
Chapter 2
Option Pricing and Hedging with Liquidity
Costs and Market Impact

F. Abergel and G. Loeper

Abstract We study the influence of taking liquidity costs and market impact into
account when hedging a contingent claim. In the continuous time setting and under
the assumption of perfect replication, we derive a fully non-linear pricing partial
differential equation, and characterize its parabolic nature according to the value of a
numerical parameter interpreted as a relaxation coefficient formarket impact.We also
investigate the case of stochastic volatility models with pseudo-optimal strategies.

2.1 Introduction

2.1.1 Position of the Problem

There is a long history of studying the effect of transaction costs and liquidity costs in
the context of derivative pricing and hedging. Transaction costs due to the presence
of a Bid-Ask spread are well understood in discrete time, see (Lamberton et al. 1997).
In continuous time, they lead to quasi-variational inequalities, see e.g. (Zakamouline
2006), and to imperfect claim replication due to the infinite cost of hedging contin-
uously over time. In this work, the emphasis is put rather on liquidity costs, that is,
the extra price one has to pay over the theoretical price of a tradable asset, due to the
finiteness of available liquidity at the best possible price. A reference work for the
modelling and mathematical study of liquidity in the context of a dynamic hedging
strategy is (Cetin et al. 2004), see also (Roch 2009), and our results can be seen as
partially building on the same approach.
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It is however unfortunate that a major drawback occurs when adding liquidity
costs: as can easily be seen in (Cetin et al. 2004;Millot andAbergel 2011;Roch2009),
the pricing and hedging equation are not unconditionally parabolic anymore. Note
that this sometimesdramatic situation can alreadybe inferred from the early heuristics
in Leland (1985): the formula suggested by Leland makes perfectly good sense for
small perturbation of the initial volatility, but is meaningless when the modified
volatility becomes negative. An answer to this problem is proposed in Çetin et al.
(2010), where the authors introduce super-replicating strategies and show that the
minimal cost of a super-replicating strategy solves a well-posed parabolic equation.
In such a case, a perfectly replicating strategy, provided that it exists, may not be
the optimal strategy, as there may exist a strategy with cheaper initial wealth that
super-replicates the payoff atmaturity. It appears however that such a situation,where
liquidity costs lead to an imperfect replication, is dependent on the assumption one is
making regarding themarket impact of the delta-hedger, as some recent work of one
of the author (Loeper 2013) already shows. In this work, we provide necessary and
sufficient conditions that ensure the parabolicity of the pricing equation and hence,
the existence and uniqueness of a self-financing, perfectly replicating strategy—at
least in the complete market case.

Motivated by the need for quantitative approaches to algorithmic trading, the study
of market impact in order-driven markets has become a very active research subject
in the past decade. In a very elementary way, there always is an instantaneous market
impact—termed virtual impact in Weber and Rosenow (2005)—whenever a trans-
action takes place, in the sense that the best available price immediately following a
transaction may be modified if the size of the transaction is larger than the quantity
available at the best limit in the order book. As many empirical works show, see e.g.
(Almgren et al. 2005; Weber and Rosenow 2005), a relaxation phenomenon then
takes place: after a trade, the instantaneous impact decreases to a smaller value, the
permanent impact. This phenomenon is named resilience in Weber and Rosenow
(2005), it can be interpreted as a rapid, negatively correlated response of the market
to large price changes due to liquidity effects. In the context of derivative hedging, it
is clear that there are realistic situations—e.g., a large option on an illiquid stock—
where the market impact of an option hedging strategy is significant. This situation
has already been addressed by several authors, see in particular (Schönbucher and
Wilmott 2000; Frey and Stremme 1997; Frey 1998; Platen and Schweizer 1998),
where various hypothesis on the dynamics, the market impact and the hedging strat-
egy are proposed and studied. Onemay also refer to (Liu and Yong 2005; Roch 2009)
for more recent related works. It is however noteworthy that in these references,
liquidity costs and market impact are not considered jointly, whereas in fact, the
latter is a rather direct consequence of the former. As we shall demonstrate, the level
of permanent impact plays a fundamental role in the well-posedness of the pricing
and hedging equation, a fact that was overlooked in previous works on liquidity costs
and impact. Also, from a practical point of view, it seems relevant to us to relate the
well-posedness of the modified Black-Scholes equation to a parameter that can be
measured empirically using high frequency data.
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2.1.2 Main Results

This paper aims at contributing to the field by laying the grounds for a reasonable
yet complete model of liquidity costs and market impact for derivative hedging.
Liquidity costs are modelled by a simple, stationary order book, characterized by
its shape around the best price, and the permanent market impact is measured by a
numerical parameter γ , 0 � γ � 1: γ = 0 means no permanent impact, so the order
book goes back to its previous state after the transaction is performed, whereas γ = 1
means no relaxation, the liquidity consumed by the transaction is shifted around the
final transaction price. This simplified representation of market impact rests on the
realistic hypothesis that the characteristic time of the derivative hedger, although
comparable to, may be different from the relaxation time of the order book.

