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in different research areas, such as artificial intelligence, organic computing, or auto-
nomic and self-adaptive systems. This chapter provides an overview of strongly
related concepts and areas of study from the perspective of self-aware computing
systems.

2.1 Introduction

The notion of self-aware computing encompasses different aspects which have
already been the subject of study in different research areas of computer science.
In fact, systems that feature one or several desirable characteristics in a self-aware
computing system, such as being able to learn models about itself and its environment,
reasoning, planning, or providing explanations, are already a reality. The construc-
tion of such systems has been made possible thanks to the research efforts carried
out in areas such as artificial intelligence, autonomic computing, self-adaptive and
self-organizing systems, or cognitive computing. As it happens, many of these disci-
plines will foreseeably be strongly intertwined with research in the area of self-aware
computing, making it stand on the proverbial shoulders of giants.

This chapter presents an overview of concepts and research areas strongly related
to self-aware computing. Every section presents a different area of research and
explores its relation to self-aware computing systems. Note that there are disciplines
that cannot be considered as fully within the scope of computer science (e.g., cyber-
netics) in which engineers employ ideas that are well aligned with the areas for which
we provide an overview in this chapter. However, those areas are not discussed in
this chapter due to space limitations.

This chapter starts with an overview of different related forms of control in
Sect.2.2. Next, Sect.2.3 lays down the foundation for the rest of the chapter by
presenting an overview of one of the existing perspectives on artificial intelligence
that resonates most closely with self-aware computing systems.

After the introduction of the basics, Sect. 2.4 presents an overview of autonomic
computing, which enables the construction of systems able to manage themselves
in accordance with a set of high-level objectives specified by administrators or sys-
tem users. Section2.5 describes organic computing, which deals with the study of
systems that dynamically adapt to changing conditions and exhibit a number of
self-* properties, as well as context awareness. Next, Sect.2.6 introduces service-
based systems and cloud computing, including concepts such as location-transparent
computation and autonomous services as agents. Section2.7 provides an overview
of self-organizing systems, which are able to organize themselves according to the
laws of the environment within which they execute. Then, Sect. 2.8 introduces self-
adaptive systems, which are strongly related to autonomic systems and able to adjust
their own behavior in response to its perception of the environment and the system.

Section2.9 introduces reflective computing and the notion of computational
reflection as the system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Next, Sect.2.10
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introduces models at run-time, that is, abstract self-representations of a system
focused on a given aspect that may include its structure, behavior, or goals. This
section also explores the relation between models at run-time and the concept of com-
putational reflection presented in Sect.2.9. Section2.11 presents situation-aware and
context-aware systems, in which the emphasis is made on building human—-machine
systems that observe, evaluate, and act within diverse situations that include a com-
prehensive set of factors that correspond to people, location, and events, as well as
other environmental factors. Section2.12 presents symbiotic cognitive computing,
which are multi-agent systems that comprise both human and software agents that
collectively perform cognitive tasks such as decision-making better than human or
software agents can by themselves. Then, Sect.2.13 covers auto-tuning, which deals
with the automation of performance tuning, mostly for scientific applications.

After presenting an overview of different related areas and concepts, Sect.2.14
provides a constructive definition of self-aware computing system that makes some
considerations concerning the different factors influencing feasibility, capabilities,
and ultimately determine under which conditions it is possible to actually develop a
self-aware computing system, and how.

2.2 Control

In control theory, several advanced forms of control and adaptive control have been
developed that involve learning, reasoning, and acting as well as models employed
online as outlined for self-aware computing systems as introduced in Chap. 1. To
compare self-aware computing systems with adaptive control architectures applied
to software, we look at first into model reference adaptive controllers (MRACs) and
model identification adaptive controllers (MIACs) in the following.

In case of model reference adaptive controllers (MRACs) [33, 37], a reference
model defining desired closed-loop performance is employed to steer the adaptation.
Consequently, the scheme is comparable to a prediction model of what is wanted
that is used to steer the adaptation of the controller. However, as we have a prediction
model of the plant only but not of the controller there is no process like learning
involved, as the reference model is given at design time. The reference model is
more a form of a given (high level) goal that is employed to steer the adjustments.

The model identification adaptive controller (MIAC) [37] scheme performs some
form of system identification while the system is running, which can be compared
to learning a model and then reasoning about the learned model to determine how
to adjust the controller. However, we learn only a model only of the plant and not of
the controller and therefore, if the plant is the context, we have context awareness
only, and if the plant is a part of the system, we have self-awareness. As both cases
are required for self-awareness according to Chap. 1, employing the MIAC scheme
only leads to a self-aware computing system if the software and the environment are
somehow subject to system identification.
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Model-predictive control (MPC) [72] uses a model of the plant and a finite hori-
zon for the predictions of the future output. The predicted outputs are employed to
compute optimal set points (steady-state optimization). The optimal set points are
then employed to calculate required control inputs to achieve the set points. When
self-aware computing systems are compared with model-predictive control, architec-
tures using a predictive model to plan the impact of future control actions such that
the given criteria are optimized (according to goals) can be mapped to the reasoning
and action. MPC can also be combined with system identification (cf. [40]) similar
to MIAC as thus also a learning component is possible. However, MPC employing
system identification learns a model only of the plant and not of the controller and
therefore, if the plant is the context, we have context awareness only, and if the plant
is a part of the system, we have self-awareness. As a link in the case of MIAC,
both cases are required for self-awareness according to Chap. 1, employing the MPC
with system identification scheme only leads to a self-aware computing system if the
software and the environment are somehow subject to system identification.

Overall we can conclude that if the software and the environment are somehow
subject to system identification, the system identification in control theory is com-
parable to the learning of self-aware computing systems. Also the MPC scheme of
control theory can be seen as a special case of reasoning and acting (adapting) of
self-aware computing systems. Finally, reference models in the MRAC scheme of
control theory are a special case of static goals as considered by self-aware comput-
ing systems. Consequently, it can be argued that also self-aware computing systems
in case they adapt the software behavior like less advanced forms of self-adaptive
systems can likely largely benefit from the achievements of control theory. However,
as also for the less advanced forms of self-adaptive systems principles and solutions
of control can only be applied to software systems in restricted cases and the transfer
of applicable control theory results to self-aware computing systems is still in its
infancy.

2.3 Artificial Intelligence

There are many different perspectives on artificial intelligence, but the one that res-
onates most closely with self-aware systems is that adopted by Russell and Norvig
in their book “Artificial Intelligence: A Modern Approach” [69], according to which
artificial intelligence is fundamentally about designing and building rational agents.
Wooldridge and Jennings [85] further define an agent as a software-based computer
system that enjoys the following properties:

1. autonomy: agents operate without the direct intervention of humans or others and
have some kind of control over their actions and internal state;

2. social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;
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3. reactivity: agents perceive their environment and respond in a timely fashion to
changes that occur in it; and

4. proactiveness: agents do not simply act in response to their environment, and they
are able to exhibit goal-directed behavior by taking initiative.

By emphasizing social ability as an essential property of agents, Wooldridge and
Jennings suggest that agents typically exist in environments in which other agents are
present, and that they interact with one another via some sort of agent-communication
language, thereby forming multi-agent systems.

Self-aware computing systems as defined in this chapter possess the characteristics
of autonomy, social ability, reactivity, and proactivity and can therefore be understood
as types of agents or multi-agent systems that achieve these characteristics via the
specific approach of learning models and using those models to determine how best
to satisfy their goals.

2.3.1 Overview of Agents and Multi-agent Systems

A software agent can be defined, very generally, as a software entity that can accom-
plish tasks on behalf of its user, by acting within its environment [60]. In [69], agents
are also referred to as rational entities, meaning that they would take the best pos-
sible action, considering available information and capabilities, to approach their
objectives: “For each percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given evidence provided by the
percept sequence and whatever built-in knowledge the agent has.”

