
Chapter 2

Probabilistic and Statistical Models for
Outlier Detection

“With four parameters, I can fit an elephant, and with five, I can make him
wiggle his trunk.” – John von Neumann

2.1 Introduction

The earliest methods for outlier detection were rooted in probabilistic and statistical models
and date back to the nineteenth century [180]. These methods were proposed well before
the advent and popularization of computer technology and were therefore designed without
much focus on practical issues such as data representation or computational efficiency.
Nevertheless, the underlying mathematical models are extremely useful and have eventually
been adapted to a variety of computational scenarios.

A popular form of statistical modeling in outlier analysis is that of detecting extreme
univariate values. In such cases, it is desirable to determine data values at the tails of a
univariate distribution along with a corresponding level of statistical significance. Although
extreme univariate values belong to a very specific category of outliers, they have numerous
applications. For example, virtually all outlier detection algorithms use numerical scores
to measure the anomalousness of data points, and the final step in these algorithms is to
determine the extreme values from these scores. The identification of statistically significant
extreme values helps in the conversion of outlier scores into binary labels. Some examples of
outlier scoring mechanisms, which are used by different classes of algorithms, are as follows:

• In probabilistic modeling, the likelihood fit of a data point to a generative model is
the outlier score.

• In proximity-based modeling, the k-nearest neighbor distance, distance to closest clus-
ter centroid, or local density value is the outlier score.

• In linear modeling, the residual distance of a data point to a lower-dimensional rep-
resentation of the data is the outlier score.
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Figure 2.1: Example of the distinction between multivariate extreme values and outliers

• In temporal modeling, the deviation of a data point from its forecasted value is used
to create the outlier score.

Thus, even when extreme-value modeling cannot be performed on the original data, the
ability to determine the extreme values effectively from a set of outlier scores forms the
cornerstone of all outlier detection algorithms as a final step. Therefore, the issue of extreme-
value modeling will be studied extensively in this chapter.

Extreme-value modeling can also be easily extended to multivariate data. Data points
that lie on the pareto-extremes of the data are referred to as multivariate extreme values. For
example in Figure 2.1, data point ‘B’ is a multivariate extreme value. On the other hand,
data point ‘A’ is an outlier but not a multivariate extreme value. Multivariate extreme-value
analysis methods are sometimes also used for general outlier analysis. These techniques can
sometimes perform surprisingly well in real-world outlier analysis applications, although
they are not intended to be general outlier analysis methods. The reasons for this behavior
are mostly rooted in the fact that real-world feature extraction methods sometimes create
representations in which outliers are caused by extremes in values. For example, in a credit-
card fraud detection application, it is common to extract features corresponding to the size
and frequency of transactions. Unusually large or frequent transactions often correspond
to outliers. Even if a subset of features is extracted in this way, it can greatly increase
the effectiveness of multivariate extreme-value analysis methods for outlier detection. The
drawback of using such methods in the general case is that data points like ‘A’ in Figure 2.1
are missed by such methods. Nevertheless, such methods should not be ignored in real
applications in spite of this obvious drawback. In many cases, such techniques can be added
as one or more components of an ensemble method (see Chapter 6) to enhance its accuracy.

It is also possible to use probabilistic modeling for finding general outliers beyond ex-
treme values. For example, in Figure 2.1, one can model the data set as a mixture of three
Gaussian components and therefore discover both outliers ‘A’ and ‘B.’ Mixture models can
be considered probabilistic versions of clustering algorithms that discover the outliers as a
side-product. A significant advantage of these methods is that they are easy to generalize to
different data formats or even mixed attribute types, once a generative model for the data
has been defined. Most probabilistic models assume a particular form to the underlying
distribution for each mixture component (e.g., Gaussian) to model the normal patterns of
data points. Subsequently, the parameters of this model are learned so that the observed



2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 37

data has the maximum likelihood of being generated by the model [164]. This model is,
therefore, a generative model for the data, and the probability of a particular data point
being generated can be estimated from this model. Data points that have an unusually low
probability of being generated by the model are identified as outliers. Mixture models are
natural generalizations of multivariate extreme-value analysis; for example, if we modeled
the mixture to contain a single Gaussian component, the approach specializes to one of the
most well-known multivariate extreme-value analysis methods (see Mahalanobis method in
section 2.3.4).

This chapter is organized as follows. The next section discusses statistical models for
univariate extreme-value analysis. Methods for extreme-value analysis in multivariate data
are discussed in section 2.3. Section 2.4 discusses methods for probabilistic modeling of
outliers. Section 2.5 discusses the limitations of probabilistic models for outlier analysis.
Section 2.6 presents the conclusions and summary.

2.2 Statistical Methods for Extreme-Value Analysis

In this section, we will present probabilistic and statistical methods for extreme-value anal-
ysis in univariate data distributions. The extreme values in a probability distribution are
collectively referred to as the distribution tail. Statistical methods for extreme-value analysis
quantify the probabilities in the tails of distributions. Clearly, a very low probability value
of a tail indicates that a data value inside it should be considered anomalous. A number
of tail inequalities bound these probabilities in cases where the actual distribution is not
available.

2.2.1 Probabilistic Tail Inequalities

Tail inequalities can be used in order to bound the probability that a value in the tail of a
probability distribution should be considered anomalous. The strength of a tail inequality
depends on the number of assumptions made about the underlying random variable. Fewer
assumptions lead to weaker inequalities but such inequalities apply to larger classes of
random variables. For example, theMarkov and Chebychev inequalities are weak inequalities
but they apply to very large classes of random variables. On the other hand, the Chernoff
bound and Hoeffding inequality are both stronger inequalities but they apply to restricted
classes of random variables.

The Markov inequality is one of the most fundamental tail inequalities, and it is defined
for distributions that take on only non-negative values. Let X be a random variable, with
probability distribution fX(x), a mean of E[X], and a variance of V ar[X].

Theorem 2.2.1 (Markov Inequality) Let X be a random variable that takes on only
non-negative random values. Then, for any constant α satisfying E[X] < α, the following
is true:

P (X > α) ≤ E[X|/α (2.1)

Proof: Let fX(x) represent the density function for the random variable X. Then, we have:

E[X] =

∫
x

x · fX(x) · dx =

∫
0≤x≤α

x · fX(x) · dx+

∫
x>α

x · fX(x) · dx

≥
∫
x>α

x · fX(x) · dx ≥
∫
x>α

α · fX(x) · dx
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The first inequality follows from the non-negativity of x, and the second follows from the
fact that the integral is defined only over the cases in which x > α. Furthermore, the term
on the right-hand side of the last equation is exactly equal to α · P (X > α). Therefore, the
following is true:

E[X] ≥ α · P (X > α) (2.2)

The aforementioned inequality can be re-arranged in order to obtain the final result.

The Markov inequality is defined only for probability distributions of non-negative values
and provides a bound only on the upper tail. In practice, it is often desired to bound
both tails of arbitrary distributions. Consider the case where X is an arbitrary random
variable, which is not necessarily non-negative. In such cases, the Markov inequality cannot
be used directly. However, the (related) Chebychev inequality is very useful in such cases.
The Chebychev inequality is a direct application of the Markov inequality to a non-negative
derivative of random variable X:

Theorem 2.2.2 (Chebychev Inequality) Let X be an arbitrary random variable. Then,
for any constant α, the following is true:

P (|X − E[X]| > α) ≤ V ar[X|/α2 (2.3)

Proof: The inequality |X −E[X]| > α is true if and only if (X −E[X])2 > α2. By defining
Y = (X − E[X])2 as a (non-negative) derivative random variable from X, it is easy to see
that E[Y ] = V ar[X]. Then, the expression on the left hand side of the theorem statement
is the same as determining the probability P (Y > α2). By applying the Markov inequality
to the random variable Y , one can obtain the desired result.

The main trick used in the aforementioned proof was to apply the Markov inequality to a
non-negative function of the random variable. This technique can generally be very useful
for proving other types of bounds, when the distribution ofX has a specific form (such as the
sum of Bernoulli random variables). In such cases, a parameterized function of the random
variable can be used in order to obtain a parameterized bound. The underlying parameters
can then be optimized for the tightest possible bound. Several well-known bounds such as
the Chernoff bound and the Hoeffding inequality are derived with the use of this approach.

The Markov and Chebychev inequalities are relatively weak inequalities and often do
not provide tight enough bounds to be useful in many practical scenarios. This is because
these inequalities do not make any assumptions on the nature of the random variable X.
Many practical scenarios can however be captured, when stronger assumptions are used on
the random variable. In such cases, much tighter bounds on tail distributions are possible.
A particular case is one in which a random variable X may be expressed as a sum of other
independent bounded random variables.

2.2.1.1 Sum of Bounded Random Variables

Many practical observations, which are defined in the form of aggregates, can be expressed
as sums of bounded random variables. Some examples of such scenarios are as follows:

Example 2.2.1 (Sports Statistics) The National Basketball Association (NBA) draft
teams have access to college basketball statistics for the different candidate players. For each
player and each game, a set of quantitative values describe their various scoring statistics
over different games. For example, these quantitative values could correspond to the number
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of dunks, assists, rebounds, and so on. For a particular statistic, the aggregate performance
of any player can be expressed as the sum of their statistics over N different games:

X =

N∑
i=1

Xi

All values of Xi lie in the range [l, u]. The performances of a player over different games
are assumed to be independent of one another. The long-term global mean of the statistic
represented by Xi over all players is known to be μ. The NBA draft teams would like to
identify the anomalous players on the basis of each statistic.

