
Chapter 2
Machine Learning

Abstract We present an extensive review on the subject of machine learning by
studying existing literature. We focus primarily on the main approaches that have
been proposed in order to address the problem of machine learning and how they
may be categorized according to type and amount of inference. Specifically, the
categorization of the various machine learning paradigms according to the type of
inference, involves the following two approaches:

• Model Identification or Parametric Inference; and
• Model Prediction or General Inference.

The general framework of the parametric model, in particular, introduces the prin-
ciples of Empirical Risk Minimization (ERM) and Structural Risk Minimization.
On the other hand, the Transductive Inference Model is defined as an extension to
the original paradigm of General Inference. The categorization of machine learning
models according to the amount of inference includes the following approaches:

• Rote Learning;
• Learning from Instruction; and
• Learning from Examples.

Specifically, Learning from Examples provides the framework to analyze the prob-
lem of minimizing a risk functional on a given set of empirical data which is the
fundamental problem within the field of pattern recognition. In essence, the partic-
ular form of the risk functional defines the primary problems of machine learning,
namely:

• The Classification Problem;
• The Regression Problem; and
• The Density Estimation Problem which is closely related to the Clustering Prob-
lem.

Finally, in this chapter we present a conspectus of the theoretical foundations behind
Statistical Learning Theory.
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10 2 Machine Learning

2.1 Introduction

The ability to learn is one of the most distinctive attributes of intelligent behavior.
An informal definition of the learning process in general could be articulated as:
“The learning process includes the acquisition of new declarative knowledge, the
development of new skills through interaction or practice, the organization of new
knowledge into general, effective representations, and the discovery of new facts and
theories through observation and experimentation”. The term machine learning,
on the other hand, covers a broad range of computer programs. In general, any
computer program that improves its performance through experience or training can
be called a learning program.Machine learning constitutes an integral part of artificial
intelligence since the primary feature of any intelligent system is the ability to learn.
Specifically, systems that have the ability to learn need not be implicitly programmed
for any possible problematic situation. In other words, the development of machine
learning alleviates the system designer from the burden of foreseeing and providing
solutions for all possible situations.

The study and modelling of learning processes in their multiple manifestations
constitute the topic of machine learning. In particular, machine learning has been
developed around the following primary research lines:

• Task-oriented studies, which are focused on developing learning systems in order
to improve their performance in a predetermined set of tasks.

• Cognitive simulation, that is, the investigation and computer simulation of human
learning processes.

• Theoretical analysis, which stands for the investigation of possible learning meth-
ods and algorithms independently of the particular application domain.

• Derivation of machine learning paradigms and algorithms by developing
metaphors for biological processes that may be interesting within the context of
machine learning. A typical example is the field of biologically inspired computing
which led to the emergence of Artificial Neural Networks and Artificial Immune
Systems.

The following sections provide an overview of the various machine learning
approaches that have been proposed over the years according to different viewpoints
concerning the underlying learning strategies. Specifically, Sect. 2.2 provides amore
general categorization of themachine learningmethodologies based on the particular
type of inference utilizedwhile Sect. 2.3 provides amore specialized analysis accord-
ing to the amount of inference. Finally, Sect. 2.5 gives a theoretical justification of
Statistical Learning Theory.
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2.2 Machine Learning Categorization According
to the Type of Inference

The fundamental elements of statistical inference have existed for more than 200
years, due to the seminal works of Gauss and Laplace. However, their systematic
analysis began in the late 1920s. By that time, descriptive statistics was mostly com-
plete since it was shown that many events of the real world are sufficiently described
by different statistical laws. Specifically, statisticians have developed powerful math-
ematical tools, namely distribution functions, that have the ability to capture inter-
esting aspects of reality. However, a crucial question that was yet to be answered
concerned the determination of a reliable method for performing statistical infer-
ence. A more formal definition of the related problem could be the following: Given
a collection of empirical data originating from some functional dependency, infer
this dependency. Therefore, the analysis of methods of statistical inference signaled
the beginning of a new era for statistics which was significantly influenced by two
bright events:

1. Fisher introduced themainmodels of statistical inference in the unified framework
of parametric statistics. His work indicated that the various problems related to the
estimation of functions from given data (the problems of discriminant analysis,
regression analysis, and density estimation) are particular instances of the more
general problem dealing with the parameter estimation of a specific parametric
model. In particular, he suggested the Maximum Likelihood method as a for the
estimation of the unknown parameters in all these models.

2. Glivenko, Cantelli and Kolmogorov, on the other hand, started a general analysis
of statistical inference. One of the major findings of this quest was the Glivenko–
Cantelli theorem stating that the empirical distribution function always converges
to the actual distribution function. Another equally important finding came from
Kolmogorovwho found the asymptotically exact rate of this convergence. Specif-
ically, he proved that the rate turns out to be exponentially fast and independent
of the unknown distribution function.

Notwithstanding, these two events determined the two main approaches that were
adopted within the general context of machine learning:

1. Model Identification or particular (parametric) inference which aims at creat-
ing simple statistical methods of inference that can be used for solving real-life
problems, and

2. Model Prediction or general inference, which aims at finding one induction
method for any problem of statistical inference.

The philosophy that led to the conception of the model identification approach
is based upon the belief that the investigator knows the problem to be analyzed
relatively well. Specifically, he/she is aware of the physical law that generates the
stochastic properties of the data and the function to be found up to a finite number of
parameters. According to the model identification approach, the very essence of the
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statistical inference problem is the estimation of these parameters by utilizing the
available data. Therefore, the natural solution in finding these parameters is obtained
by utilizing information concerning the statistical law and the target function is the
adaptation of the maximum likelihood method. The primary purpose of this theory
is to justify the corresponding approach by discovering and describing its favorable
properties.

On the contrary, the philosophy that led to the conception of the model predic-
tion approach is focused on the fact that there is no reliable a priori information
concerning the statistical law underlying the problem or the desirable function to
be approximated. Therefore, it is necessary to find a method in order to infer the
approximation function from the given examples in each situation. The correspond-
ing theory of model prediction must be able to describe the conditions under which
it is possible find the best approximation to an unknown function in a given set of
functions with an increasing number of examples.

2.2.1 Model Identification

Themodel identification approach corresponding to the principle of parametric infer-
ence was developed very quickly since its original conception by Fisher. In fact, the
main ideas underlying the parametric model were clarified in the 1930s and the main
elements of theory of parametric inference were formulated within the next 10 years.
Therefore, the time period between the 1930 and 1960 was the “golden age” of
parametric inference which dominated statistical inference. At that time, there was
only one legitimate approach to statistical inference, namely the theory that served
the model identification approach. The classical parametric paradigm falls within
the general framework introduced by Fisher according to which any signal Y can be
modelled as consisting of a deterministic component and a random counterpart:

Y = f (X) + ε (2.1)

The deterministic part f (X) is defined by the values of a known family of func-
tions which are determined up to a limited number of parameters. The random part
ε corresponds to the noise added to the signal, defined by a known density function.
Fisher considered the estimation of the parameters of the function f (X) as the goal of
statistical analysis. Specifically, in order to find these parameters he introduced the
maximum likelihood method. Since the main goal of Fisher’s statistical framework
was to estimate the model that generated the observed signal, his paradigm is identi-
fied by the term “Model Identification”. In particular, Fisher’s approach reflects the
traditional idea of Science concerning the process of inductive inference, which can
be roughly summarized by the following steps:

1. Observe a phenomenon.
2. Construct a model of that phenomenon (inductive step).
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3. Make predictions using this model (deductive step).

The philosophy of this classical paradigm is based upon on the following beliefs:

1. In order to find a dependency from the data, the statistician is able to define a set
of functions, linear in their parameters, that contain a good approximation to the
desired function. The number of parameters describing this set is small.
This belief was specifically supported by referring to the Weierstrass theorem,
according towhich any continuous functionwith a finite number of discontinuities
can be approximated on a finite interval by polynomials (functions linear in their
parameters) with any degree of accuracy. The main idea was that this set of
functions could be replaced by an alternative set of functions, not necessarily
polynomials, but linear with respect to a small number of parameters. Therefore,
one could obtain a good approximation to the desired function.

2. The statistical law underlying the stochastic component of most real-life problems
is the normal law.
This belief was supported by referring to the Central Limit Theorem, which
states that under wide conditions the sum of a large number of random variables
is approximated by the normal law. The main idea was that if randomness in a
particular problem is the result of interaction among a large number of random
components, then the stochastic element of the problem will be described by the
normal law.

3. The maximum likelihood estimate may serve as a good induction engine in this
paradigm.
This belief was supported by many theorems concerning the conditional optimal-
ity of the maximum likelihood method in a restricted set of methods or asymptot-
ically. Moreover, there was hope that this methodology would offer a good tool
even for small sample sizes.

Finally, these three beliefs are supported by the following more general philoso-
phy:
If there exists a mathematical proof that some method provides an asymptotically
optimal solution, then in real life this method will provide a reasonable solution for
a small number of data samples.

The classical paradigm deals with the identification of stochastic objects which
particulary relate to the problems concerning the estimation of densities and condi-
tional densities.

Density Estimation Problem

The first problem to be considered is the density estimation problem. Letting ξ be a
random vector then the probability of the random event F(x) = P(ξ < x) is called
a probability distribution function of the random vector ξ where the inequality is
interpreted coordinatewise. Specifically, the random vector ξ has a density function
if there exists a nonnegative function p(u) such that for all x the equality



14 2 Machine Learning

F(x) =
∫ x

−∞
p(u)du (2.2)

is valid. The function p(x) is called a probability density of the random vector.
Therefore, by definition, the problem of estimating a probability density from the
data requires a solution of the integral equation:

∫ x

−∞
p(u,α)du = F(x) (2.3)

on a given set of densities p(x,α) where α ∈ Λ. It is important to note that while
the true distribution function F(x) is unknown, one is given a random independent
sample

x1, . . . , xl (2.4)

which is obtained in accordance with F(x). Then it is possible to construct a series
of approximations to the distribution function F(x) by utilizing the given data set
(2.4) in order to form the so-called empirical distribution function which is defined
by the following equation:

Fl(x) = 1

l

l∑
i=1

θ(x − xi), (2.5)

where θ(u) corresponds to the step function defined as:

θ(u) =
{
1, when all the coordinates of vector u are positive,
0, otherwise.

(2.6)

Thus, the problem of density estimation consists of finding an approximation to
the solution of the integral equation (2.3). Even if the probability density function is
unknown, an approximation to this function can be obtained.

