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A Novel Perspective on Hand Vein Patterns
for Biometric Recognition: Problems,
Challenges, and Implementations

Septimiu Crisan

2.1 Introduction

In biometric applications, a relatively new technology is emerging, namely the
optical scanning of superficial vein patterns. In order to be viable, a biometric
parameter has to be easily identifiable but hidden from view so that it cannot be
reproduced or simulated. It can be observed that the veins of the human body do not
leave external marks like fingerprints, are not easily falsifiable like the voice, cannot
be disguised like face traits, and are extremely hard to covertly extract during and
after the lifetime of an individual in order to be reused by an impostor. In the same
time, the technology used to acquire the vein pattern has reduced costs and is not
invasive, requires minimal cooperation from a person, and is largely a noncontact
procedure that allows it to be used where hygienic concerns are an issue [1].

Some of the most important requirements for a biometric system are the
uniqueness and permanence of the biometric parameter used for recognition. Even
in the case of complete uniqueness, a biometric system should be sensitive enough
to be able to accurately discriminate between samples acquired from different
individuals.

A review of the scientific literature shows that the visual structure of the veins
is a unique property of an individual both in the retina [2, 3] and in the hand
[1, 4–7]. Furthermore, it is often assumed that the localization of arteries, veins, and
capillaries is specific to each person [7, 8]. Due to the novelty of the technology, the
scientific studies related to the uniqueness of the vein model are rather scarce.
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From a medical point of view, the cardiovascular system is formed first in the
human body. The exact reason for the actual shape and path of veins, arteries, and
capillaries is not completely known but, until now, from the study of the scientific
literature, the probability of finding two individuals with the same vein pattern
is very low. In vitro studies of the cells’ spatial distribution show the automatic
forming of blood vessels and the migration of cells in order to create a connected
vascular network. The migration process and the dynamic aggregation result in a
fractal-like behavior at both a small and a large scale [9]. Taking this premise into
account, while it is impossible to predict the future blood network arrangement, a
realistic vein model simulation has to take into account different aspects such as:

• The local anatomy,
• The blood irrigation requirements, and
• Other case-specific hemodynamic constraints—veins anastomose frequently,

redundant vein paths.

In this manner, while there is a comfortable variation degree for a discrimination
detection system, the veins are not randomly formed. Thus, in order to guarantee
the uniqueness parameter, designing and implementing a vein pattern recognition
system is not a trivial task.

A possible vein network arrangement belonging to a person’s hand can be
observed in Fig. 2.1.

The second property mentioned in this chapter is the permanence of the vein
pattern. A biometric recognition system is only useful if an individual can be
identified after subsequent scans on different timeframes. For blood vessels, there
are three processes that can modify partially or totally their network:

• Natural changes of the vascular system over the course of a healthy individual’s
life

• Changes in the vascular network due to traumas or diseases
• Changes of the blood vessels due to surgical interventions

From the genesis of the blood vessels during gestation, most differences in the
pattern as an individual grows up are related to the overall size and position of the
network. Veins will get thicker or thinner or exhibit irregularities but the general
path will remain mostly unchanged. Taking into account the fact that this model is
unaffected by superficial wounds or lacerations of the skin, it is a viable biometric
parameter for scans taken at large intervals of time from each other [3]. In extreme
cases, such as surgery that can modify—through sectioning, rerouting, grafts, etc.—
the vein model, the biometric device can reenroll the individual or compensate the
modifications between two successive scans by using automated algorithms.

Condensing the three presented processes that can modify the vein pattern,
several concerning factors are:

• The degree of pigmentation or discoloration of the skin. Color changes triggered
by sun exposure, pigmentation due to old age, or even the native color of the skin
do not interfere significantly with the vein scanning process as validated in [11]
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Fig. 2.1 Possible vein
network in the back of the
hand [10]

• Blood loss—a relevant factor since a lower quantity of blood could diminish the
absorption rate at the vein level

• Medical conditions that are known to cause blood vessel constriction or dilatation
• Reduced number of blood cells, anemia, or other diseases that may modify the

normal amount of deoxidized hemoglobin
• Deep skin cuts or surgical procedures that may potentially modify the vein model

(although common skin problems should not interfere with the actual detection
of the vein pattern)

• Environmental factors such as differences in altitude, prolonged change in hand
orientation, physical stress, etc.

From a permanence point of view, using the vein pattern as a biometric feature is
correct because it is a parameter with predictable modifications during the lifetime
of an individual and the types of surgery or diseases that can completely modify the
model in the hand region are rare and can be compensated through reenrollment.
Nevertheless, in order to minimize the complexity of the scanning algorithms, vein
pattern detection should be performed on individuals close to adulthood for a less
drastic modification of the blood vessel network from one scan to the next. In [12],
it is also observed that, generally, no major growth happens during the adult life and
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the conventional interval of stability is between 20 and 50 years. It is also suggested
to accept individuals aged less than 20 but in this case, reenrollment should be
performed yearly for optimum scanning results [12]. At a later age, the vascular
system reduces its dimensions and changes in trajectories. Experiments have shown
that this interval can be safely extended with very few exceptions [1].

A complete feature comparison between veins and other biometric parameters is
difficult since there are no comprehensive studies showing correlated experiments
with different biometric methods. Even when using pure technical parameters such
as False Acceptance Rate (FAR), False Rejection Rate (FRR), or Equal Error Rate
(EER), the environment conditions are not the same between scans of different
technologies; The Failure to Enroll (FTE) parameter is often undescribed and there
is no common dataset of individuals scanned with multimodal biometric devices.