What we consider as our main result is Theorem 2.1, which states that, in the
complete market case, the range of parameter for which the pricing equation is
unconditionally parabolic is 2

3 � γ � 1. This result, which we find quite nice in that
it is explicit in terms of the parameter γ , gives necessary and sufficient conditions for
the perfectly replicating strategy to be optimal. It also sheds some interesting light
on the ill-posedness of the pricing equations in the references (Cetin et al. 2004;
Millot and Abergel 2011) corresponding to the case γ = 0, or (Liu and Yong 2005)
corresponding to the case γ = 1

2 within our formulation. In particular, Theorem 2.1
implies that when re-hedging occurs at the same frequency as that at which liquidity
is provided to the order book—that is, when γ = 1—the pricing equation is well-
posed. Note that there are some recent empirical evidence (Bershova and Rakhlin
2013) as well as a theoretical justification (Farmer et al. 2013) of the fact that the
level of permanent impact should actually be equal to 2

3 , in striking compliance with
the constraints Theorem 2.1 imposes!

It is of course interesting and important to thoroughly address the case where
this condition is violated. If this is the case, see Sect. 2.8.1, one can build an option
portfolio having the following property: there exist two european-style claims with
terminal payoffs φ1, φ2 such that φ1 � φ2 but the perfect replication price of φ1 is
strictly greater than that of φ2. The way out of this paradox should be via an approach
similar to that developed in (Çetin et al. 2010), based on super-replication, but the
situation is mademuchmore complicated by the fact that, in our model, the dynamics
is modified by the strategy, a feature not present in Çetin et al. (2010). We do find it
interesting however that the perfect replication is not optimal, and are intrigued by a
market where the value of γ would lead to imperfect replication.

Another interesting question is the comparison between our approach and that
of (Almgren 2012), where the delta-hedging strategy of a large option trader is
addressed.Wewant to point out that the two problems are tackled under very different
sets of hypotheses: essentially, we consider strategies with infinite variation, whereas
(Almgren 2012) refers on the contrary, to strategies with bounded variation. From
a physical point of view, we deal with re-hedging that occurs at roughly the same
frequency as that of the arrival of liquidity in the book, whereas (Almgren 2012)
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considers two different time scales, a slow one for the change in the optimal delta, and
a fast one for the execution strategy. Hence, our results and models are significantly
different.

The paper is organized as follows: after recalling some classical notations and
concepts, Sect. 2.4 presents the continuous time model under scrutiny. The pricing
and hedging equations are thenworked out and characterized in the case of a complete
market, in the single asset case in Sect. 2.5, and in the multi-asset case in Sect. 2.6.
Section2.7 touches upon the case of stochastic volatility models, for which partial
results are presented. Finally, a short discussion of the two main conditions for
Theorem 2.1, viz market impact level and Gamma-constraint, is presented in the
concluding Sect. 2.8.

2.2 Basic Notations and Definitions

To ease notations, we will assume throughout the paper that the risk-free interest rate
is always 0, and that the assets pay no dividend.

2.2.1 Discrete Time Setting

The tradable asset price is modelled by a positive stochastic process S = (Sk)k=0,...,T

on a probability space (Ω,F , P). The process S is adapted to the filtration
(Fk)k=0,...,T , whereFk denotes the σ−field of events observable up to and including
time k. Moreover, F0 is trivial and FT = F .

A contingent claim is a randomvariable H of the following form H = δH ST + βH

with δH and βH ,FT -measurable random variables.
A trading strategy Φ is given by two stochastic processes δ and β. δk (resp. βk)

is the amount of stock (resp. cash) held during period k, (= [tk, tk+1)) and is fixed
at the beginning of that period, i.e. we assume that δk (resp. βk) is Fk−measurable
(k = 0, . . . , T ).

The theoretical value of the portfolio at time k is given by

Vk = δk Sk + βk , (k = 1, . . . , T ).

In order to avoid dealing with several rather involved cases, we assume that no
transaction on the stock takes place atmaturity: the claimwill be settledwithwhatever
position there is in stock, plus a cash adjustment to match its theoretical value (see
the discussion in Lamberton et al. 1997, Sect. 4).

For the model to be specified, one must specify some integrability conditions
on the various random variables just introduced, see e.g. (Millot 2012; Abergel and
Millot 2011). However, since market impact is considered, the dynamics of S is not
independent from that of the strategy (δ, β), so that this set of assumptions can only
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be verified a posteriori, once a strategy is chosen. Since our purpose is to use the
discrete case as an illustrative example laying the ground for the continuous-time
setting, we will not make such conditions more explicit.

2.2.2 Continuous Time Setting

In the continuous case, (Ω,F , P) is a probability space with a filtration (Ft )0≤t≤T

satisfying the usual conditions of right-continuity and completeness. T ∈ R
∗+

denotes a fixed and finite time horizon. As before, F0 is trivial and FT = F .
The risky asset S = (St )0≤t≤T is a strictly positive, continuousFt -semimartingale,

and a trading strategy Φ is a pair of càdlàg and adapted processes δ = (δt )0≤t≤T ,
β = (βt )0≤t≤T , while a contingent claim is described by a random variable H of the
form H = δH ST + βH , δH and βH being FT−measurable random variables.

As in the discrete case, some further admissibility conditions must be imposed.
One of the important consequences of our main result, Theorem 2.1, will be precisely
to give sufficient conditions ensuring that perfectly replicating trading strategies are
admissible.

2.2.3 Order Book, Liquidity Cost and Impact

Let us first emphasize that we are not pretending to use a realistic order book model
here, but rather, a stylized version which can be considered a much simplified yet
useful approximation of the way liquidity is provided to the market.