Conditional Probability Estimation Problem

Consider pairs (ω, x)where x is a vector and ω is scalar which takes on only k values
from the set {0, 1, . . . , k−1}. According to the definition, the conditional probability
P(ω, x) is a solution of the integral equation:

∫ x

−∞
P(ω|t)dF(t) = F(ω, x), (2.7)

where F(x) is the distribution function of the random vector x and F(ω, x) is the
joint distribution function of pairs (ω, x). Therefore, the problem of estimating the
conditional probability in the set of functions Pα(ω|x), where α ∈ Λ, is to obtain an
approximation to the integral equation (2.7) when both distribution functions F(x)
and F(ω, x) are unknown, but the following set of samples are available:
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(ω1, x1), . . . , (ωl, xl). (2.8)

As in the case of the density estimation problem, the unknown distribution functions
F(x) and F(ω, x) can be approximated by the empirical distribution functions (2.5)
and function:

Fl(ω, x) = 1

l

l∑
i=1

θ(x − xi)δ(ω, xi), (2.9)

where the function δ(ω, x) is defined as:

δ(ω, x) =
{
1, if the vector x belongs to class ω,

0, otherwise.
(2.10)

Thus, the problemof conditional probability estimationmay be resolved by obtaining
an approximation to the solution of the integral equation (2.7) in the set of functions
Pα(ω|x)where α ∈ Λ. This solution, however, is difficult to get since the probability
density functions F(x) and F(ω, x) are unknown and they can only be approximated
by the empirical functions Fl(x) and Fl(ω, x).

Conditional Density Estimation Problem

The last problem to be considered is the one related to the conditional density estima-
tion. By definition, this problem consists in solving the following integral equation:

∫ y

−∞

∫ x

−∞
p(t|u)dF(u)dt = F(y, x), (2.11)

where the variables y are scalars and the variables x are vectors. Moreover, F(x)
is a probability distribution function which has a density, p(y, x) is the conditional
density of y given x, and F(y, x) is the joint probability distribution function defined
on the pairs (y, x). The desirable conditional density function p(y|x) can be obtained
by considering a series of approximation functionswhich satisfy the integral equation
(2.11) on the given set of functions and the i.i.d pairs of the given data:

(y1, x1), . . . , (yl, xl) (2.12)

when both distributions F(x) and F(y, x) are unknown. Once again, it is possible to
approximate the empirical distribution function Fl(x) and the empirical joint distri-
bution function:

Fl(y, x) = 1

l

l∑
i=1

θ(y − yi)θ(x − xi). (2.13)

Therefore, the problem is to get an approximation to the solution of the integral
equation (2.11) in the set of functions pa(y, x) where α ∈ Λ, when the probability
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distribution functions are unknown but can be approximated by Fl(x) and Fl(y, x)
using the data (2.12).

2.2.2 Shortcoming of the Model Identification Approach

All three problems of stochastic dependency estimation that were thoroughly dis-
cussed previously can be described in the following general way. Specifically, they
are reduced to solving the following linear continuous operator equation

Af = F, f ∈ F (2.14)

given the constraint that some functions that form the equation are unknown. The
unknown functions, however, can be approximated by utilizing a given set of sample
data. In this way it possible to obtain approximations to the distribution functions
Fl(x) and Fl(y, x). This formulation can reveal a main difference between the prob-
lem of density estimation and the problems of conditional probability and conditional
density estimation. Particularly, in the problem of density estimation, instead of an
accurate right-hand side of the equation only an approximation is available. There-
fore, the problem involves getting an approximation to the solution of Eq. (2.14) from
the relationship

Af ≈ Fl, f ∈ F . (2.15)

On the other hand, in the problems dealing with the conditional probability and
conditional density estimation not only the right-hand side ofEq. (2.14) is knownonly
approximately, but the operator A is known only approximately as well. This being
true, the true distribution functions appearing in Eqs. (2.7) and (2.11) are replaced by
their approximations. Therefore, the problem consists in getting an approximation
to the solution of Eq. (2.14) from the relationship

Alf ≈ Fl, f ∈ F . (2.16)

The Glivenko–Cantelli theorem ensures that the utilized approximation functions
converge to the true distribution functions as the number of observations goes to
infinity. Specifically, the Glivenko–Cantelli theorem states that the convergence

sup
x

|F(x) − Fl(x)| P−−−→
l→∞

0 (2.17)

takes place. A fundamental disadvantage of this approach is that solving the general
operator Eq. (2.14) results in an ill-posed problem. Ill-posed problems are extremely
difficult to solve since they violate the well-posedness conditions introduced by
Hadamard involving the existence of a solution, the uniqueness of that solution and
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the continuous dependence of the solution on the empirical data. That is, the solutions
of the corresponding integral equations are unstable.

Moreover, the wide application of computers, in the 1960s, for solving scientific
and applied problems revealed additional shortcomings of the model identification
approach. It was the fist time that researchers utilized computers in an attempt to
analyze sophisticated models that hadmany factors or in order to obtain more precise
approximations.

In particular, the computer analysis of large scale multivariate problems revealed
the phenomenon thatR.Bellman called “the curse of dimensionality”. Itwas observed
that increasing the number of factors that have to be taken into consideration requires
an exponentially increasing amount of computational resources. Thus, in real-life
multidimensional problems where there might be hundreds of variables, the belief
that it is possible to define a reasonably small set of functions that contains a good
approximation to the desired one is not realistic.

Approximately at the same time, Tukey demonstrated that the statistical compo-
nents of real-life problems cannot be described by only classical distribution func-
tions. By analyzing real-life data, Tukey discovered that the corresponding true dis-
tributions are in fact different. This entails that it is crucial to take this difference into
serious consideration in order to construct effective algorithms.

Finally, James and Stein showed that even for simple density estimation prob-
lems, such as determining the location parameters of a n > 2 dimensional normal
distribution with a unit covariance matrix, the maximum likelihood method is not
the best one.

Therefore, all three beliefs upon which the classical parametric paradigm relied
turned out to be inappropriate for many real-life problems. This had an enormous
consequence for statistical science since it looked like the idea of constructing sta-
tistical inductive inference models for real-life problems had failed.

2.2.3 Model Prediction

The return to the general problem of statistical inference occurred so imperceptibly
that itwas not recognized formore than 20years sinceFisher’s original formulation of
the parametricmodel. Of course, the results fromGlivenko, Cantelli andKolmogorov
were known but they were considered to be inner technical achievements that are
necessary for the foundation of statistical inference. In other words, these results
could not be interpreted as an indication that there could be a different type of
inference which is more general and more powerful than the classical parametric
paradigm.

This question was not addressed until after the late 1960s when Vapnik and Cher-
vonenkis started a new paradigm called Model Prediction (or predictive inference).
The goal of model prediction is to predict events well, but not necessarily through
the identification of the model of events. The rationale behind the model prediction
paradigm is that the problem of estimating a model is hard (ill-posed) while the
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problem of finding a rule for good prediction is much easier (better-posed). Specif-
ically, it could happen that there are many rules that predict the events well and are
very different from the true model. Nonetheless, these rules can still be very useful
predictive tools.

The model prediction paradigm was initially boosted when in 1958 F. Rosen-
blatt, a physiologist, suggested a learning machine (computer program) called the
Perceptron for solving the simplest learning problem, namely the pattern classifi-
cation/recognition problem. The construction of this machine incorporated several
existing neurophysiological models of learning mechanisms. In particular, F. Rosen-
blatt demonstrated that even with the simplest examples the Perceptron was able
to generalize without constructing a precise model of the data generation process.
Moreover, after the introduction of the Perceptron, many learning machines were
suggested that had no neurobiological analogy but they did not generalize worse
than Perceptron. Therefore, a natural question arose:

Does there exist something common in these machines? Does there exist a general
principle of inductive inference that they implement?

Immediately, a candidate was found as a general induction principle, the so-
called empirical risk minimization (ERM) principle. The ERM principle suggests
the utilization of a decision rule (an indicator function) which minimizes the number
of training errors (empirical risk) in order to achieve good generalization on future
(test) examples. The problem, however, was to construct a theory for that principle.

At the end of 1960s, the theory of ERM for the pattern recognition problem was
constructed. This theory includes the general qualitative theory of generalization that
described the necessary and sufficient conditions of consistencyof theERMinduction
principle. Specifically, the consistency of the ERM induction principle suggests that
it is valid for any set of indicator functions, that is {0, 1}-valued functions on which
the machine minimizes the empirical risk. Additionally, the new theory includes the
general quantitative theory describing the bounds on the probability of the (future)
test error for the function minimizing the empirical risk.

The application of the ERM principle, however, does not necessarily guarantee
consistency, that is convergence to the best possible solution with an increasing
number of observations. Therefore, the primary issues that drove the development
of the ERM theory were the following:

1. Describing situations under which the method is consistent, that is, to find the
necessary and sufficient conditions for which the ERMmethod defines functions
that converge to the best possible solution with an increasing number of obser-
vations. The resulting theorems thereby describe the qualitative model of ERM
principle.

2. Estimating the quality of the solution obtained on the basis of the given sample
size. This entails, primarily, to estimate the probability of error for the function that
minimizes the empirical risk on the given set of training examples and secondly
to estimate how close this probability is to the smallest possible for the given set
of functions. The resulting theorems characterize the generalization ability of the
ERM principle.
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In order to address both issues for the pattern recognition problem it is necessary
to construct a theory that could be considered as a generalization of the Glivenko–
Cantelli–Kolmogorov results. This is equivalent to the following statements:

1. For any given set of events, to determinewhether the uniform lawof large numbers
holds, that is whether uniform convergence takes place.

2. If uniform convergence holds, to find the bounds for the non-asymptotic rate of
uniform convergence.

This was the theory constructed by Vapnik and Chervonenkis which was based on
a collection of new concepts, the so-called capacity concepts for a set of indicator
functions. The most important new concept was the so-called VC dimension of the
set of indicator functions which characterizes the variability of the set of indicator
functions. Specifically, it was found that both the necessary and sufficient conditions
of consistency and the rate of convergence of the ERM principle depend on the
capacity of the set of functions that are implemented by the learning machine. The
most preeminent results of the new theory that particularly relate to theVCdimension
are the following:

1. For distribution-independent consistency of the ERM principle, the set of func-
tions implemented by the learning machine must have a finite VC dimension.

2. Distribution-free bounds on the rate of uniform convergence depend on the VC
dimension, the number of errors, and the number of observations.

The bounds for the rate of uniform convergence not only provide the main the-
oretical basis for the ERM inference, but also motivate a new method of inductive
inference. For any level of confidence, an equivalent formof the bounds define bounds
on the probability of the test error simultaneously for all functions of the learning
machine as a function of the training errors, of the VC dimension of the set of func-
tions implemented by the learning machine, and of the number of observations. This
form of the bounds led to a new idea for controlling the generalization ability of
learning machines:

In order to achieve the smallest bound on the test error by minimizing the number
of training errors, the machine (set of functions) with the smallest VC dimension
should be used.

