gal x m. (2.15)

In fact, by using the value in Table 2.1, and (2.14), we have

11,
—(=y'¢*) ~ 1.5mm (2.16)
y 2
Moreover,
T'¢
— ~1cm. (2.17)
14

As we see, this term is still in our acceptable error range.
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Linearization of (2.9): before starting our computation, we recall the differential
formula, valid up to the second order,

1
[v+dv|=|v|+e-dv+ mdv - (I — P,)dv (2.18)
v

where

e=—  Pdv=e(e-dv).

vl
By applying (2.18) to (2.9), we get
11
go=yh)+e - VT(h)+ -——VT -(I — P)VT + O3 (2.19)
2y(h)

where all quantities are still evaluated at /4. Note that in (2.19) one can write, with a
very good order of approximation,

e=—v,e- VT =-T;

this is because the tangent to the normal field lines is equal to v on the ellipsoid and
it varies very slowly with altitude, at least at topographic heights.
So we can write, developing to the second order,

- _ 1 _
go =yl +y ¢+ Ey”(h)c2 + (2.20)

—T'(h) = T"(h)¢ +
1

1 ~ ~
+=—=VT(h)- (I — P)VT(h)+ O;.
2500 (h) - ( IVT (h) + O3

Again we define the geodetic anomaly of g as

Dg =go—v(h), 2.21)
observing that Dg will coincide with the usual free air gravity anomaly Ag as soon as
h is chosen as the height of the Marussi telluroid. We note as well that the last term,

being already a second-order term, can be directly evaluated at h. So, reorganizing
(2.20), we get

Dg = go—y(h) = =T'(h) + y'(h)¢ + (2.22)
1 ~ 1
I/ h 2_T// I V T2 0
+2)/()§ §+2y(h)| WT|”+ O3

where V,, T is just the horizontal gradient of T'. It is immediate to verify that 7’ and
y’ ¢ are of the same order of magnitude, so we need to analyze second order terms.
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To verify whether the second-order terms are negligible we need to fix the order
of a negligible error in g. We fix such error ¢, at the level

£, ~ 30 nGal (2.23)

on the basis of the following simplistic reasoning. Since Ag, with an order of magni-
tude of 100 mGal, gives rise to a ¢ of the order of 100 m, we could expect that, if we
had an error with the same spectral shape as the signal and a mean square value of
10 wGal = 10~* x 100 mGal, the corresponding error in 7'/y would be of the order
of 1074100 m = 1 c¢cm, which is compatible with our previous choice. This however,
as we shall see soon, is a severe restriction that we decide to relax at least by a factor
of 3. The justification of this choice is that we expect the errors we are going to
study (particularly the error related to T') to have more energy in the higher degrees,
and since the operator that brings from Ag to T is a smoother, we would expect a
more favorable error propagation. Based on that and on the direct experience, we
will accept the threshold (2.23).
‘We now examine the three second-order terms in (2.22).
GM

We have, in simple spherical approximation, i.e., with y = ==

1 2
Oy (Ey”gz) ~ Oy (3)/ (%) ); 8- 107" mGal ,

which is indeed totally irrelevant.

Let us consider then Oy (T”¢). The value of Oy (T") in Table2.1 is the 90 %
quantile of 7" at zero level, according to a global model of the anomalous potential.
With this value one has

Ou(T"¢) = 6 x 107° Gal = 60 pGal.

With our definition (2.1) of Oy, this is still compliant with (2.23), although it is clear
that this term is mostly concerning us in the linearization procedure. As for the last
term of (2.3), recalling that

[VaT|
4

12

8,

we have

1|V, T 1 2 —4
Ou > = EOM(yé ) =4.5 x 107" Gal = 45 nGal.
14

Also for this term we are close to the maximum admissible value.
All in all one has the impression that by keeping only linear terms in (2.12)
and (2.20) it is difficult to guarantee that the overall committed error is 1 cm as
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a maximum. More probably a few centimeters could be a more realistic figure.
However, in some cases our estimates are really pessimistic. In this sense we want to
elaborate a little more on the term 7”¢, not only because it is the one that seems to
have the largest impact if neglected, but also because its introduction into the BVP
would change its nature because of the second-order oblique derivative of 7. To
reconduct such a term to a more favourable figure we will use the two well-known
relations, valid in spherical approximation,

2
T'=—-T — Ag, (2.24)
r
, 2
Ag =—-Ag. (2.25)
r

The relation (2.25) in particular gives an approximate vertical derivative of Ag in
free air ([2], Sect. 2.4), as it is correct in the present case because we do not take into
account the effects of the masses between S and S.