In this example, the aggregate statistic is represented as a sum of bounded random variables.
The corresponding tail bounds can be quantified with the use of the Hoeffding inequality.

In many cases, the individual random variable components in the aggregation are not
only bounded, but also binary. Thus, the aggregate statistic can be expressed as a sum of
Bernoulli random variables.

Example 2.2.2 (Grocery Shopping) A grocery store keeps track of the number of cus-
tomers (from its frequent purchaser program), who have frequented the store on a particular
day. The long term probability of any customer i attending the store on a given day is
known to be pi. The behavior of the different customers is also known to be independent of
one another. For a given day, evaluate the probability that the store receives more than η
(frequent purchase program) customers.

In the second example, the number of customers can be expressed as a sum of independent
Bernoulli random variables. The corresponding tail distributions can be expressed in terms
of the Chernoff bound. Finally, we provide a very common application of anomaly detection
from aggregates, which is that of fault diagnosis in manufacturing.

Example 2.2.3 (Manufacturing Quality Control) A company uses a manufacturing
assembly line to produce a product, which may have faults in it with a pre-defined (low)
probability p. The quality-control process samples N products from the assembly line, and
examines them closely to count the number of products with defects. For a given count of
faulty products, evaluate the probability that the assembly line is behaving anomalously.

The sample size N is typically large, and, therefore, it is possible to use the Central Limit
Theorem to assume that the samples are normally distributed. According to this theorem,
the sum of a large number of independent and identical normal distributions converges to
a normal distribution.

The different types of bounds and approximations will be formally introduced in this
section. The Chernoff bounds and the Hoeffding inequality will be discussed first. Since the
expressions for the lower tail and upper tails are slightly different, they will be addressed
separately. The lower-tail Chernoff bound is introduced below.

Theorem 2.2.3 (Lower-Tail Chernoff Bound) Let X be random variable that can be
expressed as the sum of N independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability pi.

X =
N∑
i=1

Xi
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Then, for any δ ∈ (0, 1), we can show the following:

P (X < (1− δ) · E[X]) < e−E[X]·δ2/2 (2.4)

where e is the base of the natural logarithm.

Proof: The first step is to show the following inequality:

P (X < (1− δ) · E[X]) <

(
e−δ

(1− δ)(1−δ)

)E[X]

(2.5)

The unknown parameter t > 0 is introduced in order to create a parameterized bound. The
lower-tail inequality of X is converted into an upper-tail inequality on the exponentiated
expression e−t·X . This random expression can be bounded by the Markov inequality, and it
provides a bound as a function of t. This function of t can be optimized, in order to obtain
the tightest possible bound. By using the Markov inequality on the exponentiated form, the
following can be derived:

P (X < (1− δ) · E[X]) ≤ E[e−t·X]

e−t·(1−δ)·E[X]

By expanding X =
∑N

i=1 Xi in the exponent, the following can be obtained:

P (X < (1− δ) · E[X]) ≤
∏

i E[e−t·Xi]

e−t·(1−δ)·E[X]
(2.6)

The aforementioned simplification uses the fact that the expectation of the product of
independent variables is equal to the product of the expectations. Since each Xi is Bernoulli,
the following can be shown:

E[e−t·Xi ] = 1 + E[Xi] · (e−t − 1) < eE[Xi]·(e−t−1)

The second inequality follows from polynomial expansion of eE[Xi]·(e−t−1). By substituting
this inequality back into Equation 2.6, and using E[X] =

∑
i E[Xi], the following may be

obtained:

P (X < (1− δ) · E[X]) ≤ eE[X]·(e−t−1)

e−t·(1−δ)·E[X]

The expression on the right is true for any value of t > 0. It is desired to determine the
value of t that provides the tightest possible bound. Such a value of t may be obtained by
computing the derivative of the expression with respect to t and setting it to 0. It can be
shown that the resulting value of t = t∗ from this optimization process is as follows:

t∗ = ln(1/(1− δ)) (2.7)

By using this value of t∗ in the aforementioned inequality , it can be shown to be equivalent
to Equation 2.5. This completes the first part of the proof.

The first two terms of the Taylor expansion of the logarithmic term in (1− δ) · ln(1− δ)

can be expanded to show that (1 − δ)(1−δ) > e−δ+δ2/2. By substituting this inequality in
the denominator of Equation 2.5, the desired result is obtained.
A similar result for the upper-tail Chernoff bound may be obtained, albeit in a slightly
different form.



2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 41

Theorem 2.2.4 (Upper-Tail Chernoff Bound) Let X be random variable, which is ex-
pressed as the sum of N independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability pi.

X =

N∑
i=1

Xi

Then, for any δ ∈ (0, 2 · e− 1), the following is true:

P (X > (1 + δ) · E[X]) < e−E[X]·δ2/4 (2.8)

where e is the base of the natural logarithm.

Proof: The first step is to show the following inequality:

P (X > (1 + δ) · E[X]) <

(
eδ

(1 + δ)(1+δ)

)E[X]

(2.9)

As before, this can be done by introducing the unknown parameter t > 0, and converting
the upper-tail inequality on X into that on et·X . This can be bounded by the Markov
Inequality as a function of t. This function of t can be optimized, in order to obtain the
tightest possible bound.

It can be further shown by algebraic simplification that the inequality in Equation 2.9
provides the desired result for all values of δ ∈ (0, 2 · e− 1).
Next, the Hoeffding inequality will be introduced. The Hoeffding inequality is a more general
tail inequality than the Chernoff bound, because it does not require the underlying data
values to be drawn from a Bernoulli distribution. In this case, the ith data value needs to be
drawn from the bounded interval [li, ui]. The corresponding probability bound is expressed
in terms of the parameters li and ui. Thus, the scenario for the Chernoff bound is a special
case of that for the Hoeffding inequality. We state the Hoeffding inequality below, for which
both the upper- and lower-tail inequalities are identical.

Theorem 2.2.5 (Hoeffding Inequality) Let X be a random variable that can be ex-
pressed as the sum of N independent random variables, each of which is bounded in the
range [li, ui].

X =

N∑
i=1

Xi

Then, for any θ > 0, the following can be shown:

P (X − E[X] > θ) ≤ e
− 2·θ2

∑N
i=1

(ui−li)
2

(2.10)

P (E[X]−X > θ) ≤ e
− 2·θ2

∑N
i=1

(ui−li)
2

(2.11)

Proof: The proof of the upper-tail portion will be briefly described here. The proof of the
lower-tail inequality is identical. For any choice parameter t ≥ 0, the following is true:

P (X − E[X] > θ) = P (et·(X−E[X]) > et·θ) (2.12)

The Markov inequality can be used to show that the right-hand probability is at most
E[e(X−E[X])] · e−t·θ. The expression within E[e(X−E[X])] can be expanded in terms of the
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Table 2.1: Comparison of different methods used to bound tail probabilities

Result Scenario Strength

Chebychev Any random variable Weak
Markov Nonnegative random variable Weak
Hoeffding Sum of independent bounded Strong (Exponentially

random variables reduces with samples)
Chernoff Sum of i.i.d. Bernoulli Strong (Exponentially

random variables reduces with samples)
CLT Sum of many i.i.d. variables Almost exact
Generalized CLT Sum of many independent Almost exact

and bounded variables

individual components Xi. Since the expectation of the product is equal to the product of
the expectations of independent random variables, the following can be shown:

P (X − E[X] > θ) ≤ e−t·θ ·
∏
i

E[et·(Xi−E[Xi])] (2.13)

The key is to show that the value of E[et·(Xi−E[Xi])] is at most equal to et
2·(ui−li)

2/8. This
can be shown with the use of an argument that uses the convexity of the exponential function
et·(Xi−E[Xi]) in conjunction with Taylor’s theorem (see Exercise 12).

Therefore, the following is true:

P (X − E[X] > θ) ≤ e−t·θ ·
∏
i

et
2·(ui−li)

2/8 (2.14)

This inequality holds for any positive value of t. Therefore, in order to find the tightest
bound, the value of t that minimizes the right-hand side of the above equation needs to be
determined. The optimal value of t = t∗ can be shown to be the following:

t∗ =
4 · θ∑N

i=1(ui − li)2
(2.15)

By substituting the value of t = t∗, the desired result may be obtained. The lower-tail
bound may be derived by applying the aforementioned steps to P (E[X] − X > θ) rather
than P (X − E[X] > θ).
Thus, the different inequalities may apply to scenarios of different generality, and may also
have different levels of strength. These different scenarios are presented in Table 2.1.

An interesting observation is that the Hoeffding tail bounds decay exponentially with θ2,
which is exactly how the normal distribution behaves. This is not very surprising, because
the sum of a large number of independent bounded random variables converges to the
normal distribution according to the Central Limit Theorem (CLT). Such a convergence is
useful, because the bounds provided by an exact distribution (or a close approximation) are
much tighter than any of the aforementioned tail inequalities.