A wide variety of agent types, with more specific abilities and characteristics, has
been defined within this vast area to address the particularities of different domains,
based on different approaches. An extensive review of all agent types would be well
beyond the scope of this chapter. We merely aim to highlight here the most relevant
types that would help us compare multi-agent systems with self-aware computing.

We consider several dimensions of comparison, whereby agents can be either
deliberative or reactive; mobile or static; and feature various combinations of key
characteristics, such as autonomy, learning, and social interaction. In the context of
self-aware computing, we are mainly concerned with aspects of autonomy, reasoning,
learning, and social abilities. Hence, we will focus on discussing these next.

A deliberative agent is the “one that possesses an explicitly represented, symbolic
model of the world, and in which decisions (e.g., about what actions to perform) are
made via symbolic reasoning” [85]. Conversely, reactive agents reach their objectives
by implementing a stimulus-response (or reflex) behavior, merely reacting to changes
in their environment with corresponding actions. Hence, they do not posses symbolic
representations or reasoning capabilities [15].

Russel and Norvig [69] refine this agent typology further, defining goal-oriented
and utility-based agents. These correspond to deliberative agents that pursue goals
in a binary manner—either achieving the goal or not achieving it—or in a more
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modulated manner—where goal achievement can be equated to various degrees of
utility. Russel and Norvig also refine reflex-based agents into basic and model-based
reflex agents, which are reactive agents with or without internal state, respectively.

An agent’s autonomy refers to its capability to operate without requiring human
intervention, in order to achieve its objectives, or goals, on behalf of its user. In the
context of deliberative agents, proactiveness is also considered as a key agent feature,
related to its autonomy. It implies that the agent will be “taking the initiative” for
reaching its goals, rather than simply reacting passively to its environment [85]. Of
course, deliberative agents can also react to environmental changes.

An agent’s learning ability allows it to adapt its behavior—e.g., via changes
in its knowledge and reasoning, or in its reflexes—based on interactions with its
environment, in order to increase its performance over time. Finally, an agent’s
social ability refers to its capability to interact with other agents, via some well-
defined communication language.

A multi-agent system (MAS) consists of multiple agents that are engaged in some
sort of interaction in order to accomplish one or several tasks, or goals. MAS is
typically employed to address complicated computing problems via a divide-and-
conquer technique—i.e., dividing the problem among a set of (specialized) agents,
which interact to compose partial results into a global solution. In the case of deliber-
ative agents, this implies that knowledge representation, acquisition, and reasoning
processes are also distributed among the agents.

2.3.2 Comparison with Self-aware Computing

Since the concept of agent has been used rather broadly across various applications
and domains, it has become an umbrella term for a wide variety of computing entities
that feature highly different capabilities and characteristics. Therefore, it is quite
difficult to provide an exact comparison of multi-agent systems with self-aware
computing systems, not at least since these later can also feature different kinds and
levels of self-awareness (Chap. 3). Considering these reasons, we only attempt here
to provide a general comparison, highlighting the main differences in focus between
the two concepts.

The concept of a self-aware computing system (as defined in Chap. 1) is mostly
compatible with that of a deliberative agent, which features autonomy, learning,
and social abilities—i.e., a “smart agent” in [60]. Indeed, like deliberative agents,
self-aware computing systems can possess models of the world that are explicitly
represented and on which they can reason in order to achieve higher-level goals (rep-
resenting the user). In addition to an agent’s world models, self-aware systems must
also possess models of themselves and must reason on these to perform actions—e.g.,
self-adaptation to ensure system autonomy in a changing environment; explaining
and reporting their current states (and their probable causes) to users, or to other
systems; or suggesting means of rectifying undesirable or suboptimal states. Conse-
quently, the learning capabilities of self-aware systems must apply to both models
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representing their environments and themselves. Here, self-aware systems focus on
the particular problem of agent autonomy, within a changing environment and/or in
the presence of internal faults, rather than on problem-solving in general, as is the
case for multi-agent systems.

Like social agents, self-aware computing systems may also interact with other
systems, either by direct communication or by indirect influence within a shared
environment. The systems that such a self-aware system interacts with may feature
various levels of self-awareness, or may be non-self-aware. In case of direct commu-
nications, a self-aware system’s interactions can be equated to agent communications
(and hence represent social skills). A specific feature of self-aware computing sys-
tems consists in the extent to which they can be, or become, self-aware of the other
systems that they interact with—e.g., acquiring and maintaining models of them.
This can also be the case in some agent-oriented approaches, like with game the-
oretical agents, yet here the agents’ awareness of each other is typically provided
at design time, then potentially refined during run-time. Another interesting feature
here consists in the lack of assumptions on the other systems’ self-aware capabilities
(i.e., heterogeneity of self-awareness levels across a collective of systems). Again,
this can be the case in some multi-agent systems—such as some game theoretical
cases—yet the agent’s self-awareness levels are typically predefined, depending on
their roles.

2.4 Autonomic Computing

The autonomic computing initiative [35] was spurred by a concern that rapid growth
in the complexity of IT systems would outstrip the ability of IT administrators to
cope with that complexity. The proposed solution was for the system to take upon
itself a large portion of the management burden. Just as the autonomic nervous system
governs our pulse, our respiration, and the dilation of our pupils, freeing our conscious
brain to attend to higher-level cognitive functions, the goal of autonomic computing
is to create computing systems that manage themselves in accordance with high-
level objectives from administrators or system users. While initially conceived as a
paradigm for the future of IT management, over the course of time the principles,
objectives, and techniques of autonomic computing have come to be applied more
broadly, extending to physical systems such as data centers (and data center robots),
the Internet of things, and smart homes.

An early paper that outlined the vision and research challenges of autonomic
computing [41] laid out an architecture in which autonomic behavior was exhib-
ited at two levels. Autonomic elements (such as databases, Web servers, or physical
servers) were envisioned to use a combination of monitoring, analysis, planning,
and execution driven by knowledge (often referred to as the MAPE-K architecture
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or MAPE-K loop) to accomplish their own individual goals.! System-level auto-
nomic behavior was to be driven by system-level goals and accomplished through
well-designed interactions among multiple interacting autonomic elements whose
individual goals might be designed to support the desired system-level behavior.
The vision did not specify how the goals of autonomic elements might be derived
from system-level goals, nor did it specify how to design the interactions among the
autonomic elements; these were cited as difficult and important research challenges.

Comparing the definition and vision of autonomic computing systems to that of
self-aware computing reveals several similarities and a few distinctions. Employing
Knowledge to support the Monitoring, Analysis, Planning, and Execution functions
matches very closely the second clause of the self-aware computing definition, which
states that self-aware systems “reason using ... models ... enabling them to act.” Con-
tained within the Knowledge component of an autonomic element are one or more
models that the Analysis component can use to anticipate the likely consequence of
an action or a plan (a sequence of actions) that it is contemplating. The objective of
the Planning component is to move the autonomic element (or perhaps the autonomic
system in general) from its current state (as assessed by the Monitoring component)
to a state that it is deemed more desirable according to the high-level goals, which
are also held within the Knowledge component. One common approach to using
models and high-level goals to drive the behavior of autonomic elements and sys-
tems is utility functions. The state space is described in terms of attributes that the
administrator deems important (e.g., response time and power consumption), a utility
value is ascribed to each possible state, and the system selects an action that would
(according to models) lead to a state with the highest achievable utility value, given
the current resource of other constraints. Finally, regardless of the means by which
analysis and planning are accomplished, the autonomic element Executes the action
or plan deemed most desirable by the Planning component, the state of the auto-
nomic element (or the autonomic system) evolves (either in reaction to the action(s)
or an external change such as an increase in workload), and the MAPE-K process
continues. The execution step is the one point at which the autonomic computing
definition may differ from the reasoning clause of the self-aware computing defini-
tion. Autonomic computing requires execution, while self-aware computing permits
execution but does not require it. Nonetheless, in practice the field of autonomic
computing embraces work in which the system recommends an action, but allows a
human to judge whether or not to take it, viewing this as an important and necessary
evolutionary step toward full-fledged autonomic computing, not just as a matter of
making incremental technological progress, but also as a means for building user
trust.

n actuality, MAPE-K was not strictly an architecture (it was more of a statement about required
functionality than it was a statement about how those functions were to be woven together) nor was
it necessarily a loop, as the various components might typically be operating in parallel at all times
and not running in a strict order.
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The first clause of the self-aware computing definition concerns learning. Learning
has always been viewed as an important aspect of autonomic computing, and a
preferred means by which models are created, but autonomic computing does not
strictly require that an element or a system learn to be regarded as autonomic.

