
Memory Analysis and Performance Modeling
for HPC Applications on Embedded Hardware

via Instruction Accurate Simulation

Alexander Ditter1(&), Dominik Schoenwetter1, Anton Kuzmin1,
Dietmar Fey1, and Vadym Aizinger2

1 Chair of Computer Science 3 (Computer Architecture),
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

{alexander.ditter,dominik.schoenwetter,

anton.kuzmin,dietmar.fey}@fau.de
2 Chair of Applied Mathematics (AM1), Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Erlangen, Germany
aizinger@math.fau.de

Abstract. The efficient usage and development of embedded multi- and
many-core systems is an important field of research for years and decades. In the
last decade, utilizing embedded and especially low-power architectures for high
performance computing (HPC) applications became an important part of
research. The reason for this are the constantly increasing energy costs along with
an increasing awareness of energy consumption in general. As suitable
low-power HPC architectures are not yet available at a larger scale, simulation of
new and appropriate architectures becomes an important factor for the success of
low-power systems and clusters. In order to speed up simulation, at the cost of
accuracy, different levels of abstraction were introduced. Currently the class of
instruction accurate simulations seems to yield the best trade-off between speed
and precision, especially when simulating complex multi- and many-core sys-
tems. In this paper we present our investigations about the accuracy of the
state-of-the-art instruction accurate embedded multi- and many-core simulation
environment Open Virtual Platforms (OVP) in comparison to an actual embed-
ded hardware system from Altera. Our investigations include the actual usage of
the same operating system running on both, the target hardware and the simu-
lation as well as serial and parallel software benchmarks. We analyze the current
accuracy of the simulation environment with respect to a performance model,
based on the execution time of the simulation and the actual embedded hardware
system. Using the instruction accurate simulation technology from OVP is for the
simulation of embedded/low-power HPC hardware architectures and applica-
tions. Furthermore, we point out first steps towards further possibilities for
obtaining a better performance model by the use of our simple memory model.

1 Introduction

Single-core processors have been replaced by multi-core, and in many areas of high
performance computing (HPC) to a significant extend by many-core processors, such
as general purpose GPUs (GPGPUs) or Intel’s many integrated core (MIC) system.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_2



While this development has progressed for well over a decade it has just reached its
slow pick-up phase in the field of embedded low-power systems during the last years.
Yet, the same restrictions and requirements, e.g., the thermal power wall along with
decreasing structures in the manufacturing process and that have been driving this
conversion for desktop, server and HPC systems become more and more important for
many applications in the embedded domain. The increasing cost for single-core sys-
tems, due to the low remaining stocks and production rates, but also and more
importantly their lack of performance, becomes more and more of a hindrance, e.g., for
driving assistance systems, where computational power is indispensable. Thus, the
transition to multi-core systems was necessary and unavoidable. Currently, as more and
more functionality is added to applications running on the embedded devices, as well
the steadily increasing interest in utilizing them for HPC applications, the additional
computing power is needed to satisfy the increasing performance requirements. This, in
turn, leads to the development of interconnected multi-core architectures and cluster
systems, mostly based on conventional and HPC network fabrics, as embedded
hardware developers abandon the use of the more traditional bus systems. Even if such
systems are currently not yet an established standard they will play an important role in
most embedded low-power application domains in the future. Due to the increasing
requirements for power and energy efficiency for HPC systems and architectures, a
significant amount of research has been put into the utilization of the afore mentioned
conventional multi- and many-core low-power architectures. Yet, as suitable
low-power architectures for HPC systems currently are still only scarcely available,
accurate simulations of these architectures are a key instrument for verification,
memory analysis, performance modeling, prediction and evaluation. It may even be
used to guide to development of new embedded hardware towards a more suitable
design for HPC applications. Historically, simulation techniques can be categorized in
different abstraction levels (cf. Table 1) [1], where the level of abstraction differentiates
two main aspects: (i) the speed of the simulation and (ii) the accuracy of the results. In
this classification the functional model corresponds to the highest level of abstraction,
resulting in the lowest simulation accuracy, but the highest simulation speed. The
lowest level of abstraction is the physical level, where even physical effects, e.g., of
transistor gate delays, are considered. Naturally, the physical level has the worst
simulation speed, yet the highest accuracy of simulation results. The functional level
does not distinguish between hard- and software. Thus, this level is too abstract for
evaluating combined soft- and hardware aspects. Yet, the instruction accurate level
does distinguish between hard- and software. Furthermore, it is even possible to obtain
information about non-functional properties like time and energy. At the same time the
simulation speed of instruction accurate simulations is very fast, as compared to all
more accurate modeling techniques (cycle accurate, RTL and physical level). In terms
of simulation speed, the cycle accurate simulation level is very slow in comparison to
the instruction accurate one. Weaver and McKee [2] showed that discrepancies of
hours up to days are possible and the simulation results are not mandatory more
accurate. As a consequence, cycle accurate simulations are not an option for the
simulation of multi- or large many-core systems. Ideally the simulation of large
embedded multi-core systems, has to be both: accurate and fast. Due to the large
number of processors, peripherals and network interconnects in such a system,

20 A. Ditter et al.



especially the simulation speed is an important aspect. A state-of-the-art instruction
accurate simulation technology is called Open Virtual Platforms (OVP) and provided
by Imperas [3]. This simulation environment shows excellent properties concerning to
simulation speed. Also, the scalability of the simulation results for different numbers of
cores was verified [4].

