
A Simple-to-Use BDI Architecture
for Agent-Based Modeling and Simulation

Philippe Caillou, Benoit Gaudou, Arnaud Grignard, Chi Quang Truong,
and Patrick Taillandier

Abstract With the increase of computing power and the development of
user-friendly multi-agent simulation frameworks, social simulations have become
increasingly realistic. However, most agent architectures in these simulations use
simple reactive models. Cognitive architectures face two main obstacles: their
complexity for the field-expert modeler, and their computational cost. In this paper,
we propose a new cognitive agent architecture based on the Belief-Desire-Intention
paradigm integrated into the GAMA modeling platform. Based on the GAML
modeling language, this architecture was designed to be simple-to-use for modelers,
flexible enough to manage complex behaviors, and with low computational cost.
This architecture is illustrated with a simulation of the evolution of land-use in the
Mekong Delta.

Keywords Cognitive model • BDI agent • Simulation Framework

P. Caillou (�)
UMR 8623 LRI, University of Paris Sud, Paris, France
e-mail: caillou@lri.fr

B. Gaudou
UMR 5505 IRIT, University of Toulouse, Toulouse, France
e-mail: benoit.gaudou@utcapitole.fr

A. Grignard
UMI UMMISCO, University Pierre and Marie Curie/IRD, Paris, France

UMR 6266 IDEES, University of Rouen, Rouen, France
e-mail: agrignard@gmail.com

C.Q. Truong
UMI UMMISCO, University Pierre and Marie Curie/IRD Paris, France

CENRES, DREAM Team, Can Tho University Can Tho, Vietnam
e-mail: tcquang@ctu.edu.vn

P. Taillandier
UMR 6266 IDEES, University of Rouen Rouen, France
e-mail: patrick.taillandier@gmail.com

© Springer International Publishing AG 2017
W. Jager et al. (eds.), Advances in Social Simulation 2015, Advances in Intelligent
Systems and Computing 528, DOI 10.1007/978-3-319-47253-9_2

15



16 P. Caillou et al.

1 Introduction

Agent-based simulations are widely used to study complex systems. However, the
problem of the agent design is still an open issue, especially for models tackling
social issues, where some of the agents represent human beings. In fact, designing
complex agents able to act in a believable way is a difficult task, in particular when
their behavior is led by many conflicting needs and desires. A classic paradigm
to formalize the internal architecture of such complex agents is the Belief-Desire-
Intention (BDI) paradigm [3]. This paradigm allows to design expressive and
realistic agents, yet it is barely used in social simulations. One explanation is
that most agent architectures based on the BDI paradigm are too complex to be
understood and used by non-computer scientists. Moreover, they are often very
time-consuming in terms of computation and thus not adapted to simulations with
thousands of agents.

In this paper, we propose a new architecture that is integrated into the GAMA
platform. GAMA is an open-source modeling and simulation platform for building
spatially explicit agent-based simulations [5, 6]. Its complete modeling language
(GAML: GAma Modeling Language) and integrated development environment
support the definition of large scale models (up to millions of agents) and make it
usable even with low level programming skills. Our architecture was implemented
as a new GAMA plug-in, and allows to directly and simply define BDI agents
through the GAML language.

The paper is structured as follows: Sect. 2 proposes a state of the art of
BDI architectures and their use in simulation context. Section 3 is dedicated to
the presentation of our architecture. In Sect. 4, we present a simple case study
using this architecture to study the land-use change in a village of the Mekong
Delta (Vietnam). At last, Sect. 5 provides this paper with a conclusion and some
perspectives.

2 State of the Art

The BDI approach has been proposed in Artificial Intelligence [3] to represent
the way agents can do complex reasoning. It has first been formalized using
Modal Logic [4] in order to disambiguate the various concepts (Belief, Desire,
and Intention) and the logical relationships between them (concepts are detailed
in Sect. 3.1).