These two requirements define a pair of contradictory goals involving the simulta-
neous minimization of the number of training errors and the utilization of a learning
machine (set of functions) with a small VC dimension. In order to minimize the num-
ber of training errors, one needs to choose a function from a wide set of functions,
rather than from a narrow set, with small VC dimension. Therefore, to find the best
guaranteed solution, one has to compromise between the accuracy of approximation
of the training data and the capacity (VC dimension) of the machine that is used for
the minimization of errors. The idea of minimizing the test error by controlling two
contradictory factors was formalized within the context of a new induction principle,
the so-called Structural Risk Minimization (SRM) principle.

The fundamental philosophy behind the SRM principle is the so-called Occam’s
razor which was originally proposed byWilliam of Occam in the fourteenth century,
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stating that entities should not be multiplied beyond necessity. In particular, the most
common interpretation of Occam’s razor is that the simplest explanation is the best.
The assertion coming from SRM theory, however, is different and suggests that one
should choose the explanation provided by the machine with the smallest capacity
(VC dimension).

The SRM principle constitutes an integral part of the model prediction para-
digm which was established by the pioneering work of Vapnik and Chervonenkis.
Specifically, one of the most important achievements of the new theory concerns the
discovery that the generalization ability of a learning machine depends on the capac-
ity of the set of functions which are implemented by the learning machine which
is different from the number of free parameters. Moreover, the notion of capacity
determines the necessary and sufficient conditions ensuring the consistency of the
learning process and the rate of convergence. In other words, it reflects intrinsic
properties of inductive inference.

In order to extend the model prediction paradigm, Vapnik introduced the Trans-
ductive Inference paradigm in the 1980s. The goal of transductive inference is to
estimate the values of an unknown predictive function at a given point of interest, but
not in the whole domain of its definition. The rationale behind this approach is that it
is possible to achieve more accurate solutions by solving less demanding problems.
The more general philosophical underpinning behind the transductive paradigm can
be summarized by the following imperative:

If you possess a restricted amount of information for solving some general prob-
lem, try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient for a
direct solution but is insufficient for solving a more general intermediate problem.

In many real-life problems, the goal is to find the values of an unknown function
only at points of interest, namely the testing data points. In order to solve this problem
the model prediction approach uses a two-stage procedure which is particularly
illustrated in Fig. 2.1.

At the first stage (inductive step) a function is estimated from a given set of
functions, while at the second stage (deductive step) this function is used in order to
evaluate the values of the unknown function at the points of interest. It is obvious
that at the first stage of this two-stage scheme one addresses a problem that is more
general than the one that needs to be solved. This is true since estimating an unknown

Fig. 2.1 Inference models
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function involves estimating its values at all points in the function domain when
only a few are of practical importance. In situations when there is only a restricted
amount of information, it is possible to be able to estimate the values of the unknown
function reasonably well at the given points of interest but cannot estimate the values
of the function well at any point within the function domain. The direct estimation
of function values only at points of interest using a given set of functions forms
the transductive type of inference. As clearly depicted in Fig. 2.1, the transductive
solution derives results in one step, directly from particular to particular (transductive
step).

2.3 Machine Learning Categorization According
to the Amount of Inference

Although machine learning paradigms can be categorized according to the type of
inference that is performed by the corresponding machines, a common choice is
to classify learning systems based on the amount of inference. Specifically, this
categorization concerns the amount of inference that is performed by the learner
which is one of the two primary entities in machine learning, the other being the
supervisor (teacher). The supervisor is the entity that has the required knowledge to
perform a given task, while the learner is the entity that has to learn the knowledge
in order to perform a given task. In this context, the various learning strategies can
be distinguished by the amount of inference the learner performs on the information
given by the supervisor.

Actually, there are two extreme cases of inference, namely performing no infer-
ence and performing a remarkable amount of inference. If a computer system (the
learner) is programmed directly, its knowledge increases but it performs no infer-
ence since all cognitive efforts are developed by the programmer (the supervisor).
On the other hand, if a systems independently discovers new theories or invents new
concepts, it must perform a very substantial amount of inference since it is deriv-
ing organized knowledge from experiments and observations. An intermediate case
could be a student determining how to solve a math problem by analogy to problem
solutions contained in a textbook. This process requires inference but much less than
discovering a new theorem in mathematics.

Increasing the amount of inference that the learner is capable of performing, the
burden on the supervisor decreases. The following taxonomy of machine learning
paradigms captures the notion of trade-off in the amount of effort that is required of
the learner and of the supervisor. Therefore, there are four different learning types
that can be identified, namely rote learning, learning from instruction, learning by
analogy and learning from examples.
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2.3.1 Rote Learning

Rote learning consists in the direct implanting if knowledge into a learning system.
Therefore, there is no inference or other transformation of the knowledge involved
on the part of the learner. There are, of course, several variations of this method such
as:

• Learning by being programmed or modified by an external entity. This variation
requires no effort in the part of the learner. A typical paradigm is the usual style
of computer programming.

• Learning by memorization of given facts and data with no inference drawn from
incoming information. For instance, the primitive database systems.

2.3.2 Learning from Instruction

Learning from instruction (or learning by being told) consists in acquiring knowl-
edge from a supervisor or other organized source, such as a textbook, requiring that
the learner transforms the knowledge from the input language to an internal represen-
tation. The new information is integrated with the prior knowledge for effective use.
The learner is required to perform some inference, but a large fraction of the cogni-
tive burden remains with the supervisor, who must present and organize knowledge
in a way that incrementally increases the learner’s actual knowledge. In other words,
learning from instruction mimics education methods. In this context, the machine
learning task involves building a system that can accept and store instructions in
order to efficiently cope with a future situation.

2.3.3 Learning by Analogy

Learning by analogy consists in acquiring new facts or skills by transforming and
increasing existing knowledge that bears strong similarity to the desired new concept
or skill into a form effectively useful in the new situation. A learning-by-analogy
system could be applied in order to convert an existing computer program into one
that performs a closely related function for which it was not originally designed.
Learning by analogy requires more inference on the part of the learner that does rote
learning or learning from instruction. A fact or skill analogous in relevant parameters
must be retrieved from memory which will be subsequently transformed in order to
be applied to the new situation.
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2.4 Learning from Examples

Learning from examples is a model addressing the problem of functional depen-
dency estimation within the general setting of machine learning. The fundamental
components of this model, as they are illustrated in Fig. 2.2, are the following:

1. The generator of the data G.
2. The target operator or supervisor’s operator S.
3. The learning machine LM.

The generator G serves as the main environmental factor generating the indepen-
dently and identically distributed (i.i.d) random vectors x ∈ X according to some
unknown (but fixed) probability distribution function F(x). In other words, the gen-
erator G determines the common framework in which the supervisor and the learning
machine act. The random vectors x ∈ X are subsequently fed as inputs to the target
operator (supervisor S) which finally returns the output values y. It is important to
note that although there is no information concerning the transformation of input
vector to output values, it is known that the corresponding target operator exists and
does not change. The learning machine observes l pairs

(x1, y1), . . . , (xl, yl) (2.18)

(the training set) which contains input vectors x and the supervisor’s response y.
During this period the learning machine constructs some operator which will be
used for prediction of the supervisor’s answer yi on an particular observation vector
x generated by the generator G. Therefore, the goal of the learning machine is to
construct an appropriate approximation. In order to be amathematical statement, this
general scheme of learning from examples needs some clarification. First of all, it is
important to describe the kind of functions that are utilized by the supervisor. In this
monograph, it is assumed that the supervisor returns the output value y on the input
vector x according to a conditional distribution function F(y|x) including the case
when the supervisor uses a function of the form y = f (x). Thus, the learningmachine
observes the training set, which is drawn randomly and independently according to
a joint distribution function F(x, y) = F(x)F(y|x) and by utilizing this training
set it constructs an approximation to the unknown operator. From a formal point

Fig. 2.2 Learning from
examples
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of view, the process of constructing an operator consists of developing a learning
machine having the ability to implement some fixed set of functions given by the
construction of the machine. Therefore, the learning process is a process of choosing
an appropriate function from a given set of functions.

2.4.1 The Problem of Minimizing the Risk Functional
from Empirical Data

Each time the problemof selecting a functionwith desired qualities arises, one should
look in the set of possible functions for the one that satisfies the given quality criterion
in the best possible way. Formally, this means that on a subset Z of the vector space
R

n, a set of admissible functions {g(z)}, z ∈ Z , is given, and a functional

R = R(g(z)) (2.19)

is defined as the criterion of quality for the evaluation of any given function. It is then
required to find the function g′(z)minimizing the functional (2.19) assuming that the
minimum of the functional corresponds to the best quality and that the minimum of
(2.19) exists in {g(z)}. In the case when the set of functions {g(z)} and the functional
R(g(z)) were explicitly given, finding the function g′(z) which minimizes (2.19)
would a problem of the calculus of variations. In real-life problems, however, this is
merely the case since the most common situation is that the risk functional is defined
on the basis of a given probability distribution F(z) defined on Z . Formally, the risk
functional is defined as themathematical expectation given by the following equation

R(g(z)) =
∫

L(z, g(z))dF(z) (2.20)

where the function L(z, g(z)) is integrable for any g(z) ∈ {g(z)}. Therefore, the
problem is to minimize the risk functional (2.20) in the case when the probability
distribution F(z) is unknown but the sample

z1, . . . , zl (2.21)

of observations drawn randomly and independently according to F(z) is available.
It is important to note that there is a substantial difference between problems aris-

ing when the optimization process involves the direct minimization of the functional
(2.19) and those encountered when the functional (2.20) is minimized on the basis
of the empirical data (2.21). In the case of minimizing (2.19) the problem reduces
to organizing the search for the function g′(z) from the set {g(z)} which minimizes
(2.19). On the other hand, when the functional (2.20) is to be minimized on the
basis of the empirical data (2.21), the problem reduces to formulating a constructive
criterion that will be utilized in order to choose the optimal function rather than
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organizing the search of the functions in {g(z)}. Therefore, the question in the first
case is: How to obtain the minimum of the functional in the given set of functions?
On the other hand, in the second case the question is: What should be minimized in
order to select from the set {g(z)} a function which will guarantee that the functional
(2.20) is small?

Strictly speaking, the direct minimization of the risk functional (2.20) based on
the empirical data (2.21) is impossible based on the utilization of methods that are
developed in optimization theory. This problem, however, lies within the core of
mathematical statistics.