Combining the above relations, one finds

” 2 2 ’ ’
T"= ST =T — Ag' =
r r
2 4 2 2
r r r r
6 4
r r

Accordingly, one can write

"N ¢ ¢ _
Ou(T"¢)=60y|—=)+40uAg=) =
ror r

= 1.6 x 107% Gal + 6.6 x 107 Gal = 8.2 nGal .

As we see this estimate is almost one order of magnitude less than the one previ-
ously found.

With all the above discussions, we can finally say that, with an error of a few
centimeters in geoid in the worst case, we can substitute the boundary relation of the
non-linear Scalar Molodensky problem with the general linearized version

DW =T (h) — y(h)¢ (2.26)
Dg = —T'(h) +y' ()¢ ; (2.27)

this estimate substantially agrees with the results of [3].

One has to recall that in the above boundary relations 7’ means % and similarly
v

Solving (2.26) with respect to ¢, one gets the generalized Bruns relation
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(= —— (2.28)
v
and substituting into (2.27) one finds
7+ Y7 —-pg+Lpw, (2.29)
14 14

which has to hold on the telluroid S. All the above holds only if the compatibility
condition (2.14) is verified.

After some reflections, the above discussion leads to conclude that the following
equivalence principle holds:

two linearized formulations of the Molodensky problem

AT = O in 2
_T/+V7T:Dg+V7DW on S (2.30)
T = 0(’%) r — 00

are equivalent if they can be transformed one into the other, with the respective boundary
relations given on telluroids that are in the same linearization band, in particular the two
telluroids should be different from one another by no more that 100-200 m.

Notice that any linear problem
Ax =y
can be transformed into an equivalent one
AE =1

with £ = x —xp and y = y — Axp. So, what gives rise to the equivalence of two
BVPS of the type (2.30) is in particular that the two telluroids are in the same
linearization band. It is interesting to note that the idea of using a “gravimetric”
telluroid, i.e., one for which Dg = 0, already considered by Krarup [1] and later on
by Sanso [4] for more theoretical reasons, is in fact at the boundary of the equivalence
to the classical Molodensky problem (1.9). In fact the condition Dg = 0 would lead
to pseudo-Bruns relation for &g (see (2.22))

T/

CG=V/,
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such that

0(te) = 100 mGal 300
= — = m.
€)= 03 mGal m 1

This is three times the order of magnitude of the Marussi height anomaly

Even more absurd is the conclusions that one would get by putting directly

AL, =
—yh)+—=[Wo—UM)]=0.
go — v (h) y’(h)[ o= U]

On the other hand the reason why such a relation cannot be used as a definition of
the telluroid is precisely that it takes us out of the linearization band.

References

1. Krarup T (2006) Letters on molodensky’s problem: III. A mathematical formulation of Molo-
densky’s problem. In: Borre K (ed) Matematical foundation of geodesy. Springer, Berlin

2. Sanso F, Sideris M (2013) Geoid determination: theory and methods. Springer, Berlin

3. Heck B, Seitz K (1993) Effects of non-linearity in the geodetic boundary problems. D.G.K., A.
N109. Verlag der Bayerische Academy der Wissenschaften, Miinich

4. Sanso F (1977) The geodetic boundary value problem in gravity space. Memorie Acc Lincei
14(S8):n3



2 Springer
http://www.springer.com/978-3-319-46357-5

Geodetic Boundary Walue Problem: the Equivalence
between Molodensky's and Helmert's Solutions
Sanso, F.; Sideris, M.

2017, %, B1l p. 13 illus., 2 illus. in color., Softcover
ISBEMN: 978-3-319-46357-5



	2 On the Linearization Band
	References


