Is Universal Computation a Myth?

Selmer Bringsjord

Abstract Akl has claimed that universal computation is a myth, and has offered
a number of ingenious arguments in support of this claim, one of which features
the challenge of tracking the locations of multiple, ever-moving robots on Mars.
I provide what I see as a refutation of this argument; my counter-argument is based
on a thesis that is less informal and more plausible than the Church-Turing Thesis,
and on my own generalized variant of Kolmogorov-Uspensky machines. While 1
concede that it doesn’t deductively follow from the success of my refutation that
universal computation is, or can be, real, I conclude by pointing toward a route that
I believe can vindicate the counter-claim that universal computation is specifiable,
and instantiable.

1 Introduction

Selim Akl’s remarkable oeuvre provides innumerable opportunities for one to write
about the foundations, both formal and philosophical, of computation. For the present
volume, I’ve seized upon a single opportunity: his ingenious and provocative “The
Myth of Universal Computation” [1]. My analysis, in a further narrowing, is specifi-
cally targeted at a key argument of Akl’s within this paper, a fascinating one involving
the tracking of multiple robots (assumed to be) on Mars. I denote this argument as
‘Az, Because I shall use %y’ to denote the statement that no Turing machine
can be a universal computer, the subscript in ‘Az’ is just a convenient reminder
that wpy is the conclusion of this argument.

Akl’s overall goal in Akl [1] is in fact much more ambitious than establishing
urm, for he doesn’t think any rigorous, fixed, abstract model of computation can be
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universal. This is made clear by Akl at the very outset of his paper, in fact in his
paper’s abstract. There he says this about what the paper by his lights accomplishes:

It is shown that the concept of a Universal Computer cannot be realized. ... This result
applies not only to idealized models of computation, such as the Turing Machine and the
like, but also to all general-purpose computers, including existing conventional computers,
as well as contemplated ones such as quantum computers [1].

It obviously follows from this quote that Akl takes himself to have shown not only that
the Turing machine (TM) isn’t a universal computer, but that any other candidates for
the title of ‘universal computer’ will likewise fail to reach universality. Leveraging the
notation that we have already allowed ourselves, we can hence observe that Akl sees
his paper as providing a sound argument Az, for the conclusion uqc; here, ‘QC’ is
an acronym referring to quantum computers. Indeed, letting ‘C’ be a variable ranging
over any established class of idealized computing machines, we can safely say that
AkI’s ultimate goal (which he believes he has reached in the paper in question) is to
establish
u:=—-3Cuc;

and we can denote his overarching argument by ‘Az..” However, again, my objective
is the narrow, focused one of showing that Akl’s multiple-robot argument Az, for
7y is unsuccessful. While it doesn’t follow deductively from my refutation that Akl’s
overarching argument Az, is overthrown (because he gives additional arguments for
urm beyond the one I target), if his other arguments for wury fail, his overarching
case Az, would fall, and hence despite his clever analysis and argumentation there
may well be a form of bona fide universal computation. I contend, but do not prove,
that my counter-argument against A, can in fact be generalized into a recipe that
overthrows the other arguments Akl gives against universal computation. At the end
of the present chapter I suggest a logic-based route toward formalizing a form of
universal computation.

My selection of AkI’s paper and the specific Az, within it, T confess, is not
without an element of selfishness, since the topics with which Akl deals in this
important work are ones I too have thought a bit about. Nonetheless, as will soon
be seen, our respective points of view are fundamentally different. Put with brutal
brevity, I come to computation after reflecting upon the cognition of animals and
persons, and from there move to the relevant logico-mathematics for modeling and
computationally simulating that cognition; Akl, on the other hand, draws morals
about the nature of computation after considering “de-agentized” information flowing
at the mercy of time and change, in the real, physical world. (His multiple-robots-on-
Mars scenario is a perfect case of his orientation in action.) We both move on from
our respective starting points to consider the limits of computation, but our respective
conclusions turn out to be quite different: Akl (obviously) regards Az, (and AﬂQc,
and indeed Aﬂc) to be sound; I don’t. Moreover, as I’ve already indicated, I think
that the concept of universal computation can in principle be formally defined via
increasingly powerful logics, and that the concept can in fact be instantiated in our
universe (in some mind sufficiently powerful to reason in these logics).
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The plan for the remainder of the chapter is straightforward: The first step
(Sect. 2) is to explain that Akl’s understanding of the Church-Turing Thesis (CTT) is
inaccurate. Next, in Sect. 3, using my analysis of CTT as a springboard, I present a dif-
ferent and much “safer” thesis: “Selmer’s Safer Thesis,” or just ‘SST” for short. More
accurately, the safer thesis is actually a thesis schema. Whereas CTT (as I shall point
out) relies on the concept of effective computation, my safer thesis schema relies
instead upon what I call reflective-C computation. Here, where C is again (recall
above) a variable ranging over any of the established idealized frameworks for com-
puting at the Turing level, reflective-C computation is a semi-formal description of
the fully formal computation in C. With SST in hand, I next (Sect. 4) recapitulate
and analyze Akl’s multiple-robot argument Az, , drawing directly from his paper to
do so. Then in the next Sect. 5, I refute Akl’s argument. Some concluding remarks
that gesture toward a universal computer wrap up the paper (Sect. 6).