In this paper we investigate the accuracy of results from the state-of-the-art
instruction accurate simulation environment OVP along with their applicability for the
verification and evaluation of embedded HPC architectures and algorithms. Further-
more, we have developed an instrumentation mechanism for OVP that allows us to
track, record and trace memory access patterns within the simulation of whole appli-
cations as well as functions and instructions. Using this technique, we can provide a
better understanding for memory access patterns to analyze and compare different
algorithms and hardware systems and advice software and hardware developers about
potential improvements in their respective designs, allowing for an overall better
hardware-software co-design. We extend this capability with a first simple memory
model, allowing us to use this approach for a more accurate performance modeling than
conventional instruction accurate simulation techniques. For our analysis and evalua-
tion we compare the results of OVP to those obtained from our actual reference
hardware, the Altera Cyclone V sytem on chip (SoC) (cf. Sect. 3.2), as we emulated the
Altera SoC using OVP.

The rest of the Paper is structured as follows. Section 2 provides a comprehensive
survey of related work in the field. Section 3 gives an in depth overview of the OVP
simulation environment as well as the actual hardware system we compare our results
against. Section 4 explains our instrumentation for tracing memory access in OVP
along with the memory and performance modeling. Section 5 introduces the applica-
tions and benchmarks used for our investigations. Section 6 presents our findings and
quantitative results along with a conclusion and an outlook on future work in Sect. 7.

Table 1. Level of abstraction decreases from top to bottom, while accuracy increases.

Modeling technique Modeling language

Functional Model MATLAB/Simulink
Instruction Accurate Model Instruction Set Simulator (ISS)
Transactional Level without Time
(Programmers View without Time)

Un-Timed SystemC

Transactional Level with Time
(Programmers View with Time)

Timed SystemC

Cycle Accurate Model C model
Register Transfer Level (RTL) HDL like VHDL
Physical Level SPICE

Memory Analysis and Performance Modeling for HPC Applications 21



2 Related Work

There is a significant body of research in the field of utilizing low-power architectures
for HPC and in the optimization of energy efficiency for HPC applications. Rajovic et al.
investigated the usage of low-power ARM1 architectures and SoCs as means to reduce
the cost of HPC [5]. They conclude that low-power ARM-based SoCs have promising
characteristics for HPC. In 2013, Goeddeke et al. presented a paper on energy-to-
solution comparisons between different architectures for different classes of numerical
methods for partial different equations [6]. They showed that energy-to-solution and
energy-per-time-step improvements up to a factor of three are possible when using the
ARM-based Tibidabo cluster based on a setting with 96 ARM Cortex-A9 dual-core
processors [7], instead of an x86-based cluster. The x86 cluster used for the reference
measurements was the Nehalem sub-cluster of the LiDOng machine provided by TU
Dortmund [8]. A study comparing the performance as well as the energy consumption of
different low-power and general-purpose architectures was published by Castro et al.
[9]. Based on the Traveling-Salesman problem [10], they investigated time-to-solution
and energy-to-solution for an Intel Xeon E5-4640 Sandy Bridge-EP with 8 cores, 16
threads, i.e., hyper-threading support, a low-power Kalray MPPA-256 many-core pro-
cessor consisting of 256 user cores and 32 system cores [11], as well as for a low-power
CARMA board from SECO [12], consisting of a NVIDIA Tegra 3 and a NVIDIA
Quadro 1000M GPU. The results show, that the CARMA board and the MPPA-256
many-core processor achieve better results than the Xeon 5 measured in terms of energy
to solution. With regard to the time-to-solution metric, the Xeon 5 performed better than
the CARMA board but not as good as the low-power MPPA-256 many-core processor.
A work considering low-power processors and accelerators in terms of energy aware
HPC was published in 2013 [13]. There, a number of different HPC micro-benchmarks
was used to determine the energy-to-solution. The architectures evaluated were NVI-
DIA Tegra 2 [14] and Tegra 3 [15] SoCs. The results show that drastic energy to solution
improvements are possible on the newer Tegra 3 SoC in comparison to the Tegra 2 SoC
(reduction of 67% on average). Furthermore, the authors conclude that the usage of
integrated GPUs in low-power architectures, such as Tegra 2 and Tegra 3, can improve
the overall energy efficiency. All presented investigations emphasize, that lowpower
hardware architectures have promising characteristics for HPC. There is a range of tools
that allow memory modeling and simulation, e.g., Gem5 [16], DiskSim [17] or
DRAMSim2 [18]. The cycle accurate simulation environment Gem5 allows a com-
prehensive set of building blocks, ranging from caches, crossbars, to full-blown DRAM
controllers. DiskSim is an accurate and highly-configurable disk system simulator. It
was developed to support research into various aspects of storage subsystem architec-
ture, including modules that simulate intermediate controllers, buses, device drivers,
request schedulers, disk block caches, and disk array data organizations. DRAMSim2 is
a cycle accurate memory system simulator. The goal of DRAMSim2 is to be an accurate
DDR2/3 memory system model which can be used in tracebased and full system
simulations.

