
Chapter 2

Hilbert Spaces

Throughout this book,H is a real Hilbert space with scalar (or inner) product
〈· | ·〉. The associated norm is denoted by ‖ · ‖ and the associated distance by
d, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖x‖ =
√

〈x | x〉 and d(x, y) = ‖x− y‖. (2.1)

The identity operator on H is denoted by Id.
In this chapter, we derive useful identities and inequalities, and we review

examples and basic results from linear and nonlinear analysis in a Hilbert
space setting.

2.1 Notation and Examples

The orthogonal complement of a subset C of H is denoted by C⊥, i.e.,

C⊥ =
{
u ∈ H ∣∣ (∀x ∈ C) 〈x | u〉 = 0

}
. (2.2)

An orthonormal subset C of H is an orthonormal basis of H if spanC = H.
The space H is separable if it possesses a countable orthonormal basis. Now
let (xi)i∈I be a family of vectors in H and let I be the class of nonempty
finite subsets of I, directed by ⊂. Then (xi)i∈I is summable if there exists
x ∈ H such that the net (

∑
i∈J xi)J∈I converges to x, i.e., by (1.26),

(∀ε ∈ R++)(∃K ∈ I)(∀J ∈ I) J ⊃ K ⇒
∥∥
∥∥x−

∑

i∈J

xi

∥∥
∥∥ � ε. (2.3)
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28 2 Hilbert Spaces

In this case we write x =
∑

i∈I xi. For every family (αi)i∈I in [0,+∞], we
have ∑

i∈I

αi = sup
J∈I

∑

i∈J

αi. (2.4)

Here are specific real Hilbert spaces that will be used in this book.

Example 2.1 Let I be a nonempty set. The Hilbert direct sum of a family
of real Hilbert spaces (Hi, ‖ · ‖i)i∈I is the real Hilbert space

⊕

i∈I

Hi =

{
x = (xi)i∈I ∈×

i∈I

Hi

∣∣∣∣
∑

i∈I

‖xi‖2i < +∞
}

(2.5)

equipped with the addition (x,y) �→ (xi + yi)i∈I , the scalar multiplication
(α,x) �→ (αxi)i∈I , and the scalar product

(x,y) �→
∑

i∈I

〈xi | yi〉i , (2.6)

where 〈· | ·〉i denotes the scalar product of Hi (when I is finite, we shall
sometimes adopt a common practice and write×i∈IHi instead of

⊕
i∈I Hi).

Now suppose that, for every i ∈ I, fi : Hi → ]−∞,+∞] and that, if I is
infinite, infi∈I fi � 0. Then

⊕

i∈I

fi :
⊕

i∈I

Hi → ]−∞,+∞] : (xi)i∈I �→
∑

i∈I

fi(xi). (2.7)

Example 2.2 If each Hi is the Euclidean line R in Example 2.1, then we
obtain �2(I) =

⊕
i∈I R, which is equipped with the scalar product (x, y) =

((ξi)i∈I , (ηi)i∈I) �→
∑

i∈I ξiηi. The standard unit vectors (ei)i∈I of �2(I) are
defined by

(∀i ∈ I) ei : I → R : j �→
{
1, if j = i;

0, otherwise.
(2.8)

Example 2.3 If I = {1, . . . , N} in Example 2.2, then we obtain the standard
Euclidean space R

N .

Example 2.4 Let M and N be strictly positive integers. Then R
M×N

denotes the Hilbert space of real M × N matrices equipped with the scalar
product (A,B) �→ tra (ATB), where tra is the trace function. The associated
norm is the Frobenius norm ‖ · ‖F.
Example 2.5 Let N be a strictly positive integer. The Hilbert space S

N is
the subspace of RN×N that consists of all the symmetric matrices.

Example 2.6 Let (Ω,F, μ) be a (positive) measure space. A property is said
to hold μ-almost everywhere (μ-a.e.) on Ω if there exists a set C ∈ F such that
μ(C) = 0 and the property holds on Ω � C. Let (H, 〈· | ·〉H) be a separable
real Hilbert space, and let p ∈ [1,+∞[. Denote by Lp((Ω,F, μ);H) the space
of (equivalence classes of) Borel measurable functions x : Ω → H such that
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∫
Ω
‖x(ω)‖pHμ(dω) < +∞. Then L2((Ω,F, μ);H) is a real Hilbert space with

scalar product (x, y) �→ ∫
Ω
〈x(ω) | y(ω)〉H μ(dω).

Example 2.7 In Example 2.6, let H = R. Then we obtain the real
Banach space Lp(Ω,F, μ) = Lp((Ω,F, μ);R) and, for p = 2, the real
Hilbert space L2(Ω,F, μ), which is equipped with the scalar product (x, y) �→∫
Ω
x(ω)y(ω)μ(dω).

Example 2.8 In Example 2.6, let T ∈ R++, set Ω = [0, T ], and let μ be the
Lebesgue measure. Then we obtain the Hilbert space L2([0, T ];H), which is

equipped with the scalar product (x, y) �→ ∫ T

0
〈x(t) | y(t)〉H dt. In particular,

when H = R, we obtain the classical Lebesgue space L2([0, T ]) = L2([0, T ];R).

Example 2.9 Let (Ω,F,P) be a probability space, i.e., a measure space such
that P(Ω) = 1. A property that holds P-almost everywhere on Ω is said to
hold almost surely (a.s.). A random variable (r.v.) is a measurable function
X : Ω → R, and its expected value is EX =

∫
Ω
X(ω)P(dω), provided that

the integral exists. In this context, Example 2.7 yields the Hilbert space

L2(Ω,F,P) =
{
X r.v. on (Ω,F,P)

∣∣ E|X|2 < +∞}
(2.9)

of random variables with finite second absolute moment, which is equipped
with the scalar product (X,Y ) �→ E(XY ).

Example 2.10 Let T ∈ R++ and let (H, 〈· | ·〉H) be a separable real Hilbert

space. For every y ∈ L2([0, T ];H), the function x : [0, T ] → H : t �→ ∫ t

0
y(s)ds

is differentiable almost everywhere (a.e.) on ]0, T [ with x′(t) = y(t) a.e. on
]0, T [. We say that x : [0, T ] → H belongs to W 1,2([0, T ];H) if there exists
y ∈ L2([0, T ];H) such that

(∀t ∈ [0, T ]) x(t) = x(0) +

∫ t

0

y(s)ds. (2.10)

Alternatively,

W 1,2([0, T ];H) =
{
x ∈ L2([0, T ];H)

∣∣ x′ ∈ L2([0, T ];H)
}
. (2.11)

The scalar product of this real Hilbert space is (x, y) �→ ∫ T

0
〈x(t) | y(t)〉H dt+

∫ T

0
〈x′(t) | y′(t)〉H dt.