Furthermore, a highly cited scientific paper containing very valuable data
regarding biometrics has one of the most used comparison charts between biometric
technologies [8] presented in Fig. 2.2.

Using High, Medium, and Low to describe the fulfillment of each of the
seven important biometric traits, it can be seen that hand veins are classified as
Medium for most parameters. This table is being consistently reused throughout
modern scientific literature even if the authors of the original paper declare that
the “comparison of various biometric technology is based on the perception of the
authors” [8] and the paper was published in 2004 when vein biometrics was in its

Fig. 2.2 Biometric technology comparison according to [8]
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Fig. 2.3 Biometric
parameters of various
technologies according to [5]

infancy. On the other side of the spectrum, new synthetic data from Fujitsu [5] place
palm vein recognition over fingerprints, face, voice, or iris with accuracy parameters
on the same level or higher than retinal scans as seen in Fig. 2.3.

It can be seen that, due to the lack of scientific studies regarding actual
performance experiments between different biometric technologies, any comparison
is inherently biased.

Various research concerning vein patterns points to the viability of this parameter
as a strong biometric trait when required scanning conditions are met. Fingerprints
and iris scanning have the advantage of more complex patterns and can perform
adequately even under less than perfect conditions. On the other hand, veins are
intricate but the total model has less extractable features and requires perfect
scanned images in order to have a high discrimination rate.

The main advantage of vein patterns as a biometric feature lies in the sum of
its parts. Most biometric features are consistent in the case of vein models without
major drawbacks allowing the technology to potentially substitute other traditional
methods.

2.2 Vein Pattern Scanning Using Optical Methods

While most superficial veins are good candidates for biometric recognition, the
veins in upper limb extremities are preferred. Finger or hand veins have intricate
structures but they reside very close to the surface of the skin and can be easily
acquired. In addition, hands and fingers are directly observable with reduced
pilosity and sufficient mobility and they create minimal acceptance issues from the
individuals being scanned by a biometric system.

This section of the chapter will reveal the optical background for vein scanning
and propose a modular structure for an accurate vein scanning hardware device
based on previous research.
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2.2.1 Vein Pattern Visualization

While almost invisible under normal lighting conditions, vein patterns can be
visualized if the blood vessels are exposed to infrared radiation. Due to the different
absorption rates of infrared radiation in various types of tissue, a vein scanning
device is able to pinpoint the location of veins while ignoring arteries and the
surrounding tissue.

To achieve this effect, lighting should be performed under a tight optical window,
namely 760–870 nm which is consistent with the near infrared portion of the
electromagnetic radiation spectrum. This radiation is strongly absorbed by the
deoxidized hemoglobin (Hb) present in the vein vessels and it is slightly less
absorbed—near the top of the window—by the oxidized hemoglobin (HbO) in the
arteries as seen in Fig. 2.4.

It is also worth noted that, as the diameters of arteries are as small as approxi-
mately 1/3 of those of targeted veins in the finger or hand, it is reasonable to assume
that most of the visualized blood vessels are veins [12]. In addition, water, very
commonly found in tissues, has a very low absorption rate at this specific radiation
domain.

Hemoglobin is the main component of the red cells found in the blood stream that
carries oxygen from the lungs through arteries and helps in the transport of carbon
dioxide from tissues through veins back to the lungs. The high level of absorption
is due to the fact that a single red cell contains about 280 million hemoglobin
molecules [14].
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Fig. 2.4 Near infrared optical radiation window for a vein pattern recognition device [13]
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The nature of the scanning method also helps secure the validity of the biometric
parameter, since the presence of blood in the veins acts as a liveness proof; if blood
ceases to flow through the blood vessels, the absorption method yields inconclusive
results.

Using this optical window, a vein recognition system can be implemented but
several factors have to be taken into account such as:

• Tissue optical diffusion,
• Depth of the scanned veins,
• Strong radiation filtering due to the water in the tissues or the tissues themselves,

and
• Diffuse and specular reflections from the outer layers of the skin—specific

lighting configurations have to be devised.

As mentioned earlier in the chapter, the veins of the upper extremity are divided
into two sets, superficial and deep. There are many connections between these two
sets of veins but due to the optical constraints of the scanning method and the relative
depth of each of these two sets, the system is only able to detect superficial veins—
since they are placed immediately beneath the integument between the two layers
of superficial fascia [15]. The actual measured range of the optical penetration is in
the range of 0.1–3 mm [11]. Two optical coefficients determine the total acquisition
distance, an absorption coefficient /a and a scattering coefficient /s.

The resulting image of a vein pattern under near infrared radiation can be seen in
Fig. 2.5.

2.2.2 Structure of a Hand Vein Recognition Device

Most hand vein pattern recognition devices used for research and algorithm testing
follow the same recipe and usually contain the same hardware modules as observed
in [16–19].

Fig. 2.5 Low resolution vein
scan using the NIR optical
window



28 S. Crisan

Fig. 2.6 Left: Hitachi finger vein scanner. Right: Fujitsu palm vein scanner [5, 6]

Commercial applications have a strong emphasis on finger veins and palm veins
[5, 6] all research being coordinated by two major companies, Hitachi and Fujitsu.
Figure 2.6 depicts working vein pattern scanners from the entities mentioned above.

Outside of the realm of commercial applications, a review of the scientific
literature has failed to observe a complete proposal for an accurate vein pattern
recognition system.

Since vein capturing is an optical process and through several years of iterations
and experiments [11, 20–23], a complete optic-electrical structure for a hand vein
pattern detection device has been devised and is being presented in this chapter. The
scanning modules are optimized for the palm veins and dorsal hand veins but they
can be extended for finger or forearm veins with minimal modifications.