A stationary, symmetric order-book profile is considered around the logarithm
of the price Ŝt of the asset S at a given time t before the option position is delta-
hedged—think of Ŝt as a theoretical price in the absence of the option hedger. The
relative density μ(x) � 0 of the order book is the derivative of the function M(x) ≡∫ x
0 μ(t)dt ≡ number of shares one can buy (resp. sell) between the prices Ŝt and

Ŝt ex for positive (resp. negative) x .
This choice of representation in logarithmic scale is intended to avoid inconsis-

tencies for large sell transactions.
The instantaneous—virtual in the terminology of (Weber and Rosenow 2005)—

market impact of a transaction of size ε is then

Ivir tual(ε) = Ŝt (e
M−1(ε) − 1), (2.1)

it is precisely the difference between the price before and immediately after the
transaction is completed.
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The level of permanent impact is then measured via a parameter γ :

Ipermanent (ε) = Ŝt (e
γ M−1(ε) − 1). (2.2)

The actual cost of the same transaction is

C(ε) = Ŝt

∫ ε

0
eM

−1(y)dy. (2.3)

Denote by κ the function M−1. Since some of our results in discrete time depend
on the simplifying assumption that κ is a linear function:

κ(ε) ≡ λε (2.4)

for some λ ∈ R, the computations are worked out explicitly in this setting.

Ivir tual(ε) = Ŝt (e
λε − 1), (2.5)

Ipermanent (ε) = Ŝt (e
γ λε − 1), (2.6)

and

C(ε) = Ŝt

∫ ε

0
eM

−1(y)dy ≡ Ŝt
(eλε − 1)

λ
. (2.7)

This simplifying assumption is necessary for the derivation of the dynamic pro-
gramming principle satisfied by local-risk minimizing strategies, see Sect. 2.3. Note
however that this assumption plays no role in the continuous-time case, where the
infinitesimal market impact becomes linear, see Eq. (2.24), and only the shape of the
order book around 0 is relevant.

2.3 Cost Process with Market Impact in Discrete Time

In this section, we focus on the discrete time case. As said above, the order book is
now assumed to be flat, so that κ is a linear function as in (2.4).

2.3.1 The Observed Price Dynamics

The model for the dynamics of the observed price—that is, the price Sk that the
market can see at every time tk after the re-hedging is complete—is now presented.

A natural modelling assumption is that the price moves according to the following
sequence of events:
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• First, it changes under the action of the “market” according to some (positive)
stochastic dynamics for the theoretical price increment ΔŜk

Ŝk ≡ Sk−1 + ΔŜk ≡ Sk−1e
ΔMk+ΔAk , (2.8)

where ΔMk (resp. ΔAk) is the increment of an F -martingale (resp. an F -
predictable process).

• Then, the hedger applies some extra pressure by re-hedging her position, being
thereby subject to liquidity costs and market impact as introduced in Sect. 2.2. As
a consequence, the dynamics of the observed price is

Sk = Sk−1e
ΔMk+ΔAk eγ λ(δk−δk−1). (2.9)

Since this model is “exponential-linear”—a consequence of the assumption that
κ is linear—this expression can be simplified to give

Sk = S0e
Mk+Ak eγ λδk . (2.10)

with the convention that M, A, δ are equal to 0 for k = 0.

2.3.2 Incremental Cost and Optimal Hedging Strategy

Following the approach developed in Millot and Abergel (2011), the incremental
cost ΔCk of re-hedging at time tk is now studied. The strategy associated to the pair
of processes β, δ consists in buying δk − δk−1 shares of the asset and rebalancing
the cash account from βk−1 to βk at the beginning of each hedging period [tk, tk+1).
With the notations just introduced in Sect. 2.3.1, there holds

ΔCk = Ŝk
(eλ(δk−δk−1) − 1)

λ
+ (βk − βk−1). (2.11)

Upon using a quadratic criterion, and under some assumptions ensuring the convexity
of the quadratic risk, see e.g. (Millot and Abergel 2011), one easily derives the two
(pseudo-)optimality conditions for local risk minimization

E(ΔCk |Fk−1) = 0 (2.12)

and
E((ΔCk)(Ŝk(γ + (1 − γ )eλ(δk−δk−1)))|Fk−1) = 0,

where one must be careful to differentiate Ŝk with respect to δk−1, see (2.10).
This expression is now transformed—using the martingale condition (2.12) and

the observed price (2.10)—into
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E((ΔCk)(Ske
−λγ (δk−δk−1)(γ + (1 − γ )eλ(δk−δk−1)))|Fk−1) = 0 (2.13)

Equation (2.13) can be better understood—especiallywhen passing to the continuous
time limit—by introducing a modified price process accounting for the cumulated
effect of liquidity costs and market impact, as in (Millot and Abergel 2011; Cetin
et al. 2004). To this end, we introduce the

Definition 2.1 The supply price S̄ is the process defined by

S̄0 = S0 (2.14)

and, for k � 1,

S̄k − S̄k−1 = Ske
−λγ (δk−δk−1)(γ + (1 − γ )eλ(δk−δk−1)) − Sk−1. (2.15)

Then, the orthogonality condition (2.13) is equivalent to

E((ΔCk)(S̄k − S̄k−1)|Fk−1) = 0. (2.16)

It is classical—and somewhat more natural—to use the portfolio value process

Vk = βk + δk Sk, (2.17)

so that one can then rewrite the incremental cost in (2.11) as

ΔCk = (Vk − Vk−1) − (δk Sk − δk−1Sk−1) + Ŝk
(eλ(δk−δk−1) − 1)

λ
, (2.18)

or equivalently

ΔCk = (Vk − Vk−1) − δk−1(Sk − Sk−1) + Sk

(
eλ(δk−δk−1) − 1

λeγ λ(δk−δk−1)
− (δk − δk−1)

)

.