When formulating the minimization problem for the functional (2.20), the set
of functions g(z) will be given in a parametric form {g(z,α),α ∈ Λ}. Here α is
parameter from the set Λ such that the value α = α∗ defines the specific function
g(z,α∗) in the set g(z,α). Therefore, identifying the required function is equivalent
to determining the corresponding parameter α ∈ Λ. The exclusive utilization of
parametric sets of functions does not imply a restriction on the problem, since the set
Λ, to which the parameter α belongs, is arbitrary. In other words, Λ can be a set of
scalar quantities, a set of vectors, or a set of abstract elements. Thus, in the context
of the new notation the functional (2.20) can be rewritten as

R(a) =
∫

Q(z,α)dF(z),α ∈ Λ, (2.22)

where
Q(z,α) = L(z, g(z,α)). (2.23)

The function Q(z,α) represents a loss function depending on the variables z and α.
The problem ofminimizing the functional (2.22) may be interpreted in the follow-

ing simple way: It is assumed that each function Q(z,α),α ∈ Λ (e.g. each function
of z for a fixed α = α∗), determines the amount of loss resulting from the realization
of the vector z. Thus, the expected loss (with respect to z) for the function Q(z,α∗)
will be determined by the integral

R(α∗) =
∫

Q(z,α∗)dF(z). (2.24)

This functional is the so-called risk functional or risk. The problem, then, is to choose
in the set Q(z,α), α ∈ Λ, a function Q(z,α0 which minimizes the risk when the
probability distribution function is unknown but independent random observations
z1, . . . , zl are given.

Let P0 be the set of all possible probability distribution functions on Z and P
some subset of probability distribution functions from P0. In this context, the term
“unknown probability distribution function”, means that the only available informa-
tion concerning F(z) is the trivial statement that F(z) ∈ P0.
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2.4.2 Induction Principles for Minimizing the Risk
Functional on Empirical Data

The natural problem that arises at this point concerns the minimization of the risk
functional defined in Eq. (2.24) which is impossible to perform directly on the basis
of an unknown probability distribution function F(x) (which defines the risk). In
order to address this problem Vapnik and Chervonenkis introduced a new induction
principle, namely the principle of Empirical Risk Minimization. The principle of
empirical risk minimization suggests that instead of minimizing the risk functional
(2.22) one could alternatively minimize the functional

Remp(α) = 1

l

l∑
i=1

Q(zi,α), (2.25)

which is called the empirical risk functional. The empirical risk functional is con-
structed on the basis of the data z1, . . . , zl which are obtained according to the
distribution F(z). This functional is defined in explicit form and may be subject to
direct minimization. Letting the minimum of the risk functional (2.22) be attained
at Q(z,α0) and the minimum of the empirical risk functional (2.25) be attained
at Q(z,αl), then the latter may be considered as an approximation to the function
Q(z,α0). This principle of solving the empirical risk minimization problem is called
the empirical risk minimization (induction) principle.

2.4.3 Supervised Learning

In supervised learning (or learningwith a teacher), the available data are given in the
formof input-output pairs. In particular, eachdata sample consists of a particular input
vector and the related output value. The primary purpose of this learning paradigm
is to obtain a concise description of the data by finding a function which yields the
correct output value for a given input pattern. The term supervised learning stems
from the fact that the objects under consideration are already associated with target
values which can be either integer class identifiers or real values. Specifically, the
type of the output values distinguishes the two branches of the supervised learning
paradigm corresponding to the learning problems of classification and regression.

The Problem of Pattern Recognition

The problem of pattern recognition was formulated in the late 1950s. In essence, it
can be formulated as follows: A supervisor observes occurring situations and deter-
mines to which of k classes each one of them belongs. The main requirement of the
problem is to construct a machine which, after observing the supervisor’s classifi-
cation, realizes an approximate classification in the same manner as the supervisor.
A formal definition of the pattern recognition learning problem could be obtained
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by considering the following statement: In a certain environment characterized by
a probability distribution function F(x), situation x appears randomly and indepen-
dently. The supervisor classifies each one of the occurred situations into one of k
classes. It is assumed that the supervisor carries out this classification by utilizing the
conditional probability distribution function F(ω|x), where ω ∈ {0, 1, . . . , k − 1}.
Therefore, ω = p indicates that the supervisor assigns situation x the class p. The
fundamental assumptions concerning the learning problem of pattern recognition is
that neither the environment F(x) nor the decision rule of the supervisor F(ω|x) are
known. However, it is known that both functions exist meaning yielding the existence
of the joint distribution F(ω, x) = F(x)F(ω|x).

Let φ(x,α), α ∈ Λ be a set of functions which can take only k discrete values
contained within the {0, 1, . . . , k−1} set. In this setting, by considering the simplest
loss function

L(ω,φ) =
{
0, if ω = φ;
1, if ω �= φ.

(2.26)

the problem of pattern recognition may be formulated as the minimization of the risk
functional

R(α) =
∫

L(ω,φ(x,α))dF(ω, x) (2.27)

on the set of functions φ(x,α), α ∈ Λ. The unknown distribution function F(ω, x)
is implicitly described through a random independent sample of pairs

(ω1, x1), . . . , (ω1, xl) (2.28)

For the loss function (2.26), the functional defined in Eq. (2.27) determines the aver-
age probability ofmisclassification for any given decision ruleφ(x,α). Therefore, the
problem of pattern recognition reduces to theminimization of the average probability
of misclassification when the probability distribution function F(ω, x) is unknown
but the sample data (2.28) are given.

In this way, the problem of pattern recognition is reduced to the problem of min-
imizing the risk functional on the basis of empirical data. Specifically, the empirical
risk functional for the pattern recognition problem has the following form:

Remp(α) = 1

l

l∑
i=1

L(ωi,φ(xi,α)), α ∈ Λ. (2.29)

The special feature of this problem, however, is that the set of loss functions
Q(z,α), α ∈ Λ is not as arbitrary as in the general case defined by Eq. (2.23).
The following restrictions are imposed:

• The vector z consists of n + 1 coordinates: coordinate ω, which takes on only a
finite number of values and n coordinates (x1, . . . , xn) which form the vector x.
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• The set of functionsQ(z,α), α ∈ Λ, is given byQ(z,α) = L(ω,φ(x,α)), α ∈ Λ

taking only a finite number of values.

This specific feature of the riskminimization problemcharacterizes the pattern recog-
nition problem. In particular, the pattern recognition problem forms the simplest
learning problem because it deals with the simplest loss function. The loss func-
tion in the pattern recognition problem describes a set of indicator functions, that is
functions that take only binary values.

The Problem of Regression Estimation

The problemof regression estimation involves two sets of elementsX andY which are
connected by a functional dependence. In other words, for each element x ∈ X there
is a unique corresponding element y ∈ Y . This relationship constitutes a function
when X is a set of vectors and Y is a set of scalars. However, there exist relationships
(stochastic dependencies)where each vector x can bemapped to a number of different
y’s which are obtained as a result of random trials. This is mathematically described
by considering the conditional distribution function F(y|x), defined on Y , according
to which the selection of the y values is realized. Thus, the function of the conditional
probability expresses the stochastic relationship between y and x.

Let the vectors x appear randomly and independently in accordance with a distri-
bution function F(x). Then, it is reasonable to consider that the y values are likewise
randomly sampled from the conditional distribution function F(y|x). In this case, the
sample data points may be considered to be generated according to a joint probability
distribution function F(x, y). The most intriguing aspect of the regression estima-
tion problem is that the distribution functions F(x) and F(y|x) defining the joint
distribution function F(y, x) = F(x)F(y|x) are unknown. Once again, the problem
of regression estimation reduces to the approximation of the true joint distribution
function F(y|x) through a series of randomly and independently sampled data points
of the following form

(y1, x1), . . . , (yl, xl). (2.30)

However, the knowledge of the function F(y, x) is often not required as in many
cases it is sufficient to determine one of its characteristics, for example the function
of the conditional mathematical expectation:

r(x) =
∫

yF(y|x) (2.31)

This function is called the regression and the problem of its estimation in the set
of functions f (x,α), α ∈ Λ, is referred to as the problem of regression estimation.
Specifically, it was proved that the problemof regression estimation can be reduced to
themodel of minimizing risk based on empirical data under the following conditions:

∫
y2dF(y, x) < ∞ and

∫
r2(x)dF(y, x) < ∞ (2.32)
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Indeed, on the set f (x,α) the minimum of the functional

R(α) =
∫

(y − f (x,α))2dF(y, x) (2.33)

(provided that it exists) is attained at the regression function if the regression r(x)
belongs to f (x,α), α ∈ Λ. On the other hand, the minimum of this functional is
attained at the function f (x, a∗), which is the closest to the regression r(x) in the
metric L2(P), defined as

L2(f1, f2) =
√∫

(f1(x) − f2(x))2dF(x) (2.34)

if the regression r(x) does not belong to the set f (x,α), α ∈ Λ.
Thus, the problem of estimating the regression may be also reduced to the scheme

ofminimizing a risk functional on the basis of a given set of sample data. Specifically,
the empirical risk functional for the regression estimation problem has the following
form:

Remp(α) = 1

l

l∑
i=1

(yi − f (xi,α))2, α ∈ Λ (2.35)

The specific feature of this problem is that the set of functions Q(z,α), α ∈ Λ, is
subject to the following restrictions:

• The vector z consists of n+ 1 coordinates: the coordinate y and the n coordinates
(x1, . . . , xn) which form the vector x. However, in contrast to the pattern recogni-
tion problem, the coordinate y as well as the function f (x, a) may take any value
in the interval (−∞,∞)

• The set of loss functions Q(z,α), α ∈ Λ, is of the form Q(z, a) = (y− f (x,α))2.

2.4.4 Unsupervised Learning

If the data is only a sample of objects without associated target values, the problem
is known as unsupervised learning. In unsupervised learning, there is no teacher.
Hence, a concise description of the data can be a set of clusters or a probability
density stating how likely it is to observe a certain object in the future. The primary
objective of unsupervised learning is to extract some structure from a given sample
of training objects.

The Problem of Density Estimation

Let p(x,α), α ∈ Λ, be a set of probability densities containing the required density
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p(x,α0) = dF(x)
dx

. (2.36)

It was shown that the minimum of the risk functional

R(α) =
∫

ln p(x,α)dF(x) (2.37)

(if it exists) is attained at the functions p(x,α∗) which may differ from p(x,α0)

only on a set of zero measure. Specifically, Bretagnolle and Huber [1] proved the
following inequality

∫
|p(x,α)) − p(x,α0))|dx ≤ 2

√
R(α) − R(α0) (2.38)

according to which the problem of estimating the density in L1 is reduced to the
minimization of the functional (2.37) on the basis of empirical data. The general
form of the Lp metric in a k-dimensional metric space is given by the following
equation

‖x‖p =
(

k∑
i=1

|xi|p
) 1

p

(2.39)

for 1 ≤ p < ∞ and x ∈ R
k . In particular, the corresponding empirical risk functional

has the following form

Remp(α) = −
l∑

i=1

ln p(xi,α) (2.40)

The special feature of the density estimation problem is that the set of functions
Q(z,α) is subject to the following restrictions:

• The vector z coincides with the vector x,
• The set of functions Q(z,α), α ∈ Λ, is of the form Q(z,α) = − log p(x,α),
where p(x,α) is a set of density functions. The loss function Q(z,α) takes on
arbitrary values on the interval (−∞,∞).

