Chapter 2
Two-Photon Interference

2.1 Classical Interferometry

Interferometry using various portions of the electromagnetic spectrum has a long
history, extending back to the beginning of the nineteenth century in the optical
case, and expanding far into other parts of the electromagnetic spectrum by the mid-
twentieth century. During this time, interferometry has been used both as a probe
for investigating the properties of light itself and as a practical tool for making high-
precision measurements of other objects and phenomena. The applications range
from measurement of lattice structures in solids and determination of stellar diameters
to searches for gravity waves, a luminiferous ether, and extra space-time dimensions.

The archetypal interference experiment is the Young double slit experiment
(Fig.2.1), in which a wavefront is split into two components. In general, each com-
ponent travels a slightly different distance as they make their way to a given point of
the viewing screen. The two recombined wavefronts thus have different phase val-
ues due to their different propagation distances, with the result that bright and dark
regions are formed on the screen from the corresponding constructive and destructive
interference.

When the double slit experiment is examined at the level of individual photons, it
is tempting to think of one photon passing through the top slit and the other passing
through the bottom slit, followed by interference of one photon with the other at the
final screen. However, this cannot be the case. To see this, suppose that a photographic
plate is placed at the screen location to record photon arrival events. Experimentally,
even if the intensity is reduced to the point where there is negligible probability of
more than one photon reaching the slits at a given time, interference still arises (see
[1], Sect. 1.1). Rather, each photon has two paths that can be followed to reach the
same point on the screen, one path through each slit. If there is no way to determine
which path was taken, then the superposition principle tells us that the amplitudes
for both paths must be added; what interferes then are these two amplitudes for
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Fig. 2.1 Young double-slit interference. a The beams from the two slits travel slightly different
distances to reach a point on the screen, resulting in a relative phase shift between the beams, causing

bright and dark bands, b the regions of constructive and destructive interference, constructive

interference occurring at angles 6 such that the phase difference %"9 is an integer multiple of 27

different behaviors of the same photon. Turning up the intensity, all interference
arising in classical optics can be viewed as interference of light with itself in this
manner. In the case both of single photon interference and of high-intensity classical
interference, this situation is captured by the definition of first-order correlation
gV given in the next section. For such interference to arise, it is necessary for the
different intermediate histories of the photons to be indistinguishable with respect
to the experimental apparatus: if there is any way to determine which history is
followed, then the interference pattern becomes washed out (see [1], Sect. 3.6, [2]).

A more versatile way to produce interference for many applications is through
the use of interferometers, such as the Mach—Zehnder and Hong—Ou—Mandel inter-
ferometers in the case of spatial interference. When combined with entangled two-
photon sources like spontaneous parametric down conversion discussed, these open
up a number of new possibilities, including true multi-photon interference of a kind
that does not occur in classical interferometry. In these processes, different potential
histories of the same multi-photon set interfere. In order to quantify the non-classical
nature of these interference effects, we must define a new type of correlation function,
the second-order correlation function g .

The first and second-order correlation functions are introduced in the next section,
with a more detailed discussion of interferometers in the following sections.
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2.2 Correlation Functions

2.2.1 First-Order Correlations

We wish to be able to compare the field amplitude at one space-time point (position
x1, time f;) to the field at a different point (x;, ;). Young two-slit interference
corresponds to a special case where x| = x, and #; = f,; in other words, the two
fields were directed to the same point before measuring the combined intensity.

To compare fields at different points, we define the first-order correlation function
or amplitude correlation function [3],

GOy ro 1) = (7 (ri, ))ED (ra, 1)), 2.1
where (.. .) denotes the quantum expectation value in the relevant state and £ are

the positive and negative frequency parts of the electric field operator (see “Appendix
B”). This function obeys

GO(ri,ryt,0) = (GV(ra, ri 0, 1) (2.2)
GV(r.rit1) >0, (2.3)
GO, s 11, 0)| < GOy e 0, 0)G V(P2 1, 1), (2.4)

The normalized correlation function

GV (ri,rat, )

gV, n) = 7 (2.5)
(GO, 0, 1)GD(ra, ra 12, 1) ]
(EO ), 1) ED (ry, 1))
JEO@ ) ED @ ) (EOry, 0) D, 1)
(2.6)

therefore, satisfies 0 < ¢V (ry, r2; 11, 1) < 1. Optical correlation functions are also
sometimes called coherence functions and the absolute value |V (r1, r; 11, 1)] is
called the degree of coherence.
Setting the two positions equal to each other gives the temporal correlation
function,
GO, rit,t+1) GO, r;0,7)
GO@r,rit,t) GO, r;0,0)

gV () = 2.7)