To summarize, while autonomic computing was initially proposed as an IT man-
agement solution, the current understanding of the term is much broader, and it
overlaps strongly with the definition of self-aware computing systems. The main dif-
ferences are that autonomic systems are not strictly required to learn, and self-aware
systems are not strictly required to act.

2.5 Organic Computing

An organic computing (OC) system is “a technical system which adapts dynami-
cally to the current conditions of its environment. It will be self-organizing, self-
configuring, self-healing, self-protecting, self-explaining, and context-aware” [58].

From its inception, OC started with a strong industry pull (including Daimler-
Crysler, Siemens, and Bosch) because of the shared belief across several industries
that we can no longer adequately design very large-scale, complex systems; complex
systems need to help us by designing parts of themselves and by managing parts of
themselves.

As part of this was the strong recognition by OC that complex systems have
emergence. That is, they have unplanned and unexpected side effects and emergent
properties at different levels because of the interactions among large numbers of
components under different operational conditions. The OC attitude is “How can we
take advantage of the fact that complex systems have emergence?” How can systems
use emergence as a source of controlled variation? How can we shape emergence to
go in desired directions?

Hence, from its inception, OC emphasized the importance of having systems that
could not only observe and adapt to the changing and demanding external world,
but also could observe and adapt their own goals, plans, resources, and behaviors
as necessary to correctly map to new contexts and requirements. Moreover, in OC
approaches, one will take advantage of this self-awareness to adapt to not only chang-
ing conditions and requirements, but even to new, emergent properties in the system
and its environment.

Although OC has different approaches to meeting the challenges of creating self-
adaptive and self-aware systems, the observer/controller architecture is an especially
important contribution to mention here because of its clear relationship and similarity
to several of the architectures in this book (see more in Chaps. 6 and 8). An early
description of the observer/controller architecture is depicted in Fig.2.1.

A key emphasis in OC is that complex systems need to have self-control and self-
adaptation abilities while always retaining important human-in-the-loop capabilities
so that humans can suitably monitor and control when necessary the results of inter-
acting and relatively autonomous computing systems. Hence, the observer/controller
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Fig. 2.1 Early
observer/controller goals
architecture
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architecture is comprised of two top-level concepts: the organic system and a human
user, where the organic system adheres to the basic input/compute/output principle
of computing. The human user is seen as imposing goals and constraints at times
on the organic system, while reviewing the system status based on the OC system’s
self-reporting capabilities and whatever special human interfaces to system instru-
mentation have been added.

The organic system is further decomposed into three major components: the sys-
tem under observation and control (SuOC), the observer, and the controller. All
human interaction is relayed by the controller. Notably, the input/compute/output
principle is realized by the SuOC. Observer and controller impose a feedback loop
onto the SuOC, where the first observes the SuOC and reports to the controller, which
in turn controls the SuOC.

An important characteristic of the SuOC in organic computing is that it is com-
prised of agents, i.e., autonomous entities. In other words, the SuOC is already a
set of self-organizing systems. The observer and controller enhance this system to
achieve controlled self-organization.

As can be seen by this very brief description, there can be multiple observer—
controller layers in a given system. Furthermore, different kinds of self-awareness
capabilities, as discussed in the rest of this book, can contribute at many points in this
architecture; they will certainly occur in the observational and reasoning capabilities
of the observer, as well as potentially in the adaptive behaviors directed by the
controller.
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2.6 Service-Based Systems and Cloud Computing

In this section, we first introduce some basic concepts related to service-oriented
computing, followed by an overview of the area of cloud computing, emphasiz-
ing concepts relevant to self-aware computing systems, such as location-transparent
computation and the notion of autonomous services as agents.

2.6.1 Service-Based Systems

Service-oriented computing (SOC) and service-oriented architecture (SOA) are now
largely accepted as well-founded reference paradigm and reference architecture for
Internet computing [62]. Under SOC, networked devices and their hosted applica-
tions are abstracted as autonomous loosely coupled services that, while playing the
roles of service providers, consumers (aka clients), and registries, they also interact
by following the service-oriented interaction pattern (see Fig.2.2).

According to this pattern, a service has to define an interface publishable on
the Internet, researchable, and callable independently from a particular language or
platform. In order to obtain these requirements, a SOA application has to define roles
(not all required) as shown in Fig.2.2.

e Service Consumer: the entity that uses the service; it can be an application module
or another service;

e Service Provider: the entity that provides the service and exposes the interface;

e Service Contract: defines the format for the request of a service and the related
response;

e Service Registry: Directory on the Internet that contains the services.

Despite the remarkable progress of the SOC paradigm and supporting technolo-
gies in the last ten years, substantial challenges have been set through the evolution of
the Internet. Over the years, the Internet has become the most important networking
infrastructure, enabling all to create, contribute, share, use, and integrate informa-
tion and extract knowledge. As a result, the Internet is changing at a fast pace and
is called to evolve into the Future Internet, i.e., a federation of self-aware services

Fig. 2.2 Service-oriented N
interaction pattern

\ 4

Service Registry Service

Contract

Discovery Publish

Invoke . .
Service Provider

A 4
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and networks that provide built-in and integrated capabilities such as service sup-
port, contextualization, mobility, security, reliability, robustness, and self-* abilities
of communication resources and services [28, 38].

In this wide spectrum, a SBS can be meaningfully seen as a composition of service
providers and consumers that interact by providing/requiring functionalities to/from
each other. A SBS is often opportunistically built for the purpose of achieving a
given goal. The goal typically expresses functional and non-functional high-level
requirements that the resulting composition has to fulfill. The former class captures
the qualitative behavior of a SBS, its functional specification. The latter defines the
SBS’s quantitative attributes such as performance, reliability, and security.

From a software engineering perspective, goal changes are always done to meet
the new requirements; e.g., users and involved business organizations may change
their functional needs and non-functional preferences. Moreover, it can be that the
services currently involved in the composition no longer perform as expected. On
the practical side, the source of this type of run-time changes can be, e.g., changing
conditions of the network through which services communicate, degrading com-
putational resources of the execution environments where services are deployed,
upgrading the version of the middleware on top of which services run, and remote
service substitution.

The knowledge that service consumers have depend on the contract (often
expressed by means of service behavioral models) exposed by the service providers
they want to interact with (interface only, interface plus interaction protocol, inter-
face plus interaction protocol plus non-functional attributes, etc.). As a consequence,
also the kind of reasoning that enables a SBS to act based on its knowledge depends
on the kind of models and notations used to describe service contracts.

Last but not least, since a SBS can be seen as a composition of services, the
way the system can act to enable self-awareness is constrained by the structure and
behavior of the adopted composition means. In particular, two forms of composition
to build SBSs can be distinguished, one centralized, i.e., service orchestration, and
one distributed, i.e., service choreography [5].