(2.19)
To ease the notations, let us define, for x ∈ R,

g(x) ≡ eλx − 1

λeγ λx
− x . (2.20)

The function g is smooth and satisfies

g(0) = g′(0) = 0, g′′(0) = (1 − 2γ )λ. (2.21)

As a consequence, the incremental cost of implementing a hedging strategy at time
tk has the following expression

ΔCk = (Vk − Vk−1) − δk−1(Sk − Sk−1) + Skg(δk − δk−1), (2.22)
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and Eq. (2.13) can be rewritten using the value process V and the supply price process
S̄ as

E((Vk − Vk−1 − δk−1(Sk − Sk−1) + Skg(δk − δk−1))(S̄k − S̄k−1)|Fk−1) = 0.
(2.23)

One can easily notice that Eqs. (2.12) and (2.13) reduce exactly to Eq. (2.1) in (Millot
and Abergel 2011) when market impact is neglected (γ = 0) and the risk function is
quadratic.

2.4 The Continuous-Time Setting

This section is devoted to the characterization of the limiting equation for the value
and the hedge parameterwhen the time step goes to zero. Since the proofs are identical
to those given in (Abergel and Millot 2011; Millot and Abergel 2011), we shall only
provide formal derivations, limiting ourselves to the case of (continuous) Itō semi-
martingales for the driving stochastic equations. However, in the practical situations
considered in this paper, in particular those covered in Theorem 2.1, necessary and
sufficient conditions are given that ensure the well-posedness in the classical sense of
the strategy-dependent stochastic differential equations determining the price, value
and cost processes, so that the limiting arguments can be made perfectly rigourous.

2.4.1 The Observed Price Dynamics

A first result concerns the dynamics of the observed price. Assuming that the under-
lying processes are continuous and taking limits in ucp topology, one shows that the
continuous-time equivalent of (2.10) is

dSt = St (dXt + d At + γ λdδt ) (2.24)

where X is a continuous martingale and A is a continuous, predictable process of
bounded variation.

Equation (2.24) is fundamental in that it contains the information on the
strategy-dependent volatility of the observed price that will lead to fully non-linear
parabolic pricing equation. In fact, the following result holds true:

Lemma 2.1 Consider a hedging strategy δ which is a function of time and the
observed price S at time t: δt ≡ δ(St , t). Then, the observed price dynamics (2.24)
can be rewritten as

(1 − γ λSt
∂δ

∂S
)
dSt
St

= dXt + d A′
t , (2.25)

where A′ is another predictable, continuous process of bounded variation.

Proof Use Itō’s lemma in Eq. (2.24).
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2.4.2 Cost of a Strategy and Optimality Conditions

At this stage, we are not concerned with the actual optimality—with respect to local-
risk minimization—of pseudo-optimal solutions, but rather, with pseudo-optimality
in continuous time. Hence, we shall use Eqs. (2.12) and (2.23) as a starting point
when passing to the continuous time limit.

Thanks to g′(0) = 0, there holds the

Proposition 2.1 The cost process of an admissible hedging strategy (δ, V ) is given
by

Ct ≡
∫ t

0
(dVu − δdSu + 1

2
Sug′′(0)d < δ, δ >u). (2.26)

Moreover, anadmissible strategy is (pseudo-)optimal iff it satisfies the two conditions

• C is a martingale
• C is orthogonal to the supply price process S̄, with

d S̄t = dSt + St ((1 − 2γ )λdδt + μd < δ, δ >t ) (2.27)

and μ = 1
2 (λ

2(γ 3 + (1 − γ )3)).

In particular, if C is pseudo-optimal, there holds that

d < C, S̄ >t≡ d < V, S >t −δd < S, S >t +(1 − 2γ )λSt d < V, δ >t −δSt (1 − 2γ )λd < δ, S >t= 0.
(2.28)

2.5 Complete Market: The Single Asset Case

It is of course interesting and useful to fully characterize the hedging and pricing
strategy in the case of a complete market. Hence, we assume in this section that the
driving factor X is a one-dimensional Wiener process W and that F is its natural
filtration, so that the increment of the observed price is simply

dSt = St (σdWt + γ λdδt + d At ) (2.29)

where the “unperturbed” volatility σ is supposed to be constant. We also make the
Markovian assumption that the strategy is a function of the state variable S and of
time.