Here, we have assumed that the fields are stationary, i.e. that their correlations depend
only on coordinate differences Ar = r, — r, and 7 = f, — t;, not on the individual
values ry, r2, t;, and 1, themselves. It is clear that g (0) = 1. Except for the case
of perfect coherence (see below), the temporal coherence function decays at long
times: ¢V (1) — 0 as 7 — oo.
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A thermal light source consists of many atoms, usually in the form of a gas,
radiating independently. Collisions between the atoms cause random phase jumps
in the emitted radiation, so that the light emitted remains coherent only over short
time periods determined by the mean time between collisions. In addition, the light
may scatter multiple times before leaving the source, adding further randomness to
the phases. For a quasi-monochromatic field of the form (suppressing the spatial
dependence for simplicity) EC) (1) = Eo e ™“'¢!®® 4, the temporal correlation
function has the form

g(l) (1) = e*iwr <e¢>(t+7')7¢>(t)). (2.8)

The first exponential factor provides a rapid oscillation, while the expectation value
provides a much more slowly varying envelope, so that ‘" (1) generally has an over-
all form as in Fig.2.2. The time at which the correlation begins rapidly decreasing in
amplitude is called the coherence time, T.. The coherence time is generally inversely
proportional to the bandwidth Aw of the light.

Light can be classified by its coherence properties. If the light is perfectly mono-
chromatic (Aw = 0), then it is called perfectly coherent or simply coherent, with
coherence time 7, = 00. A laser is often considered to be a good approximation
to a coherent light source, with a narrow bandwidth and a long coherence time. On
the other hand, if 7. = 0 (and therefore Aw = 00), the light is incoherent. For

(a)

Temporal coherence| 7. | Aw | g (7)

Perfectly coherent |7, = co| Aw — 0 |g¥(7) ~ constant

Partially coherent |7, finite| Aw finite|g) () ~ e~ (ITl/7)"

Perfectly incoherent| 7o = 0 | Aw = oc|g (1) ~ d(7)

(b)

Ih\" WIS

Fig. 2.2 a The possible types of first-order coherence. In the second row, « is some constant of
order 1, determined by the source the frequency spread. b The form of ¢(!) () for partially coherent
light in the case of Gaussian linewidth. The shape of the envelope is given by (¢! (®¢+7) =0y The
peak in the envelope is at 7 = 0
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perfectly coherent light, g/ (7) = 1 is constant, while for perfectly incoherent light
the correlation function is a Dirac delta function, g/ (1) = §(7). These are shown
in Fig.2.2a

Light that falls between these two extremes and has a finite coherence time is
called partially coherent. Light produced by a thermal source is partially coherent.
If the light source is a hot gas, collisions between molecules and random Doppler
shifts broaden the lines to give a spread of frequencies and therefore a finite width
to gV (7). Such thermally generated partially coherent light is often referred to as
chaotic light. Two models are generally used to describe the thermal line broadening,
in which the averaged term in Eq. (2.8) is either Gaussian or Lorentzian.

In the Gaussian case, where the frequency spread is primarily dominated by inho-
mogeneous processes like Doppler broadening, the temporal correlation function is

)

g0 () = emiore i (E) 2.9)

&=

where 7, = Y= 8” 02 T the Lorentzian case, due to homogeneous processes like
collisional broademng or the natural broadening of an excited state due to its finite
lifetime, we instead have

gV (1) = e Wme M7 (2.10)
with coherence time 7, = ﬁ.
Given an amplitude interference pattern, the interference visibility is defined by

V= M, @2.11)
]max + Imin

where Iax and I, are the maximum and minimum intensities (see Fig.2.3). One
of the reasons that the temporal correlation function is important is that it is directly
related to interference visibility. Imagine two fields E| (¢) and E;(t + 7) interfering,
where 7 is the additional time one wave propagated relative to the other in order
to reach the point at which interference is considered. Then the total amplitude is
E(t) = E|(t) + E»(t 4+ 1), and the intensity averaged over a short time interval is

Iy = (E(‘>(t)1§<+> )+ (ES7 ¢+ ESP (1 4 1)) + 2 Re(E () ESY (1 + 7))
= + (L) +2Re(ET M ES (1 + 7)) (2.12)

(=) r(+)
V) (L) /51 / ? (Ey OE; @+ 7)) (2.13)
2) 1) (11)(I>)
1 I
— () [,/%+ %+ Re(g“)m)] 2.14)

The first two terms in the brackets are constants, and the third term contains the
oscillations. Since —|gV (7)| < Re (¢9"(7)) < +|g" ()], it is found that
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Fig. 2.3 An interference pattern with mean intensity / = 2 and visibility V = % =
max min
%:21}% = 0.4, in units where the intensity is dimensionless
V=19Vl (2.15)

Spatial correlations may also be considered. Setting the two times equal, but
looking at two different spatial points, the spatial correlation function is

GO(r,r+ Ar;t,1)
GO, r;t,1)

9P (Ar) = , (2.16)

where stationary fields have again been assumed. The correlations should decay as
the transverse distances (perpendicular to the propagation direction) become large,
so that one may define a transverse coherence length d, as the transverse distance
at which decay sets in. d, is sometimes defined as the square root of the coherence
area, d, = /A.. A. is defined to be the size of the area around one point in the
wave, perpendicular to the propagation direction, in which other points have a stable
enough phase relation with the first point to create interference. Then, similarly to the
temporal case, a system may be described as spatially coherent or spatially incoherent
if its size is, respectively, much less than or much greater than d... A second coherence
length can also be defined, the longitudinal coherence length, I, which is the spatial
distance covered by the light during one coherence time unit: /. = c7.

