
Chapter 2
The SimpopLocal Model

Abstract The model is described in detail in order to explain how to implement
the stylized facts that are theoretically essential for representing the emergence of
cities into a multi-agent system. The model activates rather simple feedback loops
between settlement size, innovation and resources enabling settlement growth from
local innovation creation and inter-settlement diffusion. The necessary attributes,
processes and parameters of the model, that were identified according to a rule of
parsimony, are described and their estimated values after simulations are presented.

2.1 Introduction

From the stylized facts summarizing the historical process of the emergence of cities
which we have briefly recalled in Chap.1, we create SimpopLocal to simulate the
growth dynamics of agrarian settlements and their possible evolution towards urban
settlements under strong environmental constraints that are progressively overcome
by successive innovations. In order to ensure the replicability of the model, the
source code of SimpopLocal is filed in a public repository (http://iscpif.github.io/
simpoplocal-epb/).

2.2 Purpose of SimpopLocal

This exploratory model aims at reproducing a remarkable aspect of the spatial struc-
ture of settlements systems, defined in the literature as a major stylized fact: in any
system already studied, in any places and in any period of history or prehistory times,
the distribution of size (population or spatial extent) is strongly differentiated, includ-
ing many very small settlements and only few very large settlements according to a
rather regular distribution of the Zipf or log-normal type (Fletcher 1986; Liu 1996).

This hierarchical pattern is a structural property (order in the size of entities) at
macroscopic level that is particularly resilient over time, whatever the local fluctua-
tions which take place at entity level. The SimpopLocal model is designed for testing
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the hypothesis enunciated in the evolutionary theory of urban systems (Pumain 1997)
which explains this structural feature from the urban growth process sustained by
all kinds of technological and societal innovations and their spatial diffusion among
connected settlements.

This model adds to the usual stochastic model of urban growth that is simply
proportional to city size and leading to a log-normal distribution (Gibrat 1931) the
effect of the spatial interaction which amplifies the growing hierarchical differentia-
tion among settlement sizes that is observed over time in geographical urban systems
(Favaro and Pumain 2011).

SimpopLocal is part of the Simpop agent based model family. In comparison of
models already developed, SimpopLocal adopts some new original paths. First, it
simplifies theway that was used until now to qualitatively discriminate the successive
innovation waves that were represented by various urban functions, it captures all of
them in a single abstract innovation object.

Second, SimpopLocal makes the process of innovation creation endogenous by
linking it with the size of settlement. This more parsimonious version of model
building enables the development of better and more systematic exploration and
evaluation of ABM. SimpopLocal was initially developed using Netlogo language,
and later redeveloped using Scala programming language.

We describe the model following the ODD standard principles (Grimm et al.
2010), in a slightly different order, and without describing the ‘design concepts’,
whose categories are not relevant here.

2.3 Entities, State Variables and Scales

The model represents the evolution of settlement units that are dispersed in an area
large enough for sustaining a few thousands population but limited enough in surface
for ensuring the possible connection between settlements according to the transporta-
tion means that are available at the time. Typically, it could be a region as antique
Mesopotamia or Meso America. The landscape of the simulation space is composed
of hundreds of settlements. Each settlement is considered as a fixed agent and is
described by three attributes: the location of its permanent habitat (x, y), the size of
its population P , and the available resources in its local environment.

The amount of available resources R is quantified in units of inhabitants and can
be understood as the carrying capacity of the local environment for sustaining a pop-
ulationwhich depends on the resource exploitation skills that the local population has
acquired from inventing or acquiring innovation. This resource exploitation is done
locally and sharing or trade is not represented explicitly in themodel. Each new inno-
vation created or acquired by a settlement develops its exploitation skills. Contrary
to previous more ‘realistic’ models of the Simpop family, we do not want to consider
the nature of innovation by identifying each significant innovation wave as a new
urban function. We simplify the model by retaining only the processes of emergence
of innovation and their effect on urban growth. The innovation entity is understood
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here as a large and abstract invention socially accepted which could represent a tech-
nical invention, a discovery, a social organization, some new habits or practices ...
Each acquisition of innovation by a settlement brings there the possibility to surpass
its capacity threshold, and by consequence authorizes a demographic growth. The
state variables defined at macro-level are the size distribution of settlements and the
slope of the rank size distribution.