The complete structure of a hand vein scanner involves the use of several
components and modules:

• A CCD or CMOS camera with high sensitivity to the sub-spectrum of infrared
radiation used. For biometric purposes, the camera has to take a snapshot of
the vein pattern or, depending on the application requirements, offer real-time
image processing with the help of progressive scan algorithms. The subject of the
cameras will be revisited later in this chapter since several important parameters
must be modified in order for the system to capture accurate vein patterns.

• An illumination source, either single or multispectral, capable of providing
constant radiation without hotspots, variable intensity and achieve a high contrast
between blood vessels and the surrounding tissue, without illumination artifacts
[11]. The central wavelength of the emitted radiation must be a part of the tissue
optical window described in Sect. 2.1 and it has to be arranged in a configuration
that diminishes specular and—to some extent—diffuse skin reflections.

• A set of optical filters that increase the quality of the raw pictures taken. Taking
into account the fact that the skin is a highly reflective medium that interferes with
the acquisition process, previous research has documented the use of polarizing
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filters, light guides, and foil diffusers [11, 20, 21]. In addition, an infrared band-
pass filter matching the spectral signature of the radiation source has to be
employed in order to reduce environmental influences. The filter characteristics
also need to take into account possible red-shift or blue-shift from the angle of
the lens and radiation emitters’ position.

• Depending on the setup, a mechanical constraint system has been employed by
several researchers [16–19] in order to force the hand position under the scanner.
In this manner, the resulting vein scans are captured from the same position in
space thus simplifying the processing algorithms. In the same time, a constrained
system diminishes one of the advantages of a vein pattern recognition device—
the possibility of a full no-contact and hygienic procedure.

• A sample position detection with rotation and translation extraction. If a con-
straint system is not used, the scanning device has to gather all relevant data
regarding the spatial representation of the user sample. It is a dual module since
the hand presence must first be detected using optical, ultrasound, or microwave
sensors and then the orientation of the hand has to be inferred using different
technologies—mono or stereo cameras, hand motion capture, photogrammetry,
or structured lighting [24].

• A liveness detection mechanism. While veins offer significant native spoof
protection due to the nature of the acquisition process that requires flowing blood,
there are possible fraud techniques that employ materials with similar absorption
and transmission characteristics as real blood vessels or living human tissues.
In constrained systems, capacitive arrays and additional optical sensors can be
employed in a multimodal liveness proof system that reduce the spoofing attempt
success. In a free-hand position device, the use of laser grids, stereo cameras, and
complex software algorithms [24] can mitigate the identification risks.

While position invariance is a difficult task, all modern scientific approaches
presented in this chapter only use the sensing element—infrared sensitive camera—
for determining vein pattern trajectories. As mentioned in the last paragraph, using
one presented solution by adding a structured light scanner and using several
photogrammetry algorithms, the relative position and orientation of the hand to the
camera can be inferred.

Software vein processing algorithms can then remap the vein model on a “flat”
surface by compensating the tilt angle. This effectively solves the pitch and roll
problem for a significant angular range—simulations and experiments have shown
˙30ı. Yaw solving is purely a software rotation algorithm based on hemodynamic
constraints or—after software thinning—a bifurcation/ending point count and is a
relatively known method.

A representation of a hand vein capturing hardware device and its modules can
be visualized in Fig. 2.7.

One of the roles of a hardware biometric device is to provide sufficient accurate
data to lower the computational resources needed by the software algorithms used
for processing the vein pattern. The resulting data should be as noiseless as possible
and provide a good contrast between the veins and the surrounding tissue [25].



30 S. Crisan

Fig. 2.7 Possible structure and modules for a hand vein scanning device [11]

By using all the filters described earlier, many of these concerns are eliminated
since the CCD camera will only record the relevant data and the price of the
hardware device remains low. Adequate filtering also permits the use of higher or
lower wavelength infrared sources thus increasing the flexibility of the system and
increasing the number of applications it can be used for. Depending on the type of
application, the result of the scanning process is either a single image or a sequence
that must be processed in real time.

Results of the efficiency of these hardware modules have been partially demon-
strated and quantified in [11, 23, 24] and current research is focused on finalizing
a large database of accurate raw scans of the vein pattern on the dorsal part of the
hand.

2.3 Problems and Challenges in Vein Pattern Applications

In comparison with other traditional biometric parameter—fingerprints, voice,
signature, or the iris pattern—the vein model as a biometric trait is not completely
studied. There are several scientific questions still unanswered regarding hardware
and software approaches to the correct feature extraction of vein patterns. There are
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no known studies on the possible multispectral character of the radiation sources
or the influence of chromophores, melanin, or adipose tissues on vein scanning
accuracy [26]. The influence of the environmental factors is not quantified [27]
and in some commercial systems and scientific literature there are few systems
with robust algorithms that support 1:n applications—recognition and not solely
verification [24, 27].

On another vein, the low-cost entry point for a makeshift vein hardware scanner
has created many opportunities for scientific researchers to implement algorithms
and feature extractors. However, the quality of the raw images acquired from
these systems is often very low [24, 28, 29] and the effect has been opposite:
there are inconsistencies between different hardware devices to the point that raw
images differ substantially for cross-reference algorithm verification. Furthermore,
the samples used by different researchers are often confined to their own research
and are unavailable to the general public.