Because the coherence time tends to be very short for true thermal light (black-
body radiation), which often has 7. < 10~ s, in experiments pseudothermal light
may be used instead. This is produced by scattering coherent light from a rotating
ground glass surface. Light scattering from different points in the surface travel
different distances, so that spatially and temporally random patterns of constructive
and destructive interference occur if the light is shown onto a screen. These patterns
are called speckles, and they vary randomly over time as the glass disk rotates.
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For light from a TMy laser mode striking the disk at distance r from the axis, the
coherence time of these speckles is given by the formula

Wo

Te

where wy is the beam diameter at the disk and £2 is the rotational frequency of

the disk. In this way, longer coherence times, typically 1 us < 7. < 1 ms, can be

obtained. If the light strikes a screen at distance z from the disk, a typical speckle
Az

size is of order d = T
wo

2.2.2 Second-Order Correlations

In the next section, and in later chapters, it is often useful to consider the correlation
between two intensities, rather than between two fields. The corresponding correla-
tion function is called the (normalized) second-order correlation function [3], g(z) (7).
Similarly to the first-order case, we may look at both spatial and temporal correla-
tions, but here we restrict ourselves to the temporal case. Suppressing the spatial
variables again, the correlation is defined by

O = Wi+ dwic+m) 218

(Tt + 7)) (I)?

where in the second equality the average intensity has been assumed to be time-
independent. Using the fact that the intensity is the absolute square of the field, one
may also write

(EQOECD Gt +TEDOED (1 + 1))

@y —
9 (ECOED (1)

, (2.19)

or, since the intensity is proportional to the number of photons, ¢'® may alternatively

be written in the form R R
(NN + 7))

()

where N = 474 is the photon number operator.

For perfectly coherent monochromatic light, g (1) = ¢ (0) = 1is constant. For
classical light, g (7) is largest at 7 = 0 and decays monotonically with increasing
T, just as for the first-order correlation function. However, for anti-bunched, non-
classical states of light (see below), g® () exhibits unusual behavior and actually
grows for nonzero 7, ¢ (1) > ¢»(0).

g(2) (1) = , (2.20)
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For partially coherent thermal light, where light scatters multiple times before
exiting the source, the first and second-order correlations functions are connected by
Siegert’s relation

9P =1+1g0 0P (2.21)

Since ¢V () decays from 1 at short times to O at long times (much greater than 7,.),
it follows that ¢ () decays from ¢®(0) = 2 to g® (c0) = 1. For the Lorentzian
and Gaussian cases, the Siegert relation implies that:

gD () =1+ 2Um (Lorentzian) (2.22)
gP(r) = 1 4 &7/ (Gaussian), (2.23)

for thermal light.

The intensity can always be written as a mean value plus some randomly fluctuat-
ing term, I (t) = (I) + AI(¢). Regardless of the source of the fluctuations, A, they
must have vanishing mean, (AI) = 0, so if it is assumed that the average intensity
is time independent then the second-order coherence function can be written as

(1) + AI() (1) + Al (1 + 7))
(12
(AI(DAI(t + 7))

=1+ a2 . (2.24)

9P ) =

Therefore, g» () can be seen as a measure of the correlation between the intensity
fluctuations at different times. Equivalently, since the intensity is proportional to
the number of photons present, it measures correlations between photon number
fluctuations.

Looking at the case of zero time delay, 7 = 0, three possibilities can be distin-
guished. (i) If ¢® (0) = 1, then the distribution of times between photon emissions
are given by a Poisson distribution. This is the case for light in a coherent state.
(i) If ¢® (0) > 1, then the spacings between photons are reduced from the Poisson
case. In other words, the photons tend to cluster together more than in the Pois-
son case. This case is called super-Poisson, and the light is often referred to as
chaotic or photon-bunched. Thermal light sources produce photon-bunching. (iii) If
9@ (0) < 1, then the spacings between photons are increased. This is called sub-
Poisson or anti-bunched light.

Both the Poisson and super-Poisson cases are possible classically, however the
sub-Poisson case is not. So the appearance of sub-Poisson or anti-bunched light is a
clear signal of non-classical behavior.