2.4 Processes Overview and Scheduling

The scheduling of a simulation of the model is presented on Fig. 2.1 and will be
further detailed for each part of the process linking the evolution of innovation,
resource and population growth in the settlements.

After the initialization of the settlements, the interaction network is created. Then,
at each simulation step, the mechanisms of population growth (grow population) and
innovation diffusion (diffuse innovation) are applied. According to the number of
innovation, the impact of these innovations is applied on the settlement’s resource
extraction efficiency (apply innovations). Then, the innovation creation mechanism
(create innovation) is applied, with the same effect on resource extraction efficiency.
This loop is iterated until the stopping criterion is reached: in this case after 4000
steps or if the maximum number of innovation has been reached. We now present
each of these mechanisms in detail. Regarding the ODD protocol, these mechanisms
would be labelled as the submodels of SimpopLocal.

2.4.1 Population Growth Mechanism

The growth dynamics of a settlement are modelled according to the assumption that
its size is dependent on the amount of available resources in the local environment
and is inspired by the Verhulst model (Verhulst 1845) or logistic growth.

For this experiment, we assume a continuous general growth trend for
population—this may be different in another application of the model. The growth
factor r is expressed on an annual basis; thus, one iteration or step of the model
simulates one year of demographic growth. The limiting factor of growth Ri

M is
the amount of available resource that depends on the number M of innovations the
settlement i has acquired by the end of the simulation step t .

Pi
t is the population of the settlement i at the time t :

Pi
t+1 = Pi

t

[
1 + r

(
1 − Pi

t

Ri
m

)]
(2.1)
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[ t > 4000
ou
sum innovation > max innovations ]

set initial settlements

create interaction network

<< loop >>

grow population

create innovation

diffuse innovation

for each settlements

[ innovations > 0 ]
apply innovations

[ else ]

[ innovations > 0 ]
apply innovations

[ else ]

state

Fig. 2.1 SimpopLocal activity diagramm

2.4.2 Apply Innovation Mechanism

The acquisition of a new innovation by a settlement allows it to overtake its previous
growth limitation by enabling a more efficient extraction of resources and thus a gain
in population-size sustainability. With the acquisition of innovations, the amount of
available resources tends to the maximal carrying capacity Rmax of the simulation
environment:

Ri
M

innovations acquisi tion−−−−−−−−−−−−−→ Rmax (2.2)

The mechanism of this impact follows the Ricardo model of diminishing returns
(which also is a logistic model). The I nnovationImpact represents the impact of
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the acquisition of an innovation and has a decreasing effect on the amount of available
resources Ri

M+1 with the acquisition of innovations:

Ri
M+1 = Ri

M

[
1 + I nnovationImpact

(
1 − Ri

M

Rmax

)]
(2.3)

2.4.3 Create and Diffuse Innovation Mechanisms

Acquisition of innovations can occur in two ways, either by the emergence of inno-
vation within a settlement or by its diffusion through the settlement system. In both
cases, interaction between people inside a settlement or between settlements is the
driving force of the dynamics of the settlement system. It is a probabilistic mech-
anism, depending on the size of the settlement. Indeed, innovation scales superlin-
early: the larger the number of innovations acquired the larger the settlement and the
higher the probability of innovation. To model the superlinearity of the emergence of
innovation within a settlement, we model its probability to be created by a binomial
law.