2.2 Basic Identities and Inequalities

Fact 2.11 (Cauchy–Schwarz) Let x and y be in H. Then

|〈x | y〉| � ‖x‖ ‖y‖. (2.12)

Moreover, 〈x | y〉 = ‖x‖ ‖y‖ ⇔ (∃α ∈ R+) x = αy or y = αx.
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Lemma 2.12 Let x, y, and z be in H. Then the following hold:

(i) ‖x+ y‖2 = ‖x‖2 + 2 〈x | y〉+ ‖y‖2.
(ii) Parallelogram identity: ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
(iii) Polarization identity: 4 〈x | y〉 = ‖x+ y‖2 − ‖x− y‖2.
(iv) Apollonius’s identity: ‖x−y‖2 = 2‖z−x‖2+2‖z−y‖2−4‖z−(x+y)/2‖2.
Proof. (i): A simple expansion.

(ii)&(iii): It follows from (i) that

‖x− y‖2 = ‖x‖2 − 2 〈x | y〉+ ‖y‖2. (2.13)

Adding this identity to (i) yields (ii), and subtracting it from (i) yields (iii).
(iv): Apply (ii) to the points (z − x)/2 and (z − y)/2. ��

Lemma 2.13 Let x and y be in H. Then the following hold:

(i) 〈x | y〉 � 0 ⇔ (∀α ∈ R+)‖x‖ � ‖x−αy‖ ⇔ (∀α ∈ [0, 1])‖x‖ � ‖x−αy‖.
(ii) x ⊥ y ⇔ (∀α ∈ R) ‖x‖ � ‖x− αy‖ ⇔ (∀α ∈ [−1, 1]) ‖x‖ � ‖x− αy‖.

Proof. (i): Observe that

(∀α ∈ R) ‖x− αy‖2 − ‖x‖2 = α
(
α‖y‖2 − 2 〈x | y〉 ). (2.14)

Hence, the forward implications follow immediately. Conversely, if for every
α ∈ ]0, 1], ‖x‖ � ‖x − αy‖, then (2.14) implies that 〈x | y〉 � α‖y‖2/2. As
α ↓ 0, we obtain 〈x | y〉 � 0.

(ii): A consequence of (i), since x ⊥ y ⇔ [〈x | y〉 � 0 and 〈x | −y〉 � 0]. ��

Lemma 2.14 Let (xi)i∈I and (ui)i∈I be finite families in H and let (αi)i∈I

be a family in R such that
∑

i∈I αi = 1. Then the following hold:

(i)
〈∑

i∈I αixi |
∑

j∈I αjuj

〉
+
∑

i∈I

∑
j∈I αiαj 〈xi − xj | ui − uj〉 /2

=
∑

i∈I αi 〈xi | ui〉.
(ii)

∥∥∑
i∈I αixi

∥∥2 +
∑

i∈I

∑
j∈I αiαj‖xi − xj‖2/2 =

∑
i∈I αi‖xi‖2.

Proof. (i): We have

2

〈∑

i∈I

αixi

∣∣∣
∣
∑

j∈I

αjuj

〉

=
∑

i∈I

∑

j∈I

αiαj

(〈xi | uj〉+ 〈xj | ui〉
)

=
∑

i∈I

∑

j∈I

αiαj

(〈xi | ui〉+ 〈xj | uj〉 − 〈xi − xj | ui − uj〉
)

= 2
∑

i∈I

αi 〈xi | ui〉 −
∑

i∈I

∑

j∈I

αiαj 〈xi − xj | ui − uj〉 . (2.15)

(ii): This follows from (i) when (ui)i∈I = (xi)i∈I . ��



2.3 Linear Operators and Functionals 31

The following two results imply that Hilbert spaces are uniformly convex
and strictly convex Banach spaces, respectively.

Corollary 2.15 Let x ∈ H, let y ∈ H, and let α ∈ R. Then

‖αx+ (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1− α)‖y‖2. (2.16)

Corollary 2.16 Suppose that x and y are distinct points in H such that
‖x‖ = ‖y‖, and let α ∈ ]0, 1[. Then ‖αx+ (1− α)y‖ < ‖x‖.
Proof. An immediate consequence of Corollary 2.15. ��
Lemma 2.17 Let (x, y) ∈ H ×H. Then the following hold:

(i) Let α ∈ ]0, 1[. Then

α2
(‖x‖2 − ‖(1− α−1)x+ α−1y‖2)

= (2α− 1)‖x‖2 + 2(1− α) 〈x | y〉 − ‖y‖2
= 2(1− α) 〈x | y〉 − (‖y‖2 + (1− 2α)‖x‖2)

= α
(‖x‖2 − α−1(1− α)‖x− y‖2 − ‖y‖2).

(ii) We have

‖x‖2 − ‖2y − x‖2 = 4
( 〈x | y〉 − ‖y‖2)

= 4 〈x− y | y〉
= 2

(‖x‖2 − ‖x− y‖2 − ‖y‖2).

Proof. (i): These identities follow from Lemma 2.12(i).
(ii): Divide by α2 in (i) and set α = 1/2. ��
The following inequality is classical.

Fact 2.18 (Hardy–Littlewood–Pólya) (See [196, Theorems 368 and
369]) Let x and y be in R

N , and let x↓ and y↓ be, respectively, their re-
arrangement vectors with entries ordered decreasingly. Then

〈x | y〉 � 〈x↓ | y↓〉 , (2.17)

and equality holds if and only if there exists a permutation matrix P of size
n× n such that Px = x↓ and Py = y↓.

2.3 Linear Operators and Functionals

Let X and Y be real normed vector spaces. We set

B(X ,Y) =
{
T : X → Y ∣∣ T is linear and continuous

}
(2.18)
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and B(X ) = B(X ,X ). Equipped with the norm

(∀T ∈ B(X ,Y)) ‖T‖ = sup
∥∥T (B(0; 1))

∥∥ = sup
x∈X ,
‖x‖�1

‖Tx‖, (2.19)

B(X ,Y) is a normed vector space, and it is a Banach space if Y is a Banach
space.