Simple-to-Use BDI Architecture for ABMS 17

2.1 BDI Frameworks

In parallel, BDI operational architectures have been developed in order to help the
development of Multi-Agent Systems embedding BDI agents. Some of these BDI
architectures are included in framework allowing to directly use them in different
applications. A classic framework is the Procedural Reasoning System (PRS) [10].
This framework includes three main processes: the perception (in which agent
acquires information from the environment), the central interpreter (which helps
the agent to deliberate its goals and then to select the available actions), and the
execution of intention (which represents agents reactions). This framework has been
used as a base for many other frameworks. For instance, the JACK [7] commercial
framework inherits many properties from PRS. JACK allows the user to define a
multi-agent system with BDI agents using a dedicated language (a super-set of
Java). It was used in many commercial applications (e.g., video-game, oil trading,
etc.). Another classic framework for multi-agent system building is JADE [2]. This
open-source Java framework integrates several add-ons dedicated to the definition
of BDI agents. The most advanced framework is Jadex [12], that is an add-on of the
JADE framework. In comparison to JACK, Jadex proposes an explicit representation
of goals.

2.2 BDI Agents in Agent-Based Modeling and
Simulation Platforms

BDI architecture’s agents have been introduced in several agent-based modeling
and simulation platforms. For example, Sakellariou et al. [14] have proposed an
extension to Netlogo [21] to deal with BDI agents. The extension allows the model
to add to agents a set of beliefs (information it gets by perception of communication)
and intentions (what it wants to execute), and ways to manage these two sets. This
very simple architecture is inspired by the PRS architecture (in particular using an
intention stack) and is education-oriented. Its main aim was to allow modelers to
manipulate BDI concepts in a simple language.

Singh and Padgham [15] went one step further in the integration between BDI
architecture and agent-based modeling and simulation platforms. They propose a
framework able to connect agents-based platforms and an existing BDI framework
(such as JACK [7] or Jadex [12]). An application couples the Matsim platform [1]
and the GORITE BDI framework [13]. Their framework aims at being generic and
can be extended to couple any kind of simulation platforms and BDI frameworks.
This approach is very powerful but remains computer-scientist-oriented, as it
requires high programming skills to develop bridges between the framework and the
platforms, and to write agents behaviors without a dedicated modeling language.

First attempts already exist to integrate BDI agents into the GAMA platform [6].
Taillandier et al. [16] proposed a BDI architecture where the choice of plans is
formalized as a multi-criteria decision-making process: desires are represented by



18 P. Caillou et al.

criteria that will be used to make a decision. Each plan is evaluated by each
criterion according to the beliefs of the agent. However, this architecture was tightly
linked to its application context (farmer decision making) and does not propose any
formalism to model the agent beliefs and is rather limited concerning the way the
plans are carried out: there is, for example, no possibility to have complex plans
that require sub-objectives. Le et al. [8] proposed another architecture dedicated to
simulation with a formalized description of beliefs and plans and their execution.
However, the desires and plans have to be written in a very specific and complex
way that can be difficult to achieve for some application contexts, in particular for
non-computer scientists. In addition, this architecture has a scalability problem: it
does not allow to simulate thousands of agents.

3 Presentation of the SimpleBDI Plug-In Architecture

3.1 Overview

Consider a simple Chopper-Fire model: A chopper agent patrols, looking for fires.
When it finds one, it tries to extinguish it by dropping water, and when it has no
more water, it goes to the nearest lake to refill its water tank. With a reactive agent
model, defining an agent behavior means to define What it does (e.g., patrol, go to
the fire, go to take water). This can be achieved both with reflexes or a finite state
machine. Using a cognitive model means to define what it wants (e.g., to find fire, to
extinguish a specific fire, and to get water) and how to do it (e.g., if I want to find a
fire, I patrol (wandering randomly in my environment) and if I see a fire, I want it to
be extinguished. If I want to put out a fire, go toward it and put water, and if I have
no more water, get some). There are several advantages for using such cognitive
approach: complex reasoning (planning), persistence (of the goals), easy to improve
(both on what to do and how to do it), easy to use (the modeler can define goals
instead of reactions), and easy to analyze (it is possible to know why—for what
purpose—agents do what they do).