Clustering

A general way to represent data is to specify a similarity between any pair of objects.
If two objects share much structure, is should be possible to reproduce the data from
the same prototype. This is the primary idea underlying clustering methods which
form a rich subclass of the unsupervised learning paradigm. Clustering is one of
the most primitive mental activities of humans, which is used in order to handle
the huge amount of information they receive every day. Processing every piece of
information as a single entity would be impossible. Thus, humans tend to categorize
entities (i.e. objects, persons, events) into clusters. Each cluster is then characterized
by the common attributes of the entities it contains.



2.4 Learning from Examples 31

The definition of clustering leads directly to the definition of a single “cluster”.
Many definitions have been proposed over the years, but most of them are based
on loosely defined terms such as “similar” and “alike” or are oriented to a specific
kind of clusters. Therefore, the majority of the proposed definitions for clustering
are of vague or of circular nature. This fact reveals that it is not possible to provide
a universally accepted formal definition of clustering. Instead, one can only provide
an intuitive definition stating that given a fixed number of clusters, the clustering
procedure aims at finding a grouping of objects (clustering) such that similar objects
will be assigned to same group (cluster). Specifically, if there exists a partitioning of
the original data set such that the similarities of the objects in one cluster are much
greater than the similarities among objects from different clusters, then it is possible
to extract structure from the given data. Thus, it is possible to represent a whole
cluster by one representative data point. More formally, by letting

X = {x1, . . . , xl} (2.41)

be the original set of available data the m - clustering R of X may be defined as
the partitioning of X into m sets (clusters) C1, . . . ,Cm such that the following three
conditions are met:

• Ci �= ∅, i = 1, . . . ,m
• ∪m

i=1Ci = X
• Ci ∩ Cj = ∅, i �= j, i, j = 1, . . . ,m

It must be noted that the data points contained in a cluster Ci are more “similar” to
each other and less similar to the data points of the other clusters. The quantification,
however, of the terms “similar” and “dissimilar” is highly dependent on the type of
the clusters involved. The type of the clusters is determinately affected by the shape
of the clusters which in tern depends on the particular measure of dissimilarity or
proximity between clusters.

2.4.5 Reinforcement Learning

Reinforcement learning is learning how to map situations to actions in order to
maximize a numerical reward signal. The learner is not explicitly told which actions
to take, as in most forms of machine learning, but instead must discover which
actions yield the most reward by trying them. In most interesting and challenging
cases, actions may affect not only the immediate reward, but also the next situation
and, through that, all subsequent rewards. These two characteristics (trial and error,
and delayed reward) are the most important distinguishing features of reinforcement
learning. Reinforcement learning does not define a subclass of learning algorithms,
but rather a category of learning problemswhich focuses on designing learning agents
which cope with real-life problems. The primary features of such problems involves
the interaction of the learning agents with their environments in order to achieve a
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particular goal. Clearly, this kind of agents must have the ability to sense the state of
the environment to some extent and must be able to take actions affecting that state.
The agent must also have a goal or goals relating to the state of the environment.

Reinforcement learning is different from the classical supervised learning para-
digmwhere the learner is explicitly instructed by a knowledgable external supervisor
through a series of examples that indicate the desired behavior. This is an important
kind of learning, but it is not adequate on its own to address the problem of learning
from interaction. In interactive problems, it is often impractical to obtain correct and
representative examples of all the possible situations in which the agent has to act. In
uncharted territory, where one would expect learning to be more beneficial, an agent
must be able to learn from its own experience.

One of the challenges that arises in reinforcement learning and not in other kinds
of learning is the tradeoff between exploration and exploitation. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past
and found effective in producing reward. However, the discovery of such actions
requires that the agent has to try actions that he has not selected before. In other
words, the agent has to exploit what is already known in order to obtain reward,
but it is also important to explore new situations in order to make better action
selections in the future. The dilemma is that neither exploitation nor exploration can
be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best. Moreover, when the
learning problems involves a stochastic task, each action must be tried many times
in order to reliably estimate the expected reward.

Another key feature of reinforcement learning is that it explicitly considers the
whole problem of a goal-directed agent interacting with an uncertain environment.
This is in contrast with many learning approaches that address subproblems with-
out investigating how they fit into a larger picture. Reinforcement learning, on the
other hand, starts with a complete, interactive goal-seeking agent. All reinforcement
learning agents have explicit goals, can sense aspects of their environments, and can
choose actions to influence their environments. Moreover, it is usually assumed from
the beginning that the agent has to operate despite significant uncertainty about the
environment it faces. For learning research to make progress, important subproblems
have to be isolated and studied, but they should be incorporated in the larger picture as
subproblems that are motivated by clear roles in complete, interactive, goal-seeking
agents, even if all the details of the complete agent cannot yet be filled in.

2.5 Theoretical Justifications of Statistical Learning Theory

Statistical learning theory provides the theoretical basis for many of today’s machine
learning algorithms and is arguably one of the most beautifully developed branches
of artificial intelligence in general. Providing the basis of new learning algorithms,
however, was not the only motivation for the development of statistical learning
theory. Itwas just asmuch a philosophical one, attempting to identify the fundamental
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element which underpins the process of drawing valid conclusions from empirical
data.

The best-studied problem in machine learning is the problem of classification.
Therefore, the theoretical justifications concerning Statistical Learning Theory will
be analyzed within the general context of supervised learning and specifically pat-
tern classification. The pattern recognition problem, in general, deals with two kind
of spaces: the input space X, which is also called the space of instances, and the
output space Y, which is also called the label space. For example, if the learn-
ing task is to classify certain objects into a given, finite set of categories, then X
consists of the space of all possible objects (instances) in a certain, fixed representa-
tion, while Y corresponds to the discrete space of all available categories such that
Y = {0, . . . , k − 1}. This discussion, however, will be limited to the case of binary
classification for simplicity reasons which yields that the set of available categories
will be restricted to Y = {−1,+1}. Therefore, the problem of classification may
be formalized as the procedure of estimating a functional dependence of the form
φ : X → Y, that is a relationship between input and output spaces X and Y respec-
tively. Moreover, this procedure is realized on the basis of a given set of training
examples (x1, y1), . . . , (xl, yl), that is pairs of objects with the associated category
label. The primary goal when addressing the pattern classification problem is to find
such a mapping that yields the smallest possible number of classification errors. In
other words, the problem of pattern recognition is to find that mapping for which
the number of objects in X that are assigned to the wrong category is as small as
possible. Such a mapping is referred to as a classifier. The procedure for determining
such a mapping on the basis of a given set of training examples is referred to as a
classification algorithm or classification rule. A very important issue concerning the
definition of the pattern recognition problem is that no particular assumptions are
made on the spacesX andY. Specifically, it is assumed that there exists a joint distri-
bution function F on Z = X×Y and that the training examples (xi, yi) are sampled
independently from this distribution F. This type of sampling is often denoted as iid
(independently and identically distributed) sampling.

It must be noted that any particular discrimination function φ(x) is parameterized
by a unique parameter α ∈ Λall which can be anything from a single parameter value
to a multidimensional vector. In other words, Λall denotes the set of all measurable
functions from X to Y corresponding to the set of all possible classifiers for a given
pattern recognition problem. Of particular importance is the so-called Bayes Classi-
fier φBayes(x), identified by the parameter αBayes, whose discrimination function has
the following form

φBayes(x,αBayes) = argmin
ω∈Y

P(Y = ω|X = x). (2.42)

TheBayes classifier operates by assigning any given pattern to the classwith themax-
imum a posteriori probability. The direct computation of the Bayes classifier, how-
ever, is impossible in practice since the underlying probability distribution is com-
pletely unknown to the learner. Therefore, the problem of pattern recognition may be
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formulated as the procedure of constructing a function φ(x,α) : X → Y, uniquely
determinedby theparameterα, througha series of trainingpoints (x1, y1), . . . , (xl, yl)
which has risk R(α) as close as possible to the risk R(αBayes) of the Bayes classifier.

2.5.1 Generalization and Consistency

Let (x1, y1), . . . , (xl, yl) be a sequence of training patterns and αl be the function
parameter corresponding to the classifier obtained by the utilization of some learning
algorithm on the given training set. Even though it is impossible to compute the
true underlying risk R(αl) for this classifier according to Eq. (2.27), it is possible
to estimate the empirical risk Remp(αl) according to Eq. (2.29) accounting for the
number of errors on the training points.

Usually, for a classifier αn trained on a particular training set, the empirical risk
Remp(αl) is relatively small since otherwise the learning algorithm will not even
seem to be able to explain the training data. A natural question arising at this point is
whether a function αl which makes a restricted number of errors on the training set
will perform likewise on the rest of the X space. This question is intimately related
to the notion of generalization. Specifically, a classifier αl is said to generalize well
if the difference |R(αl)−Remp(αl)| is small. This definition, however, does not imply
that the classifier αl will have a small overall error Remp, but it just means that the
empirical error Remp(αl) is a good estimate of the true error R(αl). Particularly bad
in practice is the situation where Remp(αl) is much smaller than R(αl) misleading to
the assumption of being overly optimistic concerning the quality of the classifier.

The problem concerning the generalization ability of a given machine learning
algorithmmaybe better understood by considering the following regression example.
One is given a set of observations (x1, y1), . . . , (xl, yl) ∈ X×Y, where for simplicity
it is assumed thatX = Y = R. Figure2.3 shows a plot of such a dataset, indicated by
the round points, along with two possible functional dependencies that could underly
the data.

The dashed line αdashed represents a fairly complex model that fits the data per-
fectly resulting into a zero training error. The straight line, on the other hand, does not
completely explain the training data, in the sense that there are some residual errors,
leading to a small training error. The problem regarding this example concerns the
inability to compute the true underlying risks R(αdashed) and R(αstraight) since the
two possible functional dependencies have very different behavior. For example, if
the straight line classifier αstraight was the true underlying risk, then the dashed line
classifier αdashed would have a high true risk, as the L2 distance between the true and
the estimated function is very large. The same also holds when the true functional
dependence between the spaces X and Y is represented by the dashed line while the
straight line corresponds to the estimated functional dependency. In both cases, the
true risk would be much higher than the empirical risk.