Theorem 2.2.6 (Central Limit Theorem) The sum of a large number N of indepen-
dent and identically distributed random variables with mean μ and standard deviation σ
converges to a normal distribution with mean μ ·N and standard deviation σ ·

√
N .
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A more generalized form of the CLT can also be applied to sums of independent variables
(not necessarily identical), in which the variables are sufficiently bounded in terms of under-
lying moment measures. An example of such a generalization of the CLT is the Lyapunov
CLT [88]. The basic idea is that the means and variances of a sum of a large number of
independent (but not identically distributed) random variables can be approximated by
the corresponding sums of the means and variances, respectively. Some weak assumptions
on the underlying distributions are also imposed for the condition to hold. Refer to the
bibliographic notes.

2.2.2 Statistical-Tail Confidence Tests

The normal distribution has numerous applications such as statistical-tail confidence testing.
In statistical-tail confidence tests, the extreme values from a set of data values distributed
according to a normal distribution are identified. The assumption of a normal distribution
is rather ubiquitous in real domains. This is true not just for variables that are expressed
as sums of random samples (as discussed in the previous section), but many variables that
are generated by different random processes. The density function fX(x) for the normal
distribution with mean μ and standard deviation σ is defined as follows:

fX(x) =
1

σ ·
√
2 · π

· e
−(x−μ)2

2·σ2 (2.16)

In some settings, it is appropriate to assume that the mean μ and standard deviation σ of
the modeling distribution are known. This is the case, when a very large number of samples
of the data are available for accurate estimation of μ and σ. In other cases, μ and σ might
be available from domain knowledge. Then, the Z-value zi of an observed value xi can be
computed as follows:

zi = (xi − μ)/σ (2.17)

Since the normal distribution can be directly expressed as a function of the Z-value (and no
other parameters), it follows that the tail probability of point xi can also be expressed as a
function of zi. In fact, the Z-value corresponds to a scaled and translated normal random
variable, which is also known as the standard normal distribution with mean 0 and variance
1. Therefore, the cumulative standard normal distribution can be used directly in order
to determine the exact value of the tail probability at that value of zi. From a practical
perspective, since this distribution is not available in closed form, normal distribution tables
are used in order to map the different values of zi to probabilities. This provides a statistical
level of significance, which can be interpreted directly as a probability of the data point
being an outlier. The underlying assumption is that the data was generated by a normal
distribution.

2.2.2.1 t-Value Test

The aforementioned discussion assumes that the mean and standard deviation of the model-
ing distribution can be estimated very accurately from a large number of samples. However,
in practice, the available data sets might be small. For example, for a sample with 20 data
points, it is much harder to model the mean and standard deviations accurately. How do
we accurately perform statistical-significance tests in such cases?

The Student’s t-distribution provides an effective way to model anomalies in such scenar-
ios. This distribution is defined by a parameter known as the number of degrees of freedom
ν, which is closely defined by the available sample size. The t-distribution approximates the
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Figure 2.2: The t-distributions for different numbers of degrees of freedom (corresponding
to different sample sizes)

normal distribution extremely well for larger degrees of freedom (> 1000), and converges to
the normal distribution in the limit where it goes to ∞. For fewer degrees of freedom (or
sample size), the t-distribution has a similar bell-shaped curve as the normal distribution,
except that it has heavier tails. This is quite intuitive, because the heavier tail accounts for
the loss in statistical significance from the inability to accurately estimate the mean and
standard deviation of the modeling (normal) distribution from fewer samples.

The t-distribution is expressed as a function of several independent identically-distributed
standard normal distributions. It has a single parameter ν that corresponds to the number
of degrees of freedom. This regulates the number of such normal distributions, in terms of
which it is expressed. The parameter ν is set to N − 1, where N is the total number of
available samples. Let U0 . . . Uν be ν + 1, independent and identically distributed normal
distributions with zero mean and unit standard deviation. Such a normal distribution is
also referred to as the standard normal distribution. Then, the t-distribution is defined as
follows:

T (ν) =
U0√

(
∑ν

i=1 U
2
i )/ν

(2.18)

The intuition for using the t-distribution is that the denominator explicitly models the
randomness of estimating the standard deviation of the underlying normal distribution
with the use of only a small number of independent samples. The term

∑ν
i=1 U

2
i in the

denominator is a χ2 distribution with parameter ν, and the entire (scaled) denominator
converges to 1, when ν ⇒ ∞. Therefore, in the limiting case, when a large number of
samples are available, the randomness contributed by the denominator disappears, and the
t-distribution converges to the normal distribution. For smaller values of ν (or sample sizes),
this distribution has a heavier tail. Examples of the t-distribution for different values of ν
are provided in Figure 2.2. It is evident that t-distributions with fewer degrees of freedom
have heavier tails.

The process of extreme-value detection with a small number of samples x1 . . . xN pro-
ceeds as follows. First, the mean and standard deviation of the sample are estimated. This
is then used to compute the t-value of each data point directly from the sample. The t-value
is computed in an identical way as the Z-value. The tail probability of each data point is
computed from the cumulative density function of the t-distribution with (N−1)-degrees of
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freedom. As in the case of the normal distribution, standardized tables are available for this
purpose. From a practical perspective, if more than 1000 samples are available, then the
t-distribution (with at least 1000 degrees of freedom) is so close to the normal distribution,
that it is possible to use the normal distribution as a very good approximation.

2.2.2.2 Sum of Squares of Deviations

A common situation in outlier detection is the need to unify the deviations along indepen-
dent criteria into a single outlier score. Each of these deviations is typically modeled as
a Z-value from an independent and identically distributed standard normal distribution.
The aggregate deviation measure is then computed as the sum of the squares of these val-
ues. For a d-dimensional data set, this is a χ2-distribution with d degrees of freedom. A
χ2-distribution with d degrees of freedom is defined as the sum of the squares of d indepen-
dent standard normal random variables. In other words, consider the variable V , which is
expressed as the squared sum of independent and identically distributed standard normal
random variables Zi ∼ N(0, 1):

V =
d∑

i=1

Z2
i

Then, V is a random variable drawn from a χ2-distribution with d degrees of freedom.

V ∼ χ2(d)

Although a detailed discussion of the characteristics of the χ2-distribution is skipped here,
its cumulative distribution is not available in closed form, but it needs to computationally
evaluated. From a practical standpoint, cumulative probability tables are typically avail-
able for modeling purposes. The cumulative probability tables of the χ2-distribution can
then be used in order to determine the probabilistic level of significance for that aggregate
deviation value. This approach is particularly useful when the deviations are modeled to be
statistically independent of one another. As we will see in Chapter 3, such situations could
arise in models such as principal component analysis, where the errors along the different
components are often modeled as independent normal random variables.

2.2.2.3 Visualizing Extreme Values with Box Plots

An interesting approach to visualize univariate extreme values is the use of box plots or box
and whisker diagrams. Such an approach is particularly useful in the context of visualizing
outlier scores. In a box-plot, the statistics of a univariate distribution are summarized in
terms of five quantities. These five quantities are the “minimum/maximum” (whiskers), the
upper and lower quartiles (boxes), and the median (line in middle of box). We have enclosed
quotations around two of these quantities because they are defined in a non-standard way.
The distance between the upper and lower quartiles is referred to as the inter-quartile range
(IQR). The “minimum” and “maximum” are defined in a (non-standard) trimmed way in
order to define the location of the whiskers. If there are no points more than 1.5 IQR above
the top quartile value (upper end of the box), then the upper whisker is the true maximum.
Otherwise, the upper whisker is set at 1.5 times the IQR from the upper end of the box. An
exactly analogous rule holds true for the lower whisker, which is set at 1.5 IQR from the
lower end of the box. In the special case of normally distributed data, a value of 1.5 IQR
more than the top quartile corresponds to a distance of 2.7 times the standard deviation
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Figure 2.3: Visualizing univariate extreme values with box plots

(from the mean). Therefore, the whiskers are roughly placed at locations similar to the 3 ·σ
cut-off points in a normal distribution.

An example of a box plot is illustrated in Figure 2.3. In this case we have shown 100
data points corresponding to each of the (i) uniform distribution with zero mean and unit
variance, (ii) standard normal distribution, and (iii) an exponential distribution with unit
mean. Note that the first two distributions are symmetric about the mean, whereas the last
is not. The corresponding box plots are shown in Figure 2.3. In each case, the upper and
lower ends of the box represent1 the upper and lower quartiles. In the case of the uniform
distribution, there no outliers, and therefore, the upper and lower whiskers represent the
true maximum and minimum values. On the other hand, there are outliers at the upper end
in the case of the normal and exponential distributions. Therefore, the whiskers are placed
at 1.5 IQR above the upper ends of the boxes in each of the cases.

Many other conventions exist on the placement of whiskers, such as the use of the
actual minimum/maximum or the use of particular percentiles of the data distribution.
The specific convention used in this book is referred to as the Tukey box-plot. Aside from
visualizing extreme values, this type of diagram is useful for visualizing the performance of
a randomized outlier detection algorithm and is often used in outlier ensemble analysis. We
will revisit this issue in section 6.4 of Chapter 6.