1 http://www.arm.com/.

22 A. Ditter et al.

http://www.arm.com/


3 Environment

3.1 Simulation Environment

The simulation technology from Open Virtual Platforms was developed for high per-
formance simulation. The technology enables debugging applications, which run on the
virtual hardware, as well as analysis of virtual platforms containing multiple processor
and peripheral models. The OVP simulation technology is extensible. Furthermore, it
provides the ability to create new processor models and other platform components by
writing C/C++ code that uses the application programming interface (API) and
libraries supplied as part of OVP [19]. The API defines a virtual hardware platform
which is called ICM (Innovative CPUManager Interface). This API includes functions
for setting up, running and terminating a simulation (icmInitPlatform, icmSimu-
latePlatform, icmTerminate), defining components for the simulation (e.g.,
icmNewProcessor) and loading application’s executable (icmLoadProcessorMemory).
Figure 1 shows an overview about how an OVP simulation with minimal effort works.
Minimal effort means, that one processor has to be defined for the simulation. The
example uses the language C for the hardware platform as well as the application to run
on that platform. The simulator included in OVP is an instruction accurate simulator.
This means, that the functionality of a processor’s instruction execution is represented
without regard to artifacts like pipelines. Instruction accurate simulation cannot make a
clear statement about time spent during pipeline stalls, due to cache misses and other
things that are not modeled, so any conversion to time will have limited accuracy
compared to actual hardware. OVP multi-processor platforms are not working simul-
taneously. For efficiency, each processor advances a certain number of instructions in
turn. So in multi-processor simulations a single processor is simulated until it has
signaled that it has finished its quantum. The quantum is defined as the time period in
which each component in turn simulates a certain number of instructions [19]. Simu-
lated time is moved forward only at the end of a quantum. This can create simulation
artifacts, for example where a processor spends time in a wait loop, while waiting for
the quantum to finish. To avoid this the quantum has to be set very low value
(potentially having a significant impact on the simulation performance) so that the
measurements will not be affected by this simulation artifacts. This can be adjusted in
the simulator settings [20]. The simulation environment can only provide the total
amount of instructions that were executed. Assuming a perfect pipeline, where one
instruction is executed per cycle, the instruction count divided by the processor’s
instruction rate, in million instructions per second (MIPS), yields the run time of the
program. The OVP simulator provides the possibility for measuring instruction counts
within a program. As a consequence, the instruction counts for specific code snippets
can be recorded. On singlecore platforms, assuming that no time-controlled peripheral
models are invoked, there is no need to set the quantum to one because the multi-core
scheduling algorithm does neither affect nor intervene the simulation.

Memory Analysis and Performance Modeling for HPC Applications 23



3.2 Reference Hardware

Embedded system developers have to satisfy multiple requirements such as a high
computational performance, support for a wide variety of communication interfaces
and protocols, execution of complex signal processing algorithms in realtime, low
power consumption. All these requirements have to be fulfilled with a very limited
amount of resources. Given a long lifetime of the deployed systems and ever changing
environmental conditions, the in-field support and upgrade is one of the most crucial
requirements. A common solution to these demands is the extensive use of field-
programmable gate arrays (FPGAs) for the hardware part and on the software side,
relying on a processor architecture with a well-established and active ecosystem. Just a
few years ago this approach implied at least two separate complex chips to be used in a
single system. However the situation has recently changed and several FPGA vendors

Fig. 1. Operating principle of open virtual platforms simulations.