First-order correlation functions are measured by comparing the output of a single
detector at different locations or times, while second-order correlation functions are
measured by detecting two photons in two separate detectors. In a similar manner,
higher nth-order correlation functions can be defined and can be measured using
n-detector arrangements. These have been used, for example, to study higher-order
ghost imaging [4-9].
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Fig. 2.4 Two stellar interferometers. a The Michelson stellar interferometer, in which coherence
between field amplitudes at points separated by distance d is measured. Mirrors M7 and M, reflect
light from different points in the wavefront into a telescope, where they are focused to produce an
interference pattern, b the Hanbury Brown and Twiss interferometer. In this apparatus, intensities
rather than merely simple amplitudes are correlated at points separated by d. Two photodetectors
send photo currents 1 and i3 to an electronic circuit that correlates the signals. The output signal
is the mean product of currents, (i1 (t)i2(t + 7)), which is proportional to the mean product of
intensities, (/1 (t)I2(t + 7)). In the case of low photon numbers, the electronic correlator becomes
a photon coincidence counter

2.3 Hanbury Brown and Twiss: Source Size
from Correlation

Classical interference theory is built around first-order (field or amplitude) corre-
lations. The importance of second-order (intensity or photon number) correlations
first became clear through the work of Hanbury Brown and Twiss (HBT) on stellar
diameter measurements in the 1950s.

Prior to the work of HBT, the principal means of measuring stellar diameters was
through measurement of spatial coherence via the field correlations measured by g'".
In the Michelson stellar interferometer (Fig.2.4a) light arriving from a star strikes
two mirrors separated by distance d, and then the two reflected beams are combined
and sent through a telescope, finally forming an interference pattern in a camera.
Light arriving at different angles have maxima and minima shifted in position by
a distance proportional to the angle. So, if the angular size of the star is too large,
all of the shifted fringes from different angular directions end up washing out the
interference pattern. The pattern is lost when the angular spread §0s of the starlight
is smaller than the angular resolution Af; of the interferometer. The spread d6y is
determined by the size of the star and its distance L from earth, 605 = %, for L > D.
The angular resolution, on the other hand, is determined by the wavelength used and
by the size of the interferometer, Af; = %, where the factor of 1.22 comes from
the width of the Bessel function determining the resolution of the circular telescope
aperture, as in Eq. A.32 of “Appendix A.” The requirement that 605 < A6, then
places a limit on how large d can be before the interference is lost, since we must
have



58 2 Two-Photon Interference

D 122\
i (2.25)
L d

By varying d and finding the distance d = /. at which the pattern is lost, we then have
an estimate for the stellar diameter, D = 1.22)\[%. [ is then the transverse spatial
coherence length of the light.

Such field interference methods provide a great improvement in angular resolution
over other methods, since the distance d can be made much larger than the diameter
of the telescope. However, it has several drawbacks: (i) the ability to collect light is
lower, so that dim objects can not be effectively measured, (ii) the measurement is
susceptible to atmospheric turbulence, and (iii) a high level of mechanical stability
must be maintained in the distances between the mirrors and the telescope, which
becomes increasingly difficult as d becomes larger.

The HBT approach can be seen as replacing the two mirrors of the Michelson
interferometer by two independent photodetectors, D and D, separated by distance
d (Fig.2.4b). The detectors produce two photocurrents proportional to the incident
light intensities at those points. After a time delay 7 is imposed on one current, the
two signals are then fed into an electronic circuit that multiplies the currents and
integrates over an interval of time in order to produce an average. The net result is
proportional to the expectation value (I;(#) (¢t + 7)) = (I (r, ) (r; +d,t + 7)),
where [; is the intensity in detector D; (located at r1), and I is the intensity at D,
(located at r, = r; + d). From this, the second-order correlation function g(z) d, 1)
may be found. By setting 7 = 0 and varying the distance d between the detectors,
the coherence length /. can be determined. Alternatively, the distance can be fixed
and the time delay may be varied in order to find the coherence time.

2.4 From One-Photon to Two-Photon Interference

Yet another important interferometer, which appears in multiple guises in this book,
is the Mach—Zehnder interferometer, shown in basic form in Fig. 2.5. It was discussed
in the previous chapter, where it was considered as a means of producing spatial-
mode qubits. Here, it is treated in more detail. There are two input ports, 1 and 2 on
the left, and two output ports, 3 and 4, on the right. Suppose light enters through one
input, say port 1, and optical detectors are placed at the outputs. Assume also that the
input light is perfectly coherent. Then, the first beam splitter sends the light either
along the upper path or the lower path, with equal probability. A phase shift ¢ can
be introduced to the portion of the light following the upper path, for example, by
changing the path length or by introducing a small piece of glass of refractive index
n # 1 into the light’s path. The two beams recombine at the second beam splitter,
now possibly out of phase with each other, leading to constructive or destructive
interference as ¢ is varied. Let the input and output states of the light be described
by the two-component vectors
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Fig. 2.5 The Mach—Zehnder interferometer. Light input at one port (1 or 2) has two possible paths
through the system before leaving at another port (3 or 4). Depending on the phase shift introduced
into one path, the output can be steered in one direction or the other, analogous to the bright and
dark spots the Young experiment