Under this set of assumptions, perfect replication is considered: the cost process
C has to be identically 0, and Eq. (2.26) yields the two conditions

∂V

∂S
= δ, (2.30)
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and
∂V

∂t
+ 1

2

(
∂2V

∂S2
+ Stg′′(0)

(
∂2V

∂S2

)2
)
d < S, S >t

dt
= 0. (2.31)

Applying Lemma 2.1 yields

(1 − γ λSt
∂δ

∂S
)
dSt
St

= σdWt + d A′
t (2.32)

leading to
d < S, S >t

dt
= σ 2S2t

(1 − γ λSt
∂δ
∂S )

2
. (2.33)

Hence, taking (2.30) into account, there holds

∂V

∂t
+ 1

2

(
∂2V

∂S2
+ g′′(0)St

(
∂2V

∂S2

)2
)

σ 2S2t
(1 − γ λSt

∂δ
∂S )

2
= 0 (2.34)

or, using (2.30) and the identity g′′(0) = (1 − 2γ )λ:

∂V

∂t
+ 1

2

(
∂2V

∂S2

(

1 + (1 − 2γ )λSt
∂2V

∂S2

))
σ 2S2t

(1 − γ λSt
∂2V
∂S2 )2

= 0. (2.35)

Equation (2.35) can be seen as the pricing equation in our model: any contingent
claim can be perfectly replicated at zero cost, as long as one can exhibit a solution
to (2.35). Consequently, of the utmost importance is the parabolicity of the pricing
equation (2.35).

For instance, the case γ = 1 corresponding to a full market impact (no relaxation)
yields the following equation

∂V

∂t
+ 1

2

∂2V

∂S2
σ 2S2

(1 − γ λS ∂2V
∂S2 )

= 0, (2.36)

which can be shown to be parabolic, see (Loeper 2013). In fact, there holds the sharp
result

Theorem 2.1 Let us assume that 2
3 � γ � 1. Then, there holds:

• The non-linear backward partial differential operator

V → ∂V

∂t
+ 1

2

(

1 + (1 − 2γ )λS
∂2V

∂S2

)
σ 2S2

(1 − γ λS ∂2V
∂S2 )2

∂2V

∂S2
(2.37)

is parabolic.



30 F. Abergel and G. Loeper

• Every European-style contingent claim with payoff Φ satisfying the terminal con-
straint

sup
S∈R+

(

S
∂2Φ

∂S2

)

<
1

γ λ
(2.38)

can be perfectly replicated via a δ-hedging strategy given by the unique, smooth
away from T , solution to Eq. (2.35).

Proof The parabolic nature of the operator is determined by the monotonicity with
respect to p of the function

p → F(p) = p(1 + (1 − 2γ )p)

(1 − γ p)2
. (2.39)

A direct computation shows that F ′(p) has the sign of 1 + (2 − 3γ )p, so that F
is globally monotonic increasing on its domain of definition whenever 2

3 � γ � 1.
Now, given that the payoff satisfies the terminal constraint, some deep results on
the maximum principle for the second derivative of the solution of nonlinear par-
abolic equations, see e.g. (Wang 1992a, b), ensure that the same constraint is satisfied
globally for t � T , and therefore, (2.36) is globally well-posed. As a consequence,
the stochastic differential equation determining the price of the asset has a classical,
strong solution up to time T .

In order to keep this paper self-contained, we provide a straightforward proof of
the maximum principle for the second derivative of V in the more general case where
the volatility can be state- and time-dependent, as follows: differentiating twice (2.36)
with respect to S yields the following equation

∂U

∂t
+ ∂2

∂S2

(
σ 2S

2λ
F(U )

)

= 0, (2.40)

where U ≡ λS ∂2V
∂S2 . Assuming for the moment that this is legitimate, we introduce a

new unknown function Z = σ 2S
2λ F(U ), so that Z is formally the solution to

∂

∂t

(

F−1

(
2λZ

σ 2S

))

+ ∂2Z

∂S2
= 0, (2.41)

rewritten under the form

∂Z

∂t
+ σ 2S

2λ
F ′(F−1(Z))

∂2Z

∂S2
−

∂σ 2

∂t

σ 2
Z = 0. (2.42)

As a final change of unknown function, let us introduce Y ≡ Z
S , a solution to

∂Y

∂t
+ σ 2S

2λ
F ′(F−1(SY ))

∂2Y

∂S2
+ σ 2S

λ
F ′(F−1(SY ))

∂Y

∂S
−

∂σ 2

∂t

σ 2
Y = 0. (2.43)
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At this stage, and under the only natural and trivial assumption that the coefficient
∂σ2

∂t
σ 2 of the 0th term is bounded, one can apply the classical maximum principle for
a smooth solution of (2.43): upon multiplying the unknown function Y by some
exponential time-dependent function eα(T−t), α large enough, one easily shows that
a solution of (2.43) cannot have a local positive maximum or negative minimum;
hence, it is uniformly bounded over any time interval [0, T ] if its terminal condition
is. Once this a priori estimate is proven, the method of continuity allows one to
obtain a unique, smooth classical solution (Ladyzhenskaya et al. 1968; Gilbarg and
Trudinger 1998). Then, applying in reverse order the various changes of unknown
function, one constructs the unique smooth, classical solution to the original equation
(2.35), satisfying by construction the constraint (2.38) everywhere.

As a consequence, there exists a classical, strong solution to the SDE (2.38)—
since the denominator is bounded away from 0—and the cost process introduced in
Proposition 2.1 is well-defined, and identically 0. Hence, the perfect replication is
possible.

Clearly, the constraint on the second derivative is binding, in that it is necessary
to ensure the existence of the asset price itself. See however Sect. 2.8 for a discussion
of other situations.