Example 2.19 Let A ∈ R
M×N . Then A ∈ B(RN ,RM ) and the operator

norm of A given by (2.19) is the spectral norm of A, i.e., the largest singular
value of A, and it is denoted by ‖A‖2. We have ‖A‖2 � ‖A‖F.
Fact 2.20 Let X and Y be real normed vector spaces and let T : X → Y be
linear. Then T is continuous at a point in X if and only if it is Lipschitz
continuous.

Fact 2.21 (See [116, Proposition III.6.1]) Let X , Y, and Z be real normed
vector spaces and let T : X ⊕ Y → Z be a bilinear operator. Then T is
continuous if and only if

(∃β ∈ R+)(∀x ∈ X )(∀y ∈ Y) ‖T (x, y)‖ � β‖x‖ ‖y‖. (2.20)

The following result is also known as the Banach–Steinhaus theorem.

Lemma 2.22 (Uniform boundedness principle) Let X be a real Banach
space, let Y be a real normed vector space, and let (Ti)i∈I be a family of op-
erators in B(X ,Y) that is pointwise bounded, i.e., (∀x ∈ X ) supi∈I ‖Tix‖ <
+∞. Then (Ti)i∈I is uniformly bounded, i.e., supi∈I ‖Ti‖ < +∞.

Proof. Apply Lemma 1.44(i) to
({

x ∈ X ∣∣ supi∈I ‖Tix‖ � n
})

n∈N
. ��

Definition 2.23 Let T : H → H be linear and let α ∈ R++. Then T is:

(i) monotone if (∀x ∈ H) 〈Tx | x〉 � 0;
(ii) strictly monotone if (∀x ∈ H� {0}) 〈Tx | x〉 > 0;
(iii) α-strongly monotone if (∀x ∈ H) 〈Tx | x〉 � α‖x‖2.
The Riesz–Fréchet representation theorem states that every continuous

linear functional on the real Hilbert space H can be identified with a vector
in H.

Fact 2.24 (Riesz–Fréchet representation) Let f ∈ B(H,R). Then there
exists a unique vector u ∈ H such that (∀x ∈ H) f(x) = 〈x | u〉. Moreover,
‖f‖ = ‖u‖.

If K is a real Hilbert space and T ∈ B(H,K), then the adjoint of T is the
unique operator T ∗ ∈ B(K,H) that satisfies

(∀x ∈ H)(∀y ∈ K) 〈Tx | y〉 = 〈x | T ∗y〉 . (2.21)
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Fact 2.25 Let K be a real Hilbert space, let T ∈ B(H,K), and let
kerT =

{
x ∈ H ∣∣ Tx = 0

}
be the kernel of T . Then the following hold:

(i) T ∗∗ = T .
(ii) ‖T ∗‖ = ‖T‖ =

√‖T ∗T‖.
(iii) Suppose that K = H and that T = T ∗. Then

‖T‖ = sup
{|〈Tx | x〉| ∣∣ x ∈ B(0; 1)

}
. (2.22)

(iv) (kerT )⊥ = ranT ∗.
(v) (ranT )⊥ = kerT ∗.
(vi) kerT ∗T = kerT and ranTT ∗ = ranT .
(vii) (graT )⊥ =

{
(u, v) ∈ H ⊕K ∣∣ u = −T ∗v

}
.

Fact 2.26 Let K be a real Hilbert space and let T ∈ B(H,K). Then ranT
is closed ⇔ ranT ∗ is closed ⇔ ranTT ∗ is closed ⇔ ranT ∗T is closed ⇔
(∃α ∈ R++)(∀x ∈ (kerT )⊥) ‖Tx‖ � α‖x‖.

Suppose that H �= {0}. Let f : H → R be nonzero and linear, and let
η ∈ R. A hyperplane in H is a set of the form

{
x ∈ H ∣∣ f(x) = η

}
, (2.23)

and it is closed if and only if f is continuous; if it is not closed, it is dense
in H. Alternatively, let u ∈ H � {0}. Then it follows from Fact 2.24 that a
closed hyperplane in H is a set of the form

{
x ∈ H ∣∣ 〈x | u〉 = η

}
. (2.24)

Moreover, a closed half-space with outer normal u is a set of the form

{
x ∈ H ∣∣ 〈x | u〉 � η

}
, (2.25)

and an open half-space with outer normal u is a set of the form

{
x ∈ H ∣∣ 〈x | u〉 < η

}
. (2.26)

The distance function to C =
{
x ∈ H ∣∣ 〈x | u〉 = η

}
is (see (1.47))

dC : H → R+ : x �→ |〈x | u〉 − η|
‖u‖ . (2.27)

We conclude this section with an example of a discontinuous linear
functional.

Example 2.27 Assume that H is infinite-dimensional and let H be a
Hamel basis of H, i.e., a maximally linearly independent subset. Then H
is uncountable. Indeed, if H =

⋃
n∈N

span{hk}0�k�n for some Hamel basis
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H = {hn}n∈N, then Lemma 1.44(i) implies that some finite-dimensional lin-
ear subspace span{hk}0�k�n has nonempty interior, which is absurd. The
Gram–Schmidt orthonormalization procedure thus guarantees the existence
of an orthonormal set B = {en}n∈N and an uncountable set C = {ca}a∈A

such that B ∪ C is a Hamel basis of H. Thus, every point in H is a (finite)
linear combination of elements in B ∪ C and, therefore, the function

f : H → R : x =
∑

n∈N

ξnen +
∑

a∈A

ηaca �→
∑

n∈N

ξn (2.28)

is well defined and linear. Now take (αn)n∈N ∈ �2(N)� �1(N) (e.g., (∀n ∈ N)
αn = 1/(n+ 1)) and set

(∀n ∈ N) xn =

n∑

k=0

αkek. (2.29)

Then (xn)n∈N converges strongly to some point z ∈ H and f(xn) → +∞.
This proves that f is discontinuous at z and hence discontinuous everywhere
by Fact 2.20. Now set (∀n ∈ N) yn = (xn − f(xn)e0)/max{f(xn), 1}. Then
(yn)n∈N lies in C =

{
x ∈ H ∣∣ f(x) = 0

}
and yn → −e0. On the other hand,

−e0 /∈ C, since f(−e0) = −1. As a result, the hyperplane C is not closed. In
fact, as will be proved in Example 8.42, C is dense in H.