The architecture and the vocabulary can be summarized with this simple Fire-
Chopper example: the Chopper agent has a general desire to patrol. As it is the
only thing he wants at the beginning, it is its initial intention (what it is doing). To
patrol, it wanders around (its plan to patrol). When it perceives a fire, it stores this
information (it has a new belief about the existence of this fire), and it has a new
desire (it wants the fire to be extinct). When it sees a fire, the patrol intention is put
on hold and a new intention is selected (to put out the fire). To achieve this intention,
the plan has two steps, i.e., two new (sub)desires: go to the fire and put water on
the fire, and so on.



Simple-to-Use BDI Architecture for ABMS 19

3.2 Vocabulary

The vocabulary introduced in the previous example can be summarized as follows.

Knowledge

Beliefs, Desires, and Intentions are described using predicates. A predicate has a
name, and may also have a value (with no constraint on the type) and some param-
eters (each defined by a name and a value); For example, Fire.true; .Position WW
.12; 16///—a fire is present (value true) at position (12,16)—or HaveWater.true/—
the Chopper has some water (value true).

– Beliefs (what it thinks). Beliefs is the internal knowledge the agent has about the
world. The belief base is updated during the simulation. A belief is described
by a predicate and is in general true or false. For example, the predicates
Fire.true; .Position WW .12; 16/// is added when the agent perceives a fire at
position (12,16).

– Desires (what it wants). Objectives that the agent would like to accomplish (for
example, Fire.false;Position WW .12; 16//, the agent wants the previous fire to
be put out). They are stored as a set of desires. A desire is fulfilled when it is
present in the Belief base (or manually removed by the agent). Like the Belief
base the Desire base is updated during the simulation. Desires can be related by
hierarchical links (sub/super-desires) when a desire is created as an intermediary
objective (for example, to the extinct a fire can have two sub-desires: go to the fire
and put water on the fire). Desires have a priority value (that can be dynamic),
used to select a new intention among the desires when necessary.

– Intentions (what it is doing). What the agent has chosen to do. The current
intention will determine the selected plan. Intentions can be put on hold (for
example, when they require a sub-desire to be achieved). For this reason, there is
a stack of intention, the last one is the current intention, and the only one that is
not on hold.

Behavior

– Perception. A perception is a function called at each iteration, where an agent
can eventually update its belief or desire bases. It is technically identical to a
reflex of a reactive architecture (a function called at each step).

– Plan. The agent has a set of plans, which are behaviors defined to reach specific
desires. A plan can be instantaneous and/or persistent (goToPosition). Plans may
have a priority value (that can be dynamic), used to select a plan when several
possible plans are available.



20 P. Caillou et al.

3.3 Thinking Process

At each step, the agent applies the process described in Fig. 1. Roughly, the agent
will perceive the environment, then (1) continue its current plan if it is not finished,
or (2) if the plan is finished and its current intention is not fulfilled, it selects a plan,
or (3) if its current intention is fulfilled, it selects a new desire to add to its intention
stack. More precisely:

1. Perceive: Reflexes/Perceptions are applied. This may update the Beliefs and
add new Desires.

2. Is one of my intentions achieved?: If one of my intentions is achieved,
set current plan to nil and remove the intention and all its sub-desires from
the desire and intention base (if I or someone else has extinguished Fire1,
I remove not only the desire Extinguish.Fire1/ from my desires, but also
the sub-desires MyPosition.Fire1/ and WaterOn.Fire1/ if I have them). If the
achieved intention super-desire is on hold, it is reactivated (its sub-desire just
got completed).

Perception1

5

6

9

8

7

4

3

2yes
intention
achieved?

no

no

no

yes

Continue the
current plan?

Execute the current plan

If current plan finished.
Set current plan to nil

yes

no

Was/Is the current plan
instantaneous?

Select as current plan the one
that can be activated and with

the highest utility

Select the desire with the
highest priority as intention

yes

Keep the same
intention?

Fig. 1 Activity diagram



Simple-to-Use BDI Architecture for ABMS 21

3. Do I keep the current intention?: To take into account the environment
instability, an intention-persistence coefficient ip is applied: with a probability
ip, the current intention is removed from the intention stack. More details about
this coefficient are given in Sect. 3.4.

4. Do I have a current plan?: If I have a current plan, just execute it. As for the
current intention stability, the goal is both persistence (I stick to the plan I have
chosen) and efficiency (I don’t choose at each step). For the same reason that
the current intention is randomly removed, a plan-persistence coefficient pp is
defined: with a probability pp, the current plan is just dropped.