2.6.2 Cloud Computing

Cloud computing refers to the on-demand delivery of IT resources and applica-
tions via the Internet, possibly with a pay-as-you-go pricing. By referring to the
NIST definition of cloud computing [53], “cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service-
provider interaction.” In other words, cloud computing is essentially about moving
services, computation, and data off-site to a location-transparent entity. Cloud com-
puting distinguishes three service models, as described below:
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e Software as a Service (SaaS): WAN-enabled application services (e.g., Google
Apps, Salesforce.com, and WebEx). The capability provided to the consumer is to
use the providers’ applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a client interface, such as
a Web browser (e.g., Web-based email), or a program interface.

e Platform as a Service (PaaS): Foundational elements to develop new applications
(e.g., Coghead and Google Application Engine). The capability provided to the
consumer is to deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages, libraries, services, and tools
supported by the provider.

e Infrastructure as a Service (IaaS): Providing computational and storage infrastruc-
ture in a centralized, location-transparent service (e.g., Amazon). The capability
provided to the consumer is to provision processing, storage, networks, and other
fundamental computing resources, where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications.

Some of the main characteristics of cloud computing are concerned with (i) elasticity,
in which it requires on-demand capabilities of resources; (ii) broad network access, in
which access to the cloud can be done using any computer-based device; (c) resource
pooling, in which data can be used and added in the cloud at any time; (d) measured
services, in which consumers only pay for the resources they use from the cloud;
(e) energy efficiency, in which the energy consumption of cloud data centers are
optimized; and (f) virtualization, in which the infrastructure is divided and seen as
separated logic components.

The above characteristics of cloud computing require a degree of self-awareness
of the technology. For example, it is necessary for the system to be aware of the need
of new resources and to be able to free the not-used resources at a certain moment
of time. However, it is not possible to say that cloud computing technologies have
the necessary level of self-awareness, as per the definition given in Chap. 1.

2.6.3 Comparison with Self-aware Computing

Since the vision of Weiser [81] was published almost 25 years ago, pervasive systems
have almost become reality. Computers have become ubiquitous and are available
in areas nobody would have expected them 20 years ago such as cars, parks, or
even pot plants at home. Nevertheless, these computers are often far from being
self-aware. In many cases, these computers act as simple sensors merely storing the
sensed environment on a local memory or transmit it to a central server. The two
main points in the self-aware computing definition are often not fulfilled. Pervasive
systems only in some cases learn about their environment but they only rarely reason
about this knowledge.

Nevertheless, there are novel areas of research within the pervasive computing
community, such as the smart environment community. Here the devices try to learn
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behavioral patterns about the user in order to anticipate certain actions, requirements,
or desires of the user. This anticipation is often founded on predefined rules and only
allows very limited flexibility with respect to defining new goals for the individual
device or the entire system. Furthermore, the interplay between the individual devices
and the impact of their actions on each other is often hardwired within the individual
devices. This limits the capabilities to include new devices during run-time without
explicit setup of the system. While implementing individual autonomous computing
agents within the different devices and using a service-based approach introduce
higher flexibility and robustness to the pervasive system, the higher, system-wide
goals are still not considered when actions of the individual devices are performed.

2.7 Self-organizing Systems

As their name suggests, self-organizing systems are systems that are able to organize
themselves adaptively and without external control. Organization is at the core of this
definition and generally comprises the relations, interconnections, conditionality or
dependencies between the system’s components, or variables. Hence, organization
relates heavily to the system’s structure, defining its main components and their
interrelations.

In the remainder of this section, we first present a general overview of self-
organizing systems, followed by a discussion of cross-pollination opportunities with
self-aware computing.

2.7.1 Overview of Self-organizing Systems

From a general perspective, if a system (or general “machine” [4]) is viewed as a
set of states S, with a set of inputs / and a function f that maps /xS into S—i.e.,
determining the system’s future state based on the current state and inputs—then the
system’s organization represents the manner in which its variables are interrelated
via the mapping function f. A self-organizing system here implies that the system
is able to change its own mapping function. This raises some controversies around
the system’s boundary definition, since it implies the extension of the initial system
with a controller that monitors and updates its organization [4].

However, most often, self-organization is understood as a dynamic adaptive and
autonomous process that results from the inherent behavior of each system compo-
nent and of the “laws” of the environment within which they execute [4, 20]; and
which results in a progressive increase in system structure [84]. Examples of nat-
ural self-organization include the spontaneous assembly of protons, neutrons, and
electrons into atoms; of different atoms into organic molecules; and the evolution
of living organisms adapted to their environments. Examples in artificial systems
include the adaptive formation of ad hoc mobile networks, of robot swarms, and of
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component- and service-based software system assemblies. Ashby prefers referring
to this type of self-organization as the “spontaneous generation of organization.”

This is also the typical understanding of self-organization in the computing sys-
tems domain, notably in research communities such as the self-adaptive and self-
organizing (SASO) systems—as reflected for instance in the proceeding series of the
International Conference on SASO Systems.? Here, self-organization is interesting
because of the advantageous properties that it features in general (e.g., resilience
and adaptability to a wide range of environmental changes; robustness in the face
of internal failures; and scalability with the number of components and adaptation
frequency). In the SASO community, self-organization is also seen as a bottom-up
alternative to achieving self-adaptation, which was originally designed as top—down.

The main challenge here is: How to design self-organizing systems that also
meet desirable goals? Indeed, in natural systems, most instances of self-organization
have no other obvious purpose than their own existence and survival within their
environment. In more “interesting” cases (from a goal-oriented system perspective),
different organisms self-organize into more-or-less temporary formations in order to
achieve via collective action a common goal that none of them could have achieved
individually (e.g., swarms, flocks, herds, teams, and societies). Yet, when building
artificial systems, determining which component behaviors and interaction laws will
lead to the self-organization of systems that meet the designer’s goals within targeted
environments is a difficult task, subject to active research. These challenges differ
from those highlighted by self-aware computing, where the research focus is placed
on the system’s knowledge acquisition and the way in which usage of this knowledge
can serve the system’s achievement of goals.

2.7.2 Cross-pollination Opportunities with Self-aware
Computing

In self-organizing systems, any knowledge available is decentralized and distributed
across the participating system components, or agents. An exception may occur if
global knowledge were encoded within the environment shared by the system’s com-
ponents. This aspect will be interesting to study within the context of decentralized
(or self-organized) self-aware systems.

Conversely, it will be interesting to explore how self-awareness could help a
system’s components self-organize in order to achieve a shared goal. Here, the hard-
coded elementary behaviors and “laws” of the environment that fuel self-organization
could be adapted dynamically by the system components, as they become aware of
their shared goals (e.g., already the case in social organizations). Also, components
that become aware of their own characteristics (e.g., range of behaviors and properties
they can exhibit), of the characteristics of other components, and of the key theoretical
principles of self-organization (still to be produced by the corresponding research

2SASO history in 2016: http://sas02016.informatik.uni-augsburg.de/history.html.
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fields) may be better able to select the components with which they connect in order
to have a better chance of achieving their goals.

2.8 Self-adaptive Systems

In the self-adaptive software community, self-* properties are organized into levels
where self-adaptiveness is at the top (or general level), while self-awareness is con-
sidered only a primitive level like context awareness and the typical autonomic com-
puting like self-* properties such as self-configuring, self-healing, self-optimizing, or
self-protecting are considered major level properties in between the other two levels
(cf. [70]). Furthermore, in the self-adaptive software community most approaches
emphasis an architectural perspective (cf. [70]) where besides the control of para-
meters changes of the architecture may matter.

In the rest of this section, we first present a general overview of self-adaptive
systems, followed by a discussion of anticipatory self-adaptive systems, which are
those that exhibit a specific set of characteristics which are strongly related to self-
aware computing systems, such as the ability to predict, or self-adapt proactively.

2.8.1 Overview of Basic Self-adaptive Systems

Like in autonomic computing for self-adaptive systems, control loops are often con-
sidered one of the core objects of the design efforts [16, 74] and it is advocated that in
order to achieve real self-management capabilities besides a direct layer for change
management also a goal management is required (cf. reference architecture [44]).
However, besides some specific approaches that emphasize architectural models or
goals in contrast to the notion for self-aware computing systems of Definition 1.1 for
the basic efforts for self-adaptive systems hold that neither the learning of models
nor the capability to reason based on this models to realize the adaptation loop has
been emphasized so far.