If Pcreation is the probability that the interaction between two individuals of the
same settlement is fruitful, that is, leads to the creation of an innovation, and N the
number of possible interactions, then, by the binomial law, the probability of the
emergence of at least one innovation P(mcreation > 0) can be calculated and then
used in a random drawing:

P(mcreation > 0) = 1 − P (mcreation=0) ,

= 1 −
[

N !
0!(N − 0)! ∗ P0

creation ∗ (1 − Pcreation)
N−0

]
, (2.4)

= 1 − (1 − Pcreation)
N

If the size of the settlement is Pi
t then the number N of possible interactions

between individuals of that settlement is:

N = Pi
t

(
Pi
t − 1

)
2

(2.5)

The diffusion of an innovation between two settlements depends on both the size
of populations and the distance between them.

If Pdi f f usion is the probability that the interactionof two individuals of twodifferent
settlements is fruitful—that is, leads to the transmission of the innovation—and K
is the number of possible interactions, then, by the binomial law, the probability of
diffusion of at least one innovation P(mdi f f usion > 0) can be calculated and used in
a random drawing:
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Fig. 2.2 Diffuse innovation
mechanism activity diagram

<< loop >>

for each selected neighbor

get local network

<< loop >>

for each neighbor

diffuse innovation ?

[yes]

[no]

filter innovations

the list of possible
settlements after filtering:

Only A, B and C can diffuse
innovation to me

Comparison of each
neighbor's innovation pool
with mine to avoid
duplicates:

I have : i2, i3
A has : i2, i3, i4, i6
B has : i2, i3, i5, i7
C has : i8

Filtered innovation
A : i4, i6
B : i5, i7
C : i8

diffuse innovations

take one innovation
randomly A list with one innovation by

possible neighbor

After random operation :
A : i6
B : i7
C : i8

group innovation by
rootID

<< loop >>

for each group

take one innovation
randomly

copy this innovation

EXAMPLE

I have four neighbors :
A ; B ; C ; D

A settlement cannot have
two innovations with the
same initial root dentification
"rootId".

After grouping :
{ i6 -> X, i7 -> X}, { i8 -> Y }

i6 and i7 are in the same
group.

Only one innovation per
group can diffuse.

Final innovation list for
diffusion :
{i6, i8}

According to the stochastic
innovation diffusion rule
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Create innovations

innovate ?

[no]

[yes]

new innovation

According to the stochastic
innovation creation rule

Apply innovations

<< loop >>

for each innovation

impact resources of
settlement

<< loop >>

for each innovation

compare with my list
of innovations

[same root id ?]

[else]

remove from list

Filter innovations

test innovation age

[age > innovationLife ?]

[else]

remove from list

[yes]

[yes]

Fig. 2.3 Creation, filter and apply innovation mechanisms activity diagrams

P(mdi f f usion > 0) = 1 − (1 − Pdi f f usion)
K (2.6)

But in this case, the size K of the total population interacting is a fraction of
the population of the two settlements i and j which is decreasing by a factor
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Settlements

Id : Int
Population : Double
AvailableRessources :
Double
X : Double
Y : Double
SettlementClass : Int

radius()

Innovations

Id : Int
date : Int
rootId : Int

0..nown 0..1

0..n

clone

0..n
own

State

Id : Int

Fig. 2.4 UML class diagramm of SimpopLocal

DistanceDecay with the distance Di j between the settlements, as in the gravity
model:

K = Pi
t P

j
t

2DDistanceDecay
i j

(2.7)

The process of population growth and the process of innovation creation and
diffusion are reiterated throughout the simulation (Figs. 2.2 and 2.3). Because of
the two positive feedbacks that operate on resource and population growth through
the creation of innovation, the model is able to generate a very rapid expansion of
settlements: that is, an escalation of settlement growth. The simplest way to avoid
situations where too many innovations are created, which would lead to huge time-
consuming simulations, is to decide to stop the simulationwhen it reaches an arbitrary
number of, say, 10,000 innovations. Finally, on Fig. 2.4 the UML class diagram of
the model is illustrated.

2.5 Initial Conditions

The initial configuration we have chosen to keep in every experiment has therefore
beendefined the following rules to ensure a good representationof common structures
of settlement systems: The size of settlements follows a log-normal distribution.
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Fig. 2.5 Agents (settlements) and attributes at initial configuration in SimpopLocal

100 settlements size are initialized with a random demographic size vary from 38 to
133 inhabitants. The spatial repartition of the settlements assumes a Christallerian
pattern (according to Christaller,1 a theoretical pattern of central places has regular
spacing distances between settlement nodes of the same size category, the largest
settlement nodes having larger spacing distances than the smaller) (Fig. 2.5).