2 The Church-Turing Thesis (CTT), for Real

Our first step is to isolate and analyze what Akl takes to be the “Church-Turing
Thesis” (CTT). Doing so is easy, for here is a verbatim quote from Akl [1, p. 172]:
While fairly simple conceptually, the Turing Machine is a truly powerful model of compu-
tation. So powerful in fact, that it was believed until recently that no model more powerful
than the Turing Machine can possibly exist (in other words, a model that would be able to
perform computations that the Turing Machine cannot perform). This belief is captured in

the following statement, known as

Church-Turing Thesis: Any computable function can be computed on a Turing
Machine [73, 54].

Unfortunately, this is not CTT. The reason is perfectly simple and uncontrover-
sial: It must be a particular kind of function that is said in the thesis to be a Turing-
computable one. Church [14, p. 356] originally used the informal phrase ‘effectively
calculable’ to label the kind of function in question. The phrase ‘effectively com-
putable’ is the syntactic variant of Church’s phrase that is currently used. Now, notice
that Akl, in the quote immediately above, gives two citations immediately after typo-
graphically setting out his version of the thesis in question. Could it be that Akl has
been led astray by the authors in question? I investigated; sure enough, this appears
to be exactly what happened. For example, here is how [28, p. 209] puts it: “The
Turing machine (TM) is believed to be the most general computational model that
can be devised (the Church-Turing thesis).” This is what Akl is referring to when
he offers the citation ‘[54].”!

'Unfortunately for Savage, the super-recursive computational models explored by Turing in his
doctoral dissertation under Church (i.e. [30]) refute Savage’s claim that (at least at the time of
his writing) it is believed that the Turing machine is the “most general computational model.” A
wonderful discussion of these matters in relation to Turing’s dissertation is provided in Feferman
[18]; cf. Bringsjord [5].
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But why do I say that Akl has been led astray? The reason, again, is simple, and
quite decisive: The Church-Turing Thesis, CTT as we abbreviate it, is not what Akl
says it is, because the core idea in CTT is the equivalence of what is “effectively” or
“mechanically” or “algorithmically” computable, with what is Turing-computable.
Hence we must be more precise and accurate.

Again, the heart of CTT is the informal notion of an al(gforithm,3 which has been
nicely characterized (in traditional fashion) by Mendelson as

an effective and completely specified procedure for solving a whole class of problems. . ..
An algorithm does not require ingenuity; its application is prescribed in advance and does
not depend upon any empirical or random factors [24, p. 225].

An effectively computable function is thus the computing of a function by an ide-
alized “worker” or “computist” following an algorithm.* (Without loss of generality,
we can for present purposes view all functions as taking natural numbers into natural
numbers; that is, for some arbitrary f, f : N +— N).

CTT also involves a more formal notion, that of a so-called Turing-computable
function. If the formal notion is wed to a different paradigm, then we would no longer
have the Church-Turing Thesis. For example, we could refer instead to a recursive
function, or a register machine-computable function, etc. Mendelson employs Tur-
ing’s approach, and Turing machines are what Akl focuses upon in the paper we’re
analyzing. A function f : N N is Turing-computable iff there exists a TM m
which, starting with n on its tape (perhaps represented by rn |s), leaves f(n) on its
tape after processing. (The details of the processing are harmlessly left aside.) Given
this definition, CTT amounts to

CTT A function f is effectively computable if and only if it’s Turing-computable.

Most scholars, as the reader herself is likely to know, regard CTT to be true.
However, I’'m not one of them. So while I have on hand a counter-argument against
Az, that employs CTT, I certainly can’t use it here. Not only that, but in a rather
interesting twist, even if I was inclined to affirm CTT, I still couldn’t use it as a
premise in a counter-argument against Ag,,. The reason is that a careful reading of
AKl [1] reveals that Akl himself is quite prepared to give up CTT. In fact, he appears
to hold that %ry; entails the falsity of CTT.

2 And here I follow my own prior work, and the work of others, including those who have instructively
sought to prove CTT. In my own case, devoted in part to arguments against CTT, see e.g. Bringsjord
and Arkoudas [6], Bringsjord and Govindarajulu [7]; for an attempt to prove CTT, see the chapter
on CTT in Smith [29]; and for a wonderful exposition of CTT and its history, including coverage
of the trap of stating CTT erroneously as in the case of Savage [28], see Copeland [15].
3Interestingly enough, Lewis and Papadimitriou [23], the pair of authors Akl [1] draws from in
order to formally characterize Turing machines, well understand that CTT asserts an equivalence
between an intuitive notion of algorithm and Turing-computability, for—in a quote isolated by Akl
himself—we read that CTT consists in the proposition that “the idea of a ‘computational procedure’
or an ‘algorithm’ is equivalent to the idea of a Turing Machine.”