In a series of Dagstuhl seminars, the community has identified mainly model-
ing dimensions, requirements, engineering through feedback loops, assurances, the
design space, processes, decentralized control, and practical run-time verification
and validation as the main issues that have to be addressed (see two research road
maps [18, 21]. However, again neither the employed knowledge nor the capability to
reason based on this knowledge as advocated by the notion for self-aware computing
systems of Definition 1.1 plays a prominent role.

The notion for self-aware computing systems of Definition 1.1 is overlapping
with the notion of self-adaptive software as it also covers systems where no self-
adaptation happens. As advocated in [31], the limitation to only fully automatic
adaptation is probably too limited and instead, it would be better to also consider
related manual activities such as change management and their coordination with
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automated adaptation steps. Therefore, to include also mixed forms where people
supervise the adaptation or the self-awareness helps with manual adaptation in the
notion for self-aware computing systems of Definition 1.1 seems somehow beneficial
to better cover the real needs and the real design options.

For the subset of self-aware computing systems that realize some self-adaptation
behavior, however, we can conclude that they describe a subset of the self-adaptive
software, where in addition to the existence of the feedback loop we also learn
models capturing knowledge and reason about these models allowing them to act
according to internal and external conditions in accordance with higher-level goals.
While several suggestions go in a similar direction as Definition 1.1 (cf. [44]), the
community will likely benefit from the suggested notion for self-aware computing
systems of Definition 1.1 that clearly separate lower-level solutions without explicit
knowledge capturing and reasoning from approaches that have these capabilities
based on learning models and reasoning based on the models.

2.8.2 Anticipatory Self-adaptive Systems

What distinguishes a self-adaptive system from any other system is its ability to
adjust its behavior in response to its perception of the environment and the system
itself [18]. Self-adaptive systems typically operate employing a knowledge base
that can incorporate an explicit representation of the system’s structure, goals, and
assumptions about its environment. However, there is an ample variation in the level
of detail in which the different elements of this knowledge base are described, as
well as in the reasoning capabilities that different approaches exhibit [70].

The characteristics of early proposals to self-adaptation [32, 44] tend to be far from
the traits of self-aware computing systems listed in Definition 1.1. These approaches
tend to be reactive and adapt in response to the changes without anticipating future
changes or reasoning about the long-term outcome of adaptation (e.g., a system
may adapt to a transient change, only to adapt again and go back to its original
configuration moments later). Moreover, these proposals tend to be rather limited
in terms of learning capabilities. In contrast, recent approaches to self-adaptation
[17, 19, 34] are better aligned with the description of self-aware computing sys-
tem given in Chap. 1. The general trend among these proposals is a paradigm shift
from reactive to proactive adaption, incorporating the ability to learn, predict, and
systematically exploit knowledge to improve the operation of the system.

These approaches fit well into the category of anticipatory self-adaptive system,
defined as “able to anticipate to the extent possible, its needs and behaviors and those
of its context, and able to manage itself proactively” [63]. Based on this definition, we
can identify the main criteria that anticipatory self-adaptive systems should ideally
satisfy:

1. Predictive. The system can likely determine ahead of time if a condition that
requires adaptation will take place. Predictions can be exploited to avoid unnec-
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essary adaptations or improve the overall choice of adaptation (e.g., by factoring
in information about future resource availability or workload and other environ-
ment conditions into the decision-making process [19, 55]). Predictions can also
help to enforce safety properties when reachability of a potential safety violation
from the current state of the system is detected [48].

. Proactive. The system can enact adaptation before a deviation from its functional-

ity or qualities takes place. A representative proactive approach to self-adaptation
in cyber-security is Moving Target Defense (MTD) [86]. MTD assumes that a
system that remains static with the same configuration over long periods of time
gives potential attackers time for reconnaissance and exploitation of system weak-
nesses. Hence, the idea behind MTD is adapting to change the configuration of
the system periodically, thus reducing the chance of an attacker of finding and
exploiting a weakness. Another example of proactivity is latency-aware proactive
self-adaptation (PLA) [55], which anticipates changes in environment conditions
and triggers adaptations with enough lead time to deal with them in a timely fash-
ion, based on information about the execution time required to complete adapta-
tions and achieve their effects in the controlled system (i.e., their latency). In the
area of service-based systems, PROSA [34] is an approach that carries out tests
at run-time to detect potential problems before they happen in real transactions,
triggering adaptations when tests fail.

. Learning. The system can generate and incorporate new knowledge (typically

derived from observations of the system and its environment at run-time), and
use it to improve subsequent adaptions. Simple forms of learning can also be found
in reactive approaches. To select adaptations, Rainbow [32] employs information
about the actual outcome of past adaptations to derive probabilities that represent
the likelihood of possible outcomes of future adaptations. Proactive approaches
can employ more sophisticated learning techniques to leverage its prediction
capabilities (e.g., employing Bayesian learning to estimate the future behavior of
the environment [17, 27]).

Table 2.1 categorizes some anticipatory approaches to self-adaptation. It is worth

noticing that although a proactive self-adaptive system can benefit significantly from
predictions, proactive approaches are not necessarily predictive. One example is
MTPD. In the simplest form of MTD, the system’s configuration is changed proac-
tively with a fixed frequency, without any reasoning involving a model of the envi-

Table 2.1 Anticipatory Approach Learning Predictive | Proactive
self-adaptation approaches
KAMI [27] v v v
QoSMOS [17] v v v
Cheng et al. [19] v v
PLA [55] v v
Li et al. [48] v v
PROSA [34] v
MTD [86] v
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ronment or predictions about its future behavior. Moreover, we can observe that in
terms of learning, anticipatory self-adaptive approaches are still far from the ideal
of self-aware computing systems. In particular, learning capabilities are employed
only in approaches that involve relatively simple adaptations (e.g., parameter opti-
mization [17, 27]), but not combined with adaptations that entail complex changes
to a system’s architecture.

2.9 Reflective Computing

In 1987, Maes [51] defined and implemented “computational reflection” as “the
process of reasoning about and/or acting upon oneself.” Computational reflection is
an engineered system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Reflection capa-
bilities can range from simple, straightforward adjustments of another program’s
parameters or behaviors (e.g., altering the step size on a numerical process or the
application of rules governing which models are used at different stages in a design
process) to sophisticated analyses of the system’s own reasoning, planning, and deci-
sion processes (e.g., noticing when one’s approach to a problem is not working and
revising a plan).

Reflection processes must include more than the sensing of data, monitoring of
an event, or perception of a pattern; they must also have some type of capability
to reason about this information and to act upon this reasoning. However, although
reflection is more than monitoring, it does not imply that the system is “conscious.”
Many animals demonstrate self-awareness; not only do they sense their environment,
but they are also able to reason about their capabilities within that environment. For
example, when a startled lizard scurries into a crevice, rarely does it try to fit into a
hole that is too small for its body. If it is injured or tired, it changes the distance that
it attempts to run or leap. This adaptive behavior reveals the ability of the animal
system to somehow take into account the current constraints of the environment and
its own body within that environment [9, 10].

In order to bring out the ways in which the self-awareness processes and architec-
tures enhance and further develop reflective architectures, we will quickly overview
one approach to implementing computational reflection and the building of reflec-
tion processes in a robotic-car example (also see Chap. 9 for additional discussion of
self-modeling issues in this test bed).