2.6 Complete Market: The Multi-asset Case

Consider a complete market described by d state variables X = X1, . . . , Xd : one can
think for instance of a stochastic volatility model with X1 = S and X2 = σ when
option-based hedging is available. Using tradable market instruments, one is able
to generate d hedge ratio δ = δ1, . . . , δd with respect to the independent variables
X1, . . . , Xd , that is, one can buy a combination of instruments whose price P(t, X)

satisfies
∂Xi P = δi . (2.44)

We now introduce two matrices, Λ1 and Λ2. Λ1 accounts for the liquidity costs, so
that its entry Λ1

i j measures the virtual impact on Asset i of a transaction on Asset j :
according to the simplified view of the order book model presented in Sect. 2.2.3, it
would be natural to assume that Λ1 is diagonal, but it is not necessary, and we will
not make this assumption in the derivations that follow.

As for Λ2, it measures the permanent impact, and need not be diagonal.
When d = 1, Λ1 and Λ2 are linked to the notations in Sect. 2.4 by

Λ1 = λS,Λ2 = γ λS.

Note that here, we proceed directly in the continuous time case, so that the actual
shape of the order book plays a role only through its Taylor expansion around 0;
hence, the use of the “linearized” impact via the matrices Λi .
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The pricing equation is derived along the same lines as in Sect. 2.4: the dynamics
of the observed price change can be written as

dXt = d X̂t + d At + Λ2dδt , (2.45)

the d-dimensional version of (2.24).
Again, a straightforward application of Itō’s formula in aMarkovian setting yields

the dynamics of the observed price

dXt = (I − Λ2Dδ)−1d X̂t + d A′
t . (2.46)

where Dδ contains the first-order terms in the differential of δ, in matrix form
(Dδ)i j = ∂δi

∂Sj
.

Denote by V the value of the hedging portfolio. The d-dimensional version of
Proposition 2.1 for the incremental cost of hedging is

dCt = dVt −
d∑

i=1

δi d X
i
t + 1

2
Trace((Λ1 − 2Λ2)d < δ, δ >t ). (2.47)

The market being complete, the perfect hedge condition dCt = 0 yields the usual
delta-hedging strategy

∂V

∂Xi
= δi , (2.48)

so that one can now write Dδ = Γ , where Γ is the Hessian of V , and therefore, the
pricing equation is

∂t V + 1

2
Trace

(

Γ
d < X, X >t

dt

)

= Trace

(

Γ

(

Λ2 − 1

2
Λ1

)

Γ
d < X, X >t

dt

)

.

(2.49)
Using (2.46), one obtains

∂t V + 1

2
Trace

[
(Γ (I − (2Λ2 − Λ1)Γ ))(MΣMT)

] = 0. (2.50)

where we have set Σ = d<X̂ ,X̂>t
dt , M = (I − Λ2Γ )−1 and MT is the transpose of the

matrix M .
In the particular case where Λ1 = Λ2 (i.e. no relaxation), the pricing equation

becomes

∂t V + 1

2
Trace(Γ Σ((I − ΛΓ )−1)T) = 0 (2.51)
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or, after a few trivial manipulations using the symmetry of the matrices M and Γ ,

∂t V + 1

2
Trace(Γ (I − ΛΓ )−1Σ) = 0. (2.52)

In particular, the 1-dimensional case yields the equation already derived in Loeper
(2013)

∂t V + 1

2

Γ

1 − λSΓ
S2σ 2 = 0, (2.53)

a particular case of Eq. (2.35) with γ = 1. The assessment of well-posedness in a
general setting is related to the monotonicity of the linearized operator, and it may be
cumbersome—if not theoretically challenging—to seek explicit conditions. In the
case of full market impact Λ1 = Λ2 ≡ Λ, there holds the

Proposition 2.2 Assume that the matrix Λ is symmetric. Then, Eq. (2.51) is par-
abolic on the connected component of {det(I − ΛΓ ) > 0} that contains {Γ = 0}.
Proof Let

F(Γ ) = Trace(Γ (I − ΛΓ )−1Σt ),

and
H(Γ ) = Γ (I − ΛΓ )−1.

Denoting by S
+
d the set of d-dimensional symmetric positive matrices, we need to

show that for all dΓ ∈ S
+
d , for all covariance matrix Σ ∈ S

+
d , there holds

F(Γ + dΓ ) ≥ F(Γ ).

Performing a first order expansion yields

H(Γ + dΓ ) − H(Γ ) = Γ (I − ΛΓ )−1ΛdΓ (I − ΛΓ )−1 + dΓ (I − ΛΓ )−1 (2.54)

= (Γ (I − ΛΓ )−1Λ + I )dΓ (I − ΛΓ )−1. (2.55)

Using the elementary Lemma 2.2—stated below without proof—there immediately
follows that

F(Γ + dΓ ) − F(Γ ) = Trace((I − Γ Λ)−1dΓ (I − ΛΓ )−1Σ) (2.56)

= Trace(dΓ (I − ΛΓ )−1Σ(I − Γ Λ)−1). (2.57)

Then, the symmetry condition on Λ allows to conclude the proof of Proposition 2.2.