N R
[in) = (wz) o) = (1#4)’ (2.26)

where 1), is the amplitude at port . The “amplitude” here can be either the classical
electric field in the case of bright light, or the quantum mechanical amplitude in the
case of single-photon input. The action of each beam splitter can be represented as
a matrix Mgs (“Appendix A”) and the phase shift by matrix M, where

1 i v 0
MBs:(l. ;) M¢:(eo 1), 2.27)

01 i(f+1
[Wous) = Mas My Mas|tin) = ( e +1) (e j)) i) (2.28)

so that

Here, we have ignored the propagation phases e ~'“’*7%* and mirror reflection phases
that are common to all terms. So if the light is all incident on port 1 (¢, = 0), we find
that the output at port 3 is 13 = ¢’® — 1. The resulting intensity (in the bright light
case) or detection probability (in the single photon case) is, therefore, proportional
t0 [V | = |1h3]> = | — 11> = 2(1 — cos §).

However, instead of looking at the output of each detector separately, one may
follow the lead of Hanbury Brown and Twiss, by looking at joint detections in the
pair of detectors. In other words, coincidence counts are measured, providing mea-
surement of the second-order correlation function. The interference is now between
two-photon amplitudes, instead of single-photon amplitudes. The coincidence count-
ing is done by using an electronic gate which only registers a count if there is a signal
coming in from both detectors within some very short time window.

It can be shown that there is a complementarity between the single-photon and
double-photon visibilities, V; and Vi, inany system [10, 11]. In particular, Vl2 +V122 <
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1, or equivalently, V|V, < % Thus to achieve strong two-photon interference, it is
necessary to make the observation of single-photon effects unobservable. (See the
Franson interferometer, Sect. 2.6, for an example of this.)

2.5 The Hong-Ou-Mandel Dip

The Hong—Ou—Mandel (HOM) dip [12] is an interference effect that occurs in the
coincidence rate of two-photon interferometers. Besides opening a new arena for the
exploration of quantum mechanical two-photon interference effects, the HOM dip has
shown itself useful in measuring extremely short (sub-femtosecond) time intervals.
It is also used to reconstruct the temporal profile of single photon wave packets [12],
to measure the delay times caused by passage of light through materials [13], and
to make measurements of tunneling times of single photons through barriers [14].
Of particular importance here is the fact that if a dispersive material is placed in
one of the possible photon paths of the interferometer used to observe the dip, the
effect of group velocity dispersion (GVD) cancels from the coincidence rate. In other
words, there is no dispersive broadening of wave packets. This effect is discussed in
more detail in Chap. 3.

Figure 2.6 shows the HOM interferometer. The signal and idler from parametric
down conversion take separate paths to a 50/50 beam splitter, with a variable delay
inserted into one of the paths, before the beam splitter. The signal takes path a to
the beam splitter and the idler takes path b. After the beam splitter, the outgoing
photons reach two detectors, where the coincidence count is recorded. As the delay
time is scanned, the coincidence rate traces out a roughly triangular dip, as shown in
Fig.2.7. Ideally, the dip reaches a minimum of zero (100 % visibility) when the delay
vanishes. It is essential that the indistinguishability of the two photons be maintained
for this effect to appear. Any factors that increase the ability to distinguish which path
was taken by which photon after the beam splitter causes a corresponding decrease in
the visibility of the dip. When the translatable mirror is moved a distance 6/, a delay
of 67 = 6l /c is introduced between the two paths, along with a phase difference of
0 = I/

Fig. 2.6 The Fixed Mirror
Hong—Ou—Mandel (HOM)
interferometer. The
translatable mirror
introduces a phase shift
between the signal and idler,
which are then mixed at the
beam splitter before

coincidence detection Translatable
Mirror

Beam Splitter D
Nonlinear ) 1
Crystal Signa

$ Sl=c8t Detectors

Coincidence
Circuit
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Fig.2.7 The HOM dip. The coincidence rate exhibits a trriangular dip, vanishing at zero time delay.
a Experimental data showing the dip arising from interference of signal and idler [12], b idealized
dip arising from interference of two square amplitudes

The explanation for the HOM dip is very simple. Assume for a moment that there is
no delay. In order for a coincidence count to be registered, exactly one of the photons
must reach each of the two detectors. This can happen in one of two ways: either both
photons are reflected at the beam splitter (RR) or both are transmitted (TT). Because
each reflection at the beam splitter introduces a phase shift of 7/2, the amplitudes
for these two possibilities have opposite sign. In the case of a symmetric 50/50 beam
splitter (reflectance = transmittance = 50 %), the RR and TT amplitudes are also
equal in magnitude, so that they exactly cancel, giving a vanishing coincidence rate.
Now, if a delay is introduced, this allows the photons to be distinguished by their
arrival times. The interference is reduced and the cancelation becomes only partial.
As the delay increases from zero, the coincidence rate rises from zero back to the
classically expected value.