The Wrappings’ approach uses both explicit meta-knowledge and recursively
applied algorithms to recruit and configure resources dynamically to “problems
posed” to the system by users, external systems, or the system’s own internal
processing. The problem manager (PM) algorithms use the Wrappings to chore-
ograph seven major functions: discover, select, assemble, integrate, adapt, explain,
and evaluate. “Discover” programs (or as called in the Wrappings, “resources’) iden-
tify new resources that can be inserted into the system for a problem. “Selection”
resources decide which resource(s) should be applied to this problem in this context.
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“Assembly” is syntactic integration and these resources help set up selected resources
so that they can pass information or share services. “Integration” is semantic, includ-
ing constraints on when and why resources should be assembled. “Adaptation”
resources help to adjust or set up a resource for different operational conditions.
“Explanation” resources are more than a simple event history because they provide
information on why and what was not selected. “Evaluate” includes the impact or
effectiveness of the given use of this resource in the current problem. The meta-
knowledge for a Wrapping is always for the USE of a resource within a particular
context and for a specific posed problem. It includes assumptions and constraints, the
required services and input, the resulting services and output, and the best practices
for using this resource in this situation.

The Wrappings’ “problem-posing” has many benefits, including separating prob-
lems from solution methods and keeping an explicit, analyzable trace of what prob-
lems were used to evoke and configure resources. Because all of the resources are
wrapped, even the resources that support the Wrappings® processing, the system is
computationally reflective—it can reason about the use of all of its resources [12].

Wrappings [45, 46] provide an implementation strategy for computational reflec-
tion that provides control over the level of self-awareness available in the system
and the levels of self-awareness to be used at any given time. The mechanism that
allows this flexibility is the Problem-Posing Programming Paradigm, which strictly
and completely separates the information service requests (the problems) from the
information service providers (the resources) and reconnects problems in context
with resources using explicit interpretable rules collected into Wrappings’ Knowl-
edge Bases. Moreover, the processes that perform the connection (called PMs, or
problem managers) are also resources and are also Wrapped, so they can be swapped
out as easily as any other resources. We emphasize that the designers have control
over the level of detail of decomposition of the processes in the system, and of the
rules by which resources are used for particular problems. There is no inherent limit
on that level of detail (some implementations go down to the individual hardware
instruction, but most go to the typical software component/module level). More detail
on the implementation architecture is given in Chap. 8.

The flexibility of the Wrappings’ approach provides multiple entry points for the
reflective processes. A reflective resource has the general form: Given a goal, purpose,
or function, a reflective process uses the sources of information to do some action,
decision or to create data that is used by other processes. The goal or function for that
reflective process could be built in during design time or assigned dynamically to that
reflective process by other programs. It may be in continual use or it may be recruited
or evoked only when certain resources are active or conditions exist. The sources of
information can be, e.g., data sets, sensor output, or monitors. The reasoning process
for reflection can be done with an algorithm, decision process, rulebase, cognitive
model, or planner. The resulting actions are myriad, but include sending messages,
setting program or context parameters, recruiting new components, initiating new
processes, or instigating a replan or undo process.

Although the Wrappings’ approach and reflective architectures approach briefly
outlined here have proven its value for resource management and dynamic inte-
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gration among large numbers of resources, the original approach was in practice
limited to largely the management and adaptation of single large distributed sys-
tems. Although, the benefits of reflection were clear for interactions among systems
(e.g., the self-knowledge could be made available to other systems for coordina-
tion [11] and external viewpoints by other systems could help a system identify its
own problems or state and learn better [8, 47], in fact, the new work in self-aware
systems as seen in this volume will help greatly by expanding new ideas for how
collections of self-aware systems could interact and organize.

2.10 Models@run.time and Reflection

A model at run-time (models@run.time) [14] is defined as an abstract self-
representation of a system that is focused on a given aspect of the running system.
Such aspects include its structure, behavior, and goals. The run-time model exists in
tandem with the given system during the actual execution time of that system. As in
the case of traditional model-driven engineering (MDE) [30], a self-representation of
the system in the form of run-time models can also be used as the basis for software
synthesis, but in this case the generation can be done at run-time [57, 82].

Before describing the role of models@run.time in the area of self-aware com-
puting, it is useful to briefly introduce the relationship between models @run.time
and reflection (the topic reflection is more extensively covered in Sect.2.9) and other
aspects. Computational reflection focuses on the representations of an underlying
system that are both self-representations and causally connected [14]. The causally
connected representations of aspects of the system are constantly mirroring the run-
ning system and its current state and behavior. Causal connection implies that if the
system changes, the self-representations of the system (i.e., the models) should also
change, and vice versa.

Even if closely related, models @run.time and reflection are not the same. Reflec-
tion deals with models that are linked to the computation model and therefore tend
to be focused on the solution space and in many cases at a rather low level of
abstraction. The research area models @run.time deals with models that are defined
at a much higher level of abstraction. Further, run-time models more frequently
relate to the problem space. Examples of applications using run-time models are
self-adaptation [57] or generation of mediators to support interoperability [12].

Traditionally, the structure of a run-time model has been conceived at design
time (e.g., architecture models [57]). However, they can also be learned at run-time.
In [12], the authors show how using learning methods the required knowledge of the
context and environment can be captured and distilled to be formulated and made
explicitly available as a run-time model and therefore support reasoning. Another
example of techniques to be used to learn run-time models are shown in [87].

Models @run.time are at the core of self-aware systems. They are relevant to sup-
port self-awareness as defined in Chap. 1. (i) The run-time models correspond to
the learned models which capture knowledge about the system itself and their envi-


http://dx.doi.org/10.1007/978-3-319-47474-8_1

38 J. Camara et al.

ronment. Specifically, the run-time models support learning to capture the needed
knowledge about the system itself (e.g., its own goals and requirements [71, 82]) or
its perception of the environment [77, 87]. (ii) The run-time models when consulted
should provide up-to-date information about the system and therefore support rea-
soning (e.g., predict, analyze, and plan) enabling the system to act based on their
knowledge. As the run-time model is causally connected, actions taken based on the
reasoning can be made at the model level rather than at the system level [56].

We argue that the definition of self-awareness requires a self-representation (i.e.,
run-time model) of the subject of awareness. For example, if the system is aware
of its own architecture the system would need a representation of its architecture
(a architecture run-time model). Other examples are awareness of its own require-
ments or any other aspect about itself. If the object of the awareness is part of the
environment of the system (i.e., it is outside the system), it should be considered a
self-representation as well as the representation includes the perspective of the sys-
tem. Two different systems will usually have different representations (or models)
of their perception of the same object of awareness.

2.11 Situation-Aware Systems and Context Awareness

Situation awareness (SA) is an ongoing body of research with many conferences,
workshops, and papers which develops theory and applications in building human—
machine systems that observe, evaluate, and act within diverse situations. Here we
are using the term “situation” in the technical sense [6, 23, 50] where a situation
includes at least the elements of the situation, e.g., objects, events, people, systems,
and environmental factors, and their current states, e.g., locations and actions.

Fracker [29] described SA as the combining of new information with existing
information for the purpose of developing a “composite picture of the situation
along with the projections of future status and subsequent decisions as to appropriate
courses of action to take.” Dominguez et al. [23] added to this view an emphasis on
the “continuous extraction of environmental information” with the explicit feedback
loop that would use the developed perceptions and understanding to direct the next
collection of data.

Credited with seminal work in this field, Endsley [24] argues that “it is important to
distinguish the term situation awareness, as a state of knowledge, from the processes
used to achieve that state. These processes, which may vary widely among individuals
and contexts, will be referred to as situational assessment or the process of achieving,
acquiring, or maintaining SA.” Thus, in brief, situation awareness is viewed as “a
state of knowledge,” and situational assessment as “the processes” used to achieve
that knowledge. Endsley’s model illustrates three stages or steps of SA formation:
perception, comprehension, and projection. Perception is considered Level 1 of a
SA system. “The first step in achieving SA is to perceive the status, attributes, and
dynamics of the relevant elements in the environment. Thus, Level 1 SA, the most
basic level of SA, involves the processes of monitoring, cue detection, and simple
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recognition, which lead to an awareness of multiple situational elements (objects,
events, people, systems, and environmental factors) and their current states (locations,
conditions, modes, and actions).”