2.4 Strong and Weak Topologies

The metric topology of (H, d) is called the strong topology (or norm topology)
ofH. Thus, a net (xa)a∈A inH converges strongly to a point x if ‖xa−x‖ → 0;
in symbols, xa → x. When used without modifiers, topological notions in H
(closedness, openness, neighborhood, continuity, compactness, convergence,
etc.) will always be understood with respect to the strong topology.

Fact 2.28 Let U and V be closed linear subspaces of H such that V has finite
dimension or finite codimension. Then U + V is a closed linear subspace.

In addition to the strong topology, a very important alternative topology
can be introduced.

Definition 2.29 The family of all finite intersections of open half-spaces of
H forms the base of the weak topology of H; Hweak denotes the resulting
topological space.

Lemma 2.30 Hweak is a Hausdorff space.

Proof. Suppose that x and y are distinct points in H. Set u = x − y and
w = (x+y)/2. Then

{
z ∈ H ∣∣ 〈z − w | u〉 > 0

}
and

{
z ∈ H ∣∣ 〈z − w | u〉 < 0

}

are disjoint weak neighborhoods of x and y, respectively. ��
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A subset of H is weakly open if it is a union of finite intersections of open
half-spaces. If H is infinite-dimensional, nonempty intersections of finitely
many open half-spaces are unbounded and, therefore, nonempty weakly open
sets are unbounded. A net (xa)a∈A in H converges weakly to a point x ∈ H
if, for every u ∈ H, 〈xa | u〉 → 〈x | u〉; in symbols, xa ⇀ x. Moreover (see
Section 1.7), a subset C of H is weakly closed if the weak limit of every weakly
convergent net in C is also in C, and weakly compact if every net in C has a
weak cluster point in C. Likewise (see Section 1.11), a subset C of H is weakly
sequentially closed if the weak limit of every weakly convergent sequence in
C is also in C, and weakly sequentially compact if every sequence in C has a
weak sequential cluster point in C. Finally, let D be a nonempty subset of H,
let K be a real Hilbert space, let T : D → K, and let f : H → [−∞,+∞]. Then
T is weakly continuous if it is continuous with respect to the weak topologies
on H and K, i.e., if, for every net (xa)a∈A in D such that xa ⇀ x ∈ D, we
have Txa ⇀Tx. Likewise, f is weakly lower semicontinuous at x ∈ H if, for
every net (xa)a∈A in H such that xa ⇀x, we have f(x) � lim f(xa).

Remark 2.31 Strong and weak convergence of a net (xa)a∈A in H to a
point x in H can be interpreted in geometrical terms: xa → x means that
d{x}(xa) → 0 whereas, by (2.27), xa ⇀ x means that dC(xa) → 0 for every
closed hyperplane C containing x.

Example 2.32 Suppose that H is infinite-dimensional, let (xn)n∈N be an
orthonormal sequence in H, and let u be a point in H. Bessel’s inequality
yields

∑
n∈N

|〈xn | u〉|2 � ‖u‖2, hence 〈xn | u〉 → 0. Thus xn ⇀ 0. How-
ever, ‖xn‖ ≡ 1 and therefore xn �→ 0. Actually, (xn)n∈N has no Cauchy
subsequence since, for any two distinct positive integers n and m, we have
‖xn − xm‖2 = ‖xn‖2 + ‖xm‖2 = 2. This also shows that the unit sphere{
x ∈ H ∣∣ ‖x‖ = 1

}
is closed but not weakly sequentially closed.

Suppose that H is infinite-dimensional. As seen in Example 2.32, an or-
thonormal sequence in H has no strongly convergent subsequence. Hence, it
follows from Fact 1.39 that the closed unit ball of H is not compact. This
property characterizes infinite-dimensional Hilbert spaces.

Fact 2.33 The following are equivalent:

(i) H is finite-dimensional.
(ii) The closed unit ball B(0; 1) of H is compact.
(iii) The weak topology of H coincides with its strong topology.
(iv) The weak topology of H is metrizable.

In striking contrast, compactness of closed balls always holds in the weak
topology. This fundamental and deep result is known as the Banach–Alaoglu–
Bourbaki theorem.

Fact 2.34 (Banach–Alaoglu–Bourbaki) The closed unit ball B(0; 1) of
H is weakly compact.
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Fact 2.35 (See [192, p. 181] and [2, Theorems 6.30&6.34]) The weak topol-
ogy of the closed unit ball B(0; 1) of H is metrizable if and only if H is
separable.

Lemma 2.36 Let C be a subset of H. Then C is weakly compact if and only
if it is weakly closed and bounded.

Proof. First, suppose that C is weakly compact. Then Lemma 1.12 and
Lemma 2.30 assert that C is weakly closed. Now set C = {〈x | ·〉}x∈C ⊂
B(H,R) and take u ∈ H. Then 〈· | u〉 is weakly continuous. By Lemma 1.20,
{〈x | u〉}x∈C is a compact subset of R, and it is therefore bounded by
Lemma 1.41. Hence, C is pointwise bounded, and Lemma 2.22 implies that
supx∈C ‖x‖ < +∞, i.e., that C is bounded. Conversely, suppose that C is
weakly closed and bounded, say C ⊂ B(0; ρ) for some ρ ∈ R++. By Fact 2.34,
B(0; ρ) is weakly compact. Using Lemma 1.12 in Hweak, we deduce that C is
weakly compact. ��

The following important fact states that weak compactness and weak se-
quential compactness coincide.

Fact 2.37 (Eberlein–Šmulian) Let C be a subset of H. Then C is weakly
compact if and only if it is weakly sequentially compact.

Corollary 2.38 Let C be a subset of H. Then the following are equivalent:

(i) C is weakly compact.
(ii) C is weakly sequentially compact.
(iii) C is weakly closed and bounded.

Proof. Combine Lemma 2.36 and Fact 2.37. ��
Lemma 2.39 Let C be a bounded subset of H. Then C is weakly closed if
and only if it is weakly sequentially closed.

Proof. If C is weakly closed, it is weakly sequentially closed. Conversely,
suppose that C is weakly sequentially closed. By assumption, there exists
ρ ∈ R++ such that C ⊂ B(0; ρ). Since B(0; ρ) is weakly sequentially compact
by Fact 2.34 and Fact 2.37, it follows from Lemma 2.30 and Lemma 1.34 that
C is weakly sequentially compact. In turn, appealing once more to Fact 2.37,
we obtain the weak compactness of C and therefore its weak closedness by
applying Lemma 1.12 in Hweak. ��
Remark 2.40 As will be seen in Example 3.33, weakly sequentially closed
sets need not be weakly closed.