This determines a first set of important problems: the acquisition technology is
not standardized, the algorithms are often optimized for a small number of samples,
and the methods and techniques proposed in various scientific papers cannot be
replicated due to the lack of access to the original image set. These problems
and limitations are easy to spot in reference papers such as [30] that determines
vein parameters using image acquisition under multispectral illumination techniques
[31], variable sliding kernels [32], using Gabor filters or other examples such as
[33–35] where the acquired images are suffering from the uneven illumination or
the algorithms cannot be reproduced by other authors in their detection systems.
These problems are difficult to solve because the domain has not reached a level of
maturity specific to other biometric methods.

The proposed hardware structure in this chapter aims to help in solving these
inconsistencies by providing a modular acquisition system and using it as a potential
standard proposal, thus accelerating the development of algorithms and methods that
can benefit from correctly acquired samples using a robust system.

A second set of problems is determined by the lack of a consistent vein pattern
image database that allows for the study and implementation of applications for
biometric feature extraction. These two sets of problems are interconnected since
a proper hardware device helps create accurate databases of vein patterns. In the
same time, an increased number of correct databases reduce the need for a perfect
hardware device for all researchers.

As mentioned, generating images of the vein model implies the development
of an experimental system—with relatively modest costs—but with a noticeable
complexity regarding the construction and the detection modules. In this case, the
lack of image sets that can be used as a study base substantially reduces the quantity
and quality of analysis methods and algorithms that can be implemented in the
scientific world. In other biometric domains, these databases exist and allowed
for the rapid advancement of the respective biometric processing technologies.
Regarding the vein pattern, there are a select few recent attempts for the finger veins
[36–40], palm veins (MSP and CASIA) [41–44], or wrist veins (PUT) [45, 46]. One
of the most important areas for vein pattern image acquisition, the veins in the back
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of the hand—the main focus of the research by the author of this chapter—is not
represented properly. Databases of this kind are both low in numbers and in the
number of downloadable samples, at the time of writing this chapter the Bosphorus
Database has 1575 collected images from 100 subjects—mostly from the left hand
[47], while GPDS Database offers just 1020 images collected using geometric
constrains [48, 49]. One of the larger vein pattern databases with 2040 samples—
NCUT (North China University of Technology; hand-dorsa vein dataset)—has been
unavailable to researchers outside of China.

It can also be observed that, in order to supplement these real samples, most
biometric methods benefit from synthetic databases. The most obvious example
is the SFINGE fingerprint database [50] but other parameters can also be generated
such as the iris pattern [51], palm print [52], or finger veins [53]. In the palm or
dorsal veins, these synthetic databases are not existent and a section of this chapter
will present the advances and refinements from the research initiated in [54] in order
to complete the real images database with a system that can generate synthetic
veins in the back of the hand. Even if the morphogenesis of the vein patterns
is still a relatively unknown process [14], there is still sufficient data in order to
create realistic models of the vein structure. Simulated “raw” images have been
obtained by recreating the pattern starting from influence and crossing points while
taking into account the anatomic, hemodynamic constraints and the way in which
superficial veins often anastomose.

Together with the obvious biometric applications, the localization, acquisition,
and visualization of the vein pattern has important implications in medicine.
Needle insertion for intravenous access is a common procedure with an incidence
of 80 % of the patients found in hospitals [55, 56]. Although a peripheral vein can
be accessed on the first try, for a significant number of patients, the medical staff
can need from 2 up to 10 tries for successful needle insertion [56, 57]. The causes
of multiple tries are determined by: lack of venipuncture skills, lack of appropriate
medical care [58, 59], or one of the medical situations commonly defined as difficult
peripheral venous access [60]. In all these cases, visualizing the vein pattern by
using a contrasting technique to separate them from the surrounding tissue can
improve the success rate of the venipuncture [61, 62]. In the medical field, there
are a number of commercial implementations created to solve this problem, for
example: VeinViewer [63], AccuVein [64], Veinsite [65], or VascuLuminator [66]
but commercial systems are often restrictive, with high acquisition costs and a
proprietary interface that does not allow for adjusting acquisition values [56, 61].

Using modern methods for visualization, there is a basis for experiments regard-
ing the education of the medical personnel and the development of researches into
assisted venipuncture by augmenting the vein pattern visibility in the intravenous
site.
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2.4 Modern Perspectives on Vein Structure Recognition

Since the first articles regarding the use of veins for biometric recognition, the
technology used has employed low-cost, low-quality hardware devices for the vein
scanning process. In addition, there are very few studies regarding vein patterns
characteristics and virtually no information in terms of ergonomics, reliability, and
performance of vein pattern identification devices. As mentioned in the beginning of
the chapter, the use of synthetic databases can reduce the need for high-performance
hardware devices and software detection algorithms can be tested against multiple
cases. These include resilience to different hand poses, device placements, and
orientation of the biometric parameter under the scanning device in both constrained
and free-hand scenarios.

2.4.1 Ergonomics and Hand Pose Assessment in Vein
pattern Identification

A review of the literature has shown that there is no known data regarding
ergonomics and hand poses in a vein pattern biometric system. Individuals will have
medical or personal preferences and different hand orientations in an unconstrained
biometric device. Furthermore, even in the case of a geometric constraint for the
system, the angle of attack for the gripping mechanism and the relative height of
the forearm in relation with the dorsal or palm part of the hand are different from
scan to scan. Automated algorithms can compensate to a certain degree but if the
variation is over a predetermined threshold, the acquisition will suffer.