By this framework, Level 2in a SA is comprehension and is a synthesis of the
Level 1 SA elements through the “processes of pattern recognition, interpretation,
and evaluation. Level 2 SA requires integrating this information to understand how
it will impact upon the individual’s goals and objectives. This includes developing a
comprehensive picture of the world, or of that portion of the world of concern to the
individual.” The highest level of SA, Level 3, is “projection” or the ability to predict
the future actions of elements in the environment. “Level 3 SA is achieved through
knowledge of the status and dynamics of the elements and comprehension of the
situation (Levels 1 and 2 SA), and then extrapolating this information forward in time
to determine how it will affect future states of the operational environment” [24]. With
SA, one does not guarantee successful decision-making, but does provide some of the
necessary inputs, it is argued, for successful decision-making with cue recognition,
situation assessment, and prediction. As in self-aware systems, goals play a key
role in SA. Both multiple goals, the fact of competing goals, and goal prioritization
are emphasized in SA. However, it appears that for most SA systems these goals
are “given” to it and predesigned, whereas in self-awareness (as shown in Chap. 3)
although there are certainly goals given to a self-aware system, it is also expected
that the self-aware system will alter and adapt even high-level goals and possibly
generate low-level goals.

Many researchers have discussed the limitations of the current SA approaches,
noting especially that the most widely cited models of SA lack support from the
cognitive sciences (Banbury and Tremblay, [6]) and that there is also important
mathematical and logical work to be done in defining these terms computationally
(M. Kokar, [59]). In terms of self-awareness processes, we would say that SA has
not yet incorporated the same sophistication (e.g., in learning, model-building) to
its internal models that it applies to its external models of the situation. That is, as
clearly seen from SA research, although SA certainly includes cognitive processes
such as “mental models,” attention, and decision-making, there has historically in
SA been less of an emphasis on any reflection processes or self-models as used in
this volume. Although models are emphasized for use by the cognitive/intelligent
processes for situation awareness, these models are not explicit models of the system
itself, its reasoning and learning capabilities, or its limitations, but rather focus on
the objects and the situations to be perceived. It appears from Endsley and other
SA-leading researchers that they are making some assumptions about what is useful
in terms of their class of problems. While in self-aware systems, we are recogniz-
ing the need for both short-term and longer-term processes, it appears that SA is
focused more on immediate and fast responses, proceeding from pattern recogni-
tion of key factors in the environment—"“The speed of operations in activities such
as sports, driving, flying, and air traffic control practically prohibits such conscious
deliberation in the majority of cases, but rather reserves it for the exceptions.” From
Endsley [26], it would appear that SA views some of the cognitive processes that
build models as largely “backward focused,” forming reasons for past events, while


http://dx.doi.org/10.1007/978-3-319-47474-8_3

40 J. Camara et al.

situation awareness is typically forward looking, projecting what is likely to happen
in order to inform effective decision processes. In self-awareness, we see the ben-
efits for learning, understanding, and model-building processes as leading to more
adaptive behavior in the long-term certainly, and even leading to better behavior at
run-time in accordance with the real-time requirements.

Related to SA is the area of research called “sensemaking.” Klein, Moon, and
Hoffman [43] distinguish between situation awareness and sensemaking as follows:
“Situation awareness” is about the knowledge state that is achieved—either knowl-
edge of current data elements, or inferences drawn from these data, or predictions
that can be made using these inferences (Endsley, [24]). In contrast, sensemaking
is about the process of achieving these kinds of outcomes, the strategies, and the
barriers encountered (p. 71). Hence, sensemaking is viewed more as “a motivated,
continuous effort to understand connections (which can be among people, places, and
events) in order to anticipate their trajectories and act effectively” (Klein et al. [43],
p. 71) rather than the state of knowledge underlying situation awareness. Although
Endsley [26] points out that sensemaking is actually considering a subset of the
processes used to maintain situation awareness, as noted above it is unclear how
such longer-term processes such as understanding, self-awareness and self-aware
models, and “sensemaking” fit into the current concepts of SA.

There has been an emphasis on SA on comparing the models of experts and
novices, noting how the available data in a complex environment can overwhelm the
novice’s ability to efficiently process those data (Endsley, [25]) and how “experts”
in contrast often have very efficient ways to notice and integrate a large amount of
data. Interestingly, although this result is in line with the experience in early Artificial
Intelligence with building “expert systems,” the focus of many SA studies appeared
to be on cues in the environment to activate these mental models rather than internal
knowledge bases or rulesets that could become the basis for self-models [73].

In the future, it will be interesting for the field of self-awareness to pull from
SA some very interesting research that they have been developing on how teams of
situationally aware human and robotic agents best work together. Team SA is defined
as “the degree to which every team member possesses the SA required for his or her
responsibilities” (Endsley [26], p. 39). The success or failure of a team depends on
the success or failure of each of its team members. If any one of the team members
has poor SA, it can lead to a critical error in performance that can undermine the
success of the entire team. By this definition, each team member needs to have a high
level of SA on those factors that are relevant for his or her job. It is not sufficient for
one member of the team to be aware of critical information if the team member who
needs that information is not aware.

Shared situation awareness can be defined as “the degree to which team members
possess the same SA on shared SA requirements” (Endsley and Jones [25], p. 47).
As implied by this definition, there are information requirements that are relevant
to multiple team members. A major part of teamwork involves the area where these
SA requirements overlap—the shared SA requirements that exist as a function of the
essential interdependency of the team members. In a poorly functioning team, two
or more members may have different assessments on these shared SA requirements
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and thus behave in an uncoordinated or even counter-productive fashion. Yet in a
smoothly functioning team, each team member shares a common understanding of
what is happening on those SA elements that are common.

2.12 Symbiotic Cognitive Computing

Symbiotic cognitive systems (SCS) [42] are multi-agent systems comprising both
human and software agents that collectively perform cognitive tasks such as decision-
making better than humans or software agents can by themselves. A driving principle
of symbiotic cognitive systems is that humans and intelligent agents each have their
respective cognitive strengths and weaknesses. The goal is not to surpass humans
at challenging intellectual tasks such as chess or Jeopardy!, but rather to create
agents that both support and rely upon humans in accomplishing cognitive tasks.
This philosophy traces its lineage back to the vision espoused by Licklider in his
essay on Man-Computer Symbiosis [49] and is today experiencing a revival among
researchers in academia and industry who are pursuing aspects of the symbiotic
cognitive systems research agenda from a variety of perspectives. One realm in which
the principles and technologies of SCS are being applied is robotics, exemplified in
the work of Rosenthal, Veloso and colleagues at Carnegie Mellon University on
the Co-Bot [66, 68]. One also finds aspects of symbiotic cognitive computing in
cognitive assistants such as Apple’s Siri and IPsoft’s Amelia (designed for help
desks and related applications), and in the cognitive boardroom being developed by
IBM Research [42], in which a multi-agent system interacts with humans via speech
and gesture to provide seamless access to information and support for high-stakes
decision-making.

One aspect of the challenge of creating SCS is that of developing algorithms (and
the agents in which they are embodied) that are at least as competent as humans at
the cognitive task for which they are designed. This task is made somewhat easier by
focussing efforts on those aspects of cognition for which human biases, irrationality,
and other deficiencies are well documented [3, 39, 78], and for which machines seem
inherently better suited. A second general class of challenges for symbiotic systems is
related to making human—agent interactions as seamless as possible. These include:

e Developing multi-modal forms of interaction that combine speech, gesture, touch,
facial expression, and perhaps other manifestations of emotion [75];

e Learning mental models of other agents and humans, including their intent, to
form a basis for adapting behavior so as to improve the speed and likelihood of
accomplishing a task that the collective is trying to solve [68, 79]; and

e Storing, maintaining, and retrieving mental models of the environment, the task,
and the other agents and human participants in the task to provide a shared context
that can be used for communication among humans and agents [52, 67].