“Turing [31] spoke of “computists” and Post [27] of “workers,” humans whose sole job was to
slavishly follow explicit, excruciatingly simple instructions.
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3 Selmer’s “Safer” Thesis (SST)

The received view is that CTT is not only true, but unprovable.5 The main rationale
in support of this view is the claim that the concept of effective computation is
too informal to allow a proof of CTT [4]. Whether or not this rationale is correct,
the fact certainly remains that the “left side” of the biconditional that constitutes
CTT is not formal, while the right side, which refers to the Turing-computability
of a function, can be rendered formal. Turing-computability (and of course also
therefore Turing-decidability, etc.) can be formalized in various ways, as Akl [1]
points out. He draws heavily on Lewis and Papadimitriou [23] to recount some of
the formalism in question. And we could even be more formal and rigorous about
Turing-computability, since we could move from the naive set theory of Lewis and
Papadimitriou [23] to axiomatic set theory (e.g., ZFC), and laboriously build up to
CTT from there. But a move to greater rigor in defining the right side of CTT would
still leave the left side vague. I introduce now the promised thesis schema SST, which
includes still on its left side a somewhat informal concept, but not one as intuitive
and informal as effective computation. As I’ve said, while I can’t for the reasons
given above use CTT in my counter-argument against Az, I can, and do, use SST.

The first step toward SST is to recall that above we quantified over idealized
computational schemes C to introduce u. We can leverage this simple idea in order
to formulate a thesis schema that is at once both much more plausible and much
less informal than CTT. Instead of employing the concept of effective computation
as in the case of CTT, SST employs the concept of reflective-C computation, where
C here is once again functioning as a variable ranging over the space of established
idealized computational schemes that are provably equivalent to that of the Turing
machine. This space includes not just Turing machines (7'), but also for example
Post machines (P) [26], register machines (R) [16], the w-recursive functions (M)
[23], unrestricted (= Type 0) grammars (G) [25], the A-calculus (A) [12, 13], and
my favorite formal model of Turing-level computation that doesn’t explicitly use
logic and deduction, and one that is clearly the most cognitively realistic category
under C, Kolmogorov-Uspensky (KU) machines (K) [21]. Each of these idealized
frameworks is an acceptable instance of the general variable C that ranges over all
established idealized frameworks equivalent to Turing machines; and all of these
frameworks are equivalent. Hence, for instance, a function f is G-computable if and
only if (iff) f is T-computable iff f is A-computable iff f is R-computable, and so
on.

In this context, I now introduce the new concept of reflective-C computation.
This concept is not fully formal, but it’s much more formal than the very vague
and intuitive concept of effective computation. To see the basic idea is this, start
by bringing to mind some formal description of one of the idealized frameworks
listed in the previous paragraph. For focus and to ease exposition, but without loss

3 A few have held that CTT is provable, but they are in the extreme minority, and, joined by others,
I have shown that defenders of the provability of CTT are incorrect. E.g., while Smith [29] has tried
to prove CTT, see Bringsjord and Govindarajulu [7].
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of generality, let’s first choose 7', Turing machines. Many examples of reflective-T
computation can be given, and in fact many are given in the literature; here’s one:

Imagine an old-fashioned railroad track that starts at a certain point and extends
infinitely in one direction. Imagine as well that this track is laid upon railroad ties
spaced at a regular interval, and that on the ground, bounded by two ties and two
stretches of track, is a blackboard. In addition, suppose that there is a small boxcar
that can roll on the track, powered by a simple mechanical lever, and a switch onboard
the boxcar that controls the direction of movement (left or right on the track). The
boxcar is occupied by a well-trained chimpanzee who can power the car by pushing
the lever up and down, and who can through toggling of the switch move left or right.
In addition, the bottom of the boxcar is hollow, so when the boxcar is positioned
over a blackboard, the chimpanzee can reach down to erase symbols appearing on
the blackboard, and to write symbols on the blackboard. He does so in accordance
with very simple instructions. Finally, the combined ensemble of the chimp, the
boxcar, and his simple tools, at any one moment, are assumed to be in any one of a
particular number of finite, pre-defined configurations. Whatever a—as we shall call
them—chimp machine can (reflective-T-compute) a Turing-machine can compute,
and vice versa. The reason for this, in a word, is that chimp-machine computation,
while intuitive, is directly reflective of 7 computation. And of course we didn’t need
to refer to chimps and boxcars. Instead, we could have referred to any number of
an infinite number of other props, and we could still be depicting computation that
is directly reflective of the formal Turing-machine model. The general truth in play
can be elevated to the following statement:

SSTr A function f is reflective-7-computable if and only f is T-computable (= Turing-
computable).

To make sure there is no misunderstanding or resistance, let me explain that we
can do the same kind of trick for register machines, formal, idealized machines which
are reflected by the less formal concept of raven machines, as I now explain.®

Raven machines include, first and foremost, a raven: Roger. Roger is a thoroughly
obedient bird whose range of activity is highly restricted. Roger is shown in Fig. 1.
You will note that he is holding something in his beak. What is it? It’s a little round
stone. Roger doesn’t fly (at least when he is working); when we tell him to start a work
session, he simply moves little round stones around, in accordance with programs
that we provide to him, and he halts when we tell him to conclude a work session.
More specifically, his movement of the stones is confined to moving them into and
out of numbered boxes. For any given work session, we provide Roger with n boxes
to start, and if his program makes reference to the number m of a box beyond the ones
he intially has, Roger calls out “More,” and instantly a new box numbered m appears
for him to employ.” Raven machines consist of the combination of: programs to

SHere I draw upon my Bringsjord and Taylor [9], which I use to teach introductory formal logic
and computability theory. Most readers will be familiar with register machines, which are elegantly
and economically defined in Ebbinghaus et al. [17].