Quantitatively, the coincidence rate is given by

1/g* 201 —7)d
R97) = R |1 = L[ (D92 0r =7 | (2.29)
4 [ lg(m)2dr
where Ry is a constant, g(7) = gzg;, and G(7) is the Fourier transform of the

spectral function @ (w). Assuming a Gaussian pump and using the function @ (w) =
sinc (wT) for SPDC (see Chap. 1), the coincidence rate is

R.(67) = Ry (1 - e_A“’Z‘STZ) , (2.30)

for some constant Ry [12]. Here, T ~ ALM is the width of the photon wavepacket.
The experimental data for the coincidence rate matches this expression well, as seen
in Fig.2.7a.

To give an idea of why the coincidence rate has this form, imagine a simplified
situation in which the spectrum is flat, and where the signal and idler amplitudes
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where T is the time for the photons to cross the nonlinear crystal. This is a reasonable
first approximation, since the amplitude for pair creation drops suddenly to zero at
the edge of the crystal. Suppose that one photon is delayed relative to the other by
delay time §7. Then, the overlap of these amplitudes is given by the convolution

_ Lol

I(l)=/oo fOf@t—oérydt = i OT’ for [t| <T

for |t| > T. (2.32)
Examining Fig. 2.8b, the reader can verify that this expression is simply the area of
overlap between the two shifted square functions. This overlap is triangular, having
maximum value at 7 = 0 and decaying linearly to zero with increasing |§7|, repre-
senting constructive interference between the amplitudes. In the case of destructive
interference, this triangular overlap is subtracted from the constant noninterfering
value of 1, so that

RO = Ryl 1— 2a (2T (2.33)
c T) = 0 2 T ’ M
where
(1= x]. for x| < 1
Alx) = [ 0, for|x|>1 (2.34)

is the triangle function. The idealized form of Eq. (2.33) provides a good approxima-
tion to Eq. (2.30). This ideal coincidence rate is plotted in Fig. 2.7b. The experimental
data of Fig. 2.7a roughly matches this and gives a generally triangular shape, but more
rounded because the photon creation amplitudes in reality are sinc functions, rather
than squares.
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Fig. 2.9 Signal and idler need not overlap temporally on the beam splitter to interfere and produce
an HOM dip. Here, 7, is a time delay that effects only the signal photon in branch a. If 7, = 27,
then both the RR and TT cases lead to the same time delay At = t, — | = 7, between detection
of photons. The two outcomes are therefore indistinguishable and can interfere

2.6 The Franson Interferometer

As was the case in the discussion of single-photon interference, it must be borne
in mind that “two-photon” interference is not the result of one photon interfering
with a second photon; more generally, it is the interference of one potential two-
photon state with another potential state of the same two-photon system. The two
photons involved need not arrive at a beam splitter at the same time or ever meet at all
for interference to occur. Only indistinguishability, not temporal overlap, is required.
This was demonstrated by the experiment of [ 15], where a fixed delay was introduced
in one path before the beam splitter, so that the two photons arrived at the beam splitter
well separated in time (Fig.2.9). In order to restore distinguishability, postponed
compensation was used; i.e. a selective time delay was added after the beam splitter
that only affects the polarization traveling in branch a. The RR (reflection/reflection)
and TT (transmission/transmission) cases may then be pictured as in Fig.2.9. In the
RR case the idler arrives at detector 2, delayed by a time 7, so that the time difference
between the two detections is At = 1, — | = 7,. However, in the TT case the signal
arrives at detector 2, delayed by 7y,, while the idler arrives at detector 1 delayed by
Ty. Thus, in this case, the detection time difference is At = t, — t; = 7, — Tp. So,
if delays are chosen such that 7, = 27, both cases have the same time difference,
At = 1, Since the time difference is the same for the RR and TT possibilities, they
cannot be distinguished and the interference dip appears, even though the two photons
never overlap on the beam splitter. This apparent nonlocality of the interference again
demonstrates that the HOM dip is a purely quantum effect.

A similar effect can be seen in the Franson interferometer [16] shown in Fig. 2.10.
The nonlinear crystal at the left is pumped by a beam at frequency w),. Each photon
from a down conversion pair enters a separate path. Each of those photons then has
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Fig. 2.10 The Franson L detectors
interferometer. Each photon

can travel via a long path or a signal

short path. After 735
post-selection to remove NLC

long-short interference, the
amplitude for both to follow
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the amplitude for both

following the short path L, coincidence

counter

Pump

idler

a choice of two possible subpaths, one long and one short. At the other end, the two
photons are then detected in coincidence. The difference of path lengths between the
long and short paths is much longer than the photon coherence time, so that there no
single-photon interference occurs between the long and short paths.