Lemma 2.2 The following identity holds true for all matrices Γ,Λ:

Γ (I − ΛΓ )−1Λ + I = (I − Γ Λ)−1.
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2.7 The Case of an Incomplete Market

In this section, stochastic volatility is now considered. Clearly, the results obtained
in Sect. 2.6 could apply in this context whenever the market were assumed to be
completed via an option-based hedging strategy. However, it is well-known that
such an assumption is equivalent to a very demanding hypothesis on the realization
of the options dynamics and their associated risk premia, and it may be more realistic
to assume that the market remains incomplete, and then, study a hedging strategy
based on the underlying asset only. As we shall see below, such a strategy leads to
more involved pricing and hedging equations.

Let then the observed price process be a solution to the following set of SDE’s

dSt = St (σt dW
1
t + γ λdδt + μt dt) (2.58)

dσt = νt dt + Σt dW
2
t (2.59)

where (W 1,W 2) is a two-dimensional Wiener process under P with correlation ρ:

d < W 1,W 2 >t= ρdt,

and the processes μt , νt and Σt are actually functions of the state variables S, σ .
Consider again a Markovian framework, thereby looking for the value process V

and the optimal strategy δ as smooth functions of the state variables

δt = δ(St , σt , t)

Vt = V (St , σt , t).

Then, the dynamics of the observed price becomes

dSt = St
1 − γ λSt

∂δ
∂S

(

σt dW
1
t + γ λ

∂δ

∂σ
dσt + dQt

)

, (2.60)

the orthogonality condition reads

(
∂V

∂S
− δ

)

d < S, S̄ >t +∂V

∂σ
d < σ, S̄ >t= 0 (2.61)

and the pricing equation for the value function V is

∂V

∂t
+ 1

2

(
∂2V

∂S2
− γ λSt

(
∂δ

∂S

)2
)
d < S, S >t

dt
+ 1

2

(
∂2V

∂σ 2 − γ λSt

(
∂δ

∂σ

)2
)
d < σ, σ >t

dt
+

+
(

∂2V

∂σ∂S
− γ λSt

∂δ

∂σ

∂δ

∂S

)
d < S, σ >t

dt
+ L1V = 0, (2.62)

where L1 is a first-order partial differential operator.
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Equations (2.61) and (2.62) are quite complicated. In the next paragraph, we focus
on a particular case that allows one to fully assess their well-posedness.

2.7.1 The Case γ = 1, ρ = 0

When γ = 1, the martingale component of the supply price does not depend on the
strategy anymore. As a matter of fact, the supply price dynamics is given by

d S̄t = dSt + St

(

(1 − 2γ )λdδt + 1

2
μd < δ, δ >t

)

,

see (2.27), and therefore, using (2.58), there holds that

d S̄t = St (σt dW
1
t + λ(1 − γ )dδt + dRt ) ≡ St (σt dW

1
t + dRt ), (2.63)

where R is a process of bounded variation. If, in addition, the Wiener processes
for the asset and the volatility are supposed to be uncorrelated: ρ = 0, the tedious
computations leading to the optimal hedge and value function simplify, and one
can study in full generality the well-posedness of the pricing and hedging equations
(2.61) and (2.62).

First and foremost, the orthogonality condition (2.61) simply reads in this case

δ = ∂V

∂S
, (2.64)

exactly as in the complete market case. This is a standard result in local-risk mini-
mization with stochastic volatility when there is no correlation.

As for the pricing equation (2.62), one first works out using (2.64) the various
brackets in (2.62) and finds that

d < S, S >t

dt
=

(

1 − λSt
∂2V

∂S2

)−2

(σ 2
t S

2
t + λ2S2t

(
∂2V

∂S∂σ
)2Σ2

t

)

, (2.65)

d < σ, σ >t

dt
= Σ2 (2.66)

and
d < S, σ >t

dt
=

(

1 − λSt
∂2V

∂S2

)−1

λStΣ
2
t

∂2V

∂S∂σ
. (2.67)

Plugging these expressions in (2.62) yields the pricing equation for V
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∂V

∂t
+ 1

2

∂2V

∂S2

(

1 − λS

(
∂2V

∂S2

))−1
(

σ 2
t S

2 + λ2S2
(

∂2V

∂S∂σ

)2

Σ2
t

)

+ 1

2

(
∂2V

∂σ 2 − λS

(
∂2V

∂S∂σ

)2
)

Σ2+

λSΣ2
t

(
∂2V

∂S∂σ

)2

+ L1V = 0, (2.68)

or, after a few final rearrangements,

∂V

∂t
+ σ 2

t S
2

2(1 − λS( ∂2V
∂S2

))

∂2V

∂S2
+ 1

2

∂2V

∂σ 2 Σ2 + 1

2

λSΣ2

(1 − λS( ∂2V
∂S2

))

(
∂2V

∂σ∂S

)2

+ L1V = 0.

(2.69)

The main result of this section is the

Proposition 2.3 Equation (2.69) is of parabolic type.

Proof One has to study the monotocity of the operator

L : V → L (V ) ≡ σ 2
t S

2

2(1 − λS( ∂2V
∂S2

))

∂2V

∂S2
+ 1

2

∂2V

∂σ 2 Σ2 + 1

2

λSΣ2

(1 − λS( ∂2V
∂S2

))

(
∂2V

∂σ∂S

)2

.