The network interlinking the settlements enables spatial interactions according
to the same Christallerian logic: small settlement nodes establish less remote con-
nections than the largest. Furthermore, at initial state, population of settlements is
considered at equilibrium regarding the available resources: the initial amount of
resource of each settlement is considered equal to its initial population.

2.6 Input

Although relatively parsimonious as a multi-agent system, SimpopLocal has a dozen
of parameters that have to be estimated for calibrating themodel. Some can be empiri-
cally evaluatedwith the help of historical data and knowledge,while it is very difficult
to give values to others (Table2.1). Those regarding the initial spatial distribution
and organization of settlements in the landscape can be approximated. The log-
normal distribution of the settlement sizes and the central place theory of Christaller
for the geographical distribution of locations are models that are widely used by

1Christaller’s central place theory (1933) considers cities as centres serving services of different
levels of rarity to a regional resident population according to a hierarchy of range and size of the
centres. As residents minimize the cost of access to services centres would exhibit regular patterns
on an homogenous plain. The simplest pattern is made of nodes located at the summits of hexagons
that are embedded in hexagons of larger areas designed for larger centres of the next upper level.
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Table 2.1 Parameters of the SimpopLocal model (Source: Schmitt (2014), p. 167)

Parameters Description

Rmax Maximum carrying capacity of a settlement
(measured in number of residents)

rgrowth Mean growth rate as in verhulst model

I nnovationImpact Impact of any innovation on available resources

PCreation Probability of creating an innovation in one
settlement

PDi f f usion Probability of diffusing innovation between
settlements

DistanceDecay Deterrent effect of distance on innovation
diffusion

I nnovationLi f e Time during which an innovation may diffuse

Max Innovation Total number of innovation generated before
end of simulation

archaeologists to describe their spatial data (Archaeomedes 1998; Johnson 1977;
Sanders 2012) including Neolithic archaeological sites (Liu 1996).

In SimpopLocal, the mean density of that landscape and the average size of each
settlement are representative of the usual orders of magnitude presented in these
works. A hundred settlements are distributed according to these two theories and
each settlement is initially composed of some 80–400 inhabitants. Several scholars
agree that an average annual growth of 0.02% is representative of the growth of
agrarian settlements in theNeolithic times (Bairoch 1985;Renfrew andPoston 1979).
The length of time required for a transition from agrarian to urban settlements is
estimated according to (Bairoch 1985; Marcus and Sabloff 2008) to about three
thousand years. We choose to operate our simulations on a four thousand years time
period for settlements ranging from one hundred inhabitants up to about ten thousand
inhabitants.

Because of a lack of empirical data, five parameters cannot be empirically approx-
imated and have to be estimated through simulation:

• Pcreation, the probability that an innovation emerges from the interaction
between two individuals of a same settlement.

• Pdi f f usion, the probability that an innovation is transmitted between two indi-
viduals of different settlements. We consider that the probability of diffusion is
greater than the probability of creation, which means that copying is easier than
inventing (Pennisi 2010) in the model.

• I nnovationImpact , the impact of the acquisition of innovation on the growth of
settlements.