Since the time at which the pair is created is unknown, the cases where both
photons take the long path (LL) and where both take the short path (SS) are indis-
tinguishable, and so these two-photon states should interfere with each other. The
visibility of this interference can be greatly enhanced by post-selection: take the coin-
cidence window short enough to reject the two cases LS, and S;L; in which one
photon takes the long path and one takes the short path. In this case, the two-photon
visibility is ideally 100 %, despite the fact that the two photons are never in the same
location and so have no opportunity to interfere in the sense of classical waves.

Let Aly and Al be the path difference between the long and short paths for the
signal and idler respectively. Then, the phase difference between the L L path and

the S§ path is
. ws Al n wi Al N 1

¢ ~ swp (AL + Aly) (2.35)
c 2
so long as |ws — wj| is small compared to the central frequency wy = % The
coincidence probability is
2 1 ip2

Pe = [{lh)|” = ZI1+e“| (2.36)

1 1 Wp
= S (+cosg) = 5 [1 + cos (7 (Al + Als))] . (2.37)

This interference was demonstrated experimentally in [17-20]. The 100 % interfer-
ence visibility as the path lengths are varied is again an indication of an intrinsically
quantum mechanical effect.
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Mirror

Fig.2.11 Schematic of setup for two-crystal interference experiment. The pump can undergo down
conversion in either of two crystals. If the two signal modes and the two idler modes are sufficiently
well overlapped, it is impossible to tell in which crystal the down conversion occurred. In that case,
the amplitudes for both possibilities overlap and first-order interference can occur between the two
potential signal photons at detector D. In the figure, p, s, and i stand, respectively, for pump, signal,
and idler, and a—h label points in the possible photon paths

2.7 Double-Crystal Experiments and Induced Coherence

The existence of interference between two amplitudes requires that it is impossible
to tell which amplitude was actualized; in particular, an interferometer only exhibits
interference when it is impossible in principle for one to tell which path the photons
took through the arrangement. As the degree of path distinguishability increases, the
visibility of the interference pattern goes down. In addition, there is often a form of
complementarity between single-photon (field or amplitude) interference and two-
photon (intensity) interference [10, 11]: in most experiments, as the visibility of one
type of interference goes up, the other goes down.

A highly counter-intuitive experiment that can exhibit first and second order
interference simultaneously uses the Zhou—Wang—Mandel two-crystal interferom-
eter shown schematically in Fig.2.11 [21-23]. A pump beam is passed through a
50/50 beam splitter, so that each photon has equal amplitude to enter either of two
nonlinear crystals, NL; or NL,. Imagine that a pump photon undergoes down con-
version in one of the crystals. If the two crystals are very well aligned, so that the
paths of the idlers produced by the crystals completely overlap, then it is impossible
to tell whether an idler photon detected at detector D; came from the second crystal
or the first one. Similarly, it is impossible to detect which crystal produced a signal
photon detected at D,. Because it is impossible to distinguish whether the down
conversion occurred in NL; or NL,, the amplitudes for both possibilities must be
added. By varying the phase shift introduced between the two potential signal paths,
interference is then seen at D5.

However, if the idler path between NL; and NL, is blocked at point c, then any
idler arriving at D; must have come from NL,. It is found that the interference
at D, then disappears, since the presence or absence of an idler detection at D,
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gives information about which crystal the pair was born in. The presence of this
path information makes the two amplitudes distinguishable. The interesting (or even
“mind-boggling” [24]) thing is that only the idler photons are blocked by the filter
at c, yet the interference pattern in the signal at D, disappears, despite the fact that
the signal never passed through c. If a beam splitter is placed at c, it is found that
the visibility of the interference is decreased in proportion to the reflectance of the
beam splitter; the more reflective the beam splitter, the more path information can
be obtained by monitoring the presence of idler photons at D; (or alternatively, by
monitoring those reflected at ¢). Note that these photons do not actually have to be
detected in order for the interference visibility to be affected. The simple possibility
of their detection is all that is needed to damage the interference.

Second-order interference in the two-detector coincidence counting is to be
expected in this setup, between potential biphoton states created in the two dif-
ferent crystals. But the single-photon, first-order interference occurring at a single
detector may seem surprising. Because there is no fixed phase relation between the
signal and idler photons, there can be no first-order interference effects between
them. However, there can be single-photon interference between the two amplitudes
for signal photons arising in the two different crystals due to the same pump. The
phase of the full biphoton state is determined by the phase of the pump beam [25], so
that different potential histories of the signal photons created in the different crystals
should be capable of interfering with each other, even though the signal by itself is of
low coherence. This hidden information about the pump phase that is retained by the
outgoing state has been referred to as a phase memory effect. The single-photon and
biphoton interferences show up, respectively, in the first and second-order correlation
functions ¢V (7) and g (7).