This example emphasizes the need tomake the correct choice between a relatively
complex functionmodel, leading to a very small training error, and a simpler function
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Fig. 2.3 Regression
example

y
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model at the cost of a slightly higher training error. In one form or another, this issue
was extensively studied within the context of classical statistics as the bias-variance
dilemma. The bias-variance dilemma involves the following dichotomy. If a linear
fit is computed for any given data set, then every functional dependence discovered
would be linear but as a consequence of the bias imposed from the choice of the
linear model which does not necessarily comes from the data. On the hand, if a
polynomial model of sufficiently high degree is fit for any given data set, then the
approximation ability of the model would fit the data perfectly but it would suffer
from a large variance depending on the initial accuracy of the measurements. In
other words, within the context of applied machine learning, complex explanations
show overfitting, while overly simple explanations imposed by the learning machine
design lead to underfitting. Therefore, the concept of generalization can be utilized
in order to determine the amount of increase in the training error in order to tolerate
for a fitting a simpler model and quantify the way in which a given model is simpler
than another one.

Another concept, closely related to generalization, is the one of consistency. How-
ever, as opposed to the notion of generalization discussed above, consistency is not
a property of an individual function, but a property of a set of functions. The notion
of consistency, as it is described in classical statistics, aims at making a statement
about what happens in the limit of infinitely many sample points. Intuitively, it seems
reasonable to request that a learning algorithm, when presented with more and more
training points, should eventually converge to an optimal solution.

Given any particular classification algorithm and a set of l training points, αl

denotes the parameter identifying the obtained classifier where the exact procedure
for its determination is not of particular importance. Note that any classification
algorithm chooses its functions from some particular function space identified by
the complete parameter space Λ such that F = {φ(x,α) : α ∈ Λ}. For some
algorithms this space is given explicitly, while for others it only exists implicitly via
the mechanism of the algorithm. No matter how the parameter space Λ is defined,
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the learning algorithm attempts to choose the parameter αl ∈ Λ which it considers
as the best classifier in Λ, based on the given set of training points. On the other
hand, in theory the best classifier in Λ is the one that has the smallest risk which is
uniquely determined by the following equation:

αΛ = argmin
α∈Λ

R(α). (2.43)

The third classifier of particular importance is the Bayes classifier αBayes introduced
in Eq. (2.42). Bayes classifier, while being the best existing classifier, it may be not
be included within the parameter space Λ under consideration, so that R(αΛ) >

R(αBayes).
Let (xi, yi)i∈N be an infinite sequence of training points which have been drawn

independently from some probability distribution P and, for each l ∈ N, let αl be a
classifier constructed by some learning algorithm on the basis of the first l training
points. The following types of consistency may be defined:

1. The learning algorithm is called consistent with respect to Λ and P if the risk
R(αl) converges in probability to the risk R(αΛ) of the best classifier Λ, that is
for all ε > 0,

P(R(αl) − R(αΛ) > ε) → 0 as n → ∞ (2.44)

2. The learning algorithm is called Bayes-consistent with respect to P if the risk
R(R(αl)) converges to the risk R(αBayes) of the Bayes classifier, that is for all
ε > 0,

P(R(αl) − R(αBayes) > ε) → 0 as n → ∞ (2.45)

3. The learning algorithm is called universally consistent with respect to Λ (resp
universally Bayes-consistent) if it is consistent with respect to Λ (reps Bayes-
consistent) for all probability distributions P.

Itmust be noted that none of the above definitions involves the empirical riskRemp(αl)

of a classifier. On the contrary, they exclusively utilize the true risk R(αl) as a quality
measure reflecting the need to obtain a classifier which is as good as possible. The
empirical risk constitutes themost important estimator of the true risk of a classifier so
that the requirement involving the convergence of the true risk (R(αl) → R(αBayes))
should be extended to the convergence of the empirical risk (Remp(αl) → R(αBayes)).

2.5.2 Bias-Variance and Estimation-Approximation
Trade-Off

The goal of classification is to get a risk as close as possible to the risk of the Bayes
classifier. A natural question that arises concerns the possibility of choosing the
complete parameter space Λall as the parameter space Λ utilized by a particular
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classifier. This question raises the subject of whether the selection of the overall best
classifier, obtained in the sense of the minimum empirical risk,

αl = arg min
α∈Λall

Remp(α) (2.46)

implies consistency. The answer for this question is unfortunately negative since the
optimization of a classifier over too large parameter (function) spaces, containing
all the Bayes classifiers for all probability distributions P, will lead to inconsistency.
Therefore, in order to learn successfully it is necessary to work with a smaller para-
meter (function) space Λ.

Bayes consistency deals with the convergence of the termR(αl)−R(αBayes)which
can be decomposed in the following form:

R(αl) − R(αBayes) = (R(αl) − R(αΛ))︸ ︷︷ ︸
estimation error

+ (R(αΛ) − R(αBayes))︸ ︷︷ ︸
approximation error

(2.47)

The first term on the right hand side is called the estimation error while the second
term is called the approximation error. The first term deals with the uncertainty
introduced by the random sampling process. That is, given a finite sample, it is
necessary to estimate the best parameter (function) in Λ. Of course, in this process
there will be a hopefully small number of errors which is identified by the term
estimation error. The second term, on the other hand, is not influenced by random
qualities. It particularly deals with the error made by looking for the best parameter
(function) in a small parameter (function) space Λ, rather than looking for the best
parameter (function) in the entire space Λall. Therefore, the fundamental question
in this context is how well parameters (functions) in Λ can be used to approximate
parameters (functions) in Λall.

In statistics, the estimation error is also called the variance, and the approximation
error is called the bias of an estimator. The first term measures the variation of the
risk of the function corresponding to the parameterαl estimated on the sample, while
the second one measures the bias introduced in the model by choosing a relatively
small function class.

In this context the parameter space Λ may be considered as the means to bal-
ance the trade-off between estimation and approximation error. This is particularly
illustrated in Fig. 2.4 which demonstrates that the selection of a very large parameter
space Λ yields a very small approximation error term since there is high probability
that the Bayes classifier will be contained in Λ or at least it can be closely approxi-
mated by some element in Λ. The estimation error, however, will be rather large in
this case since the space Λ will contain more complex functions which will lead to
overfitting. The opposite effect will happen if the function class corresponding to the
parameter space Λ is very small.

The trade-off between estimation and approximation error is explicitly depicted
in Fig. 2.5. According to the graph, when the parameter space Λ corresponds to
a small complexity function space utilized by the classification algorithm, then the
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Fig. 2.4 Illustration of
estimation and
approximation error
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estimation error will be small but the approximation error will be large (underfitting).
On the other hand, if the complexity of Λ is large, then the estimation error will also
be large, while the approximation error will be small (overfitting). The best overall
risk is achieved for “moderate” complexity.

2.5.3 Consistency of Empirical Minimization Process

As discussed in Sect. 2.4.2, the ERM principle provides a more powerful way of
classifying data since it is impossible to directly minimize the true risk functional
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given by Eq. (2.27). In particular, the ERM principle addresses the problem related
with the unknown probability distribution function F(ω, x) which underlies the data
generation process by trying to infer a function f (x,α) from the set of identically and
independently sampled training data points. The process of determining this function
is based on the minimization of the so-called empirical risk functional which for the
problem of pattern classification is given by Eq. (2.29).

The fundamental underpinning behind the principle of Empirical Risk Minimiza-
tion is the law of large numbers which constitutes one of themost important theorems
in statistics. In its simplest form it states that under mild conditions, themean of inde-
pendent, identically-distributed random variables ξi, which have been drawn from
some probability distribution function P of finite variance, converges to the mean of
the underlying distribution itself when the sample size goes to infinity:

1

l

l∑
i=1

ξi → E(ξ) for l → ∞. (2.48)

A very important extension to the law of large numbers was originally provided
by the Chernoff inequality (Chernoff 1952) which was subsequently generalized by
Hoeffding (Hoeffding 1963). This inequality characterizes how well the empirical
mean approximates the expected value. Namely, if ξi, are random variables which
only take values in the [0, 1] interval, then

P

(∣∣∣∣1l
l∑

i=1

ξi − E(ξ)

∣∣∣∣ ≥ ε

)
≤ exp(−2lε2). (2.49)

This theorem can be applied to the case of the empirical and the true risk providing
a bound which states how likely it is that for a given function, identified by the
parameter α, the empirical risk is close to the actual risk:

P(|Remp(α) − R(α)| ≥ ε) ≤ exp(−2lε2) (2.50)

The most important fact concerning the bound provided by Chernoff in Eq. (2.50)
is its probabilistic nature. Specifically, it states that the probability of a large deviation
between the test error and the training error of a function f (x,α) is small when the
sample size is sufficiently large. However, by not ruling out the presence of cases
where the deviation is large, it just says that for a fixed function f (x,α), this is very
unlikely to happen. The reason why this has to be the case is the random process that
generates the training samples. Specifically, in the unlucky cases when the training
data are not representative of the true underlying phenomenon, it is impossible to
infer a good classifier. However, as the sample size gets larger, such unlucky cases
become very rare. Therefore, any consistency guarantee can only be of the form “the
empirical risk is close to the actual risk, with high probability”.
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Another issue related to the ERMprinciple is that the Chernoff bound in (Eq. 2.50)
is not enough in order to prove the consistency of the ERM process. This is true since
the Chernoff inequality holds only for a fixed function f (x,α)which does not depend
on the training data. While this seems to be a subtle mathematical difference, this
is where the ERM principle can go wrong as the classifier αl does depend on the
training data.

2.5.4 Uniform Convergence

It turns out the conditions required to render the ERM principle consistent involve
restricting the set of admissible functions. The main insight provided by the VC
theory is that the consistency of the ERM principle is determined by the worst case
behavior over all functions f (x,α), where α ∈ Λ, that the learning machine could
use. This worst case corresponds to a version of the law of large numbers which is
uniform over all functions parameterized by Λ.