2.3 Extreme-Value Analysis in Multivariate Data

Extreme-value analysis can also be applied to multivariate data in a variety of ways. Some
of these definitions try to model the underlying distribution explicitly, whereas others are
based on more general statistical analysis, which does not assume any particular statistical
distribution of the underlying data. In this section, we will discuss four different classes of
methods that are designed to find data points at the boundaries of multivariate data. The
first of these classes of methods (depth-based) is not a statistical or probabilistic approach.
Rather, it is based on convex hull analysis of the point geometry. However, we have included
it in this chapter, because it naturally fits with the other multivariate extreme-value methods
in terms of the types of outliers it finds.

1It is possible to change the percentile levels of the boxes, although the use of quartiles is ubiquitous.
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Algorithm FindDepthOutliers(Data Set: D, Score Threshold: r);
begin
k = 1;
repeat
Find set S of corners of convex hull of D;
Assign depth k to points in S;
D = D − S;
k = k + 1;

until(D is empty);
Report points with depth at most r as outliers;

end

Figure 2.4: Pseudocode for finding depth-based outliers

While the methods discussed in this section are effective in finding outliers at the outer
boundaries of a data space, they are not good at finding outliers within the inner regions
of the data space. Such methods can effectively find outliers for the case illustrated in Fig-
ure 2.7, but not the outlier ‘A’ illustrated in Figure 2.1. Nevertheless, the determination of
such outliers can be useful in many specialized scenarios. For example, in cases where mul-
tiple deviation values may be associated with records, multivariate extreme-value analysis
may be useful. Consider a weather application in which multiple attributes such as tempera-
ture and pressure are measured at different spatial locations, and the local spatial deviations
from the expected values are computed as an intermediate step. These deviations from ex-
pected values on different attributes may need to be transformed into a single meaningful
outlier score. An example is illustrated in section 11.2.1.3 of Chapter 11, where deviations
are computed on the different measured values of spatial data. In general, such methods are
useful for post-processing a multidimensional vector of outlier scores, in which each outlier
score is derived using a different and possibly independent criterion. As discussed in Chap-
ter 1, it is particularly common to confuse methods for extreme-value analysis with general
outlier analysis methods that are defined in terms of generative probabilities. However, it is
important to distinguish between the two, since the application-specific scenarios in which
the two kinds of methods are used are quite different.

2.3.1 Depth-Based Methods

In depth-based methods, convex hull analysis is used in order to find outliers. The idea is
that the points in the outer boundaries of the data lie at the corners of the convex hull.
Such points are more likely to be outliers. A depth-based algorithm proceeds in an iterative
fashion. In the kth iteration, all points at the corners of the convex hull of the data set are
removed from the data set. These points are assigned a depth of k. These steps are repeated
until the data set is empty. All points with depth at most r are reported as the outliers.
Alternatively, the depth of a data point may be directly reported as the outlier score. The
steps of the depth-based approach are illustrated in Figure 2.4.

The algorithm is also pictorially illustrated on a sample data set in Figure 2.5. A number
of efficient methods for finding depth-based outliers have been discussed in [295, 468]. The
computational complexity of convex-hull methods increases exponentially with dimension-
ality. Furthermore, with increasing dimensionality, a larger proportion of data points lie at
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Figure 2.5: Depth-based outlier detection

the corners of a convex hull. This is because the number of points at the corners of a convex
hull can be exponentially related to the data dimensionality. Therefore, such methods are
not only computationally impractical, but also increasingly ineffectual in higher dimension-
ality because of increasing ties in outlier scores. Depth-based methods are generally quite
different from most of the probabilistic and statistical models discussed in this chapter. In
fact, they cannot really be considered probabilistic or statistical methods. However, they are
presented here because of their relationship to other multivariate extreme-value methods.
Such methods share many characteristics in common, in spite of being methodologically
different. For example, they work well only in scenarios where outliers lie at the boundaries
of data space, rather than as isolated points in the interior of the data.

2.3.2 Deviation-Based Methods

Deviation-based methods measure the impact of outliers on the data variance. For example,
the method proposed in [62] tries to measure how much the variance in the underlying data
is reduced, when a particular data point is removed. Since the basic assumption is that
the outliers lie at the boundary of the data, it is expected that the removal of such data
points will significantly reduce the variance. This is essentially an information-theoretic
method, since it examines the reduction in complexity, when a data point is removed.
Correspondingly, the smoothing factor for a set of data points R is defined as follows:

Definition 2.3.1 The smoothing factor SF (R) for a set R is the reduction in the data set
variance, when the set of points in R are removed from the data.

Outliers are defined as exception sets E such that their removal causes the maximum re-
duction in variance of the data. In other words, for any subset of data points R, it must be
the case that:

SF (E) ≥ SF (R)

If more than one set have the same reduction in variance, then the smaller set is preferred.
This follows the standard information theoretic principle of finding the sets that increase
the description length of the data as much as possible, in as little space. The determination
of the optimal set E is a very difficult problem, because 2N possibilities exist for a data
set containing N points. The work in [62] uses a number of heuristics such as best-first
search and random sampling. One good aspect of this approach is that it is distribution-
independent, and can be applied to any kind of data set, as long as an appropriate definition
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of the smoothing factor can be constructed. In the original work in [62], this approach has
been applied to the case of sequence data.

2.3.3 Angle-Based Outlier Detection

This method was originally proposed as a general outlier analysis method, although this
book has reclassified it to a multivariate extreme-value analysis method. The idea in angle-
based methods is that data points at the boundaries of the data are likely to enclose the
entire data within a smaller angle, whereas points in the interior are likely to have data
points around them at different angles. For example, consider the two data points ‘A’ and
‘B’ in Figure 2.6, in which point ‘A’ is an outlier, and point ‘B’ lies in the interior of the
data. It is clear that all data points lie within a limited angle centered at ‘A.’ On the other
hand, this is not the case for data point ‘B,’ which lies within the interior of the data. In
this case, the angles between different pairs of points can vary widely. In fact, the more
isolated a data point is from the remaining points, the smaller the underlying angle is likely
to be. Thus, data points with a smaller angle spectrum are outliers, whereas those with a
larger angle spectrum are not outliers.

Consider three data points X, Y , and Z. Then, the angle between the vectors Y −
X and the Z − X, will not vary much for different values of Y and Z, when X is an
outlier. Furthermore, the angle is inversely weighted by the distance between the points.
The corresponding angle (weighted cosine) is defined as follows:

WCos(Y −X,Z −X) =
< (Y −X), (Z −X) >

||Y −X||22 · ||Z −X||22

Here, || · ||2 represents the L2-norm, and < · > represents the scalar product. Note that
this is a weighted cosine, since the denominator contains the squares of the L2-norms. The
inverse weighting by the distance further reduces the weighted angles for outlier points,
which also has an impact on the spectrum of angles. Then, the variance in the spectrum of
this angle is measured by varying the data points Y and Z, while keeping the value of X
fixed. Correspondingly, the angle-based outlier factor (ABOF) of the data point X ∈ D is
defined as follows:

ABOF (X) = V ar{Y,Z∈D}WCos(Y −X,Z −X)

Data points that are outliers will have a smaller spectrum of angles, and will therefore have
lower values of the angle-based outlier factor ABOF (X).
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The angle-based outlier factor of the different data points may be computed in a number
of ways. The naive approach is to pick all possible triples of data points and compute the
O(N3) angles between the different vectors. The ABOF values can be explicitly computed
from these values. However, such an approach can be impractical for very large data sets.
A number of efficiency-based optimizations have therefore been proposed.

In order to speed up the approach, a natural possibility is to use sampling in order to
approximate this value of the angle-based outlier factor. A sample of k data points can
be used in order to approximate the ABOF of a data point X. One possibility is to use
an unbiased sample. However, since the angle-based outlier factor is inversely weighted by
distances, it follows that the nearest neighbors of a data point have the largest contribution
to the angle-based outlier factor. Therefore, the k-nearest neighbors of X can be used to
approximate the outlier factor much more effectively than an unbiased sample of the all the
data points. It has also been shown in [325] that many data points can be filtered out on
the basis of approximate computation, since their approximate values of the ABOF are too
high, and they cannot possibly be outliers. The exact values of the ABOF are computed only
for a small set of points, and the points with the lowest values of the ABOF are reported
as outliers. We refer the reader to [325] for the details of these efficiency optimizations.

Because of the inverse weighting by distances, the angle-based outlier analysis method
can be considered a hybrid between distance-based and angle-based methods. As discussed
earlier with the use of the illustrative example, the latter factor is primarily optimized to
finding multivariate extreme values in the data. The precise impact of each of these factors2

does not seem to be easily quantifiable in a statistically robust way. In most data sets such
as in Figure 2.1, outliers lie not just on the boundaries of the data, but also in the interior
of the data. Unlike extreme values, outliers are defined by generative probabilities. While
the distance factor can provide some impact for the outliers in the interior, the work is
primarily focused on the advantage of angular measures, and it is stated in [325] that the
degree of impact of distance factors is minor compared to the angular factors. This implies
that outliers on the boundaries of the data will be highly favored in terms of the overall
score, because of the lower spectrum of angles. Therefore, the angle-based method treats
outliers with similar generative probabilities in the interior and the boundaries of the data in
a differential way, which is not statistically desirable for general outlier analysis. Specifically,
the outliers at the boundaries of the data are more likely to be favored in terms of the outlier
score. Such methods can effectively find outliers for the case illustrated in Figure 2.7, but
the outlier ‘A’ illustrated in Figure 2.1 will be favored less. Therefore, while this approach
was originally presented as a general outlier analysis method, it has been classified in the
section on multivariate extreme-value analysis methods in this book.