Using an inertial motion capture glove—part of the Perception Neuron full body
suit [67]—172 individuals were scanned with 12 positions for each hand. The first
six hand poses were unforced and each individual was asked to place their closed
fist with the dorsal part of the hand pointing upwards towards the sensing system. A
visual guiding system comprised of a pair of triangulation based proximity sensors
and two visible lasers was used as an indication for a relative placement of the
sampled hand. The last six poses were constrained using a fixed cylinder grip
underneath the sensing system. Using the Perception Neuron available sensor fusion
and inverse kinematics algorithms, the position and orientation of the forearm,
hand, and fingers was calculated for each scan. Figure 2.8 presents the inertial
glove used and the test system. In this setup, no actual veins were scanned, all the
experiments were directed at determining average user hand positions or natural
state poses for the hands under the scanner.

In an unconstrained scenario, after analyzing the position and angles of each
subsequent scan for a person it can be observed that the average deviation from the
first to last sample is 12–27ı in the horizontal X axis and 4–16ı in the horizontal Y
axis. In addition, the last three samples exhibit a lower angle deviation due to the
adaptation of the user to the scanning system. For each individual, four subsequent
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Fig. 2.8 Ergonomics test system and inertial glove hand poses

scans taken at 1 h intervals were acquired. Sets three and four exhibited the lowest
angle deviation in the same set but there was no visible correlation to the angle
of the first two sets. Further research is required to estimate the importance of
muscle memory or acquired learning but the results show that untrained users will
converge towards a static position and orientation given enough tries. Coupled with
the fact that horizontal angle differences are easily compensated through software
algorithms, an unconstrained system is a viable option for the veins in the back of
the hand.

The difficulty arises in the accurate determination of all vertical, Z axis poses’
deviation and for 18 individuals, the difference from the vertical axis was between
7 and 19ı. Vein scanning becomes impossible after a vertical orientation threshold,
experimentally determined to be 10–15ı in the vertical plane so that veins are not
visually lost due to hand occlusion. In order to solve this problem, a “suggestion”
mechanism was used. Each user has been allowed to freely position the hand under
the scanner but a visual cue system comprised of the two visible lasers was devised.
Each laser blinks with different speeds until the user achieves a correct range of the
vertical axis orientation underneath the sensor and the lasers.

The experimental results have helped in tweaking the angles and position of
the system for user ergonomics and correct scanning. However, for the proposed
hardware setup described in Sect. 2.2, it is cumbersome and difficult to use a contact
based position sensing device. Using the research results obtained in [24], a module
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Fig. 2.9 Leap Motion camera attached to an Oculus Rift virtual reality headset

containing a stereo infrared camera [68] is introduced in the system case. After
calibrating the orientation and matching the results with the data obtained from the
inertial system, the vein pattern recognition device is able to determine position and
orientation of the user’s hand in both fist closed and open fingers position.

Several edge cases have been tested where the users’ hand poses have been
constrained by their body position and by surrounding objects. In order to accurately
simulate real-life scenarios, a virtual reality system has been employed. Using an
Oculus Rift DK2 model coupled with the stereo Leap Motion camera used for the
hand pose study, users are being presented with various environments and scenarios.
The hardware components and the test data from the Leap Motion camera are shown
in Fig. 2.9.

In order to test the correct placement (both height and orientation) of a fixed vein
pattern recognition system, each user was presented with a virtual vein scanner at
different height, distance, and orientation towards the user. For each case, the user
needs to insert the hand under the scanner unaided. Relative position and angles of
the hand to the simulated vein scanner have been recorded using Leap Motion raw
data correlated to the coordinate system of the Oculus Rift external camera.

Minimum hand angle deviations on all axes have been recorded for a relative
position of the simulated scanner between the shoulder level and ½ distance between
shoulder and complete downward pointing hand. By analyzing the distribution of the
user heights across the test study—1.51–1.93 m—the correct placement for a vein
scanner—in normal conditions—is 1.21–1.44 m from the ground level—satisfying
92 % of the user dataset.

Using virtual reality environments, biometric and medical visualization data can
be exposed in a rich, collaborative manner while creating user scenarios difficult to
achieve using real constraints.
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2.4.2 Synthetic Vein Pattern Generation

As mentioned in Sect. 2.3, vein patterns do not benefit from synthetic databases or
generation platforms. The apparent chaos in the forming of blood vessels presents
several challenges as opposed to synthetic fingerprint or iris generation where the
rules have clearer outlines. Since veins have less key points and extractable features
than other traditional parameters, it is important to accurately replicate the behavior
of the vessels down to the level of local angles or model direction inside the
hand. In addition, since—to some extent—local anatomy and hemodynamic needs
together with several signaling molecules dictate the overall shape of the pattern, it
is impossible to completely predict the exact structure of the total vein network.

The goal of a synthetic database is to provide plausible samples with a high
degree of customization and using thousands of previously acquired samples as
reference, it is a possible endeavor.

In the creation of the proposed vein simulator application, the software workflow
involves using Embarcadero Delphi as the simulation programming software,
Autodesk 3D Studio Max for creating hand masters or blanks, and Epic Unreal
Engine for accurate rendering of final hands and hand poses. Blanks are created
for both hands and the correct angle of the model is taken into account when the
simulated blood vessels are introduced into the hand.

One of the important rules in vein creation is related to the preservation of
connectivity—veins cannot be unconnected—and the development of the model
branches has to follow a statistical distribution that should be efficient in irrigating
the entire hand tissue.

In addition, simulated hands should not be perfect, veins do not possess the
same thickness, their depth greatly varies underneath the skin and the hand may
be covered with hair, have a distinct curvature or there could be significant
environmental influences.

External factors should also be taken into account. Variations in illumination can
completely modify the accuracy of the scanned pattern as can be seen in Fig. 2.10.
Camera performance and noise, its sensitivity to the desired spectrum, position of
the hand in relationship with the scanner, or the lack of uniformity of the lighting
system are all important error-generating situations.