7 Alternatively, we could imagine that Roger’s call for another box results in a box from an infinite
supply provided at the outset of his efforts, moving into his work area.
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Fig. 1 Roger the raven

Fig. 2 Snapshot of a raven
machine in operation Roger’s Instructions

B1|oo |
le (X |

instruct Roger, Roger himself with his perception and action powers, and the stones
and boxes. Figure 2 shows a snapshot of a raven machine during some computation.

We are interested in having raven machines compute number-theoretic functions,
that is functions from N” to N. In order to enable this, we shall understand a given
natural number n to correspond to n stones located in a given box. The natural
number 0 will correspond to the absence of any stones; so an empty box is assumed
to be holding 0. Hence Fig.2 shows a configuration in which box B; holds stones
representing the numeral ‘2,” and box B, holds stones representing the numeral ‘3.
Ordinary addition 4 of natural numbers is of course such that

+:N? > N.

Can Roger compute it? Yes, easily. But in order to see how, we need to specify the
format of the instructions that we provide him with.

Each instruction to Roger is one of five possible types. We now define this quintet,
by giving the schema for each one, and in addition an intuitive explanation of what
the instruction communicates to our bird. Note that every instruction begins with a
natural number / that serves as its label.
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1. ISETB,; =B; — e

This instruction tells Roger to take away one stone from box B;. If this box
happens to be empty, Roger doesn’t do anything, and simply moves on to the
next instruction.

2. ISETB;=B;+e
This instruction tells Roger to add one stone to box B;.
3. [ IF B; = ¢ THEN j ELSE &

This instruction tells Roger that if box B; is empty, he should shift his attention
to, and follow, instruction with label j; otherwise he should move to instruction
with label k.

4. [ ROGER, POINT TO B;

This instruction tells Roger to point to box B;, in order to inform us that this
is output he wishes us to have.

5. I ROGER, HALT

This instruction simply tells Roger to halt. In any set of instructions given
to Roger (i.e., in any raven program given to him), there can only be one
instruction of this type.

Let’s now put these schemas into action, in the form of a raven program for Roger
that carries out addition. In order to do that, we shall assume that box B;’s contents
denotes the first of the two numbers to be added, and that box B,’s contents denotes
the second. Here then is a program for addition:

0 IFB; = e THENSELSE 1
1 IFB, = e THEN 6 ELSE2
2 SETB, = B, — e
3SETB; =B+ e

4 1FB, = e THENG6ELSE2
5 ROGER, POINT TO B,

6 ROGER, POINT TO B,

7 ROGER, HALT

With an initial input of ee in box By, and e e e in box B; (i.e., an initial configuration
that constitutes a request to Roger that he tells us what 2 + 3 is), the program given
here will cause Roger to point to B; when it contains e e e e e, at which point he will
stop.

The overall point of this account of raven machines is to flesh out and make rather
obvious the proposition that raven-machine computation, while somewhat informal,
is equivalent to register-machine computation (= R computation). In short, raven
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computation, albeit informal, is nonetheless directly reflective of register-machine
computation. In addition, raven machines could be replaced by an indefinite number
of schemes of the same intuitive sort, but ones featuring different animals, and/or
objects other than stones to be manipulated, etc. All these schemes would preserve
reflection of R computation. We hence have the general statement:

SSTr A function f is reflective- R-computable if and only f is R-computable.

Now let’s spend just a bit of time on the idealized computing framework that I said
above was my favorite: KU machines (or the space of idealized machines denoted
by just ‘K’). It’s my favorite because it’s the most cognitively robust model of
information-processing to emerge from the mid 20th century, as far as I know. I have
my own variant of the original conception that is set out in Kolmogorov and Uspenskii
[21]. T have neither the time nor the space to set out either the original conception or
my own formal generalization (workbook machines) in full detail, but I can certainly
give a sufficiently detailed explanation of the latter, and while my formalization
is more general that KU machines, workbook machines can serve as an adequate
stand-in in the present paper for the more primitive KU-machine framework. (While
KU machines are equivalent to Turing machines, workbook machines have settings
that can be configured in such a way as to allow these machines to compute functions
beyond the Turing Limit in the Arithmetic Hierarchy, e.g. the halting problem.) Also,
because workbook machines are built from scratch to be reflected by the ordinary
notebooks used by systematic human thinkers through their careers, the account that
I now give of workbook machines will serve both to introduce such machines, and
to do so by providing an informal correlate of workbook machines. The informal
correlate is what I call notebook machines. Obviously, the situation is thus such that
notebook machines are reflective-K machines.

A workbook machine has an associated formal language L of the type customarily
used to specify the syntax of the formulae allowed in a logic, and to specify the
inferential machinery by which formulae can be linked to each other. The language
is composed of formulae that can be constructed according to a formal grammar of
a familiar type (e.g. a BNF grammar) from a list of syntactic ingredients: variables,
constants (= names), function symbols, relation symbols, quantifiers, operators (e.g.,
modal operators), connectives, and punctuation symbols. In addition, and this is
unusual, L includes the elements necessary to precisely write expressions that are
typically in meta-theory; but we can leave this aside in the present context.® The
language may also include things necessary to tap into abstract algebra, and thereby
move beyond what readers are used to seeing in standard logics to regiment typical
symbolic formulae. For example, the language of a given workbook might need
to be extended to allow for the precise specification of diagrams; such a language
is used in the Vivid family of logics for reasoning over symbolic formulae and

8The formal language associated with a workbook machine for information-processing in line with
logic programming would thus allow formulae in the language of horn-clause logic, and would
also allow for meta-logical expressions like VZ : 7 = Ra <> Ra, where Z is an interpretation from
model theory.
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diagrams [2]. Finally, another part of L is the machinery needed to specify proof
theories and argument theories; for example, rules of inference.