Lemma 2.41 Let K be a real Hilbert space, and let T : H → K be a contin-
uous affine operator. Then T is weakly continuous.
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Proof. Set L : x �→ Tx − T0, let x ∈ H, let y ∈ K, and let (xa)a∈A be a
net in H such that xa ⇀ x. Then L ∈ B(H,K) and 〈xa | L∗y〉 → 〈x | L∗y〉.
Hence, 〈Lxa | y〉 → 〈Lx | y〉, i.e., Lxa ⇀Lx. We conclude that Txa = T0 +
Lxa ⇀T0 + Lx = Tx. ��
Lemma 2.42 The norm of H is weakly lower semicontinuous, i.e., for every
net (xa)a∈A in H and every x in H, we have

xa ⇀x ⇒ ‖x‖ � lim ‖xa‖. (2.30)

Proof. Take a net (xa)a∈A in H and a point x in H such that xa ⇀x. Then,
by Cauchy–Schwarz, ‖x‖2 = lim |〈xa | x〉| � lim ‖xa‖ ‖x‖. ��
Lemma 2.43 Let G and K be real Hilbert spaces and let T : H ⊕ G → K be
a bilinear operator such that

(∃β ∈ R++)(∀x ∈ H)(∀u ∈ G) ‖T (x, u)‖ � β‖x‖ ‖u‖. (2.31)

Let (xa)a∈A be a net in H, let (ua)a∈A be a net in G, let x ∈ H, and let
u ∈ G. Suppose that (xa)a∈A is bounded, that xa⇀x, and that ua → u. Then
T (xa, ua)⇀T (x, u).

Proof. Since supa∈A ‖xa‖ < +∞ and ‖ua − u‖ → 0, we have ‖T (xa, ua −
u)‖ � β(supb∈A ‖xb‖)‖ua − u‖ → 0. On the other hand, T (·, u) ∈ B(H,K)
by Fact 2.21. Thus, T (·, u) is weakly continuous by Lemma 2.41. In turn,
T (xa − x, u)⇀T (0, u) = 0. Altogether T (xa, ua)−T (x, u) = T (xa, ua −u)+
T (xa − x, u)⇀ 0. ��
Lemma 2.44 Let (xa)a∈A and (ua)a∈A be nets in H, and let x and u be
points in H. Suppose that (xa)a∈A is bounded, that xa⇀x, and that ua → u.
Then 〈xa | ua〉 → 〈x | u〉.
Proof. Apply Lemma 2.43 to G = H, K = R, and F = 〈· | ·〉. ��

2.5 Weak Convergence of Sequences

Lemma 2.45 Let (xn)n∈N be a bounded sequence in H. Then (xn)n∈N pos-
sesses a weakly convergent subsequence.

Proof. First, recall from Lemma 2.30 that Hweak is a Hausdorff space. Now
set ρ = supn∈N ‖xn‖ and C = B(0; ρ). Fact 2.34 and Fact 2.37 imply that
C is weakly sequentially compact. Since (xn)n∈N lies in C, the claim follows
from Definition 1.33. ��
Lemma 2.46 Let (xn)n∈N be a sequence in H. Then (xn)n∈N converges
weakly if and only if it is bounded and possesses at most one weak sequential
cluster point.
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Proof. Suppose that xn ⇀ x ∈ H. Then it follows from Lemma 2.30 and
Fact 1.9 that x is the unique weak sequential cluster point of (xn)n∈N. More-
over, for every u ∈ H, 〈xn | u〉 → 〈x | u〉 and therefore supn∈N |〈xn | u〉| < +∞.
Upon applying Lemma 2.22 to the sequence of continuous linear functionals
(〈xn | ·〉)n∈N, we obtain the boundedness of (‖xn‖)n∈N. Conversely, suppose
that (xn)n∈N is bounded and possesses at most one weak sequential cluster
point. Then Lemma 2.45 asserts that it possesses exactly one weak sequen-
tial cluster point. Moreover, it follows from Fact 2.34 and Fact 2.37 that
(xn)n∈N lies in a weakly sequentially compact set. Therefore, appealing to
Lemma 2.30, we apply Lemma 1.35 in Hweak to obtain the conclusion. ��
Lemma 2.47 Let (xn)n∈N be a sequence in H and let C be a nonempty
subset of H. Suppose that, for every x ∈ C, (‖xn−x‖)n∈N converges and that
every weak sequential cluster point of (xn)n∈N belongs to C. Then (xn)n∈N

converges weakly to a point in C.

Proof. By assumption, (xn)n∈N is bounded. Therefore, in view of Lemma 2.46,
it is enough to show that (xn)n∈N cannot have two distinct weak sequential
cluster points in C. To this end, let x and y be weak sequential cluster points
of (xn)n∈N in C, say xkn

⇀ x and xln ⇀ y. Since x and y belong to C, the
sequences (‖xn − x‖)n∈N and (‖xn − y‖)n∈N converge. In turn, since

(∀n ∈ N) 2 〈xn | x− y〉 = ‖xn − y‖2 − ‖xn − x‖2 + ‖x‖2 − ‖y‖2, (2.32)

(〈xn | x− y〉)n∈N converges as well, say 〈xn | x− y〉 → �. Passing to the limit
along (xkn

)n∈N and along (xln)n∈N yields, respectively, � = 〈x | x− y〉 =
〈y | x− y〉. Therefore, ‖x− y‖2 = 0 and hence x = y. ��
Proposition 2.48 Suppose that (yn)n∈N is an orthonormal sequence in H
and let (xn)n∈N be a sequence in H such that xn − yn → 0. Then xn ⇀ 0.

Proof. This follows from Example 2.32. ��
The next result provides a partial converse to Proposition 2.48.

Proposition 2.49 Suppose that (xn)n∈N is a sequence in H such that xn⇀0
and (∀n ∈ N) ‖xn‖ = 1. Then there exist an orthonormal sequence (yn)n∈N

in H and a subsequence (xkn
)n∈N of (xn)n∈N such that xkn

− yn → 0.

Proof. Let (εn)n∈N be a sequence in ]0, 1/2[ such that εn → 0. Set
V = span {xn}n∈N and let (en)n∈N be an orthonormal basis of V . Let l0 ∈ N.