Fig. 2.10 Scanned hand vein pattern images under different illumination and acquisition
scenarios [54]
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The proposed hardware system in Sect. 2.2 of the chapter solves several of these
issues by providing a high-quality raw scan of a hand vein pattern. Nevertheless,
any synthetic image should be able to contain as many error-generating situations
as possible. As mentioned before, vein pattern algorithms are often optimized for
small datasets or perfect scanning conditions and a setup that allows for the creation
of “fake” vein models should establish the real accuracy of an algorithm.

The procedure used to extract features from real vein images is based on the
algorithm created by the authors in [11, 20]. Parameter extraction in a normal
vein recognition algorithm starts with a local adaptive threshold and a thinning
operation performed on the vein model including optimizations of the branches such
as pruning and elimination of unconnected segments [11, 22]. Synthetic models start
from a known network of nodes, terminations, and intersections—using an updated
version of the crossing number [69]—and create the connecting segments based on
several rules—segments have a slight curvature, more than one segment can connect
to an intersection but not to a node, longer segments are created first, etc. Starting
from these influence points, hand dimension constraints are applied so that vein
points do not fall outside the hand model and veins occupy at least 80 % of the entire
hand surface. In this way, for each influence point, the software will extrapolate the
branches in between, while obeying the general flow and direction of the model.

The model is optimized to resemble a near infrared scan but—based on known
behavior of radiation inside the human tissue—other wavelengths can be tested and
simulated.

The simulation algorithm creates a structure having a series of intersecting curves
with a width of 1 pixel. Creating the desired thickness is performed using a dilation
algorithm with automatic or manual constraints—total dimensions of the model
determine overall thickness, longer and major veins can have a larger surface, etc.

A snapshot of the actual dilation process involving automated vein thickness is
shown in Fig. 2.11.

The vein pattern is embedded in the generated blank hand and the whole model
is scaled based on a lookup table containing statistical data regarding the average

Fig. 2.11 Reconstruction of the vein pattern at full width. Left: simulated vein centerline with
key points, middle: trajectories for possible vein thickness, and right: complete vein model after
dilation algorithm [54]
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correlation between age, sex, and hand dimensions. Subsequently, a gradient texture
is applied on both the vein model surroundings and the outer surface of the skin. The
texture values are calculated using a contrast variation coefficient Cv based on the
following formula [54]:

Cv D

mX
yD1

nX
xD1

�
Px;y � PxC1;y

�
xy

C �
max

�
Px;y � PxC1;y

� � min
�
Px;y � PxC1;y

��
=10

(2.1)

where:
Px,y represents the intensity value of a pixel at coordinates x, y in the image
PxC1,y represents the intensity value of a pixel at coordinates x C 1, y in the image
m, n are the width and the height of the area of interest in pixels
max, min are the maximum and minimum values of the differences between

adjacent pixels
A representation of the outcome of the texturing algorithm can be observed in

Fig. 2.12. The simulated vein pattern is also pruned and optimized according to the
hand and vein geometry constraints presented earlier.

A robust vein simulation platform allows researchers to create edge-case scenar-
ios for recognition algorithms. In the same time, by correlating the results of the
ergonomics and position case study presented in Sect. 2.4.1, simulated vein patterns
can be mapped in the desired position and orientation to better mimic real-life cases.

2.4.3 Vein Biometrics in a Connected World

Traditionally, for biometric systems, the main concern is the identification of the
individual and the storage of the template in a simplified form in order to serve as a
comparison based system. Due to tight computational requirements and preservation
of data constraints, many of the parameters relevant to a medical application are
discarded since the system has to compensate for vessel constriction or dilation, age
difference between scans, modifications of the normal blood flow, etc.

Fig. 2.12 Texturing
algorithm applied to
simulated veins. Left:
simulated vein centerline,
right: texture gradient applied
to vein model—for insertion
into simulated hand
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Fig. 2.13 Vein image processing and feature extraction algorithms in the VEINSIM applica-
tion [11]

The algorithms are built in such a way that they isolate, enhance, and then
reduce the vein model to a series of lines, usually one pixel wide as shown in
Fig. 2.13. In this particular case, the dataset storage is performed by emphasizing
and extracting the unique features for any individual and converting them to an
array of values representing, for example, the number of segments, endings, and
bifurcations in the pattern, the total segment length, relative angles between lines,
intervein distances, etc.

To exemplify the process depicted in Fig. 2.13 and briefly mentioned in
Sect. 2.4.2, a particular set of algorithms used in previous research for vein feature
extraction involves several stages of image processing. After the background is
successfully removed, a median filter is applied to the dorsal hand image. Using
a locally adaptive threshold with a 9–25-pixel nucleus, the image is binarized with
a strong emphasis on the vein pattern. The artifacts created by the thresholding
process have a low degree of importance for vein scanning because even if the veins
become artificially thicker, the last step of the process is a thinning algorithm. Using
a custom thinning operation that has strong rules preserving connectivity between
diagonal and vertical lines—following the natural flow of the blood model—the
process ensures that all the veins are reduced to a 1-pixel width set of lines.
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Even without a destructive operation such as the thresholding algorithm, veins
usually suffer from thickness modifications due to medical conditions, altitude,
physical effort, exposure to heat, etc.

After further optimization—removing unconnected segments, pruning extra-
neous branches, and restoring lost segments—the feature recognition module is
activated. Using the feature extraction and storage model presented in [11], a sliding
kernel is applied to all parts of the vein model. The operation checks for connections
between the center pixel—if it belongs to a vein—and the border pixels of the kernel
classifying the center as being an intersection, a termination, or a simple segment
point. After calculating the total number of nodes and terminations, additional data
can be determined in the form of number of segments, all relative angles between
segments, and the total length of the model.