We have already implicitly made use of such languages above; for example, when
we defined the statement z above we made implicit use of the formal language
that underlies first-order logic, which has only the two quantifiers 3 and V, and no
operators. But workbooks allow formal languages that are simpler or more complex
than the language of first-order logic. In fact, the language for a given workbook may
allow formulae that are infinitely long. Most readers will have seen grammars used
to define formal languages for logics, so I spend no more time on formulae.

Workbooks are composed of pages that come in sequences like a conventional
book of the type that people read. Pages can come in any size, as long as the size
is finite. Workbooks can have arbitrarily many pages, though here let’s confine our
attention to books that have only a finite number of pages. What can be written on the
pages that are in workbooks? The answer is that formulae in L can be written inside
labeled nodes (e.g. inside ovals), the nodes can then be connected by directed arcs,
and the arcs can be labeled by such things as the names for inference schemas. For
convenience and clarity, the labels can be put inside their own shapes (e.g. boxes).

How does computation happen in a workbook machine? It happens when a scribe
is given instructions for what modifications to make on a page, within a proper subset
of space on the page that is the focus of attention of the scribe. As a profitable example
for the reader to consider, imagine that a scribe is given instructions for how to carry
out long division. The only differences between how people in the real world carry
out long division (on a piece of paper or a blackboard) versus how such an algorithm
gets mechanized in a workbook machine is that in the latter case each number must
be encased within a labeled node, the arrangement of nodes relative to each other
is enforced by arcs connecting them, and a scribe can make what would for some
humans be a number of sequential actions on page in one step.

Inow provide an example of computation by a scribe in an implemented workbook
machine, the Slate environment for producing proofs.’ The example is shown through
two snapshots of a page in Slate. In the first snapshot (see Fig. 3), the scribe’s attention
is focused on the simple theorem that O # 5 (notice thatitis highlighted), to be proved
from the axioms of Peano Arithmetic (PA) (shown on the left), plus some helpful
definitions (shown on the right). In the next snapshot, the theorem has in one step
been proved. In order to do this, the scribe has moved AXIOM 1, and cited this axiom
along with the definitions for support of a provability claim (viz., that the theorem
can be proved). It’s very important to realize that this progress has been made in a
single step, because when below I model the tracking of Akl’s Mars robots it will be
a key fact that in a single step the distances of multiple robots from a landmark can
be computed.

I have described workbook machines, which are formal, idealized machines that
subsume KU machines, by way of the less formal class of notebook machines.
Notebook machines, like the chimp machines and raven machines also characterized

9Slate is provided with Bringsjord and Taylor [9]; an early version is described in Bringsjord et al.
[10].
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AXIOM 1. ¥x 0 = s(x) DEF OF 1.

{AXIOM 1} Assume v/
AXIOM 2. Vx,y ((s(x) = s(y)) = (x = y)) DEF OF
{AXIOM 2} Assume v/ {DEF OF 2} Assume v/

AXIOM 3. ¥x (x + 0 = x) DEF OF 3. 3 = s(2)
{AXIOM 3} Assume v/

{DEF OF 3} Assume v/
AXIOM 4. Vx,y (x + (s(y)) = s(x + y))
{AXIOM 4} Assume v/

DEF OF 4. 4 = s5(3)

{DEF OF 4} Assume v/

AXIOM 5. Vx (x X 0 = 0) DEF OF 5. 5 = s(4)
{AXIOM 5} Assume v/ {DEF OF 5} Assume v/

{AXIOM 6. VX,y (x X (s(y)) = (x X y) + x)}

{AXIOM 6} Assume v/

INDUCTION SCHEMA. (¢(0) A ¥x (@(x) = @(s(x)))) —> VX @(x)
{INDUCTION SCHEMA} Assume v/

A THEOREM. 0 = 5
FOL = x

ATHEOREM. 5 + 0 = 5 A THEOREM. Vx (0 + x = x)
FOL + x FOL + x

Fig. 3 Snapshot of page built in slate system as workbook machine

above, are not fully formal; however, notebook machines are clearly directly reflective
of workbook machines/KU machines (although, again, the former can be set to allow
super-Turing computation). In addition, instead of my own conception of notebook
machines, which is based on the concept of a scribe, any number of other quasi-formal
description of KU machines could be created'>—and in all these other variants,

computational equivalence between them and KU machines would be preserved.
Summing up, we have:

SSTk A function f is reflective-K -computable if and only f is K-computable.

While my refutation of Akl’s Ag,, can be articulated with only SSTx (see
Sect. 5), there is no reason, in general, to stay at the level of only instances of
SST, and a better version of my counter-argument uses SST itself, as the schema
that it is. In order to move to SST itself, in its fully general schematic form, we
have only to invoke again quantification over the entire space of Turing-level ide-
alized frameworks for computation, via C. Doing so yields the following general
proposition:

SST For all established idealized computational frameworks C, a function f is reflective-
C-computable if and only f is C-computable.