5. Choose a desire as new current intention: If the current intention is on hold
(or the intention base is empty), choose a desire as new current intention. The
new intention is selected among the desires with the highest priority (and not
already present in the intention base).

6. Choose a plan as new current plan: The new current plan is selected among
the plans compatible with the current intention and with the highest priority.

7. Execute the plan: The current plan is executed.
8. Is my plan finished?: To allow persistent plans, a plan may have a termination

condition. If it is not reached, the same plan will be kept for the next iteration.
9. Was my plan instantaneous?: Most multi-agent-based simulation frameworks

(GAMA included) are synchronous frameworks using steps. One consequence
is that it may be useful to apply several plans during one single steps. For
example, if a step represents a day or a year, it would be unrealistic for an
agent to spend one step to apply a plan like “To fight this fire, lets define two
new sub-desires, go to the fire and put water on the fire, and put my objective on
hold.” This kind of plan (mostly reasoning) can be defined as instantaneous:
in this case a new thinking loop is applied during the same agent step.

3.4 Properties

Persistence and Priority

Persistence coefficients and priority values are key properties of many BDI archi-
tectures. Agents with high persistence continue their current actions independently
of the environment evolution (they are more stable and spend less time rethinking
their plans and objectives). Less persistent agents are more adaptable and reactive
but may lead to erratic and computationally costly behaviors. Priority values will
determine both the selected desires and plans. The choice can be deterministic
(highest priority selected) or probabilistic (highest priority has a higher probability
to be selected). One advantage of the GAMA modeling framework for both
persistence and priority coefficients is to allow to use dynamic or function-based
variables. Plans and Desires priority values and agent persistence coefficients can
be changed by the agent itself (for example, a plan could increase the persistence
coefficient after evaluating the previous plan success). The modeler can also define



22 P. Caillou et al.

functions to update a value. For example, the priority of a plan or desire could
be defined as a function of the current step, which would make it more and more
probable to be selected when the simulation advances.

Flexibility

One core objective when defining this architecture was to make it as simple-to-use
and flexible as possible for the modeler. The modeler can use the architecture in
its full potential (for example, dynamic coefficients as presented before), but he/she
can also use only some parts of the architecture. It is, for example, possible to define
only Desires and Plans, and no Beliefs (the effect would be that the intentions and
desires achievement and removal will have to be done manually, i.e., defined by the
modeler in the agent plans). Most parameters have default values and can be omitted.
For example, the modeler doesn’t have to know the existence of instantaneous plans
(by default off), plan termination condition (by default true: always terminated at
the end of its execution), or the possibility to define sub-desires or put intentions on
hold.

GAMA Integration

The architecture is defined as a GAMA species architecture. The modeler only
requires to define simpleBDI as agent architecture and define at least one plan
to be operational. After that the modeler mostly defines plans to act and (usually
one) reflexes to perceive. Many keywords are defined to help the user to update and
manage both Belief, Desire, and Intentions bases and create/manage predicates. In
the next section, we present an application of the architecture to a social simulation
context.

4 Case Study: Land-Use Change in Coastal Area of the
Mekong Delta

4.1 Context of the Case Study

The Mekong Delta region will be heavily influenced by the effects of global climate
change [20]. Indeed, the sea level rise and salt water intrusion will strongly impact
the life of people and the situation of agricultural production [18]. Nhan [11]
pointed out that the environmental conditions significantly impact the agriculture
and fisheries and that ordinary people tend to spontaneous change the land-use,
which causes difficulties for land resource management and cultivation of farmers.
Another difficulty comes from the behaviors of farmers that tend to adapt their



Simple-to-Use BDI Architecture for ABMS 23

food production to the market [17]. As showed in [9], the difference of planned
and real production can be observed at the village level, where the land-use change
has not evolved as expected. It is thus important to be able to understand the land-
use planning at village level to be able to predict the evolution of land-use change
at province level. In this context, we chose to study the evolution of land-use in the
village of Binh Thanh. This coastal village of the Ben Tre province of the Mekong
Delta is representative of regions with a mix of brackish and fresh water, where the
land-use is strongly impacted by the irrigation planning.