If the pump intensity is low enough so that the probability of the idler from one
crystal inducing down conversion in the other is negligible, the single-photon inter-
ference becomes noticeable, since the experimental arrangement cannot distinguish
between down conversion photons produced at one crystal and those produced at the
other. In this case, if point ¢ is unblocked, D, fires every time D, fires (assuming
perfect detectors and no photon losses). While indistinguishability is maintained, the
potential idler photons originating in the two crystals are mutually coherent, as are
the two signals; this is referred to as induced coherence between the crystals. There
should then be first-order interference between the two possible signal photons. The
coherence is induced by the act of matching the modes of the two idlers to maintain
indistinguishability.

It has been shown [26-28] that interference can be obtained by varying the phase
between the two signals, or by varying the relative phase of the two pump beams after
BS;. In both cases, interference arises in both the singles (¢! (7)) and coincidence
(¢g® (7)) counting rates. When varying signal phase, the interference has a fringe
period corresponding to the frequency of the signal photons. In contrast, if the pump
phase is varied, the coincidence rate and signal count rate both have fringes with the
period expected from the pump frequency.

For a more quantitative discussion of the interferometer, note that after BS; the
state is
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1
V2

After crystal N L, the pump photon at b undergoes down-conversion so that the state
becomes

({11)al0)s + 10)al1)s) - (2.38)

1

NG (@11)a10)c10)q + 10)a 1) 1)a) - (2.39)
Following the second crystal, N L,, and the phase shift, the state becomes:
1 )
7 (i€'?10)c10)a|1)el1) 7 + [1)c]1)4l0)]0) /) - (2.40)

But the idler at ¢ continues through N L, to appear at f, so that if the two idlers are
indistinguishable, this becomes

1 )
75 (1€ 10)alD)e +11)410)) 1) (2.41)
After the final beam splitter, the result is

|
3 [ie" (10)g1 1) +il1)410)4) + (IDg10)n + 10} [ 1)) ] 1) (2.42)

1, .
=5 [i (¢ + 1) 100,110 — (€ — 1) [1)410)4] 1) /. (2.43)

The probability of detection at D; (point £) is thus

1, 1
7 e+ 1° = 5 (1+cos ). (2.44)

exhibiting interference with (ideally) 100 % visibility. If a filter of transmissivity ¢ is
placed at point ¢, this becomes

% (141 cosq). (2.45)

It is clear that the interference visibility is proportional to ¢ and that the pattern
disappears completely if the idler path at c is blocked (t — 0). This is because if ¢
is blocked then the path can be determined by checking for idler photons at Dy; the
existence of this which-path information destroys the interference pattern.

Rather than carrying out an interferometric experiment using the apparatus of
Fig.2.11, it is natural to consider if an object can be imaged with it. Instead of
placing a filter of fixed transmissivity ¢ at point ¢, consider an object with a spatially
dependent transmissivity, 7 (x, y), where x and y are coordinates perpendicular to
the propagation axis. Then adding some lenses and beam splitters, the new apparatus
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Fig.2.12 Schematic of setup to produce an image with photons that never saw the object. DM ; are
dichroic mirrors which transmit the signal frequency and reflect the idler frequency. After the second
nonlinear crystal, NL,, DM, ejects the idlers from the system. The remaining signal amplitudes
mix and are detected at D; and D>

is as shown in Fig.2.12 [29]. All the lenses are assumed to have the same focal
length, f, except possibly the two before the detectors (/). If a pump photon creates
a down conversion pair at the first crystal, the dichroic mirror sends the signal and
idler into different paths. The image is “imprinted” onto the idler produced at the first
crystal; this idler is then passed through the second crystal, where it is again arranged
for idlers from the two crystals to be indistinguishable. A dichroic mirror is used to
remove the two idlers from the system, leaving just the signal photons. The last beam
splitter mixes these signals so that it is not possible to tell whether a detected photon
came from the first crystal via the upper path or from the second crystal via the
lower path. By the same method used to transfer the phase information from idler to
signal in Fig. 2.11, the image information is now transferred by entanglement to the
signal. By tracing the field propagations through the system, then schematically, it
is found that the intensities at the two outputs have the structures (dropping all the
constants) [30]:

I, ~ 1 +|t]* 4+ 2Re(t) (2.46)

L ~ 1+ |t]*> — 2Re(?). (2.47)
Since the transmissivity must obey || < 1, the term linear in ¢ is always greater
than or equal to the quadratic term for real ¢; thus, D; gives a positive image and
D, gives a negative image, as seen in the experiment carried out in [29]. Further, the
difference of the two amplitudes has the structure

I, — I, ~ Re(?), (2.48)

giving a higher contrast than either detector alone. The magnification is [30, 31]
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N f
N

(2.49)

where )\; and )\; are the signal and idler wavelengths. The strange feature of this
arrangement is that only the idler photon ever interacts with the object, but the image
arises from measurement of the signal photons; the idlers are discarded without being
detected.

The theory of the two-crystal imaging arrangement has been further worked out
in [31, 32]. Like many of the initially quantum-based effects discussed in this book,
it has been shown [33] that most of its features can be mimicked by a bright-source
classical arrangement, with higher signal-to-noise ratio.
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