4 AKI’s Robot Argument (Az,,)

To start his argument Ay, Akl presents a scenario involving multiple robots:

10Smith [29] provides an alternative.
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On the surface of Mars n robots, Rg, Ry, ..., R,_1, are roaming the landscape. The itinerary
of each robot is unpredictable; it depends on the prevailing conditions in the robot’s environ-
ment, such as wind, temperature, visibility, terrain, obstacles, and so on. At regular intervals,
eachrobot R; relays its current coordinates x; (t) = (a; (¢), b; (t)) to mission control on Earth.
Given the coordinates of the n robots at time 7, mission control determines the distance of
R;,0 <i <n — 1, to aselected landmark L(¢) using a function F; [1, p. 181].

A key additional aspect of the scenario, which Akl has introduced before giving the
scenario described in the quote immediately above (he introduces it on p. 180), is
that there is a composite n-ary function F that takes as its input tuple that which is
returned by the F;. Akl says (p. 180) that F might return for instance the sum or the
minimum of the values of the F;.

Leaving aside the exotic imaginary setting of Mars, this type of scenario is one
that is quite relevant for my own laboratory, which has more than its share of robots,
and which specifically often investigates the coordination of multiple robots acting
simultaneously in various environments. Of course, we don’t use any such low-level
formalism as that used to specify Turing machines to track and reason about the
diachronic attributes of robots through time. For that matter, no one writes sophisti-
cated software to control and coordinate multiple robots in the language of Turing
machines, certainly if the robots in question do anything cognitive.!! Instead, my
approach, and derivatively that of the lab I direct, is a logicist one; specifically, we
draw from a space ¢’¢ of cognitive calculi to model both cognitive and physical states
of artificial agents (including robots) through time [8, 11, 19, 20]. A cognitive calcu-
lus is a highly expressive computational logic, one that in some instances subsumes
so-called “BDI” logics, and in some cases includes provision for natural-language
understanding and/or generation, uncertainty, and non-monotonic reasoning. In the
present paper, it would be inappropriate to review in detail any of the calculi in €'%’;
instead, in the Sect. 5, I will make informal and rapid use of a particular cognitive
calculus [2] that allows for the representation of, and reasoning over, pictorial infor-
mation in human-level fashion. Importantly, the reasoning is such that single steps
can comprise what humans working with paper and pencil would need to do in a
number of sequential steps; recall the discussion above centering around Figs. 3 and
4. With information expressed pictorially, it turns out that the kind of rapid and real-
time processing of Akl’s function F; can be accomplished in the manner he says is
beyond the reach of Turing machines. But before we get to this, we of course need
to have before us the remainder of Akl’s AgTM, which, in his own words, runs as
follows:

A Turing Machine fails to compute all the F; as desired. Indeed, suppose that xo(¢) is

read initially and placed onto the tape. It follows that Fy(xo(7)) can then be computed

correctly (perhaps at a later time). However, when the next variable x;, for example, is to
be read, the time variable would have changed from 7 to 4 1, and we obtain x; (f + 1), not

x1(t). Continuing in this fashion, x2(¢# + 2), x3(t +3), ..., x,—1(t +n — 1) are read from
the input. In [my example], by the time x(¢) is read, robots Ry, R, ..., R,—; would have
moved away from xy(¢), x2(t), ..., xy—1 ().

1 Cognitive robotics is, at least in its original form, a logic-based affair; see e.g. Levesque and
Lakemeyer [22].



Is Universal Computation a Myth? 31

DEF OF 1. 0)
{DEF OF 1} v
DEF OF 2. 2 = s5(1)
{DEF OF 2} Assume v/

AXIOM 2. ¥x,y ((s(x) = s(y) = (x = y))
{AXIOM 2} Assume v/

DEF OF 3. 3 = 5(2)

{AXIOM 3} Assume v {DEF OF 3} Assume v/

{AXIOM 3. VX (x + 0 = x)}

AXIOM 1. VX 0 = s(x)

{AXIOM 1} Assume / DEF OF 4. 4 = 53)

{DEF OF 4} Assume v/

{AXIOM 4} Assume v/

AXIOM 5. ¥x (x X 0 = 0)
{AXIOM 5} Assume v/

AXIOM 6. ¥x,y (X X (s(y)) = (X X y) + X)
{AXIOM 6} Assume /

AXIOM 4. ¥x,y (x + (s(y) = s(x + ‘/))}

DEF OF 5. 5 = s5(4)
{DEF OF 5} Assume v/

INDUCTION SCHEMA. ((0) A ¥x ((x) — @(s(x)))) — ¥x @(x)
{INDUCTION SCHEMA} Assume v/

A THEOREM. 0 = 5
{AXIOM 1,DEF OF 1,DEF OF 2,DEF OF 3,DEF OF 4,DEF OF 5}

ATHEOREM. 5 + 0 =5 A THEOREM. ¥x (0 + x = x)
FOL - x FOL - x

Fig. 4 Snapshot of successor page built in slate system as workbook machine

Since the function according to which each x; changes with time is not known, it is impossible
to recover x; (t) from x; (t +i),fori = 1,2, ..., n — 1. Consequently, this approach cannot
produce Fy(x1(2)), Fa(xa(t)), ..., Fy—1(x,—1()) as required [1, p. 181].