It has been claimed in [325] that the approach is more suitable for high-dimensional data
because of its use of angles, as opposed to distances. However, it has been shown in earlier
work [455], that angle-based measures are not immune to the dimensionality curse, because
of concentration effects in the cosine measure. Such concentration effects would also impact
the spectrum of the angles, even when they are combined with distances. The variation in
the angle spectrum in Figure 2.6 is easy to show visually in 2-dimensional data, but the
sparsity effects will also impact the spectrum of angles in higher dimensions. If the main
problem, as suggested in [325], is the lack of contrast between pairwise distances, then this
is not resolved with the use of angles instead of distances. In a setting where all pairs of
distances are similar, all triangles will be equilateral, and therefore all (cosines of) angles

2When a random variable is scaled by a factor of a, its variance is scaled by a factor of a2. However, the
scaling here is not by a constant factor.
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Figure 2.7: Extreme-value analysis in multivariate data with Mahalanobis distance

will converge to 0.5. In fact, the cosine can be shown to be a direct function of Euclidean
pairwise distances:

Cosine(X,Y ) =
||X − 0||2 + ||Y − 0||2 − ||X − Y ||2

2 · ||X − 0|| · ||Y − 0|| (2.19)

If distances retain little information about the relative contrasts, there is little reason to
believe that an indirect function of the distances (like the cosine spectrum) will do any
better. A clear explanation of why the spectrum of angles should be more robust to high
dimensionality than distances has not3 been provided in [325]. More importantly, such
methods do not address the issue of locally irrelevant attributes [4], which are the primary
impediment to effective outlier analysis methods with increasing dimensionality. Another
important point to note is that multivariate extreme-value analysis is much simpler than
general outlier analysis in high dimensionality, because the parts of the data to explore are
approximately known, and therefore the analysis is global rather than local. The evidence
over different dimensions can be accumulated with the use of a very simple classical distance-
distribution method [343, 493]. The approach, discussed in the next section, is also suitable
for high-dimensional extreme-value analysis, because it implicitly weights globally relevant
and irrelevant directions in the data in a different way, and is statistically sound in terms
of probabilistic interpretability of the extreme values.

2.3.4 Distance Distribution-based Techniques: The Mahalanobis
Method

A distribution-dependent approach is to model the entire data set to be normally dis-
tributed about its mean in the form of a multivariate Gaussian distribution. Let μ be the

3The use of the cosine function in some high-dimensional domains such as text has been cited as an
example in a later work [326]. In domains with small and varying non-zero attributes, the cosine is preferred
because of important normalization properties, and not because of greater dimensionality resistance. By
substituting ||X|| = ||Y || = 1 in Equation 2.19, it is evident that the cosine is equivalent to the Euclidean
distance if all points are normalized to lie on a unit ball. The cosine function is not immune to the dimen-
sionality curse even for the unique structure of text [455]. An increasing fraction of non-zero attributes,
towards more general distributions, directly impacts the data hubness.
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d-dimensional mean (row) vector of a d-dimensional data set, and Σ be its d× d covariance
matrix. In this case, the (i, j)th entry of the covariance matrix is equal to the covariance
between the dimensions i and j. Then, the probability distribution f(X) for a d-dimensional
(row vector) data point X can be defined as follows:

f(X) =
1√

|Σ| · (2 · π)(d/2)
· exp

[
−1

2
· (X − μ)Σ−1(X − μ)T

]
(2.20)

The value of |Σ| denotes the determinant of the covariance matrix. We note that the term
in the exponent is (half) the squared Mahalanobis distance of the data point X to the
centroid μ of the data. This term is used as the outlier score and may be directly computed
as follows:

Mahalanobis(X,μ,Σ) =

√
(X − μ)Σ−1(X − μ)T (2.21)

The computation of the Mahalanobis distance requires the inversion of the covariance matrix
Σ. In cases where the matrix Σ is not invertible, it is possible to use regularization with a
d× d identity matrix I. The basic idea is to replace Σ with Σ + λI for some small value of
λ > 0 in Equation 2.21. Here, λ > 0 represents the regularization parameter.

The Mahalanobis distance of a point is similar to its Euclidean distance from the centroid
of the data, except that it normalizes the data on the basis of the inter-attribute correlations.
For example, if the axis system of the data were to be rotated to the principal directions
(shown in Figure 2.7), then the data would have no inter-attribute correlations. As we will
see in section 3.3 of Chapter 3, it is actually possible to determine such directions of cor-
relations generally in d-dimensional data sets with the use of principal component analysis
(PCA). The Mahalanobis distance is simply equal to the Euclidean distance between X and
μ in such a transformed (axes-rotated) data set after dividing each of the transformed coor-
dinate values by the standard-deviation of that direction. Therefore, principal component
analysis can also be used in order to compute the Mahalanobis distance (see section 3.3.1
of Chapter 3).

This approach recognizes the fact that the different directions of correlation have differ-
ent variance, and the data should be treated in a statistically normalized way along these
directions. For example, in the case of Figure 2.7, the data point ‘A’ can be more reasonably
considered an outlier than data point ‘B,’ on the basis of the natural correlations in the
data. On the other hand, the data point ‘A’ is closer to the centroid of the data (than
data point ‘B’) on the basis of Euclidean distance, but not on the basis of the Mahalanobis
distance. Interestingly, data point ‘A’ also seems to have a much higher spectrum of angles
than data point ‘B,’ at least from an average sampling perspective. This implies that, at
least on the basis of the primary criterion of angles, the angle-based method would incor-
rectly favor data point ‘B.’ This is because it is unable to account for the relative relevance
of the different directions, an issue that becomes more prominent with increasing dimen-
sionality. The Mahalanobis method is robust to increasing dimensionality, because it uses
the covariance matrix in order to summarize the high dimensional deviations in a statis-
tically effective way. It is noteworthy that the Mahalanobis method should not be merely
considered an extreme-value method. In fact, as section 3.3.1 shows, its correlation-sensitive
characteristics are more powerful than its extreme-value characteristics.

We further note that each of the distances along the principal correlation directions
can be modeled as a 1-dimensional standard normal distribution, which is approximately
independent from the other orthogonal directions of correlation. As discussed earlier in this
chapter, the sum of the squares of d variables drawn independently from a standard normal
distribution, will result in a variable drawn from a χ2-distribution with d degrees of freedom.
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Therefore, the cumulative probability distribution tables of the χ2 distribution can be used
in order to determine the outliers with the appropriate level of significance.

2.3.4.1 Strengths of the Mahalanobis Method

Although the Mahalanobis method seems simplistic at first sight, it is easy to overlook
the fact that the Mahalanobis method accounts for the inter-attribute dependencies in
a graceful way, which become particularly important in high-dimensional data sets. This
simple approach turns out to have several surprising advantages over more complex distance-
based methods in terms of accuracy, computational complexity, and parametrization:

1. It is short-sighted to view the Mahalanobis method only as a multivariate extreme-
value analysis method because most of its power resides in its use of inter-attribute
correlations. The use of the covariance matrix ensures that inter-attribute depen-
dencies are accounted for in the outlier detection process. In fact, as discussed in
Chapter 3, one can view the Mahalanobis method as a soft version of PCA. Although
it is not immediately obvious, the merits of some of the sophisticated linear models
such as one-class support-vector machines (SVMs)4 and matrix factorization are in-
herently built into the approach. In this sense, the Mahalanobis method uses a more
powerful model than a typical multivariate extreme-value analysis method. A detailed
discussion of the connections of PCA with the Mahalanobis method and its nonlinear
extension is provided in Chapter 3. Aside from its PCA-based interpretation, it also
has a natural probabilistic interpretation as a special case of the EM-method discussed
in the next section.

2. The Mahalanobis method is parameter-free. This is important in unsupervised prob-
lems like outlier detection, in which there is no meaningful way of setting the param-
eters by testing its performance on the data set. This is because ground-truth is not
available for parameter tuning.

3. The features in real data sets are often extracted in such a way that extremes in
values expose the outliers, which is an easy case for the Mahalanobis method. If
the analyst has an intuitive understanding that extremes in (many of the) feature
values are indicative of outliers, then the Mahalanobis method can sometimes be used
confidently. Even in cases where all features do not show this characteristic, the natural
aggregation effects in the Mahalanobis distance are able to expose the outliers. At the
very least, one can leverage the Mahalanobis method as one of the components of an
ensemble method (cf. Chapter 6) to exploit the subset of features that are friendly to
extreme-value analysis. A simple combination of a nearest-neighbor detector and the
Mahalanobis method can perform surprisingly robustly as compared to a variety of
other complex detectors. The addition of a distance-based component to an ensemble
method also ensures that outliers like data point ‘A’ in Figure 2.1 are not missed
completely.