24 A. Ditter et al.



came to market with integrated devices combining high-performance ARM CPUs, a
fast memory controller along with a rich set of peripheral devices and a programmable
logic unit. The integration of all these units into a single SoC provides developers with
multiple benefits and thus, we expect such systems to become established in many
embedded devices. For this reason we we chose Altera’s development kit board [21]
with a Cyclone V SX SoC-FPGA as our reference hardware platform to carry out our
benchmarking. This SoC-FPGA includes a hard processor system (HPS) consisting of
multiprocessor subsystem (MPU), multiport SDRAM controller with support for
double data rate 2 (DDR2), DDR3 and low-power DDR2 memory, a set of peripheral
controllers and a high-performance interconnect. The memory controller supports
command and data reordering, error correction code (ECC) and power management.
On the board 1 GiB of DDR3 SDRAM is connected to the memory controller via a
40-bit data bus operating at 400 MHz for a total theoretical bandwidth of over 25.6
Gbps. The multiprocessor subsystem of the HPS includes two ARM Cortex-A9
MPCore 32-bit processors with a NEON SIMD co-processor and double-precision
floating point unit (FPU) per processor, 32 KiB instruction and 32 KiB data level 1
(L1) caches and memory management unit (MMU) per processor, ARM level 2 (L2)
cache controller and shared 512 KiB L2 cache. The cache controller has a dedicated
64-bit master port connected directly to the SDRAM controller and a separate 64-bit
master port connected to the system level 3 (L3) interconnect. All blocks of the HPS
are connected with L3 multilayer AXI interconnect structure. Low-speed peripheral
controllers reside on the level 4 (L4) AXI buses working in separate clock domains for
efficient power management. Programmable logic part of the SoC is a
high-performance 28 nm FPGA. The HPS and FPGA part of the chip are connected via
high-bandwidth (> 125 Gbps) on-chip interfaces. All the benchmarks presented in this
paper use only the HPS part of the SoC-FPGA, while the FPGA part is not used. The
Cortex-A9 MPCore runs a Linux kernel version 3.16.0 and the user space software is
an ARM Arch Linux distribution utilizing a rolling release model.

3.3 Virtual Hardware

The virtual hardware platform implements just a part of the actual Altera Cyclone V
SoC [22]. Specific and not needed hardware parts, e.g., the FPGA block, are not
implemented. Anyway, all required components for running a Linux kernel and
guarantee correct hardware functionality for our test cases are available. Figure 2
shows the subset of implemented hardware components. The virtual hardware allows to
boot the same Linux kernel (3.16.0) as the actual hardware does. As a consequence, the
virtual and the actual hardware are binary compatible.

Memory Analysis and Performance Modeling for HPC Applications 25



4 OVP Instrumentation and Modeling

OVP, being an instruction accurate simulation environment, allows to track and trace
each individual instruction in the program flow, we utilize this functionality to capture
each memory access. For this purpose we designed a light weight library that allows to
start and stop the recording of memory access instruction from within the respective
application. This can simply be achieved by linking against our library. Since many
HPC applications are either written in C/C++ as well as Fortran, especially for legacy
application and as in our case the benchmark set, we have designed the library in C,
allowing to interface with both programming languages without any additional
requirements. The library offers the possibility to start and stop the recording of memory
accesses, thus, allowing to restrict the data acquisition to the respective region of
interest. This may be an entire application as well as a function call or an individual
instruction. Currently the library is capable to record the total number of read and write
accesses. We have also experimented with a more detailed recording, which is currently
not incorporated any more, as it slows down the entire simulation by one to two orders of
magnitude and creates memory access log files of several GiB within just a few minutes
of host run time. Nonetheless, we plan to extend the current capabilities by employing
techniques to reduces the memory consumption of trace files analogous to [23].

Using the results of our memory access recording library we obtained we designed
a first very basic memory model for OVP, which considers and distinguishes the
amount of read and write access to memory and weighs them with different factors.
This makes sense, as it is much less likely for a write access to be delayed as much as a

Fig. 2. Virtual Cyclone V SoC

26 A. Ditter et al.



read access, in case the data is not available in the cache. We use these factors to better
estimate the performance, i.e., run time of the applications and benchmarks in Sect. 5.

5 Benchmarks and Applications

Our investigations are based on one real world HPC application, one real world but
artificial problem and an extensive artificial benchmark set. All these individual
benchmarks resemble typical computational fluid dynamics (CFD) applications and
provide a wide range of typical HPC characteristics, such as compute and memory
bound kernels. We evaluate our approach for the well known 3D shallow-water solver
UTBEST3D, which is a typical high performance computing application and described
in detail in Sect. 5.1 as well as the computation of mandelbrot sets. Additionally we use
the NAS Parallel Benchmark suite (NPB). [24], i.e., the eight original benchmarks
specified in NPB 1, consisting of five kernels and three pseudo applications. We
cross-compiled the applications and benchmarks for both, the real hardware as well as
the OVP simulation to ensure binary equality and thus, best possible comparability of
the obtained results. For this, we used gfortran-arm-linux-gnueabihf for the Fortan
based and gcc-arm-linux-gnueabihf for the C based benchmarks (both in version 4.8.2).
The same binaries were used in the real and the virtual environment. The individual
characteristics of UTBEST3D, the mandelbrot set and the NAS benchmarks are
described in the following.