Since xn⇀0, there exists k0 ∈ N such that u0 =
∑l0

i=0 〈xk0
| ei〉 ei ∈ B(0; ε0).

Because (en)n∈N is an orthonormal basis of V , there exists l1 ∈ N such that
l1 > l0 and w0 =

∑
i�l1+1 〈xk0

| ei〉 ei ∈ B(0; ε0). We continue in this fash-
ion and thus obtain inductively two strictly increasing sequences (ln)n∈N and
(kn)n∈N in N such that

(∀n ∈ N) un =

ln∑

i=0

〈xkn
| ei〉 ei ∈ B(0; εn) (2.33)
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and
(∀n ∈ N) wn =

∑

i�ln+1+1

〈xkn
| ei〉 ei ∈ B(0; εn). (2.34)

Now set

(∀n ∈ N) vn =

ln+1∑

i=ln+1

〈xkn
| ei〉 ei = xkn

− un − wn. (2.35)

Then (∀n ∈ N) 1 = ‖xkn
‖ � ‖vn‖ � ‖xkn

‖ − ‖un‖ − ‖wn‖ � 1 − 2εn > 0
and ‖xkn

− vn‖ � ‖un‖ + ‖wn‖ � 2εn. Moreover, (vn)n∈N is an orthogonal
sequence since (en)n∈N is an orthonormal basis of V . Finally, set (∀n ∈ N)
yn = vn/‖vn‖. Then (yn)n∈N is an orthonormal sequence in H and (∀n ∈ N)
‖xkn

−yn‖ � ‖xkn
−vn‖+‖vn−yn‖ = ‖xkn

−vn‖+(1−‖vn‖) � 4εn → 0. ��
Proposition 2.50 Let (ei)i∈I be a family in H such that span {ei}i∈I = H,
let (xn)n∈N be a sequence in H, and let x be a point in H. Then the following
are equivalent:

(i) xn ⇀x.
(ii) (xn)n∈N is bounded and (∀i ∈ I) 〈xn | ei〉 → 〈x | ei〉 as n → +∞.

Proof. (i)⇒(ii): Lemma 2.46.
(ii)⇒(i): Set (yn)n∈N = (xn−x)n∈N. Lemma 2.45 asserts that (yn)n∈N pos-

sesses a weak sequential cluster point y, say ykn
⇀y. In view of Lemma 2.46,

it suffices to show that y = 0. For this purpose, fix ε ∈ R++. Then there
exists a finite subset J of I such that ‖y − z‖ supn∈N ‖ykn

‖ � ε, where
z =

∑
j∈J 〈y | ej〉 ej . Thus, by Cauchy–Schwarz,

(∀n ∈ N) |〈ykn
| y〉| � |〈ykn

| y − z〉|+ |〈ykn
| z〉|

� ε+
∑

j∈J

|〈y | ej〉| |〈ykn
| ej〉| . (2.36)

Hence lim |〈ykn
| y〉| � ε. Letting ε ↓ 0 yields ‖y‖2 = lim 〈ykn

| y〉 = 0. ��
Lemma 2.51 Let (xn)n∈N and (un)n∈N be sequences in H, and let x and u
be points in H. Then the following hold:

(i)
[
xn ⇀x and lim ‖xn‖ � ‖x‖] ⇔ xn → x.

(ii) Suppose that H is finite-dimensional. Then xn ⇀x ⇔ xn → x.
(iii) Suppose that xn ⇀x and un → u. Then 〈xn | un〉 → 〈x | u〉.
Proof. (i): Suppose that xn ⇀ x and that lim ‖xn‖ � ‖x‖. Then it follows
from Lemma 2.42 that ‖x‖ � lim ‖xn‖ � lim ‖xn‖ � ‖x‖, hence ‖xn‖ → ‖x‖.
In turn, ‖xn − x‖2 = ‖xn‖2 − 2 〈xn | x〉 + ‖x‖2 → 0. Conversely, suppose
that xn → x. Then ‖xn‖ → ‖x‖ by continuity of the norm. On the other
hand, xn ⇀ x since for every n ∈ N and every u ∈ H, the Cauchy–Schwarz
inequality yields 0 � |〈xn − x | u〉| � ‖xn − x‖ ‖u‖.



40 2 Hilbert Spaces

(ii): Set dimH = m and let (ek)1�k�m be an orthonormal basis of H. Now

assume that xn ⇀x. Then ‖xn − x‖2 =
∑m

k=1 |〈xn − x | ek〉|2 → 0.
(iii): Combine Lemma 2.44 and Lemma 2.46. ��
The combination of Lemma 2.42 and Lemma 2.51(i) yields the following

characterization of strong convergence.

Corollary 2.52 Let (xn)n∈N be a sequence in H and let x be in H. Then
xn → x ⇔ [

xn ⇀x and ‖xn‖ → ‖x‖].
We conclude this section with a consequence of Ostrowski’s theorem (The-

orem 1.49).

Lemma 2.53 Suppose that H is finite-dimensional and let (xn)n∈N be a
bounded sequence in H such that xn − xn+1 → 0. Then the set of cluster
points of (xn)n∈N is compact and connected.

2.6 Differentiability

In this section, K is a real Banach space.

Definition 2.54 Let C be a nonempty subset of H, let T : C → K, and
suppose that x ∈ C is such that (∀y ∈ H)(∃α ∈ R++) [x, x+ αy] ⊂ C. Then
T is Gâteaux differentiable at x if there exists an operator DT (x) ∈ B(H,K),
called the Gâteaux derivative of T at x, such that

(∀y ∈ H) DT (x)y = lim
α↓0

T (x+ αy)− T (x)

α
. (2.37)

Moreover, T is Gâteaux differentiable on C if it is Gâteaux differentiable at
every point in C. Higher-order Gâteaux derivatives are defined inductively.
Thus, the second Gâteaux derivative of T at x is the operator D2T (x) ∈
B(H,B(H,K)) that satisfies

(∀y ∈ H) D2T (x)y = lim
α↓0

DT (x+ αy)− DT (x)

α
. (2.38)

The Gâteaux derivative DT (x) in Definition 2.54 is unique whenever it
exists (Exercise 2.23). Moreover, since DT (x) is linear, for every y ∈ H, we
have DT (x)y = −DT (x)(−y), and we can therefore replace (2.37) by

(∀y ∈ H) DT (x)y = lim
0 �=α→0

T (x+ αy)− T (x)

α
. (2.39)

Remark 2.55 Let C be a subset of H, let f : C → R, and suppose that f
is Gâteaux differentiable at x ∈ C. Then, by Fact 2.24, there exists a unique
vector ∇f(x) ∈ H such that
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(∀y ∈ H) Df(x)y = 〈y | ∇f(x)〉 . (2.40)

We call ∇f(x) the Gâteaux gradient of f at x. If f is Gâteaux differentiable
on C, the gradient operator is ∇f : C → H : x �→ ∇f(x). Likewise, if f is
twice Gâteaux differentiable at x, we can identify D2f(x) with an operator
∇2f(x) ∈ B(H) in the sense that

(∀y ∈ H)(∀z ∈ H) (D2f(x)y)z =
〈
z | ∇2f(x)y

〉
. (2.41)

If the convergence in (2.39) is uniform with respect to y on bounded sets,
then x ∈ intC and we obtain the following notion.