4.2 Collected Data

We have collected data concerning the land-use of each parcel of this village in
2005 and in 2010 from the Department of Natural Resources and Environment of
the Ben Tre province. In this area, six land-use types were defined: Rice, Rice–
Vegetable, Rice–Shrimp, Annual crops, Industrial Perennial tree, and Aquaculture.
We collected as well the soil map, the saltwater map, and the flood map of the
regions and defined from them six land-unit types. From each of these land-unit
types, we defined with the help of domain-experts a suitability value for each type
of land-use (the lower the better). This suitability represents the adequacy between
the land-unit type and the land-use type. For instance, producing industrial perennial
tree on a salty soil is very difficult and the yield will be very low. Another data
source that was built with domain-experts were the transition values for each type
of land-use. This matrix allows to represent the technical difficulty to pass from one
land-use type to another. This difficulty was evaluated using three values (1: easy, 2:
medium, and 3: very difficult). Finally, we collected data concerning the evolution
of benefit and cost of each land-use type per hectare from 2005 to 2010.

4.3 Implemented Model

The model was defined in order to simulate the evolution of the land-use of the Binh
Thanh village. We make the assumption that each farmer has only one parcel and
that he has to make a decision concerning the land-use of the parcel every year. A
simulation step in this model represents then 1 year.

In this simple model, the main species of agents is the parcel species that
represents the farmer and his/her parcel (5721 parcels for the study area). We use
our SimpleBDI agent architecture for this species of agents.

A parcel agent has the following attributes:

– shape: geometry of the parcel (static)
– profile: the inclination of the farmer toward a change of production. It is

used to set the value of the intentionpersistence (ip) variable. We defined



24 P. Caillou et al.

five possible values: innovator (2.5 %—ip: 0.0), early adopters (13.5 %—ip:
0.1), early majority (34 %—ip: 0.2), late majority (34 %—ip: 0.3), and laggard
(16 %—ip: 0.5) (static)

– land � unittype: type of soil for the parcel (static)
– neighbors: list of parcels at a distance of 1 km (static)
– land � use: type of production (dynamic).

In addition to the parcel agents, we define a world agent that contains all the
global variables:

– profitmatrix: for each year (from 2005 to 2010), for each land-use type, the
benefit can be expected from 1 ha of production.

– costmatrix: for each year (from 2005 to 2010), for each land-use type, the cost
of 1 ha of production.

– suitabilitybylanduse: for each land-unit type, the suitability to produce a given
land-use type.

– transitionmatrix: difficulty to pass from a land-use to another one.

At each simulation step (i.e., every year), each parcel agent is activated in a
random order.

In our model, each parcel agent has the following belief and desire base:

– Beliefs: pieces of knowledge concerning the expected profit for each land-use for
each land-unit type. Each belief corresponds to a land-use type, a land-unit type,
and a profit associated with it.

– Desires: for each type of production, the agent will have a desire to do it. In
addition, the agent could have desires to give information (a belief) to the other
farmers in its neighborhood concerning the expected price for a land-use type
and a land-use unit (see below)

The priority of its “do a production” desires will be computed according to a
multi-criteria analysis. This type of decision-making process is often used for land-
use change models (see, for example, [16]). We defined 3 criteria for the decision:
the profit, the cost, and the transition difficulty. Indeed, it is generally accepted that
farmers tend to choose a production that maximizes their profits, that minimizes the
cost—avoid risky productions—and that are easy to implement. More precisely, the
criterion values are computed as follows for a given transition from oldlu to lu and
a given soil type (i.e., land-unit type) and year:

Profit.lu; soil; year/ D
matrix_ profit.lu; year/

.max_ profit.year/ � matrix_ suitability.soil; lu//
(1)

With:

max_ profit.year/ D max.matrix_ profit.lu; year// (2)

Transition.old_ lu; lu/ D
.3 � transition_ matrix.old_ lu; lu//

2
(3)



Simple-to-Use BDI Architecture for ABMS 25

Fig. 2 Production plan

Fig. 3 Diffuse information action

To fulfill its desires, the agent can activate a dedicated plan: do_production. The
GAML code of this plan is presented in Fig. 2. This plan is activated when the
current intention is to produce something. First, the agent gets the current intention,
and changes its land-use according to it. After that, it creates a new belief concerning
the real profit that it got from this land-use and updates its old belief (concerning the
profit of this land-use). Then, it diffuses its new belief to its neighborhood (call the
diffuse_information action, see below) and puts its current intention on hold (wait
to finish to diffuse the information before producing again).