A simplified description of the uniform law of large numbers which specifically
relates to the consistency of the learning process is given in Fig. 2.6. Both the empir-
ical and the actual risk are plotted as functions of the α parameter and the set of all
possible functions, parameterized by the set Λ, is represented by a single axis of the
plot for simplicity reasons. In this context, the ERM process consists of picking the
parameter α that yields the minimal value of Remp. This process is consistent if the
minimum of Remp converges to that of R as the sample size increases. One way to
ensure the convergence of the minimum of all functions inΛ is uniform convergence
over Λ. Uniform convergence over Λ requires that for all functions f (x,α), where
α ∈ Λ, the difference between R(α) and Remp(α) should become small simultane-
ously. In other words, it is required that there exists some large l such that for sample
size at least n, it is certain that for all functions f (x,α), where α ∈ Λ, the difference

Fig. 2.6 Convergence of the
empirical risk to the actual
risk

α αΛ αl

function class Λ

risk

R

Remp
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|R(α) − Remp(α)| is smaller than a given ε. Mathematically, this statement can be
expressed using the following inequality:

sup
α∈Λ

|R(α) − Remp(α)| ≤ ε. (2.51)

In Fig. 2.6, this means that the two plots of R and Remp become so close that their
distance is never larger than ε. This, however, does not imply that in the limit of
infinite sample sizes, the minimizer of the empirical risk, αl, will lead to a value of
the risk that is as good as the risk of the best function, αΛ, in the function class.
The latter is true when uniform convergence is imposed over all functions that are
parameterized by Λ. Intuitively it is clear that if it was known that for all functions
f (x,α), where α ∈ Λ, the difference |R(α) − Remp(α)| is small, then this holds in
particular for any function identified by the parameterαl that might have been chosen
based on the given training data. That is, for any function f (x, a), where α ∈ Λ, it is
true that:

|R(α) − Remp(α)| ≤ sup
α∈Λ

|R(α) − Remp(α)|. (2.52)

Inequality (2.52) also holds for any particular function parameter αl which has
been chosen on the basis of a finite sample of training points. Therefore, the following
conclusion can be drawn:

P(|R(α) − Remp(α)| ≥ ε) ≤ P(sup
α∈Λ

|R(α) − Remp(α)| ≥ ε), (2.53)

where the quantity on the right hand side represents the very essence of the uniform
law of large numbers. In particular, the law of large numbers is said to uniformly
hold over a function class parameterized by Λ if for all ε > 0,

P(sup
α∈Λ

|R(α) − Remp(α)| ≥ ε) → 0 as l → ∞. (2.54)

Inequality (2.52) can be utilized in order to show that if the uniform law of large num-
bers holds for some function class parameterized by Λ, then the ERM is consistent
with respect to Λ. Specifically, Inequality (2.52) yields that:

|R(αl) − R(αΛ| ≤ 2 sup
α∈Λ

|R(α) − Remp(α)|, (2.55)

which finally concludes:

P(|R(αl) − R(αΛ| ≥ ε) ≤ P(sup
α∈Λ

|R(α) − Remp(α)| ≥ ε

2
). (2.56)

The right hand side of Inequality (2.56) tends to 0, under the uniform law of
large numbers, which then leads to consistency of the ERM process with respect
to the underlying function class parameterized by Λ. Vapnik and Chervonenkis [5]
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proved that uniform convergence as described by Inequality (2.54) is a necessary and
sufficient condition for the consistency of the ERMprocess with respect toΛ. It must
be noted that the condition of uniform convergence crucially depends on the set of
functions for which it must hold. Intuitively, it seems clear that the larger the function
space parameterized byΛ, the larger the quantity supα∈Λ |R(α)−Remp(α)|. Thus, the
larger Λ, the more difficult it is to satisfy the uniform law of large numbers. That is,
for larger function spaces (corresponding to larger parameter spaces Λ) consistency
is harder to achieve than for smaller function spaces. This abstract characterization
of consistency as a uniform convergence property, whilst theoretically intriguing,
is not at all that useful in practice. This is true, since in practice it is very difficult
to infer whether the uniform law of large numbers holds for a given function space
parameterized by Λ. Therefore, a natural question that arises at this point is whether
there are properties of function spaces which ensure uniform convergence of risks.

2.5.5 Capacity Concepts and Generalization Bounds

Uniform convergence was referred to as the fundamental property of a function
space determining the consistency of the ERM process. However, a closer look at
this convergence is necessary in order to make statements concerning the behavior
of a learning system when it is exposed to a limited number of training samples.
Therefore, attention should be focused on the probability

P(sup
α∈Λ

|R(α) − Remp(α)| > ε) (2.57)

which will not only provide insight into which properties of function classes deter-
mines the consistency of the ERM process, but will also provide bounds on the risk.
Along this way, two notions are of primary importance, namely:

1. the union bound and
2. the method of symmetrization by a ghost sample.

The Union Bound

The union bound is a simple but convenient tool in order to transform the standard
law of large numbers of individual functions into a uniform law of large numbers
over a set of finitely many functions parameterized by a set Λ = {α1,α2, . . . ,αm}.
Each of the functions {f (x,αi) : αi ∈ Λ}, satisfies the standard law of large numbers
in the form of a Chernoff bound provided by Inequality (2.50), that is

P(|R(αi) − Remp(αi)| ≥ ε) ≤ 2 exp(−2lε2). (2.58)

In order to transform these statements about the individual functions {f (x,αi) :
αi ∈ Λ} into a uniform law of large numbers the following derivations are necessary
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P(sup
α∈Λ

|R(α) − Remp(α)| > ε) = P
( m⋃

i=1

|R(αi) − Remp(αi)| > ε
)

≤
m∑
i=1

P(|R(αi) − Remp(αi)| > ε)

≤ 2m exp(−2lε2) (2.59)

It is clear that the differencebetween theChernoff boundgivenby Inequality (2.50)
and the right hand side of Eq. (2.59) is just a factor of m. Specifically, if the function
space F = {f (x,αi) : αi ∈ Λ} is fixed, this factor can be regarded as a constant and
the term 2m exp(−2lε2) still converges to 0 as l → ∞. Hence, the empirical risk
converges to 0 uniformly over F as l → ∞. Therefore, it is proved that an ERM
process over a finite set Λ of function parameters is consistent with respect to Λ.

Symmetrization

Symmetrization is an important technical step towards using capacity measures of
function classes. Its main purpose is to replace the event supα∈Λ |R(α)−Remp(α)| by
an alternative event which can be solely computed on a given sample size. Assume
that a newghost sample {(x′

i, y
′
i)}li=1 is added to the initial training sample {(xi, yi)}li=1.

The ghost sample is just another sample which is also drawn iid from the same
underlying distribution and which is independent of the first sample. The ghost
sample, however, is amathematical tool that is not necessary to be physically sampled
in practice. It is just an auxiliary set of training examples where the corresponding
empirical risk will be denoted by R′

emp(α). In this context, Vapnik and Chervonenkis
[6] proved that for mε2 ≥ 2

P(sup
α∈Λ

|R(α) − Remp(α)| > ε) ≤ 2P
(
sup
α∈Λ

|Remp(α) − R′
emp(α)| >

ε

2

)
. (2.60)

Here, the first P refers to the distribution of an iid sample l, while the second one
refers to the distribution of two samples of size l, namely the original sample and
the ghost one which form an iid sample of size 2l. In the latter case, Remp, measures
the empirical loss on the first half of the sample, and R′

emp on the second half. This
statement is referred to as the symmetrization lemma referring to the fact that the
attention is focused on an event which depends on a symmetric way on a sample
of size l. Its meaning is that if the empirical risks of two independent l-samples are
close to each other, then they should also be close to the true risk. The main purpose
of this lemma is to provide a way to bypass the need to directly estimate the quantity
R(α) by computing the quantity R′

emp(α) on a finite sample size.
In the previous section, the uniform bound was utilized as a means to constraint

the probability of uniform convergence in terms of a probability of an event referring
to a finite function class. The crucial observation is now that even ifΛ parameterizes
an infinite function class, the different ways in which it can classify a training set of l
sample points is finite. Namely, for any given training point in the training sample, a
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function can take only values within the set {−1,+1} which entails that on a sample
of l points {x1, . . . , xl}, a function can act in at most 2l different ways. Thus, even
for an infinite function parameter class Λ, there are at most 2l different ways the
corresponding functions can classify the l points of finite sample. This means that
when considering the term supα∈Λ |Remp(α) − R′

emp(α)|, the supremum effectively
runs over a finite set of function parameters. In this context, the supremum overΛ on
the right hand side of Inequality (2.60) can be replaced by the supremum over a finite
function parameter class with at most 22l function parameters. This number comes
as a direct consequence from the fact that there is a number of 2l sample points for
both the original and the ghost samples.

The Shattering Coefficient

For the purpose of bounding the probability in Eq. (2.57), the symmetrization lemma
implies that the function parameter class Λ is effectively finite since it can be
restricted to the 2l points appearing on the right hand side of Inequality (2.60).
Therefore, the function parameter class contains a maximum number of 22l ele-
ments. This is because only the values of the functions on the sample points and the
ghost sample points count. In order to formalize this, let Zl = {(x1, y1), . . . , (xl, yl)}
be a given sample of size l and let |ΛZl | be the cardinality of Λ when restricted to
{x1, . . . , xl}, that is, the number of function parameters from Λ that can be distin-
guished from their values on {x1, . . . , xl}. Moreover, let N (Λ, l) be the maximum
number of functions that can be distinguished in this way, where the maximum runs
over all possible choices of samples, so that

N (Λ, l) = max {|ΛZl | : x1, . . . , xl ∈ X}. (2.61)

The quantity N (Λ, l) is referred to as the shattering coefficient of the function
class parameterized byΛwith respect to the sample size l. It has a particularly simple
interpretation: it is the number of different outputs {y1, . . . , yl} that the functions
parameterized by Λ can achieve on samples of a given size l. In other words, it
measures the number of ways that the function space can separate the patterns into
two classes. Whenever,N (Λ, l) = 2l, this means that there exists a sample of size l
on which all possible separations can be achieved by functions parameterized by Λ.
In this case, the corresponding function space is said to shatter l points. It must be
noted that because of the maximum in the definition of N (Λ, l), shattering means
that there exists a sample of l patterns which can be shattered in all possible ways.
This definition, however, does not imply that all possible samples of size l will be
shattered by the function space parameterized byΛ. The shattering coefficient can be
considered as a capacity measure for a class of functions in the sense that it measures
the “size” of a function class in a particular way. This way involves counting the
number of functions in relation to a given sample of finite training points.