Definition 2.56 Let x ∈ H, let C ∈ V(x), and let T : C → K. Then T is
Fréchet differentiable at x if there exists an operator DT (x) ∈ B(H,K), called
the Fréchet derivative of T at x, such that

lim
0 �=‖y‖→0

‖T (x+ y)− Tx− DT (x)y‖
‖y‖ = 0. (2.42)

Moreover, T is Fréchet differentiable on C if it is Fréchet differentiable at
every point in C. Higher-order Fréchet derivatives are defined inductively.
Thus, the second Fréchet derivative of T at x is the operator D2T (x) ∈
B
(H,B(H,K)

)
that satisfies

lim
0 �=‖y‖→0

‖DT (x+ y)− DTx− D2T (x)y‖
‖y‖ = 0. (2.43)

The Fréchet gradient of a function f : C → R at x ∈ C is defined as in
Remark 2.55. Here are some examples.

Example 2.57 Let L ∈ B(H), let u ∈ H, let x ∈ H, and set f : H →
R : y �→ 〈Ly | y〉 − 〈y | u〉. Then f is twice Fréchet differentiable on H with
∇f(x) = (L+ L∗)x− u and ∇2f(x) = L+ L∗.

Proof. Take y ∈ H. Since

f(x+ y)− f(x) = 〈Lx | y〉+ 〈Ly | x〉+ 〈Ly | y〉 − 〈y | u〉
= 〈y | (L+ L∗)x〉 − 〈y | u〉+ 〈Ly | y〉 , (2.44)

we have

∣
∣f(x+ y)− f(x)− 〈y | (L+ L∗)x− u〉 ∣∣ = |〈Ly | y〉| � ‖L‖ ‖y‖2. (2.45)

In view of (2.42), f is Fréchet differentiable at x with ∇f(x) = (L+L∗)x−u.
In turn, (2.43) yields ∇2f(x) = L+ L∗. ��
Proposition 2.58 Let f : H → R be Gâteaux differentiable, let L ∈ B(H),
and suppose that ∇f = L. Then L = L∗, f : x �→ f(0) + (1/2) 〈Lx | x〉, and
f is twice Fréchet differentiable.
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Proof. Fix x ∈ H and set φ : R → R : t �→ f(tx). Then (∀t ∈ R) φ′(t) =
〈x | ∇f(tx)〉 = 〈x | L(tx)〉 = t 〈x | Lx〉. It follows that f(x) − f(0) = φ(1) −
φ(0) =

∫ 1

0
φ′(t) dt =

∫ 1

0
t 〈Lx | x〉 dt = (1/2) 〈Lx | x〉. We deduce from Exam-

ple 2.57 that f is twice Fréchet differentiable and that L = ∇f = (L+L∗)/2.
Hence, L∗ = L. ��
Example 2.59 Let F : H×H → R be a symmetric bilinear form such that,
for some β ∈ R+,

(∀x ∈ H)(∀y ∈ H) |F (x, y)| � β‖x‖ ‖y‖, (2.46)

let � ∈ B(H,R), let x ∈ H, and set f : H → R : y �→ (1/2)F (y, y)−�(y). Then
f is Fréchet differentiable on H with Df(x) = F (x, ·)− �.

Proof. Take y ∈ H. Then,

f(x+ y)− f(x) = 1
2
F (x+ y, x+ y)− �(x+ y)− 1

2
F (x, x) + �(x)

= 1
2
F (y, y) + F (x, y)− �(y). (2.47)

Consequently, (2.46) yields

2
∣∣f(x+ y)− f(x)− (

F (x, y)− �(y)
)∣∣ = |F (y, y)| � β‖y‖2, (2.48)

and we infer from (2.42) and (2.46) that Df(x)y = F (x, y)− �(y). ��
Example 2.60 Let K be a real Hilbert space, let L ∈ B(H,K), let r ∈ K,
let x ∈ H, and set f : H → R : y �→ ‖Ly − r‖2. Then f is twice Fréchet
differentiable on H with ∇f(x) = 2L∗(Lx− r) and ∇2f(x) = 2L∗L.

Proof. Set F : H × H → R : (y, z) �→ (1/2) 〈L∗Ly | z〉, � : H → R : y �→
〈y | L∗r〉, and α = (1/2)‖r‖2. Then (∀y ∈ H) f(y) = 2(F (y, y) − �(y) + α).
Hence we derive from Example 2.59 that ∇f(x) = 2L∗(Lx − r), and
from (2.43) that ∇2f(x) = 2L∗L. ��
Lemma 2.61 Let x ∈ H, let C ∈ V(x), and let T : C → K. Suppose that T
is Fréchet differentiable at x. Then the following hold:

(i) T is Gâteaux differentiable at x and the two derivatives coincide.
(ii) T is continuous at x.

Proof. Denote the Fréchet derivative of T at x by Lx.
(i): Let α ∈ R++ and y ∈ H� {0}. Then
∥∥∥
∥
T (x+ αy)− Tx

α
− Lxy

∥∥∥
∥ = ‖y‖‖T (x+ αy)− Tx− Lx(αy)‖

‖αy‖ (2.49)

converges to 0 as α ↓ 0.
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(ii): Fix ε ∈ R++. By (2.42), we can find δ ∈ ]0, ε/(ε+ ‖Lx‖)] such that
(∀y ∈ B(0; δ)) ‖T (x+y)−Tx−Lxy‖ � ε‖y‖. Thus (∀y ∈ B(0; δ)) ‖T (x+y)−
Tx‖ � ‖T (x+y)−Tx−Lxy‖+‖Lxy‖ � ε‖y‖+‖Lx‖ ‖y‖ � δ(ε+‖Lx‖) � ε.
It follows that T is continuous at x. ��
Fact 2.62 (See [146, Proposition 5.1.8]) Let T : H → K and let x ∈ H.
Suppose that the Gâteaux derivative of T exists on a neighborhood of x and
that DT is continuous at x. Then T is Fréchet differentiable at x.