Figure 3 presents the GAML code of the diffuse_information action. When this
action is called, the agent does a loop on all the people in its neighborhood. For each
of these people, the agent adds a new sub-intention to its current intention (produce
a given land-use) to diffuse its new belief to this people.

In order to fulfill its information diffusion intention, the agent can activate
a dedicated plan: inform_people. The GAML code of this plan is presented in
Fig. 4. This plan is instantaneous, as we consider that the time taken to inform
its neighborhood is insignificant in comparison to the simulation step (1 year). It
is activated when the current intention is to inform someone. First the agent gets
the people to inform and the information to diffuse from the current intention.
After that, it asks the people to inform to receive the new information (call the
diffuse_information action) and remove the current intention (and desire) from its
intention base (desire base).

The complete source code of the model is available in the GAMA SVN [5].



26 P. Caillou et al.

Fig. 4 Information diffusion plan

Fig. 5 Land-use for 2005 (left); land-use obtained for 2010 with the simulation (middle); observed
land-use for 2010 (right)

4.4 Experiments

The different parameter values of the models were defined by using a genetic
algorithm to find the parameter set that fits the best of the real data, i.e., minimization
of the fuzzy kappa coefficient [19] computed by comparing the observed data in
2010 and the simulation result for the same date. The fuzzy kappa coefficient allows
to compare two maps by taking into account the neighborhood of the parcels. This
coefficient is between 0 (not similar at all) and 1 (totally similar).

Figure 5 shows simulation results obtained for the model and the observed data.
As shown, the observed land-use is close to the real one.

To quantitatively evaluate the simulation results of the model, we used two
indicators: the fuzzy kappa coefficient (local indicator) and the percent absolute
deviation (global indicator). This second indicator that is often used to evaluate
land-use change models is computed by the following formulae:

PAD.%/ D 100

Pn
iD1 j

bXi � XijPn
iD1
bXi

(4)



Simple-to-Use BDI Architecture for ABMS 27

with: bXi the observed quantity of parcels with the land-use i and Xi the simulated
quantity of parcels with the land-use i.

As our model is stochastic, we ran 100 times each model and computed the
average fuzzy kappa coefficient (kappa) and percent absolute deviation (pad). We
obtained for the pad a value of 35.98 % (the lower the better) and for the fuzzy
kappa a value of 0.545 (the higher the better). These results are rather good and
show that the model is able to reproduce in relevant way the real dynamic.

Concerning the computation time (on a Macbook pro computer from 2011), the
mean duration of a simulation step was less than 0.6 s. This result is quite promising
considering that we have more than 5700 BDI agents that can have many desires and
that can activate many plans during the same simulation step with the information
diffusion process.

5 Conclusion

In this paper, we have presented a new BDI architecture dedicated to simulation
context. This architecture is integrated into the GAMA modeling and simulation
platform and directly usable through the GAML language, making it easily usable
even by non-computer scientists. We have presented a first simple application of
this architecture concerning the land-use change in the Mekong Delta (Vietnam).
This first application showed that our plug-in allows to built relevant models and to
simultaneously simulate several thousand of agents.

If our architecture is already usable, some improvements are planned. First, we
want to improve the inference capabilities of our architecture: when a new belief
is added to the belief base, desire and intention bases should be updated in a
efficient way as well. Second, we want to make it even more modular by adding
more possibility concerning plans and desire choices and not just the plan/desire
with the highest priority: let the possibility to make user-defined or with a multi-
criteria decision process, etc. At last, we want to add the possibility to use high
performance computing (distribute the computation on a grid or cluster) to decrease
the computation time.

Acknowledgements This work is part of the ACTEUR (“Spatial Cognitive Agents for Urban
Dynamics and Risk Studies”) research project funded by the French National Research Agency.