Uniform Convergence Bounds

Given an arbitrary, possibly infinite, class of function parameters consider the right
hand side of Inequality (2.60) where the sample of 2l points will be represented by a
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set Z2l. Specifically, the set Z2l may be interpreted as the combination of l points from
the original sample and l points from the ghost sample. The main idea is to replace
the supremum over Λ by the supremum over ΛZ2l where the set Z2l contains at most
N (Λ, l) ≤ 22l different functions, then apply the union bound on this finite set and
then the Chernoff bound. This leads to a bound as in Inequality (2.59), withN (Λ, l)
playing the role of m. Essentially, those steps can be written down as follows:

P(sup
α∈Λ

|R(α) − Remp(α)| > ε) ≤ 2P
(
sup
α∈Λ

|Remp(α) − R′
emp(α)| >

ε

2

)

= 2P
(

sup
α∈ΛZ2l

|Remp(α) − R′
emp(α)| >

ε

2

)

≤ 2N (Λ, 2l) exp
(−lε2

4

)
, (2.62)

yielding the following inequality

P(sup
α∈Λ

|R(α) − Remp(α)| > ε) ≤ 2N (Λ, 2l) exp
(−lε2

4

)
. (2.63)

The notion of uniform bound may be utilized in order to infer whether the ERM
process is consistent for a given class of function parameters Λ. Specifically, the
right hand side of Inequality (2.63) guarantees that the ERM process is consistent
for a given class of function parameters Λ when it converges to 0 as l → ∞. In this
context, the most important factor controlling convergence is the quantityN (Λ, 2l).
This is true since the second factor of the product 2N (Λ, 2l) exp(−lε2

4 ) is always
the same for any given class of function parameters. Therefore, when the shattering
coefficient is considerably smaller than 22l, sayN (Λ, 2l) ≤ (2n)k , it is easy to derive
that the right hand side of the uniform bound takes the form

2N (Λ, 2l) exp
(−lε2

4

)
= 2 exp

(
k log(2l) − l

ε2

4

)
, (2.64)

which converges to 0 as l → ∞. On the other hand, when the class of function
parameters coincides with the complete parameter space Λall then the shattering
coefficient takes its maximum value such that N (Λ, 2l) = 22l. This entails that the
right hand side of Inequality (2.63) takes the form

2N (Λ, 2l) exp
(−lε2

4

)
= 2 exp

(
l(2 log(2)) − ε2

4

)
, (2.65)

which does not converge to 0 as l → ∞.
The union bound, however, cannot directly guarantee the consistency of the ERM

process when utilizing the complete parameter spaceΛall. The reason is that Inequal-
ity (2.63) gives an upper bound on P(supα∈Λ |R(α) − Remp(α)| > ε) which merely
provides a sufficient condition for consistency but not a necessary one. According to
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(Devroye et al. 1996) a necessary and sufficient condition for the consistency of the
ERM process is that

log
N (Λ, 2l)

l
→ 0. (2.66)

2.5.6 Generalization Bounds

Sometimes it is useful to reformulate the uniform convergence bound so that the
procedure of initially fixing ε and subsequently computing the probability that the
empirical risk deviates from the true risk more than ε is reversed. In other words,
there are occasions when it would be reasonable to initially specify the probability
of the desired bound and then get a statement concerning the proximity between the
empirical and the true risk. This can be achieved by setting the right hand side of
Inequality (2.63) equal to some δ > 0 and then solving for ε. The resulting statement
declares that with probability at least 1−δ, any function in {f (x, a) : α ∈ Λ} satisfies

R(α) ≤ Remp(α) +
√
4

l
(log(2N (Λ, 2l) − log(δ))). (2.67)

Consistency bounds can also be derived by utilizing Inequality (2.67). In par-
ticular, it is obvious that the ERM process is consistent for a given function class

parameterized by Λ when the term
√

log(2N (Λ,2l))
l converges to 0 as l → ∞. The

most important aspect concerning the generalization bound provided by Inequal-
ity (2.67) is that it holds for any function in {f (x, a) : α ∈ Λ}. This constitutes a
highly desired property since the bound holds in particular for the function which
minimizes the empirical risk, identified by the function parameter αl. On the other
hand, the bound holds for learning machines that do not truly minimize the empirical
risk. This is usually interpreted as a negative property since by taking into account
more information about a function, one could hope to obtain more accurate bounds.

Essentially, the generalization bound states that when bothRemp(α) and the square
root term are small simultaneously then it is highly probable that the error on future
points (actual risk) will be small. Despite sounding like a surprising statement this
claim does not involve anything impossible. It only says that the utilization of a func-
tion class {f (x, a) : α ∈ Λ} with relatively small N (Λ, l), which can nevertheless
explain data sampled from the problem at hand, is not likely to be a coincidence. In
other words, when a relatively small function class happens to “explain” data sam-
pled from the problem under consideration, then there is a high probability that this
function class captures some deeper aspects of the problem. On the other hand, when
the problem is too difficult to learn from the given amount of training data, then it is
necessary to use a function class so large that can “explain” nearly everything. This
results in a small empirical error but at the same time increases the magnitude of the
square root term. Therefore, according to the insight provided by the generalization
bound, the difficulty of a particular learning problem is entirely determined by the
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suitability of the selected function class and by the prior knowledge available for the
problem.

The VC Dimension

So far, the various generalization bounds were expressed in terms of the shattering
coefficient N (Λ, l). Their primary downside is that they utilize capacity concepts
that are usually difficult to evaluate. In order to avoid this situation, Vapnik and
Chervonenkis [2] introduced the so-called VC dimension which is one of the most
well known capacity concepts. Its primary purpose is to characterize the growth
behavior of the shattering coefficient using a single number.

A sample of size l is said to be shattered by the function parameter class Λ if this
class parameterizes functions that can realize any labelling on the given sample, that
is |ΛZl | = 2l. The VC dimension of Λ, is now defined as the largest number l such
that there exists a sample of size l which is shattered by the functions parameterized
by Λ. Formally,

VC(Λ) = max{l ∈ N : |ΛZl | = 2l for some Zl} (2.68)

If the maximum does not exist, the VC dimension is defined to be infinity. For
example, the VC dimension of the set of liner indicator functions

Q(z,α) = θ
{ l∑

p=1

apzp + a0
}

(2.69)

in l-dimensional coordinate space Z = (z1, . . . , zl) is equal to l + 1, since using
functions from this set one can shattered at most l + 1 vectors. Moreover, the VC
dimension of the set of linear functions

Q(z,α) =
l∑

p=1

apzp + a0 (2.70)

in l-dimensional coordinate space Z = (z1, . . . , zl) is equal to l + 1, since a linear
function can shatter at most l + 1 points.

A combinatorial result proved simultaneously by several people [3, 4, 7] char-
acterizes the growth behavior of the shattering coefficient and relates it to the VC
dimension. Let Λ be a function parameter class with finite VC dimension d. Then

N (Λ, l) ≤
d∑

i=0

(
n
i

)
(2.71)

for all l ∈ N. In particular, for all l ≥ d the following inequality holds

N (Λ, l) ≤
(en
d

)d
. (2.72)
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The importance of this statement lies in the last fact. If l ≥ d, then the shattering
coefficient behaves like a polynomial function of the sample size l. According to
this result, when the VC dimension of a function parameter class is finite then the
corresponding shattering coefficients will grow polynomially with l. Therefore, the
ERM process is consistent with respect to a function parameter space Λ if and only
if VC(Λ) is finite.

A fundamental property shared by both the shattering coefficient and the VC
dimension is that they do not depend on the underlying probability distribution P,
since they only depend on the function parameter class Λ. On the one hand, this is
an advantage, as the capacity concepts apply to all possible probability distributions.
On the other hand, this can be considered as a disadvantage, as the capacity concepts
do not take into account particular properties of the distribution at hand.

A particular class of distribution independent bounds is highly related with the
concept of Structural Risk Minimization. Specifically, these bounds concern the
subset of totally bounded functions

0 ≤ Q(z,α) ≤ B, α ∈ Λ (2.73)

with finite VC dimension such as the set of indicator functions. The main result for
this set of functions is the following theorem: With probability at least 1 − δ, the
inequality

R(α) ≤ Remp(α) + Bε

2

(
1 +

√
1 + 4Rempα

Bε

)
(2.74)

holds true simultaneously for all functions of the set (2.73) where

ε = 4
d(ln 2l

d + 1) − ln δ

l
(2.75)

and B = 1.

The Structural Risk Minimization Principle

The ERM process constitutes a fundamental learning principle which efficiently
deals with problems involving training samples of large size. This fact is specifi-
cally justified by considering Inequality (2.74) which formulates the conditions that
guarantee the consistency of the ERM process. In other words, when the ratio l/d
is large, the second summand on the right hand side of Inequality (2.74) will be
small. The actual risk is then close to the value of the empirical risk. In this case,
a small value of the empirical risk ensures a small value of the actual risk. On the
other hand, when the ratio l/d is small, then even a small value for the empirical
risk will not guarantee a small value for the actual risk. The latter case indicates the
necessity for a new learning principle which will focus on acquiring a sufficiently
small value for the actual risk R(α) by simultaneously minimizing both terms on
the right hand side of Inequality (2.74). This is the basic underpinning behind the
principle of Structural Risk Minimization (SRM). In particular, SRM is intended to
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Fig. 2.7 Admissible
structure of function sets

minimize the risk functional R(α) with respect to both the empirical risk and the VC
dimension of the utilized set of function parameters Λ.

The SRM principle is based on a nested structural organization of the function set
S = Q(z,α), α ∈ Λ such that

S1 ⊂ S2 · · · ⊂ Sn · · · , (2.76)

where Sk = {Q(z,α) : α ∈ Λk} are subsets of the original function space such that
S∗ = ∪kSk as it is illustrated in Fig. 2.7

Moreover, the set of utilized functions must form an admissible structure which
satisfies the following three properties:

1. The VC dimension dk of each set Sk of functions is finite,
2. Any element Sk of the structure contains totally bounded functions

0 ≤ Q(z,α) ≤ Bk, α ∈ Λk,

3. The set S∗ is everywhere dense in S in the L1(F) metric where F = F(z) is the
distribution function from which examples are drawn.

Note that in view of (2.76) the following assertions are true:

1. The sequence of values of VC dimensions dk for the elements Sk of the structure
S in nondecreasing with increasing k

d1 ≤ d2 ≤ · · · ≤ dn ≤ · · · ,

2. The sequence of values of the bounds Bk for the elements Sk of the structure S in
nondecreasing with increasing k

B1 ≤ B2 ≤ · · · ≤ Bn ≤ · · · ,

Denote by Q(z,αk
l ) the function that minimizes the empirical risk in the set of

functions Sk . Then with probability 1 − δ one can assert that the actual risk for this
function is bounded by the following inequality

R(αk
l ) ≤ Remp(α

k
l ) + Bkεk(l)

⎛
⎝1 +

√
1 + 4Rempα

k
l

Bεk(l)

⎞
⎠ , (2.77)
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Fig. 2.8 Admissible
structure of function sets

Confidence interval

Bound on the risk

Empirical risk

S1 S ∗ Sn

h1 h∗ hn h

where

εk(l) = 4
dk(ln 2l

dk
+ 1) − ln δ

4

l
. (2.78)

For a given set of observations z1, . . . , zl, the SRMmethod actually suggests that
one should choose the element Sk of the structure for which the smallest bound on the
risk is achieved. In other words, the SRM principle introduces the notion of a trade-
off between the quality of approximation and the complexity of the approximating
function as it is particularly illustrated in Fig. 2.8.

Therefore, the SRM principle is based upon the following idea: To provide the
given set of functions with an admissible structure and then to find the function that
minimizes risk (2.77) over given elements of the structure. This principle is called the
principle of structural risk minimization in order to stress the importance of choosing
the element of the structure that possesses an appropriate capacity.
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