4. As discussed later in Chapter 4, most distance-based methods require O(N2) time
for a data set containing N points. Even for data sets containing a few hundred
thousand points, it often becomes computationally challenging to compute the outlier

4Some one-class SVMs [538, 539] learn a circular separator wrapped around the centroid of the data,
albeit in a transformed kernel space. As discussed in the next chapter, it is also possible to kernelize the
Mahalanobis method because of its PCA-based interpretation. Furthermore, the solutions in the two cases
can be shown to be closely related (cf. section 3.4.3).
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Figure 2.8: Relating fit probabilities to anomalous behavior

scores. On the other hand, the Mahalanobis method is linear in the number of data
points, although it does require at least quadratic time and space in terms of the
data dimensionality. Nevertheless, since the number of points is typically orders of
magnitude greater than the number of dimensions, the Mahalanobis method has a
significant advantage in terms of computational time in most real-world settings.

Therefore, the Mahalanobis method can often be used as an additive component of ensemble
methods, even when it is not desirable to use it on a stand-alone basis.

2.4 Probabilistic Mixture Modeling for Outlier Analy-
sis

The previous section was focused on the problem of extreme-value analysis for outlier mod-
eling. The simple Mahalanobis method is effective for the example of Figure 2.7, because
the entire data set is distributed in one large cluster about the mean. For cases in which the
data may have many different clusters with different orientations, such an extreme-value
approach may not be effective. An example of such a data set is illustrated in Figure 2.1.
For such cases, more general distribution-based modeling algorithms are needed.

The key idea in this generalization is to use probabilistic mixture modeling of the data
points. Such models are typically generative models, where for each data point, we can
estimate the generative probability (or the fit probability) to the model. First, we assume a
specific form of the generative model (e.g., a mixture of Gaussians), and then estimate the
parameters of this model with the use of the expectation-maximization (EM) algorithm.
The parameters are estimated so that the observed data has a maximum likelihood fit to
the generative model. Given this model, we then estimate the generative probabilities (or
fit probabilities) of the underlying data points. Data points that fit the distribution will
have high fit probabilities, whereas anomalies will have very low fit probabilities. Some
examples of how different types of data points relate to the fit probability in such a model
are illustrated in Figure 2.8.

The broad principle of a mixture-based generative model is to assume that the data was
generated from a mixture of k distributions with the probability distributions G1 . . .Gk with
the repeated application of the following stochastic process:
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• Select the rth probability distribution with probability αr, where r ∈ {1 . . . k}.

• Generate a data point from Gr.

We denote this generative model by M. The value αr indicates the prior probability, and
intuitively represents the fraction of the data generated from mixture component r. We
note that the different values of αr, and the parameters of the different distributions Gr

are not known in advance, and they need to be learned in a data-driven manner. In some
simplified settings, the values of the prior probabilities αr may be fixed to 1/k, although
these values also need to be learned from the observed data in the most general case. The
most typical form of the distribution Gr is the Gaussian distribution. The parameters of
the distribution Gr and the prior probabilities αr need to be estimated from the data, so
that the data has the maximum likelihood fit of being generated. Therefore, we first need
to define the concept of the fit of the data set to a particular component of the mixture.
Let us assume that the density function of Gr is given by fr(·). The probability (density
function) of the data point Xj being generated by the model is given by the following:

fpoint(Xj |M) =

k∑
i=1

αi · f i(Xj) (2.22)

Then, for a data set D containing N records denoted by X1 . . . XN , the probability of the
data set being generated by the model M is the product of the corresponding individual
point-wise probabilities (or probability densities):

fdata(D|M) =

N∏
j=1

fpoint(Xj |M) (2.23)

The log-likelihood fit L(D|M) of the data set D with respect to M is the logarithm of the
aforementioned expression and can be (more conveniently) represented as a sum of values
over the different data points.

L(D|M) = log

⎡
⎣ N∏
j=1

fpoint(Xj |M)

⎤
⎦ =

N∑
j=1

log

[
k∑

i=1

αi · f i(Xj)

]
(2.24)

This log-likelihood fit needs to be optimized to determine the model parameters, and there-
fore maximize the fit of the data points to the generative model. The log-likelihood fit is
preferable to the likelihood fit because of its additive nature across different data points,
and its numerical convenience.

It is noteworthy that it is much easier to determine the optimal model parameters sep-
arately for each component of the mixture, if we knew (at least probabilistically), which
data point was generated by which component of the mixture. At the same time, the prob-
ability of generation of these different data points from different components is dependent
on these optimal model parameters. This circularity in dependence naturally suggests an
iterative EM-algorithm in which the model parameters and probabilistic data point assign-
ments to components are iteratively refined and estimated from one another. Let Θ be a
vector representing the entire set of parameters describing all components of the mixture
model. For example, in the case of the Gaussian mixture model, Θ would contain all the
component mixture means, variances, co-variances, and the parameters α1 . . . αk. Then, the
EM-algorithm starts off with an initial set of values of Θ (possibly corresponding to random
assignments of data points to mixture components), and proceeds as follows:
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• (E-step): Given current value of the parameters in Θ, determine the posterior prob-
ability P (Xj |Gr,Θ) that the point Xj was generated by the rth mixture component.
This computation is performed for all point-component pairs (Xj ,Gr).

• (M-step): Given current probabilities of assignments of data points to clusters, use
maximum likelihood approach to determine the value of all the parameters Θ, which
maximizes the log-likelihood fit on the basis of current assignments. Therefore, in
the Gaussian setting, all cluster means, covariance matrices, and prior probabilities
α1 . . . αk need to be estimated.

It now remains to explain the details of the E-step and the M-step. The E-step simply
computes the probability density of the data point Xj being generated by each component
of the mixture, and then computes the fractional value for each component. This is defined
by the Bayes posterior probability that the data point Xj was generated by component r
(with model parameters fixed to the current set of the parameters Θ). Therefore, we have:

P (Gr|Xj ,Θ) =
αr · fr,Θ(Xj)∑k
i=1 αi · f i,Θ(Xj)

(2.25)

With some abuse of notation, a superscript Θ has been added to the probability density
functions in order to denote the fact that they are evaluated at the current set of model
parameters Θ.

Next, we describe the parameter estimation of the M -step, which maximizes the like-
lihood fit. In order to optimize the fit, we need to compute the partial derivative of the
log-likelihood fit with respect to corresponding model parameters, and set them to 0 in
order to determine the optimal value. The values of αr are easy to estimate and are equal
to the expected fraction of the points assigned to each cluster, based on the current values
of P (Gr|Xj ,Θ). In practice, in order to obtain more robust results for smaller data sets, the
expected number of data points belonging to each cluster in the numerator is augmented
by 1, and the total number of points in the denominator is N + k. Therefore, the estimated
value of αr is (1 +

∑N
j=1 P (Gr|Xj ,Θ))/(k +N). This approach is a form of regularization,

and it is also referred to as Laplacian smoothing. For example, if N is extremely small, such
an approach pushes the assignment probability towards 1/k. This represents a natural prior
assumption about the distribution of points in clusters.

In order to determine the other parameters specific to a particular component r of
the mixture, we simply treat each value of P (Gr|Xj ,Θ) as a weight of that data point
in that component, and then perform maximum likelihood estimation of the parameters
of that component. This is generally a much simpler process than having to deal with all
components of the mixture at one time. The precise estimation process depends on the
probability distribution at hand. For example, consider a setting in which the rth Gaussian
mixture component in d dimensions is represented by the following distribution:

fr,Θ(Xj) =
1√

|Σr| · (2 · π)(d/2)
· exp

[
−1

2
· (Xj − μr) Σ

−1
r (Xj − μr)

T

]
(2.26)

Here, μr is the d-dimensional mean vector and Σr is the d × d co-variance matrix of the
generalized Gaussian distribution of the rth component. The value of |Σr| denotes the
determinant of the covariance matrix. When the number of mixture components is large,
the non-diagonal entries are often set to 0 in order to reduce the number of estimated
parameters. In such cases, the determinant of Σr simplifies to the product of the variances
along the individual dimensions.
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Figure 2.9: EM-Algorithm can determine clusters with arbitrary correlations (Revisiting
Figure 2.1)

It can be shown that the maximum-likelihood estimation of μr and [Σr]ij are equal to the
(probabilistically weighted) means and co-variances of the data points in that component.
Recall that these probabilistic weights were derived from the assignment probabilities in the
E-step. Thus, the E-step and the M-step depend on each other and can be probabilistically
executed to convergence in order to determine the optimum parameter values Θ.

At the end of the process, we have a probabilistic model that describes the entire data
set as the observed output of a generative process. This model also provides a probabilistic
fit value for each data point in the form of Equation 2.22. This value provides the outlier
score. Thus, we can use this fit in order to rank all the data points, and determine the most
anomalous ones. The idea is that points that are far away from the dense regions in the
data (such as the one shown in the upper region of Figure 2.8) will have very low fit values.
These points are the anomalies in the data. If desired, statistical hypothesis testing can be
applied for identification of outliers with unusually low fit values. However, for statistical
testing, the logarithm function should be applied to the fit values (i.e., log-likelihood fits
should be used) to reduce the relative variance of inliers (large fit values), so that points
with very low fit values will pass an extreme-value test.