References

1. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen, K.:
Matsim–t: Architecture and simulation times. In: Multi-Agent Systems for Traffic and
Transportation Engineering, pp. 57–78. IGI Global (2009). https://scholar.google.com/
citations?view_op=view_citation&hl=en&user=6bkj2pkAAAAJ&citation_for_view=
6bkj2pkAAAAJ:YsMSGLbcyi4C



28 P. Caillou et al.

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–a FIPA-compliant agent framework. In:
Proceedings of PAAM, London, vol. 99, p. 33 (1999)

3. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge
(1987)

4. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261
(1990)

5. GAMA website (2015). http://gama-platform.org
6. Grignard, A., Taillandier, P., Gaudou, B., Vo, D., Huynh, N., Drogoul, A.: GAMA 1.6:

advancing the art of complex agent-based modeling and simulation. In: PRIMA 2013:
Principles and Practice of Multi-Agent Systems. Lecture Notes in Computer Science, vol.
8291, pp. 117–131. Springer, Berlin (2013)

7. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents-summary of an
agent infrastructure. In: 5th International Conference on Autonomous Agents (2001)

8. Le, V.M., Gaudou, B., Taillandier, P., Vo, D.A.: A new BDI architecture to formalize cognitive
agent behaviors into simulations. In: KES-AMSTA. Frontiers in Artificial Intelligence and
Applications, vol. 252, pp. 395–403. IOS, Amsterdam (2013)

9. Ministry of Natural Resources and Environment. Detailing the establishment, regulation and
evaluation planning, land-use planning (2009)

10. Myers, K.L.: User guide for the procedural reasoning system. SRI International AI Center
Technical Report. SRI International, Menlo Park, CA (1997)

11. Nhan, D.K., Trung, N.H., Sanh, N.V.: The impact of weather variability on rice and aquaculture
production in the Mekong delta. In: Stewart, M.A., Coclanis, P.A. (eds.) Environmental Change
and Agricultural Sustainability in the Mekong Delta. Advances in Global Change Research,
vol. 45, pp. 437–451. Springer, Netherlands (2011)

12. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Multi-Agent
Programming, pp. 149–174. Springer, Berlin (2005)

13. Rönnquist, R.: The goal oriented teams (gorite) framework. In: Programming Multi-Agent
Systems, pp. 27–41. Springer, Berlin (2008)

14. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing NetLogo to simulate BDI commu-
nicating agents. In: Artificial Intelligence: Theories, Models and Applications, pp. 263–275.
Springer, Berlin (2008)

15. Singh, D., Padgham, L.: OpenSim: a framework for integrating agent-based models and
simulation components. In: Frontiers in Artificial Intelligence and Applications. ECAI 2014,
vol. 263, pp. 837–842. IOS, Amsterdam (2014)

16. Taillandier, P., Therond, O., Gaudou, B.: A New BDI Agent Architecture Based on the Belief
Theory. Application to the Modelling of Cropping Plan Decision-Making. iEMSs, Manno
(2012)

17. Tri, L.Q., Guong, V.T., Vu, P.T., Binh, N.T.S., Kiet, N.H., Chien, V.V.: Evaluating the changes
of soil properties and landuse at three coastal districts in Soc Trang province. J. Sci. Cantho
Univ. 9, 59–68 (2008)

18. Tri, V.P.D., Trung, N.H., Thanh, V.Q.: Vulnerability to flood in the Vietnamese Mekong delta:
mapping and uncertainty assessment. J. Environ. Sci. Eng. B 2, 229–237 (2013)

19. Visser, H., de Nijs, T.: The map comparison kit. Environ. Model Softw. 21(3), 346–358 (2006)
20. Wassmann, R., Hien, N.X., Hoanh, C.T., Tuong, T.P.: Sea level rise affecting the Vietnamese

Mekong delta: water elevation in the flood season and implications for rice production. Clim.
Change 66(1–2), 89–107 (2004)

21. Wilensky, U., Evanston, I.: Netlogo. center for connected learning and computer based
modeling. Technical Report, Northwestern University (1999)



http://www.springer.com/978-3-319-47252-2


	Introduction
	
	
	Contents