5.1 UTBEST3D – U3D

The numerical solution algorithm in the 3D shallow-water solver University of Texas
Bays and Estuaries Simulator - 3D (UTBEST3D) considers the system of hydrostatic
primitive equations with a free surface [25, 26]. A prismatic mesh is obtained by
projecting a given triangular mesh in the vertical direction to provide a continuous
piecewise linear representations of the topography and of the free surface. The vertical
columns are then subdivided into layers. If a bottommost prism is degenerate, it is
merged with the one above it. Due to the discontinuous nature of the approximation
spaces, no constraints need to be enforced on the element connectivity. Hanging nodes
and mismatching elements are allowed and have no adverse effects on stability or
conservation properties of the scheme. This flexibility with regard to mesh geometry is
exploited in several key parts of the algorithm: vertical mesh construction in areas with
varying topography, local mesh adaptivity and wetting/drying. The discontinuous
Galerkin (DG) discretization is based on the local discontinuous Galerkin method [27]
that represents a direct generalization of the cell-centered finite volume method, the
latter being just the piecewise constant DG discretization. One of the features of this
method is a much smaller numerical diffusion exhibited by the linear and higher order
DG approximations compared to the finite difference or finite volume discretization. The
method guarantees the elementwise conservation of all primary unknowns including
tracers, supports an individual choice of the approximation space for each prognostic
and diagnostic variable, demonstrates excellent stability properties, and possesses

Memory Analysis and Performance Modeling for HPC Applications 27



proven local adaptivity skills. UTBEST3D is written in C++ to provide clean interfaces
between geometrical, numerical, computational, and communication parts of the code.
The object-oriented coding paradigm is designed to enable a labor efficient development
lifecycle of the model. The programming techniques were carefully chosen and tested
with the view of guaranteeing a smooth portability to different hardware architectures,
operating systems, compilers, and software environments.

5.2 Mandelbrot Set – MB

A mandelbrot set is defined as the set of complex numbers in the complex plane where
the sequence c; c2 + c; (c2 + c)2 + c;… does not approach infinity, even if the iteration
counter tends to infinity [28]. Due to the characteristic of the sequence, it can be
defined as a complex quadratic polynomial of the form znþ 1 ¼ z2n þ c; with z0 = 0
Mandelbrot sets are often visualized by a mapping from the complex plane into an
image representation. For this purpose the imaginary and real part of each complex
number is considered as an image coordinate. Depending on how rapid the sequence
and quadratic polynomial, of each pixel diverges, the corresponding pixel gets a
defined color. If the sequence converges, the pixel is colored black. As each pixel can
be computed independently and requires few memory accesses for every iteration, the
mandelbrot set is a compute bound application.

5.3 NAS Parallel Benchmarks

The kernels considered in our benchmarking are CG (Conjugate Gradient with irregular
memory access and communication), MG (Multi-Grid on a sequence of meshes, long-
and short-distance communication), FT (discrete 3D fast Fourier Transform containing
all-to-all communication), EP (Embarrassingly Parallel) and IS (Integer Sort with
random memory access). LU (Lower-Upper Gauss-Seidel solver) are the defined
pseudo applications, BT (Block Tri-diagonal solver) as well as, SP (Scalar
Penta-diagonal solver).

Conjugate Gradient Benchmark – CG: This benchmark computes an estimate of the
largest eigenvalue of a symmetric positive definite sparse matrix using the conjugate
gradient method [29]. The run time of this benchmark is dominated by the sparse
matrix vector multiplication in the conjugate gradient subroutine. Due to the random
pattern of nonzero entries of the matrix this requires a high number of memory
accesses, leading to a low computational intensity of this memory bound benchmark.

Multi Grid Benchmark – MG: The MG benchmark is based on a multigrid kernel,
which computes an approximative solution of the three dimensional Poisson problem.
In each iteration the residual is evaluated and used to apply a correction to the current
solution. The most expensive parts of this algorithm are evaluation of the residual and
application of the smoother, both of which are stencil operations with constant coef-
ficients for the specified problem. The update of a grid point require the values of
neighboring points. Thus, even with an optimal implementation this requires in

28 A. Ditter et al.



between four and eight additional memory access operations per grid point. For con-
stant stencil coefficients the run time is dominated by memory access and not the
computational effort, meaning that the MG benchmark is memory bound.

Fourier Transform Benchmark – FT: The FT benchmark solves a partial differential
equation by applying a Fast Fourier Transform (FFT) to the original state array and
multiplying the result by an exponential. Then an inverse FFT is used to recompute the
original solution. Finally, a complex checksum is computed to verify the result [29].
The FFT is dominating the run time of this benchmark. As the implementation in the
benchmark uses a blocked variant of the Stockham FFT. This procedure is bound by
memory operations, but due to blocking the limiting factor is not directly the memory
but rather the cache bandwidth.

Embarrassingly Parallel Benchmark – EP: EP is an embarrassingly parallel kernel,
which generates pairs of Gaussian random deviates and tabulates the number of pairs in
successive square annuli, a problem typical of many Monte Carlo simulations [29].
The EP benchmark is computationally expensive, complex operations such as com-
putation of logarithms and roots make up a big portion of the total run time whereas
only very few memory operations are necessary for both random number generation
and calculation of the Gaussian pairs. The EP benchmark is compute bound.