The approach requires the number of mixture components as an input parameter. In
some cases, domain-specific insights about the data can be used to make meaningful choices.
In cases where such insights are not available, an ensemble of mixture models with different
parameter settings is useful [184]. In particular, the work in [184] averages the point-wise
log-likelihood scores obtained on models with different numbers of mixture components.
Furthermore, these models are built on different samples of the data set. Excellent results
have been reported using this approach.

2.4.1 Relationship with Clustering Methods

Probabilistic mixture modeling is a stochastic version of clustering methods, which can
also be used for outlier detection (cf. Chapter 4). It is noteworthy that the fit values in a
Gaussian mixture model use the distances of points from cluster centroids in the exponent
of the Gaussian. Therefore, the log-likelihood fit of a single Gaussian is the Mahalanobis
distance, although the additive fits from multiple Gaussians cannot be simplified in this
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manner. Nevertheless, the effect of the nearest cluster is often predominant in the fit values.
In the clustering models of Chapter 4, only the distance to the nearest cluster centroid is
used directly as the outlier score. Therefore, the clustering techniques of Chapter 4 can be
viewed as hard versions of the EM-algorithm in which a specific (nearest) cluster is used for
scoring the points rather than using the combined fit values from all the clusters in a soft
probabilistic combination.

The EM-algorithm can identify arbitrarily oriented clusters in the data, when the clus-
ters have elongated shapes in different directions of correlation. This can help in better
identification of outliers. For example, in the case of Figure 2.9, the fit of point ‘A’ would
be lower than that for point ‘B,’ even though point ‘B’ is closer to a cluster on the basis of
absolute distances. This is because the Mahalanobis distance in the exponent of the Gaus-
sian normalizes for the distances along the different directions of correlation in the data.
Indeed, data point ‘A’ is more obviously an outlier.

2.4.2 The Special Case of a Single Mixture Component

Interestingly, the special case in which the mixture distribution contains a single Gaus-
sian component (cf. Equation 2.26) works surprisingly well in real settings. This is in part
because using a single Gaussian component corresponds to the Mahalanobis method of sec-
tion 2.3.4. The specific merits of this method are discussed in section 2.3.4.1. As we will see
in Chapter 3, this leads to a soft version of Principal Component Analysis (PCA), which is
known to be effective because of its ability to identify data points that violate interattribute
dependencies. The Mahalanobis method can therefore be explained both from the point of
view of probabilistic methods and linear models.

Although the use of a single mixture component seems to miss true outliers (like the
outlier ‘A’ of Figure 2.9), it also has the advantage that none of the mixture components
can overfit a small but tightly-knit cluster of outliers. When a larger number of mixture
components are used, one of the components might correspond to a small tightly knit group
of outliers like the outlier cluster illustrated in Figure 2.10. The Mahalanobis method will
correctly label the points in this cluster as outliers, whereas a mixture model (with a larger
number of components) runs the risk of modeling this small cluster as a legitimate mixture
component. Interesting anomalies often occur in small clusters because they might have
been caused by similar underlying causes (e.g., a specific disease or type of credit-card
fraud). The Mahalanobis method is able to identify such clusters as outliers because they
are often inconsistent with the global mean and covariance structure of the data. Because
of these typical characteristics of real data sets, very simple methods like the Mahalanobis
method sometimes outperform significantly more complex models.

As discussed in section 3.3.8 of the next chapter, one can also combine the Mahalanobis
method with kernel methods to model more general distributions. For example, some vari-
ations of these methods can correctly identify the outlier ‘A’ in Figure 2.9. An ensemble-
centric version of this approach has been shown to provide high-quality results [35].

2.4.3 Other Ways of Leveraging the EM Model

The EM model discussed in the previous section quantifies the outlier score as the fit of the
point to any of the mixture components. Therefore, all mixture components are assumed to
be instances of the normal class. A different approach is one in which some domain-specific
insights are available about the differences in distribution of the normal classes and the
anomalous class. In such a case, different probability distributions are used to model the
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Figure 2.10: The use of a single mixture component is robust to the presence of small outlier
clusters

normal and anomalous classes. The outlier score of a point is quantified as its fit to the
anomalous class and larger scores are indicative of anomalies. This approach is generally
difficult to use in the absence of specific insights about the differences in distribution of
the normal and anomalous classes. For example, such an approach has been used for the
identification of particular types of outliers such as noise [110]. In the next section, we will
provide another example of a setting in which it is possible to model normal and outlier
classes with realistic (and different) distributions.

2.4.4 An Application of EM for Converting Scores to Probabilities

Interestingly, EM algorithms can also be used as a final step after many such outlier de-
tection algorithms for converting the scores into probabilities [213]. Note that the fit value
returned by the EM algorithm of the previous section (cf. Equation 2.22) is a probability
density value, and cannot be interpreted as a numerical probability. The ability to charac-
terize an outlier in terms of numerical probabilities is a very useful step for intuition and
interpretability.

The idea is that the distribution of the scores can be treated as a univariate data set,
which can then be fit to a probabilistic generative model. In this case, the outlier points
are explicitly assumed to belong to a component of the mixture model (rather than simply
treating them as points with low fit values). Note that one can differentiate the outlier
and non-outlier classes in this setting only if some additional insight is available about
the natural distributions of the outlier and non-outlier classes. Therefore, different types of
distributions can be used to model the outlier and non-outlier components. The work in [213]
uses a bimodal mixture of exponential and Gaussian functions. The assumption is that the
non-outlier points are distributed according to the exponential distribution, whereas the
outlier points are distributed according to the Gaussian distribution. This assumption is
made on the basis of the “typical” behavior of outlier scores in real applications. The EM
algorithm is used to compute the parameters of each component of the mixture distribution,
and the corresponding prior probabilities of assignment. These can be used in order to
convert the outlier scores into probabilities with the use of the Bayes rule, since it is now
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possible to compute the posterior probability (see Equation 2.25) that the data point belongs
to the outlier component. We note that the assignment of a component of the mixture to the
outlier class is critical in being able to estimate the probability that a data point is an outlier,
which is facilitated by the difference in the distributions (Gaussian versus exponential) of
outliers scores in the two classes.

2.5 Limitations of Probabilistic Modeling

Parametric methods are very susceptible to noise and overfitting in the underlying data.
Mixture models always assume a specific distribution of the data, and then try to learn
the parameters of this distribution. A natural trade-off exists between the generality of this
distribution and the number of parameters that need to be learned. If this trade-off is not
calibrated carefully, then one of the following two scenarios could occur:

• When the particular assumptions of the model are inaccurate (e.g., inappropriate use
of Gaussian distribution), the data is unlikely to fit the model well. As a result, a lot
of spurious data points may be reported as outliers.

• When the model is too general, the number of parameters to describe the model
increases. For example, when one uses an inappropriately large number of mixture
components, a small but tightly-knit outlier cluster may fit one of the mixture com-
ponents. An example of such a small cluster is illustrated in Figure 2.10. In fact, the
technique in the previous section of converting scores to probabilities leverages the fact
that univariate outlier scores often cluster together in a Gaussian distribution. Unfor-
tunately, there is no way of generalizing this approach easily to multidimensional data
sets. As a result, when reporting points of low fit as outliers (rather than a specially
modeled outlier class), it is always possible to miss the true outliers as a result of the
overfitting caused by small clusters of outliers. One possibility for reducing overfitting
is to fix the prior probabilities to 1/k, although such assumptions might sometimes
result in under-fitting.

The proper selection of simplifying assumptions is always tricky. For example, the clusters
in the data may be of arbitrary shape or orientation, and may not fit a simplified Gaussian
assumption in which the data values along different dimensions are independent of one
another. This corresponds to setting the non-diagonal entries of Σr to 0 in the Gaussian
case. In real data sets, significant correlations may exist among the different dimensions. In
such cases, one cannot assume that the matrix Σr is diagonal, which would necessitate the
learning of O(d2) parameters for each cluster. This can cause overfitting problems when the
number of points in the data set is small. On the other hand, efficiency remains a concern in
the case of larger data sets, especially if a larger number of parameters are estimated. This
is because these methods use the iterative EM algorithm, which needs to scan the entire
data step in each iteration of the E- and M-steps. However, these methods are still more
efficient than many point-to-point distance-based methods, which require O(N2) time for
a data set containing N points. These methods will be discussed in Chapter 4.

Finally, the issue of interpretability remains a concern for many parametric methods. For
example, consider the generalized Gaussian model, which tries to learn clusters with non-
zero covariances. In such a case, it is difficult to intuitively interpret the clusters with the
use of these parameters. Correspondingly, it is also difficult to define simple and intuitive
rules that provide critical ideas about the underlying outliers. We note that this issue
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may not necessarily be a problem for all parametric methods. If the parameters are chosen
carefully enough, then the final model can be described simply and intuitively. For example,
simplified versions of the Gaussian model without co-variances may sometimes be described
simply and intuitively in terms of the original features of the data. On the other hand, such
simplifications might cause under-fitting and other qualitative challenges. These trade-offs
are, however, endemic to almost all outlier detection methods and not just probabilistic
models.