• DistanceDecay, the deterrent effect of distance on diffusion.
• Rmax , the maximum carrying capacity of the landscape of each settlement
(measured in number of inhabitants).
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2.7 Running the Model for Parameter Estimates:
Calibration

The principle of parsimony that led the development of SimpopLocal was applied
as well in designing a way for estimating possible values for each parameter of
the model. This original estimation process that leads as well to a huge qualitative
improvement in the validation process of the hypothesis of the model will be exam-
ined in detail in Chap.3. We only mention here which general line was followed
in order to make understandable the results of simulation that are recalled below.
As we lack of observed measurements for determining the possible values of most
of parameters of the model, our method of estimation is not exactly a ‘calibration’
exercise. It consists in determining which global subsets of parameters values are
leading to an emergence of a system of cities whose characteristics match at best
the stylized facts that were identified in Chap.1. A kind of machine learning method
is necessary in order to identify through many possible behaviours of the model,
the one which is able to correctly reproduce the expected results of simulation. The
values we will get for the parameters are thus not measured in absolute units, they
are abstract estimations and their significance relies on these measurements taken as
a whole, each parameter remaining associated to the others having to be considered
in relative terms. As two parameters involve probability distributions, the model is
stochastic, therefore the two techniques (by trial and error and by full plan) usually
used to calibrate a model are not suited to calibrate the SimpopLocal model (or any
multi-agents model in general). We adopted innovative methods of automatic explo-
ration of the patterns in the behavioural space of parameters which are developed
on the simulation platform OpenMole. In Chap. 3 we shall explain in detail how
genetic algorithms and grid computing are used to explore in a comprehensive way
the parameter space, as it was roughly defined at first by a plausible but large enough
variation domain for each parameter (Table2.2).

We briefly retrace here in a vocabulary that is accessible to non-specialists of
computing science how the method is working. An important first step in calibration
is to define an objective functionwhich is identified from the stylized facts describing
the period. It includes three quantifiable elements that must be obtained at the end
of simulation for the simulated system of cities:

• A log-normal distribution of settlement size
• The size of the largest aggregate settlement of about 10,000 inhabitants
• A total of 4,000 simulation time steps (equivalent to some 4,000 years).

The first requirement of the objective function reflects the essential hierarchical
property of any system of cities; the second acknowledges that in the political and
technological conditions of the time, groups of resident population over 2,000 inhab-
itants were very rare and a concentration of 10,000 could represent a major political
and economic capital of a kingdom or empire; the third condition is constraining the
model to be contained in a domain of growth regime for settlements that is plausible
in demographic terms for the post-Neolithic period: at that time, rapid urban growth

http://dx.doi.org/10.1007/978-3-319-46497-8_3
http://dx.doi.org/10.1007/978-3-319-46497-8_1
http://dx.doi.org/10.1007/978-3-319-46497-8_3
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Table 2.2 Variation domain for parameters after 500 millions simulations with SimpopLocal and
their precision with calibration profile algorithm (Source: Schmitt (2014), p. 203)

Parameters Initially assumed
variation domain

Variation domain
inside Pareto Front

Calibration validated
domain

Rmax [1; 40000] [9500; 11500] [10090; 10465]
I nnovationImpact [0; 2] [6.10.10−3; .10−2] [7.7.10−3; 8.4.10−3]
PCreation [0; 1] [4.0.10−7; 2.1.10−6] [1.1.10−6; 1.3.10−6]
PDi f f usion [0; 1] [3.10−7; 1.8.10−6] [6.7.10−7; 6.9.10−7]
DistanceDecay [0; 4] [0.2; 1.1] [0.66; 0.75]

rates were hampered by insufficient resource, high mortality rates due to bad sanitary
conditions and frequent catastrophes due to natural hazards or devastation caused
by war. Meeting these objectives entails contradictory dynamic trends. Moreover,
the need of (at least) a hundred replications of the simulations using the same set of
parameter values to handle the stochasticity and thewide range of variation attributed
a priori to five unknown parameters led us to use an evolutionary algorithm to solve
thismulti-objective optimization problem aswell asmassively distributed computing
for the exploration of the entire parameter space.