Integer Sort Benchmarks – IS: This benchmark is able to sort N keys in parallel. The
keys are generated by a sequential key generation algorithm. The sorting operations
performed in this kernel are important in particle method codes. Both, integer com-
putation speed as well as communication performance are under test [29]. IS requires
ranking of an unsorted sequence of N keys. The initial sequence of keys will be
generated in a defined sequential manner, but the initial distribution of the keys can
have a significant impact on the performance of this benchmark.

Lower Upper Benchmark – LU: LU uses a Gauss-Seidel solver for lower and upper
triangular systems (regular-sparse, block size 5 × 5). It solves flows in a cubic domain,
and implements several real-case features, e.g., a dissipation scheme. This benchmark
represents the computations associated with the implicit operator of implicit CFD
algorithms [29].

Diagonal Block Matrix Benchmark – SP and BT: The SP benchmark solves multiple,
independent systems of scalar, non diagonally dominant, pentadiagonal equations. BT,
however, solves multiple and independent systems of non diagonally dominant, block
tridiagonal equations with block size 5 × 5. SP and BT are representative of compu-
tations associated with the implicit operators of CFD codes. Both, SP and BT, are
similar in many respects, the essential difference is the communication to computation
ratio [29].

6 Results

We have carried out extensive measurements for all NAS benchmarks, the mandelbrot
set as well as UTBEST3D and have obtained the following results.

Memory Analysis and Performance Modeling for HPC Applications 29



As described, we have analyzed all benchmarks with respect to their plain run time
behavior. This means that we compare the results from test runs on the real hardware
platform with the run times in the simulation environment. The observation is that
generally the prospective run time in the simulation is faster than the execution on the
real hardware. This is due to the fact that the simulation does not contain a proper model
for cache and memory access penalties as is the case for real hardware. The simulator
assumes a constant and too low latency for each memory access and thus yields a lower
run time. The degree of deviation is directly coupled to the total amount of memory
access within the individual benchmarks. As can be seen in Fig. 3 the total run time can
be as much as 4.9 times slower than the prospected run time of the simulation. In our
benchmark set this was the case for the CG benchmark of the NPB suite, i.e., a
benchmark with low computational complexity. The high deviation becomes not
directly visible, as we chose to display the ordinate in log scale to compensate the
varying run times across the whole of our benchmarks. We also scaled the benchmarks
to obtain an impression about impact on the relative error of the simulation and the
execution on real hardware. As the NPB suite offers several problem size classes we
analyzed the two smallest classes. This is on one hand due to the fact that the simulation
requires about on order of magnitude more to finish than the execution on the real
hardware. On the other hand the memory available on the SoC is limited and cannot fit
certain benchmarks beyond this class into memory. The results for both classes were
consistent with respect to number of memory accesses and the total run times.

Furthermore, we carried out the benchmarks in parallel using OpenMP and
observed a consistent speedup for both, the simulation as well as the execution on the
real hardware. The prognosis of the speedup was slightly overshooting in seven out of
ten cases, which was to be expected as the run times in the simulation are consistently
faster than on the real hardware.

Fig. 3. Comparisons of benchmark run times on real hardware and in simulation; ordinate in log
scale.

30 A. Ditter et al.



As we observed, the predicted run time in the simulation to be heavily dependent
on the type of kernel and thus the amount of memory access, we instrumented the
simulation model in a way that allows to measure the amount of reading and writing
memory access of the benchmark runs. Based on our observation (cf. Fig. 4), we
derived a memory model improving the prediction accuracy of the run time on the real
hardware in seven out of ten cases (cf. Fig. 5) using function (1), which we derived on
the basis of our data.

Fig. 4. Percentage and relation of read and write operations for each of the benchmarks, along
with the quotient of the predicted run time of the simulation, rt(sim) and the actual run time on
the hardware, rt(hw).

Fig. 5. Quotient of simulation run time, rt(sim) and run time on real hardware, rt(hw), in relation
with the relative error with and without our memory model.

Memory Analysis and Performance Modeling for HPC Applications 31



rt hwð Þ ¼ eð1=mÞ
2

lnð1=mÞ
m � rt simð Þ ð1Þ

where: m is the m quotient of the #writes/#reads, rt(hw) is the run time on real hardware,
which is to be predicted from, rt(sim), the run time obtained from the simulation.

Using this fitting function, the error margin reduces from a standard deviation of
close to 0.4 in the case with no memory model to 0.2, when our model is used for the
approximation of the run time on the real hardware.

7 Conclusions and Future Work

7.1 Conclusion

We carried out a comprehensive analysis of benchmarks on real and simulated hard-
ware in order to analyze the accuracy of simulations with respect to the execution on
real hardware platform. We found that a naive simulation model is not sufficient and
must be extended with a proper memory model to match the anticipated results for real
hardware runs. We developed such a model that allowed us to reduce the inaccuracy in
the prediction of the run time on the real hardware based on the simulation. Yet, we
show that the combination of an instruction accurate simulation is well suited as a basis
for abstract simulations of multi-core embedded systems. Simulations can be carried
out in an acceptable time frame and yield sufficiently accurate results.