There are some important aspects of this argument that can and should be revealed
by some analysis. First, when Akl says “A Turing Machine fails to compute all the
F; as desired.” he is not to be interpreted as saying only that there exists a Turing
Machine that fails to compute all the F;. The kernel of the logical shape of this trivial
proposition would be

Am(TM (m) A FailsCompute(m, F;)], (1)

whereas what Akl is claiming is (as must be the case if he is to succeed) in line with
the claim wury;, and the logical shape of his claim is the much more ambitious and
much more interesting

—3Im(TM (m) N Compute(m, F;)]. 2)

This really is a very ambitious claim indeed. For there are a lot of Turing machines;
there are overall a countably infinite number of them, of course. How does Akl know
that no Turing machine in this vast space can compute F;? His reasoning appears
to be that while the configuration of the robots and the landmark at a given time ¢
can be placed into memory (= onto a tape of a given Turing machine), there isn’t
enough time to compute all the distances, because by the next timepoint # 4 1 the
robots have moved and the distances will be different—and to further complicate
matters the environmental forces that partially determine the itineraries (I would say
plans, and I imagine that the robots are running Al planners) of the robots aren’t
retrievable. But is this reasoning sound? I don’t think so, and now I explain why.
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5 A Refutation of the Robot Argument

Since Akl concedes F; to be a Turing-computable function, there exists a Turing
machine able to compute the distance of each robot R; from the landmark at every
timepoint ¢, before another such computation needs to occur. By definition, we are
dealing with number-theoretic functions, so we are dealing with a digitization of the
entire scenario. In ‘the ‘real world” the robots must take some time to travel to new
locations, and when they have arrived at those new locations, a new configuration can
be perceived, and processed afresh. So yes, I certainly agree that the solution for a
Turing machine is not to be found in computation carried out, as Akl says, “later.” But
the solution is to be found in the fact that there exists some Turing machine m* that
computes F;, for all relevant i, very quickly and at once, in parallel, in an intervening
moment, before the robots arrive at their new locations. (Even if robot movement is
staggered in time, it remains possible, in principle, to any configuration of any subset
of the entire collection of robots to be perceived and distances to be computed at a
single intervening timestep.) And having computed that, m* can compute F (F;), for
all relevant i, in another intervening moment. As Akl says, the composite function
F might return something like the sum of all the distances of each robot from the
landmark, at a given timepoint.

Of course, Akl’s claim is that the “intervening” activity I have described is
excluded. But what excludes it? It is true that Akl can stipulate a constraint accord-
ing to which there is no intervening time available to be used. But such a stipulation
merely establishes Eq. 1; it doesn’t establish what he needs: Eq. 2.

An even more severe problem for Akl is that such back-and-forth dialectic is
entirely irrelevant, because there is a non-constructive way of establishing that there
does exist the Turing machine m* that can compute F;. In fact, I now give such a non-
constructive way: a formally valid argument whose conclusion is that the problem
in this case, contra Akl, can be solved by some TM (i.e., I establish the negation
of Eq.2). (Since my argument is formally valid on any standard proof theory, I
could classify my argument as an outright proof, save for the fact that “Selmer’s
Safer Thesis,” SST, isn’t itself proved in the present paper—though certainly it can
be proved.) My refutation is in defense of the proposition that, relative to standard
idealized computation — that is computation characterized by P, R, M, G, A, K ,and
the other frameworks that can be readily found in the literature—Turing machines
are universal.

As mentioned above (Sect. 2), I can’t employ CTT in any refutation of Akl’s
argument (since, again, I believe that, and indeed believe that I’ve shown that, CTT
is in fact false). However, I'm able to use SST and a the particular instance of it for
KU machines. Here’s my argument:
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Refutation of AﬁTM

SST tells us that any number-theoretic function f that is reflective-C-computable is
C-computable. It follows directly by universal instantiation on C that any f that is
reflective- K -computable is K -computable. (Or we could of course use SSTx directly.)
Where F; is the function (informally) defined by Akl that maps location informa-
tion regarding n robots to the distance of each robot from a given landmark (all
indexed, of course, to a particular time ¢), F; is reflective-K -computable; hence F;
is K-computable. But it’s a theorem that K-computability and 7 -computability (=
Turing-computability) are equivalent. Therefore, contra Akl, F; is Turing-computable
(and with it also F). QED

In order to undergird this argument, I introduce a simple pictorial framework that
enables us to represent snapshots of the locations of robots and the landmark on
Mars. In this framework, which is grid-based, e; indicates a robot at the relevant
location, and + indicates the location of the landmark. Each configuration of the
grid corresponds to a page in a workbook machine. (I leave out messy ovals to define
nodes, and explicit arcs, in order to increase readability.) Consider the following
configuration:

o 0o 0o o0 o o
O 0 0o 0 0 O
O 0 0 0 0 ©
o ® o o o o

4+ o o o o
O 0 0o 0 0 ©

)

Here there are only two robots (but there is no loss of generality). Please try to make
a quick ruling as to how far each robot is from the landmark. . . . Correct, both robots
are the same distance (1 unit) from the landmark. Notice that you rendered this verdict
by taking in the workspace as a whole. Now here is a second configuration:

To ensure that you understand what is being depicted in this second configuration, I
ask again: How far is robot R, from the landmark, and how far is robot R; from the
landmark? Once again, I’'m quite sure that you can see what the answer is: R is 3
units away, and R, is 1 away. This shows that a scribe in a workbook machine could,
presented with any such configuration, write down in one step, the distance for each
robot R;. This in turn shows that F; is reflective-K -computable, since in principle
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there is no reason why what you have instantly seen in the two configurations just
given can’t be seen in any such configuration, by a scribe perceiving a page in a
workbook. The area of focus in any given configuration will never be too large to
in principle be taken in, since it is always going to be finite, and since it will never
increase from one page to the next in an expansion that grows non-recursively fast.
(There are only a finite number of robots in Akl’s scenario, separated from each
other and the landmark by only finite distances.) This suffices to undergird the non-
constructive deductive counter-argument given above.

6 Concluding Remarks on Another Path

Alert-and-astute readers know that the failure of Akl’s robot argument Az, as
revealed above, is formally consistent with the statement # that there doesn’t exist a
universal computer. (This is a fact that Akl himself, in rebuttal, might well convey.)
Hence, in the current state of the inquiry into whether or not a universal computer is
a myth, we are unable to resolve the central question. After all, perhaps one of the
other arguments given by Akl for ury; succeeds. However, for what it’s worth, I've
analyzed each of these arguments and find each to be at best inconclusive. I encourage
those interested in getting to “ground truth” on % not to accept on faith this report on
my analysis, but to study Akl’s inventive arguments for themselves. That said, I do
want to end, as promised, by introducing the reader to what I see as a better route for
settling the central question. My intuition, based on initial reflection upon this other
route, is that universal computation does in fact exist, and that therefore u (notice
that the overline is gone) holds.

So what is the route I recommend? To see its general shape and direction, sup-
pose, first, that universal computation, which we’ll symbolize by the predicate U,
is stipulated to be a disjunctive concept, one with so much in-built latitude that it
ranges across all forms of information-processing, not just computation as it’s sys-
tematized in standard Turing-level-and-below information processing, and indeed
not just information-processing as it’s formalized in the entire Arithmetic Hierarchy
(of which the Turing-computable portion is only a small part). (Akl’s writings never
allow under U forms of information-processing beyond AH, as far as I can tell.) We
therefore admit information-processing over uncountable sets. So far this is quite
imprecise, of course. But the disjunction can be made precise by appeal to formal
logics — as long as we countenance formal logics of more and more power, including
those that exceed information-processing in AH. Let me explain, at least to a degree.

We know that to capture the behavior and power of standard Turing machines,
and any rigorous form of information-processing at and below this level in AH (e.g.,
to harken back to the categories deployed above, register machines, the A-calculus,
KU machines, etc.), we can use standard first-order logic .%;. This is shown in
excruciating detail in traditional proofs of the undecidability of theoremhood in .Z}
(= the undecidability of the Entscheidungsproblem), wherein deciding theoremhood
in .Z is (frequently) reduced to the halting problem [4]. Encapsulating, we know
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that a number-theoretic function f is Turing-computable if and only if, from a suit-
able theory I', representing the operation of a standard Turing machine and initial
information (including a given element a of the domain of f),

I'E ¢y

where ¢ 7, is the formulae expressing the value that f returns on a as an argument,
and where |- is interpreted in standard form, that is to indicate provability in some
typical proof theory for .%;. (Such a proof theory underlies the single-step inference
shown in Fig.4.)

For distinctions within the sub-space of Turing-computable functions that per-
tain to how much time it takes for Turing machines and automata below them to com-
pute a relevant function (the sub-space that covers such categories as NP-complete),
that too can be captured by .Z; with suitable function symbols and relation symbols
to capture time and change, number of steps in a computation, and size of input. But
we also know that once we for instance move from finitary logic (and .%; is of course
certainly finitary: all its formulae are of finite length, as are all its formal, object-
level proofs) to infinitary logic, we can quickly move to information-processing
that is beyond Turing machines.'? (In parallel, we know that such a move allows us
to surmount Godelian incompleteness, since such results are based on Turing-level
axiom systems in .£7, such as Peano Arithmetic.) For a quick example, note that the
“small” infinitary logic .Z,,, allows countably infinite disjunctions and conjunc-
tions, and countably infinite proofs. Using infinitary logics, we can build up coverage
of increasingly challenging functions to compute, where we express the computing
of a function g in terms of what is expressible and deducible in the relevant logic,
following the general recipe sketched above in the case of %, where what is to be
proved is that from a declarative representation of a given argument a in g’s domain,
g(a) is what is returned. If we take this route, we can say that a universal comput-
ing framework, that is a framework to which can be accurately ascribed the relation
U for universal computation, is one which, given any well-defined function g and
input a, can prove g(a), in either logic %}, or %, or .43, or ..., where this is a
progression of increasingly powerful logics. I wonder what Akl would say about this
route. One thing certainly seems clear: This disjunctive, logicist route, without all
that much work, would yield a precise framework on which all the challenges in the
remarkably fertile and suggestive [1] can be modeled and thereby met. In fact, the
more rigorous and accurate is Akl’s reasoning in setting out a challenge, the easier
such modeling, for some logic -%;, becomes.

12Readers interested in learning more, can consult as a starting point the excellent [3].
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