2.8 Simulation Results and Return on Observations

In total, 500 million of model runs were conducted to achieve the calibration of
parameters presented in Table2.2. This table shows next to each parameter in a first
column the hypothetical variation domain initially assumed, which was designed
deliberately very wide, and in a second column the possible interval of values as
it was reduced from the simulations to calibrate the model. This result does not
lead to a single value but provides a range of possible values for each parame-
ter, because a ’Pareto front’ establishes compromise between values that ensures the
multi-objective optimization function (that is explainedwithmore details in Chap.3).
A third column shows which precision gain was realized for each parameter by using
a more powerful algorithm that calculates the model’s sensitivity to variations of a
parameter at a time, all things being equal as to changes in the others. In addition,
we must remember that the values presented in Table2.2 are not independent mea-
surements, they are connected and so it is their entire configuration that must be
adapted when the model will be applied for a calibration on empirical, historical or
archaeological situation (Figs. 2.6 and 2.7).

Another novelty of this experience is that the method for exploring the behaviour
of the model is also a validation: we can establish to what extent the assumptions
chosen to implement the mechanisms of the model are both necessary and sufficient
to achieve the desired result—of course within the framework of the description

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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Fig. 2.6 Initial and simulated distribution of city sizes. Source Schmitt 2014

Fig. 2.7 Comparing initial and simulated settlement distributions. Source Schmitt 2014

chosen for the selected model. This second result comes from the development of
a method called ‘calibration profiles’ (described in detail in Chap.3) that calculates
for each parameter the effect of its variation on the quality of the model, as fitted by
the objective function, ceteris paribus about the changes of other parameters. That
particular method led to the rejection of I nnovationLi f e parameter (lifetime of
innovation) which was not sufficiently constraining the development of the model.
The method also contributed to clarify the role of parameters through reducing their
domain of variation to a more precise interval that is both necessary and sufficient
to achieve the desired change (last column of Table2.2).

These results provided by the analysis of calibration profiles provide valuable
feedback on the modelling assumptions and urban theory that oversees the develop-

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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ment of the model. The urban evolutionary theory that guided the construction of
SimpopLocal model and more generally all models of the Simpop family insists on
the concept of system, that is to say, relationship and interaction between the elemen-
tary entities (cities, villages or settlements points) that are components of the system.
Yet, this is the first time that the exploration of the simulation model demonstrates
that the mechanisms of interaction between the entities of the system are essential
to the production of an evolution similar to that of real systems, in the context of the
Simpop family of modelling (Pumain and Robic 2012).

Without these mechanisms describing spatial interaction, which in SimpopLocal
are controlled by Pdi f f usion and DistanceDecay, so without diffusion of inno-
vation between cities, according to a gravity principle, it is not possible to generate
urban growth dynamics that are representative of dynamics actually observed in real
systems. These results also show the importance of the role of space in structuring
and organizing the settlement system: without the effect of DistanceDecay para-
meter, which reduces the frequency of interaction with distance, changes in the sim-
ulated system are no longer representative of actual system developments. These first
evaluations of mechanisms will also be useful for the next versions and applications
of the SimpopLocal model. If this model is too simplified to be fully compliant
with current or former real settlement systems in its first abstract and parsimonious
version, the concepts generating the simulated processes can be reflected in certain
contexts (i.e. the proto-historic cities, for example) or archaeological theories such
as ‘peer polity interaction’ (Renfrew 1975).

Christopher Renfrew noticed how frequently the first small states were not born
in isolation but in cluster, with strong similarities in terms of size, social struc-
ture, material culture, etc. He also observed that political entities comparable in size
and organization (as the first forms of state organization) tended to emerge in the
same areas and evolve simultaneously. Moreover, archaeological evidence suggests
that these changes did not emanate from a single source of innovation, but emerged
contemporaneously in several interacting units.According to these remarkable obser-
vations, our theory do confirm the central explaining role of the mechanism of
exchange between settlement sites and describe the interaction processes as essential
in urban development and social change.

The SimpopLocal model, whose dynamic is grounded in social and spatial inter-
action, could be used as a core model for testing this theory by simulation.

Perspectives of the application of complexity theory and methodological means
to construct models (agent-based modeling) underline possible implications for the
study of some theoretical issues of scientific research in archeology. The process of
model building on the basis of theoretical concepts itself reveals gaps in our data.
Within the archeological record we lack data for some processes which must be
supplemented with estimates (Turchin and Gravilets 2009).
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