7.2 Future Work

In addition to our first evaluation of one HPC application and benchmark a broader
range especially of applications has to be evaluated with respect to their computational
and memory requirements. Using these applications and benchmark information we
want to extend our memory model with information about parallel execution using
OpenMP as well as cache hierarchy its related latency, energy consumption and their
interaction. Furthermore, we will expand our models and investigations by the ARMv8
architecture (64-bit). Because instruction accurate simulation itself can never provide
precise timing information, beyond modeling it with one or several instructions, such as
L1-/L2-Cache accesses, displacement, cache miss rates and page faults we want to
introduce concepts of statistical memory modeling. An interesting concept about sta-
tistical memory modeling was published by Davy Genbrugge and Lieven Eeckhout in
2009 [30]. They extend statistical simulation methodology to model shared resources in
the memory subsystem of multi-processors as shared caches, off-chip bandwidth and
main memory. In a next step, we will examine how well suited this approach is for our
work and if there is an additional benefit. An interesting article about energy modeling
was published by Kerrision and Eder in 2015 [31]. They examine a hardware
multi-threaded microprocessor and discusses the impact such an architecture has on
existing software energy modeling techniques. Their multithreaded software energy
model used with Instruction Set Simulation can yield an average error margin of less

32 A. Ditter et al.



than 7%. This model could be also of benefit for us, even if the ARM architecture we
use does not support hardware multi-threading, because the base for the multi-threaded
energy model was a single threaded one.

References

1. Köhler, C.: Enhancing Embedded Systems Simulation: A Chip-Hardware-in-the-Loop
Simulation Framework. Vieweg+Teubner research. Vieweg+Teubner Verlag, Wiesbaden
(2011)

2. Weaver, V.M., McKee, S.A.: Are cycle accurate simulations a waste of time? In:
Proceedings of the 7th Workshop on Duplicating, Deconstructing, and Debunking, June
2008

3. Imperas Software Limited. Official Open Virtual Platforms Website. http://www.ovpworld.
org/. Accessed 27 April 2015

4. Schoenwetter, D., Schneider, M., Fey, D.: A speed-up study for a parallelized white light
interferometry preprocessing algorithm on a virtual embedded multiprocessor system. In:
ARCS Workshops (ARCS), pp. 1–6, February 2012

5. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2013, pp. 40:1–40:12. ACM, New York (2013). http://doi.acm.org/10.1145/
2503210.2503281

6. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., Ramirez,
A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application
study on a low-power ARM-based cluster. J. Comput. Phys. 237, 132–150 (2013). http://dx.
doi.org/10.1016/j.jcp.2012.11.031

7. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: making the
case for an ARM-based HPC System. Future Gener. Comput. Syst. 36, 322–334 (2014).
http://www.sciencedirect.com/science/article/pii/S0167739X13001581

8. ITMC TU Dortmund. Official LiDO Website. https://www.itmc.uni-dortmund.de/dienste/
hochleistungsrechnen/lido.html. Accessed 26 March 2015

9. Castro, M., Francesquini, E., Nguele, T.M., Mehaut, J.-F.: Analysis of computing and
energy performance of multicore, NUMA, and manycore platforms for an irregular
application. In: Proceedings of the 3rd Workshop on Irregular Applications: Architectures
and Algorithms, IA3 2013, pp. 5:1–5:8. ACM, New York (2013). http://doi.acm.org/10.
1145/2535753.2535757

10. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A
Computational Study: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2011). http://books.google.de/books?id=
zfIm94nNqPoC

11. KALRAY Corporation. Official KALRAY MPPA Processor Website. http://www.kalrayinc.
com/kalray/products/#processors. Accessed 31 March 2015

12. NVIDIA Corporation. Official NVIDIA SECO Development Kit Website. https://developer.
nvidia.com/seco-development-kit. Accessed 31 March 2015

13. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., Ramirez, A.: Experiences with
mobile processors for energy efficient HPC. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2013, pp. 464–468. EDA Consortium, San Jose
(2013). http://dl.acm.org/citation.cfm?id=2485288.2485400

Memory Analysis and Performance Modeling for HPC Applications 33

http://www.ovpworld.org/
http://www.ovpworld.org/
http://doi.acm.org/10.1145/2503210.2503281
http://doi.acm.org/10.1145/2503210.2503281
http://dx.doi.org/10.1016/j.jcp.2012.11.031
http://dx.doi.org/10.1016/j.jcp.2012.11.031
http://www.sciencedirect.com/science/article/pii/S0167739X13001581
https://www.itmc.uni-dortmund.de/dienste/hochleistungsrechnen/lido.html
https://www.itmc.uni-dortmund.de/dienste/hochleistungsrechnen/lido.html
http://doi.acm.org/10.1145/2535753.2535757
http://doi.acm.org/10.1145/2535753.2535757
http://books.google.de/books?id=zfIm94nNqPoC
http://books.google.de/books?id=zfIm94nNqPoC
http://www.kalrayinc.com/kalray/products/%23processors
http://www.kalrayinc.com/kalray/products/%23processors
https://developer.nvidia.com/seco-development-kit
https://developer.nvidia.com/seco-development-kit
http://dl.acm.org/citation.cfm?id=2485288.2485400