In Fig. 2.13, the vein pattern has nine nodes and seven terminations, and 639
pixels is the total length of the model. Without any compression techniques, a
full stored dataset of the vein model of an individual occupies bellow 400 bytes
including all relevant data. Extended research performed in [1] has shown that this
rather simple approach can yield encouraging biometric evaluation parameters. In
this particular case, for a database of 612 individuals, the FAR is 0.012 % and the
FRR is 1.03 % with a comparison threshold of 67 % for the lowest percentage of
EER equaling 0.092 %.

Working with single images per individual is also an advantage because process-
ing speed is an important factor that has to scale up in relationship with the size of
the sample database.

All these factors define the workflow of a vein detection device as a standalone
machine with limited processing and storage capabilities that only serves the
identification/verification function. While this is the main task of a vein recognition
system, the ability to have devices permanently connected creates unique opportuni-
ties. As it has been mentioned in Sect. 2.3 of this chapter, there are very few studies
performed on vein patterns, their permanence and uniqueness are viable but not fully
tested. There are no researched correlations between the age of the individual and
the state of their vein model, the skin color/pigmentation influence, or the difficulty
of enrollment at different timeframes.

As biometric technologies mature and the number of civilian security application
increases, the amount of collected data will require a shift in the processing and
storing model. Using the Big Data paradigm, it can be observed that vein pattern
recognition follows closely the three main features of a large dataset such as [70]:

• Volume: vein patterns and the collateral acquired data already exhibit large
volumes in current applications; the size will continue to increase at a dispro-
portionate rate.

• Variety: there are many different types of data associated with biometric parame-
ters, as text, extracted features, sensor data, raw scans, individual data, and more.

• Velocity: data is arriving continuously as streams of data, and the goal is to obtain
useful information from it in real time.
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In addition to the classic 3V model, current Big Data representations include two
more Vs:

• Variability: there are potential changes in the structure of the data and how the
data can be interpreted.

• Value: the intrinsic value of the information, in the case of biometric parameters
the value resides in their own ability to provide security and in the total asset cost
insured by a biometric security scan.

The first working models for large datasets were based mainly on the homoge-
nous and structure behavior of global data. Due to the unprecedented rise in
collected data “often dispersed across independent systems that are difficult to
access, fuse and mine due to disparate nature and granularity” [71], most modern
Big Data approaches treat large volumes of information as they are created—
unstructured and heterogeneous.

There are clear advantages of non-homogenous data collection in an emerging
biometric parameter such as the hand veins. Big Data frameworks provide versatility
and adaptability to increasing datasets and offer unprecedented insights in statistical
correlation of multimodal features of the individual together with the vein biometry.

Using a modern Big Data framework and workflow, Fig. 2.14 presents a working
model for a series of permanently connected vein recognition devices of different
types.

Such an infrastructure is capable of acquiring raw images and delivering them
online to be stored, processed, and analyzed without the constraints of a real-time
verification system. While individual privacy is a very important parameter when
it comes to sensitive biometric data, vein images can be anonymously collected
without any tracing to the owner of the vein model. The communication channel
can also be encrypted using a dual-key pair and the relevant data is stored only for
future comparison and analysis.

A dual—Hadoop Map-Reduce and Apache Spark—system for data processing
has been chosen for their different capabilities. Both are processing technologies
which are able to handle large volumes of data by parallelizing the operations. The
biggest difference between them is that Map-Reduce stores all the intermediary
results generated during processing on the hard drive; Spark on the other hand
uses only the random access memory and occasionally the hard drive—when it is
necessary. Depending on the allocation of resources, both systems can function in
parallel. Currently Spark is faster and there are hints that it will replace Map-Reduce
in the foreseeable future.

There are a number of storing systems for the input data (raw data) that
would allow storing large amounts of unstructured data. The ones that are worth
mentioning in the context of biometric datasets are the following:

• Plain files (csv, binary files, etc.)

– In this case, there will be only a limited number of file formats and all these
formats need to be supported by the component that will be responsible for
the parsing of the input data
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Fig. 2.14 Proposed infrastructure and workflow for a network of vein recognition devices

– This approach is a good match with the distributed system proposed in
Fig. 2.10 allowing for parallel processing but the main drawback is that it
is extremely difficult to extract certain types of data (for example, cross-
correlated field information, e.g., young male subjects from a certain day, or
the data for which the processing returned an FTE error, etc.)

• MongoDB

– Complete NoSQL database that allows for the storage of large amounts of
data—preferred in many Big Data implementations.
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– In the context of large processing batches for biometric raw data and
associated information, MongoDB is not optimized for computational-heavy
parallel operations being fast to write and slow to read when accessed from
Hadoop or Spark.

• HBase

– Apache HBase is colloquially called the Hadoop database because it is a
NoSQL database running over Hadoop. As mentioned in [72], “it combines
the scalability of Hadoop by running on the Hadoop Distributed File System
(HDFS), with real-time data access as a key/value store and deep analytic
capabilities of Map Reduce.” Balancing the distributed nature of the HDFS
with the need to access relevant information, HBase is both capable of
querying individual records and offering complex correlations for reports on
very large datasets.

– It is implemented to work with Map-Reduce as well as Spark—being built on
HDFS.

– As it is designed to support queries on massive datasets, HBase is optimized
for read performance. When writing data, HBase maintains consistency at the
expense of slower write operations [73].