(2.70)

Introducing the classical notations

p ≡
(
p11 p12
p21 p22

)

(2.71)

with p11 = ∂2V
∂S2 , p12 = p21 = ∂2V

∂S∂σ
and p22 = ∂2V

∂σ 2 and defining

L(S,p) ≡ σ 2
t S

2 p11
(1 − λSp11)

+ Σ2 p22 + λSΣ2

(1 − λSp11)
p212, (2.72)

one is led to study the positivity of the 2 × 2 matrix

⎛

⎝

∂L
∂p11

1
2

∂L
∂p12

1
2

∂L
∂p12

∂L
∂p22

⎞

⎠ . (2.73)

Setting F(p11) = σ 2S2 p11
1−λSp11

and D(p11) = 1 − λSp11, one needs to show that the
matrix H(p) ⎛

⎝
F ′(p11) + (λSΣ)2

p212
D2 λSΣ2 p12

D

λSΣ2 p12
D Σ2

⎞

⎠ (2.74)
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is positive. This result is trivially shown to be true by computing the trace and
determinant of H(p):

Tr(H(p)) = F ′(p11) + Σ2 + (λSΣ)2
p212
D2

(2.75)

and
Det (H(p)) = Σ2F ′(p11) (2.76)

and using the fact that F is a monotonically increasing function.
This ends the proof of Proposition 2.3.

As a final remark, we point out that the condition on the payoff for (2.69) to have a
global, smooth solution, is exactly the same as in the one-dimensional case: stochastic
volatility does not impose further constraints, except the now imperfect replication
strategy.

2.8 Concluding Remarks

In this work, we model the effect of liquidity costs and market impact on the pricing
and hedging of derivatives, using a static order book description and introducing
a numerical parameter measuring the level of asymptotic market impact. In the
complete market case, a structural result characterizing the well-posedness of the
strategy-dependent diffusion is proven. Extensions to incomplete markets and non-
linear hedging strategies are also considered.

We conclude with a discussion of the two conditions that play a fundamental role
in our results.

2.8.1 The Condition γ ∈ [2
3, 1

]

Of interest is the interpretation of the condition on the resilience parameter: 2
3 �

γ � 1.
The case γ > 1 is rather trivial to understand, as one can easily see that it leads

to arbitrage by a simple round-trip trade. The case γ < 2
3 is not so simple. The loss

of monotonicity of the function F(p) = p(1+(1−2γ )p)
(1−γ p)2 for γ < 2

3 yields the existence
of p1, p2 such that p1 < p2 but F(p1) > F(p2), which will lead to an inconsistency
in the perfectly replicating strategies, as we now show.

Recall that the price of the replicating strategy solves the equation

∂V

∂t
+ 1

2
σ 2SF

(

S
∂2V

∂S2

)

= 0, (2.77)
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and assume that there exists p ∈ R with F ′(p) < 0. One can then find two values
p1 < p2 such that F(p1) > F(p2). Consider now two contingent claimsΦ1, Φ2 sat-
isfying S ∂2Φi

∂S2 ≡ pi , i = 1, 2, together with ∂Φ
∂S (S0) = 0, Φi (S0) = 0 for some given

S0 > 0. Under these assumptions,Φ2(S) ≥ Φ1(S) for all S. Then, there exist explicit
solutions Vi (t, S) to (2.77) with terminal conditions Φi , i = 1, 2, given simply by
translations in time of the terminal payoff:

Vi (t, S) = Φi (S) + (T − t)
σ 2

2
SF(pi ). (2.78)

Consider the following strategy: sell the terminal payoffΦ1 at priceV1(0, S0),without
hedging, and hedge Φ2 following the replicating strategy given by (2.77).

The final wealth of such a strategy is given by

Wealth(T ) = (Φ2(ST ) − V2(0, S0))︸ ︷︷ ︸
hedge strategy

+ (V1(0, S0) − Φ1(ST ))
︸ ︷︷ ︸

option sold

. (2.79)

Using (2.78), one obtains

Wealth(T ) = T
σ 2

2
S0(F(p1) − F(p2)) + (Φ2(ST ) − Φ2(S0)) − (Φ1(ST ) − Φ1(S0)) ,

(2.80)

which is always positive, given the conditions onΦ1, Φ2, and thereby generates what
may be interpreted as an arbitrage opportunity.

Note that this arbitrage exists both for γ > 1 and γ < 2/3, since it just requires
that F be locally decreasing. However, in the case γ > 1, round-trip trades generate
money and the price dynamics create actual arbitrage opportunities, whereas in the
case γ < 2/3, it is the option prices generated by exact replication strategies that
lead to a potential arbitrage: in order to make a profit, one should find a counterparty
willing to buy an option at its exact replication price.

It is clear that such a “counterexample” is not an arbitrage opportunity per se, as
one has to find a counterparty to this contract—what this means is simply that the
price of the perfect hedge is not the right price for the option.

2.8.2 The Condition S ∂2V
∂S2

< 1
γλ

Another important question has been left aside so far: the behaviour of the solu-
tion to the pricing equation when the constraint is violated at maturity—after all,
this is bound to be the case for a real-life contingent claim such as a call option!
From a mathematical point of view, see the discussion in Loeper (2013), there
is a solution which amounts to replace the pricing equation P(D)(V ) = 0 by
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Max(P(D)(V ), S ∂2V
∂S2 − 1

γ λ
) = 0, but of course, in this case, the perfect replication

does not exist any longer—one should use a super-replicating strategy as introduced
originally in Soner and Touzi (2000) exactly for this purpose.
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