14. NVIDIA Corporation. Official NVIDIA Tegra 2 Website. http://www.nvidia.com/object/
tegra-superchip.html. Accessed 27 March 2015

15. NVIDIA Corporation. Official NVIDIA Tegra 3 Website. http://www.nvidia.com/object/
tegra-3-processor.html. Accessed 27 March 2015

16. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J.,
Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.
D., Wood, D.A.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7 (2011).
http://doi.acm.org/10.1145/2024716.2024718

17. Bucy, J.S., Schindler, J., Schlosser, S.W., Ganger, G.R.: The DiskSim Simulation
Environment Version 4.0 Reference Manual, May 2008

18. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: a cycle accurate memory system
simulator. Comput. Architect. Lett. 10(1), 16–19 (2011)

19. Imperas Software Limited, OVP Guide to Using Processor Models, Imperas Buildings,
North Weston, Thame, Oxfordshire, OX9 2HA, UK, January 2015, version 0.5,
docs@imperas.com

20. Imperas Software Limited, OVPsim and Imperas CpuManager User Guide, Imperas
Buildings, North Weston, Thame, Oxfordshire, OX9 2HA, UK, January 2015, version 2.3.7,
docs@imperas.com

21. Altera Corporation. Cyclone V SoC Development Kit User Guide. https://www.altera.com/
content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf. Accessed 07
May 2015

22. Imperas Software Limited. Description of Altera Cyclone V SoC. http://www.ovpworld.org/
library/wikka.php?wakka=AlteraCycloneVHPS. Accessed 29 April 2015

23. Janapsatya, A., Ignjatovic, A., Parameswaran, S., Henkel, J.: Instruction trace compression
for rapid instruction cache simulation. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2007, pp. 803–808. EDA Consortium, San Jose
(2007). http://dl.acm.org/citation.cfm?id=1266366.1266538

24. Hardman, J.: Official NAS Parallel Benchmarks Website. http://www.nas.nasa.gov/
publications/npb.html. Accessed 23 April 2015

25. Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow
water equations. J. Sci. Comput. 22(1–3), 245–267 (2005)

26. Aizinger, V., Proft, J., Dawson, C., Pothina, D., Negjusse, S.: A three-dimensional
discontinuous Galerkin model applied to the baroclinic simulation of Corpus Christi Bay.
Ocean Dyn. 63(1), 89–113 (2013). https://www.math.fau.de/fileadmin/am1/users/aizinger/
AizingerPDPN2013.pdf

27. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). http://dx.
doi.org/10.1137/S0036142997316712

28. Branner, B.: The mandelbrot set. Proc. Symp. Appl. Math. 39, 75–105 (1989)
29. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.

A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks
- summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing 1991, pp. 158–165. IEEE (1991)

30. Genbrugge, D., Eeckhout, L.: Chip multiprocessor design space exploration through
statistical simulation. IEEE Trans. Comput. 58(12), 1668–1681 (2009)

31. Kerrison, S., Eder, K.: Energy modeling of software for a hardware multithreaded embedded
microprocessor. ACM Trans. Embed. Comput. Syst. 14(3), 56:1–56:25 (2015). http://doi.
acm.org/10.1145/2700104

34 A. Ditter et al.

http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://doi.acm.org/10.1145/2024716.2024718
https://www.altera.com/content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf
https://www.altera.com/content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf
http://www.ovpworld.org/library/wikka.php?wakka=AlteraCycloneVHPS
http://www.ovpworld.org/library/wikka.php?wakka=AlteraCycloneVHPS
http://dl.acm.org/citation.cfm?id=1266366.1266538
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://www.math.fau.de/fileadmin/am1/users/aizinger/AizingerPDPN2013.pdf
https://www.math.fau.de/fileadmin/am1/users/aizinger/AizingerPDPN2013.pdf
http://dx.doi.org/10.1137/S0036142997316712
http://dx.doi.org/10.1137/S0036142997316712
http://doi.acm.org/10.1145/2700104
http://doi.acm.org/10.1145/2700104


http://www.springer.com/978-3-319-46534-0


	Memory Analysis and Performance Modeling for HPC Applications on Embedded Hardware via Instruction Accurate Simulation
	Abstract
	1 Introduction
	2 Related Work
	3 Environment
	3.1 Simulation Environment
	3.2 Reference Hardware
	3.3 Virtual Hardware

	4 OVP Instrumentation and Modeling
	5 Benchmarks and Applications
	5.1 UTBEST3D – U3D
	5.2 Mandelbrot Set – MB
	5.3 NAS Parallel Benchmarks

	6 Results
	7 Conclusions and Future Work
	7.1 Conclusion
	7.2 Future Work

	References