– Major advantages: random access, single-row lookups and updates, and
processing of adjacent key ranges.

Hadoop and its underlying structure are built for managing large sets of data,
so a columnar store is a natural complement. Databases normally store information
in rows and are therefore optimized for accessing one record at a time. Columnar
storage systems serialize and store data by column, optimizing searches and reads
across massive datasets [74]. In the context of fast access to information, new
technologies such as Apache Parquet—containing per-column data compression—
can become the norm in developing specialized storage and data analysis networks
in a connected world.

The use of an additional SQL database provides a fast framework for statistics
and analytics, processed data is used to populate different SQL tables, and data can
be displayed according to a random number of query parameters on a web server or
locally.

Such a system is also scalable, for a Proof of Concept processing, local clusters
can be inexpensively built. There are use cases where there is just the need to test
the software code that processes some specific data and assesses how the results are
in relation with the expected result. For this case, there is no need to have access to
a large cluster, with a lot of powerful machines. A smaller cluster could be built on
a local machine by using three different Docker containers which are configured to
communicate between each other.

For the production environment, a cluster of commodity servers could be used
that will have to cover the following aspects:

• Data availability—a replication factor �2 is required and has to be set on the
cluster that will assure no data is lost
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• Low latency—gigabyte connection between machines in the cluster
• Scale up as the volume of data increases

The model presented in Fig. 2.14 takes into account the future proliferation of
vein scanning devices of different types—ranging from mobile devices to fully
fledged vein detection systems. Local behavior remains the same; the system
will extract relevant biometric parameters for comparison or enrollment. The
difference is that, using this proposed framework, local devices can send raw images
anonymously to the local or cloud cluster for long-time storing. Using the powerful
computational resources of such a cluster, several important scenarios are created:

• Global performance of local vein pattern recognition systems can be assessed
based on their type, and matching scores and error rates can be determined from
the raw images and the result reported by the local system.

• Algorithm testing can be performed on the collected raw images, for each
enrolled individual an untraceable image is stored in the cluster and is available
for further analysis.

• Biometric features are just one parameter of an individual scanned hand. Various
amounts of data can be collected for correlation purposes. Features such as age,
sex, hand shape, vein visibility, degree of pigmentation, hair density, specular or
diffuse reflection coefficients, etc., can be stored along with the raw images.

• Collecting large amounts of data offers—as mentioned—unique opportunities
for large-scale studies. How is the real permanence of the vein pattern as the
individual grows older? What modifications occur in the model during the
lifespan of an individual? How much of an influence does light or dark skin have
on the robustness of the vein scanner? What is the discrimination rate between
individuals? As more raw data is collected, algorithms will have to increase in
their complexity since identical features between different people will probably
be revealed.

• Statistics for all collected data allows for complex case studies over long
timeframes and enables long-term monitoring of individual or global biometric
parameters.

While the concept of Big Data is extremely new and biometric applications
supporting the paradigm are virtually nonexistent, it is worth mentioning that
all technologies and protocols described in this workflow and the subsequent
discussion are open-source and are driven entirely by a large user community.
While proprietary technologies will probably gather large groups of followers in the
foreseeable future, using adaptive open-source software in the first steps of a domain
can yield faster and more relevant results in creating a workable standardized
pipeline.

It is clear that there are growth opportunities for biometric parameters and
especially for emerging technologies such as the vein pattern recognition in the age
of the Internet of Things and Big Data paradigms.
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2.5 Conclusions

This chapter has presented the current state of vein patterns used as biometric
parameters as well as the important challenges and problems that are inherent to the
technology. The current degree of acceptance and applicability of the technology
raises three sets of important problems described in this work. Several solutions
and proposals have been devised in order to mitigate the issues. Using modern
methods and approaches to the scanning technology, a complete hardware setup for
the extraction of accurate vein patterns has been presented together with user case
studies regarding ergonomics, hand placement, and orientation in both constrained
and unconstrained setups.

Through the use of extremely new virtual, augmented, and mixed reality devices,
ease of use and level of acceptance for hand vein biometric recognition can be
quantified. In addition, these technologies will help in the creation of more accurate
hand simulations and user scenarios impossible to replicate in real life. Experimental
results are shown from the usage of inertial hand motion capture suits for gathering
statistics on hand position, user ergonomics, and the correlation and storage of
images taken with their position and rotation angle. It also foreshadows the advan-
tages of the immersive data visualization for this technology including extraction of
the superficial vein patterns for virtual teaching and medical demonstration.

Equally important, the simulation of vein patterns for synthetic database
generation—as a response to the lack of real/simulated hand vein images—is
described in the chapter. Research data has been presented with encouraging results
in the creation of realistic hands and hand vein models with a high degree of
customization for detection algorithm testing, adding to previous research.

The chapter also analyzes the possible inclusion of modern paradigms such
as Internet of Things and Big Data into the normal workflow of a connected
biometric network. As the quantity of biometric data increases and can be stored
for subsequent analysis, several crucial experiments can be performed on datasets
impossible to obtain until now. In addition, cross-correlations using additional
user data can be inferred and all gathered data can also improve the creation and
implementation of vein pattern recognition algorithms.

It is the author’s opinion that future research has to involve all challenges
presented in this chapter. It is equally important to standardize vein pattern
acquisition as it is to create real and synthetic databases for algorithm testing and
implementation. It is also vital to perform more studies on each of the main seven
biometric features as they relate to the use of vein patterns. As the industry embraces
the use of Big Data, biometrics can also greatly benefit from the storage and analysis
of unstructured and heterogeneous data and answer important questions regarding
the viability of all biometric technologies.
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