2.6 Conclusions and Summary

In this chapter, a number of fundamental probabilistic and statistical methods for outlier
analysis were introduced. Such techniques are very useful for confidence testing and extreme-
value analysis. A number of tail inequalities for extreme-value analysis were also introduced.
These methods can also be generalized to the multivariate scenario. Extreme-value analysis
has immense utility as a final step in converting the scores from many outlier analysis
algorithms into binary labels. In many specific applications, such techniques turn out to
be very useful even for general outlier analysis. The EM approach for probabilistic mixture
modeling of outliers can be viewed as a generalization of the Mahalanobis method. This
technique can also be viewed as one of the clustering methods that are commonly used for
outlier detection.

2.7 Bibliographic Survey

The classical inequalities (e.g., Markov, Chebychev, Chernoff, and Hoeffding) are widely
used in probability and statistics for bounding the accuracy of aggregation-based statistics.
A detailed discussion of these different methods may be found in [407]. A generalization of
the Hoeffding’s inequality is the McDiarmid’s inequality [393], which can be applied to a
more general function of the different values of Xi (beyond a linearly separable sum). The
main restriction on this function is that if the ith argument of the function (i.e., the value
of Xi) is changed to any other value, the function cannot change by more than ci.

The central limit theorem has been studied extensively in probability and statistics [88].
Originally, the theorem was proposed for the case of sums of independent and identically
distributed variables. Subsequently, it was extended by Aleksandr Lyapunov to cases where
the variables are not necessarily identically distributed [88], but do need to be independent.
A weak condition is imposed on these distributions, ensuring that the sum is not dominated
by a few of the components. In such a case, the sum of the variables converges to the normal
distribution as well. Thus, this is a generalized version of the Central Limit Theorem.

Statistical hypothesis testing has been used widely in the literature in order to determine
statistical levels of significance for the tails of distributions [74, 462]. A significant literature
exists on hypothesis testing, where the anomalous properties of not just individual data
points, but also the collective behavior of groups of data points can be tested. Such tech-
niques are also used in online analytical processing scenarios where the data is organized
in the form of data cubes. It is often useful to determine outliers in different portions of a
data cube with the use of hypothesis testing [474].

The statistical method for deviation detection with variance reduction was first pro-
posed in [62]. Angle-based methods for extreme-value analysis in multivariate data were
proposed in [325]. The multivariate method for extreme-value analysis with the use of the
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Mahalanobis distance was proposed in [343, 493]. This technique does not work well when
the outliers lie in sparse regions between clusters. A number of depth-based methods have
been proposed in [295, 468]. These methods compute the convex hull of a set of data points,
and progressively peel off the points at the corners of this hull. The depth of a data point
is defined as the order of convex hull that is peeled. These techniques have not found much
popularity because they suffer the same drawback as the method of [343] for finding inter-
nally located outliers. Furthermore, convex hull computation is extremely expensive with
increasing dimensionality. Furthermore, with increasing dimensionality an increasing pro-
portion of the points will lie on the outermost convex hull. Therefore, such methods can
only be applied to 2- or 3-dimensional data sets in practice.

It should be noted that the use of probabilistic methods for outlier detection is distinct
from the problem of outlier detection in probabilistic or uncertain data [26, 290, 559]. In the
former case, the data is uncertain, but the methods are probabilistic. In the latter case, the
data itself is probabilistic. The seminal discussion on the EM-algorithm is provided in [164].
This algorithm has a particularly simple form, when the components of the mixture are
drawn from the exponential family of distributions. The work in [578] proposed an online
mixture learning algorithm, which can handle both categorical and numerical variables.
An interesting variation of the EM-algorithm treats one component of the mixture model
specially as an anomaly component [187]. Correspondingly, this component is drawn from
a uniform distribution [187], and is also assigned a low a priori probability. Therefore,
instead of determining the anomalous points that do not fit any mixture component well,
this approach tries to determine the points which fit this special component of the mixture.
Such an approach would generally be more effective at modeling noise rather than anomalies,
because the special component in the mixture model is likely to model the noise patterns.
Finally, a Gaussian mixture model has also been used recently in order to create a global
probabilistic model for outlier detection [583].

The EM-algorithm has also been used for clutter removal from data sets [110]. In this
case, noise is removed from the data set by modeling the derived data as a mixture of
Poisson distributions. We note that the approach in [110] is designed for noise detection,
rather than the identification of true anomalies. It was shown in [110] that the improvement
in data quality after removal of the clutter (noise) was significant enough to greatly ease the
identification of relevant features in the data. The approach of using a special component of
the mixture in order to convert the distribution of outlier scores into probabilities has been
used in [213]. In addition to the approach discussed in section 2.4.4, a different modeling
approach with the use of the logistic sigmoid function is discussed in [213]. Methods for
converting outlier scores into probabilities in the supervised scenario have been discussed
in [599].

An implicit assumption made by EM methods is that the attributes are conditionally
independent of one another once the mixture component has been selected. A probabilistic
approach that makes stronger assumptions on attribute interdependence is the Bayesian
Network. The Bayesian network approach for outlier detection [66] models dependencies
among attributes with an off-the-shelf network and uses these dependencies to score points
as outliers based on the violations of these dependencies.

2.8 Exercises

1. [Upper-Tail Chernoff Bound] The chapter provides a proof sketch of the upper-tail
Chernoff bound, but not the full proof. Work out the full proof of bound on the upper
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tail using the lower-tail proof as a guide. Where do you use the fact that δ < 2 · e− 1?

2. Suppose you flip an “unbiased” coin 100 times. You would like to investigate whether
the coin is showing anomalous behavior (in terms of not being “unbiased” as claimed).
Determine the mean and standard deviation of the random variable representing the
number of “tails”, under the assumption of an unbiased coin. Provide a bound on the
probability that you obtain more than 90 tails with the use of the (i) Markov Inequality
(ii) Chebychev Inequality (iii) Chernoff Upper Tail Bound, (iv) Chernoff Lower Tail
Bound and (v) Hoeffding Inequality. [Hint: Either the upper-tail or lower-tail Chernoff
bound can be used, depending on which random variable you look at.]

3. Repeat Exercise 2, when you know that the coin is rigged to show “tails” every eight
out of nine flips.

4. Use the central limit theorem to approximate the number of tails by a normal distri-
bution. Use the cumulative normal distribution to approximate the probability that
the number of “tails” should be more than 90 for both the cases of Exercises 2 and 3.

5. A manufacturing process produces widgets, each of which is 100 feet long, and has a
standard deviation of 1 foot. Under normal operation, these lengths are independent
of one another.

• Use the normal distribution assumption to compute the probability that some-
thing anomalous is going on in the manufacturing process, if a sampled widget
is 101.2 feet long?

• How would your answer change, if the sampled widget was 96.3 feet long?

6. In the example above, consider the case where 10,000 widgets from the assembly line
were sampled, and found to have an average length of 100.05. What is the probability
that something anomalous is going on in the manufacturing process?

7. Use MATLAB or any other mathematical software to plot the t-distribution with 100
degrees of freedom. Superimpose a standard normal distribution on this plot. Can you
visually see the difference? What does this tell you?

8. Work out the steps of the EM-algorithm, when all non-diagonal elements of the covari-
ance matrix Σ are set to zero, and each diagonal element in a given component has the
same value. Furthermore, the prior probabilities of assignment are equal to 1/k, where
k is the number of mixture components. Now perform the following modifications:

• Change the E-step, so that each data point is deterministically assigned to the
cluster with the highest probability (hard assignment), rather than a soft proba-
bilistic assignment. Under what distance-based conditions does a data point get
assigned to a cluster?

• How does this algorithm relate to the k-means algorithm?

• How would your answers change, if all components were constrained to have the
same cluster variance?

9. Using the insights gained from Exercise 8, work out how the EM-algorithm with a
Gaussian mixture model with a complete set of covariance matrices Σr, and a fixed
set of priors, relates to a generalized k-means algorithm. [Hint: Consider the concept
of Mahalanobis distance computations for assignments in k-means. How should the
prior probabilities be defined?]
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10. Download the KDD Cup 1999 data set from the UCI Machine Learning Reposi-
tory [203]. Extract the quantitative attributes from the data set. Apply the EM-
algorithm with 20 mixture components, when non-diagonal elements are set to 0.

• Determine the fit of each data point to the learned distribution. Determine the
top 10 points with the least fit. Do these data points correspond to intrusion
attacks or normal data?

• Repeat the process while allowing non-zero non-diagonal elements. How does
your answer change?

• Randomly sample 990 points from the data set, and then add the 10 points found
in the first case above. Repeat the procedure on this smaller data set. Do you find
significant anomalies in terms of fit probabilities? Do the lowest fit probabilities
correspond to the same data points as in the first case above?

• Repeat the same procedure with the second case above.

11. Repeat the first two portions of Exercise 10 on the Ionosphere data set from the UCI
Machine Learning Repository. Note that the Ionosphere data set has much higher
dimensionality (of quantitative attributes) and smaller number of records. Do you
determine the same top-10 anomalies in the two cases? What are the absolute fit
probabilities? What does this tell you about applying such algorithms to small and
high dimensional data sets?

12. Let Z be a random variable satisfying E[Z] = 0, and Z ∈ [a, b].

• Show that E[et·Z ] ≤ et
2·(b−a)2/8.

• Use the aforementioned result to complete the proof of the Hoeffding inequality.
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