Kephart [42] discussed correspondences between autonomic computing systems
and symbiotic computing systems, including the need for a means by which humans
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can effectively communicate objectives to the system and the fact that the natural
architecture for both is a multi-agent system, and hence, issues of inter-agent com-
munication and interaction are very important. Moreover, self-management in all of
its usual forms (self-optimization, self-healing, self-configuration, etc.) is essential
for cognitive applications and the cognitive services from which they are built. A
key difference is that, in SCS, humans are not just regarded as providers of high-
level goals, but are expected to collaborate deeply with symbiotic cognitive systems,
interacting with them constantly.

Given the strong overlap between autonomic computing systems and self-aware
systems (detailed in Sect.2.4), there is also a strong relationship between SCS and
self-aware computing systems. A three-way comparison among AC, SCS, and self-
aware systems is instructive. Like self-aware computing systems, but unlike auto-
nomic computing systems, SCS do not require that agents take action. The reason
that some software agents within an SCS may be self-aware without being auto-
nomic is that they are not expected to perform all cognitive tasks by themselves, but
instead to work collaboratively with humans. As a result, they may propose actions
to humans, who can then use their judgment to decide whether or not to follow the
agent’s recommendations. Another connection between SCS systems and self-aware
computing systems is that, while it is not a strict requirement, SCS are expected to
learn models of intent and likely behavior by other participants (including both soft-
ware agents and humans). In the case of SCS, there is a slight twist—the models may
be used not just to manage resources wisely according to fixed goals, but the goal
itself (the intent of the human users of the system) may not be revealed fully at the
outset, so behavior models may be used to predict future goals and actions—thereby
enabling the system to configure itself appropriately in anticipation of what it may
be asked to do.

2.13 Auto-tuning

Auto-tuning covers techniques from high-performance computing (HPC), which
automate the process of performance tuning for scientific applications (e.g., weather
forecasts and genome expression analysis). Various approaches have been developed
throughout the past decades [13, 54, 61, 64, 65, 76, 80, 83].

The motivation for auto-tuning in HPC is the problem that the frequency of new
hardware increases, but the required time to manually tune high-performance code
for this new hardware remains unchanged. Hence, approaches to automate the per-
formance tuning for new hardware are needed.

The common way of performance tuning in HPC relies on source code transfor-
mations. Thus, the goal of auto-tuning approaches is to find those source code trans-
formations, which improve performance. A basic prerequisite of most auto-tuning
approaches is the existence of a kernel library. Such a library contains kernel (i.e.,
core) algorithms, which are used by scientific applications. Auto-tuning is applied to
those kernel libraries instead of the applications themselves. This adheres to the stan-
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dard principles in HPC, where manually optimized kernel libraries are commonly
used. The application of auto-tuning enhances these libraries with code transforma-
tions, which adjust the libraries’ algorithms to the given hardware architecture.

In general, there is a distinction between static and dynamic approaches, depend-
ing on when decision-making takes place. This is either at compilation time, denoting
static auto-tuning, or at run-time, denoting dynamic auto-tuning.

Auto-tuning approaches are closely related to self-adaptive systems (SAS) in that
they realize feedback loops. For example, the CADA loop [22] is realized in the
following way: (1) Information about the available hardware is collected; (2) this
information is analyzed with respect to its effect on the kernel algorithms; (3) a
decision selecting code transformations improving (or optimizing) the performance
of the kernel algorithms is made; and (4) the code transformations are applied (act).

Thus, auto-tuning can be seen as a special kind of SAS, which operates on source
code level with a restricted focus on scientific applications (i.e., HPC). Notably,
approaches of the SAS community usually realize the feedback loop on higher
levels of abstraction. Commonly, the elements of variation are components, fea-
tures, or classes, whereas auto-tuning works on source code statements. Auto-tuning
approaches mainly apply techniques known from compiler optimization like loop
unrolling to identify code variants that optimally utilize the underlying hardware
(e.g., by not exceeding the number of available registers or available memory).

2.14 Constructive Definition

According to our definition, self-aware systems are complex systems that while in
operation might need to access and analyze pieces of information about themselves
and about the execution environment. In large part, this information is made avail-
able/created and managed during the various phases of development, e.g., design,
architectural structure, code structure, execution machine structure, and deployment
information. Thus, it is recognized nowadays that developing self-* systems requires
some activities that traditionally occur at development time to be moved to run-
time [2, 7, 36]. Activities here refer to the usual development process activities
extended with execution monitoring activities. Responsibilities for these activities
shift from developers to the system itself, the self-part, causing the traditional bound-
ary between development time and run-time to blur. If a system needs to adapt in
order to better respond to an increased and unexpected load of service requests, it
might decide to change its configuration, e.g., by substituting one of its components
by a more efficient one. In practice, this means being able to detect the situation by
monitoring and analyzing the execution environment and its own behavior and also
to carry on reconfiguration activities at run-time in a correct and time-efficient way.

The discriminating factor for deciding whether an activity has to be performed at
development time or at run-time is cost. Cost can be explained in terms of resources
needed to take responsibility of the activity and its achievement. Resources can be
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software and hardware capabilities ultimately resulting in time or memory costs that
need to be affordable with respect to the system goal and operational requirements.

Service-oriented and cloud computing paradigms permit reconsidering offline
activities in a new perspective making it possible for a self-aware system to rely
on heavy loaded system infrastructure for self-* system attributes, thus in practice
mitigating the traditional cost-driven dichotomy between compile time and run-time.

This consideration leads us to consider also a constructive definition of self-aware
computing systems that stresses the fact that the question is not only whether it is
possible to make a system or portions of the system self-aware, but also whether
it is economically reasonable/sustainable. This requires to focus on the amount of
resources, software and hardware, that may be needed in order to support the self-
awareness degrees of a system. The cost factor thus becomes the self-enabling factor
that may influence design and architectural choices, and coding and execution choices
as well as monitoring and analysis system capabilities, and may ultimately determine
whether in the given conditions it is actually possible to develop, and how, a self-
aware system. This also impacts the complexity of the techniques used to achieve
self-awareness that may be more or less advanced depending on whether they are
economically justified and sustainable.

So the extent to which a self-aware computing system is able to learn knowledge
about itself and/or its environment and reason and adapt to internal and external
changes is heavily dependent on development choices (design, architecture, pro-
gramming languages, coding techniques), and deployment constraints (deployment
infrastructure and resource availability). This requires quantitative reasoning capa-
bilities at the process definition level as suggested in [2]. Depending on the system
lifetime, these development choices may also be rediscussed; what could have been
too costly at a certain stage of maturity of the system and of the technology may
become convenient and affordable at a later stage of maturity. This suggests the
architecture of the system to be flexible enough to easily accommodate evolutions
of system with respect to its self-aware degrees.

2.15 Summary

The area of self-aware computing systems is still incipient, but promising concerning
the construction of systems that are required to learn models on an ongoing basis
and use them to reason about aspects related to the purpose for which the systems
themselves were built.

Self-aware computing systems pose new opportunities and challenges for the
research and engineering communities, some of which are related to prior experience
in different disciplines.

This chapter has reviewed different concepts and research areas strongly related
to self-aware computing. Different sections have explored topics such as Al, auto-
nomic computing, self-organizing systems, or cognitive computing, among others,
as well as their relation to self-aware computing systems and potential opportunities
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for cross-pollination. Moreover, the landscape outlined in this chapter provided the
basis for a constructive definition of self-aware computing system, as well as for
some considerations concerning the different factors that influence the feasibility
and the capabilities of a self-aware computing system. These considerations serve
as a starting point to investigate important questions related to the conditions under
which it is possible to actually develop a self-aware computing system, and in what
way.
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