Fact 2.63 (See [146, Theorem 5.1.11]) Let x ∈ H, let U be a neighborhood
of x, let G be a real Banach space, let T : U → G, let V be a neighborhood
of Tx, and let R : V → K. Suppose that R is Fréchet differentiable at x and
that T is Gâteaux differentiable at Tx. Then R ◦ T is Gâteaux differentiable
at x and D(R ◦ T )(x) = (DR(Tx)) ◦ DT (x). If T is Fréchet differentiable at
x, then so is R ◦ T .

Item (i) in the next result is known as the descent lemma.

Lemma 2.64 Let U be a nonempty open convex subset of H, let β ∈ R++,
let f : U → R be a Fréchet differentiable function such that ∇f is β-Lipschitz
continuous on U , and let x and y be in U . Then the following hold:

(i) |f(y)− f(x)− 〈y − x | ∇f(x)〉 | � (β/2)‖y − x‖2.
(ii) | 〈x− y | ∇f(x)−∇f(y)〉 | � β‖y − x‖2.

Proof. (i): Set φ : [0, 1] → R : t �→ f(x+ t(y− x)). Then, by Cauchy–Schwarz,

∣∣f(y)− f(x)− 〈y − x | ∇f(x)〉 ∣∣

=

∣∣∣∣

∫ 1

0

φ′(t) dt− 〈y − x | ∇f(x)〉
∣∣∣∣

=

∣
∣∣∣

∫ 1

0

〈y − x | ∇f(x+ t(y − x))−∇f(x)〉 dt
∣
∣∣∣

�
∫ 1

0

‖y − x‖β‖t(y − x)‖ dt

=
β

2
‖y − x‖2, (2.50)

as claimed.
(ii): This follows from the Cauchy–Schwarz inequality. ��

Example 2.65 Suppose that H �= {0} and let f : H → R : x �→ ‖x‖. Then
f =

√‖ · ‖2 and, since Example 2.60 asserts that ‖·‖2 is Fréchet differentiable
with gradient operator ∇‖ · ‖2 = 2Id, it follows from Fact 2.63 that f is
Fréchet differentiable on H � {0} with (∀x ∈ H � {0}) ∇f(x) = x/‖x‖. On
the other hand, f is not Gâteaux differentiable at x = 0 since, although the
limit in (2.37) exists, it is not linear with respect to y: (∀y ∈ H) limα↓0 (‖0+
αy‖ − ‖0‖)/α = ‖y‖.
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Fact 2.66 (See [146, Proposition 5.1.22]) Let x ∈ H, let U be a neighborhood
of x, let K be a real Banach space, and let T : U → K. Suppose that T is twice
Fréchet differentiable at x. Then (∀(y, z) ∈ H×H) (D2T (x)y)z = (D2T (x)z)y.

Example 2.67 Let x ∈ H, let U be a neighborhood of x, and let f : U → R.
Suppose that f is twice Fréchet differentiable at x. Then, in view of Fact 2.66
and (2.41), ∇2f(x) is self-adjoint.

Exercises

Exercise 2.1 Let x and y be points in H. Show that the following are equiv-
alent:

(i) ‖y‖2 + ‖x− y‖2 = ‖x‖2.
(ii) ‖y‖2 = 〈x | y〉.
(iii) 〈y | x− y〉 = 0.
(iv) (∀α ∈ [−1, 1]) ‖y‖ � ‖αx+ (1− α)y‖.
(v) (∀α ∈ R) ‖y‖ � ‖αx+ (1− α)y‖.
(vi) ‖2y − x‖ = ‖x‖.
Exercise 2.2 Consider X = R

2 with the norms ‖ · ‖1 : X → R+ : (ξ1, ξ2) �→
|ξ1|+ |ξ2| and ‖ · ‖∞ : X → R+ : (ξ1, ξ2) �→ max{|ξ1|, |ξ2|}. Show that neither
norm satisfies the parallelogram identity.

Exercise 2.3 Let x and y be points in H, and let α and β be real numbers.
Show that

‖αx+ βy‖2 + αβ‖x− y‖2 = α(α+ β)‖x‖2 + β(α+ β)‖y‖2. (2.51)

Exercise 2.4 Set

Δ : H×H → R+ : (x, y) �→
∥∥∥
∥

x

1 + ‖x‖ − y

1 + ‖y‖
∥∥∥
∥ . (2.52)

Show that (H, Δ) is a metric space.

Exercise 2.5 DefineΔ as in Exercise 2.4, let (xn)n∈N be a bounded sequence
in H, and let x ∈ H. Show that xn → x if and only if Δ(xn, x) → 0.

Exercise 2.6 DefineΔ as in Exercise 2.4, let (xn)n∈N be a bounded sequence
in H, and let x ∈ H. Show that xn → x if and only if Δ(xn, x) → 0.

Exercise 2.7 Construct a monotone operator T ∈ B(H) such that T is not
self-adjoint.
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Exercise 2.8 Suppose that H �= {0} and define on H � {0} a relation by
x ≡ y ⇔ x ∈ R++y. Show that ≡ is an equivalence relation. For every
x ∈ H�{0}, let [x] = {

y ∈ H� {0} ∣∣ x ≡ y
}
be the corresponding equivalence

class. The quotient set hznH =
{
[x]

∣∣ x ∈ H� {0}} is the horizon of H and
csmH = H ∪ hznH is the cosmic closure of H. Show that the function Δ of
Exercise 2.4 extends to a distance on csmH by defining

(∀[x] ∈ hznH)(∀y ∈ H) Δ([x], y) = Δ(y, [x]) =

∥∥∥
∥

x

‖x‖ − y

1 + ‖y‖
∥∥∥
∥ (2.53)

and

(∀[x] ∈ hznH)(∀[y] ∈ hznH) Δ([x], [y]) = Δ([y], [x])

=

∥∥∥∥
x

‖x‖ − y

‖y‖
∥∥∥∥ . (2.54)

Exercise 2.9 Consider Exercise 2.8 and its notation. Let (xn)n∈N be a se-
quence in H and let [x] ∈ hznH. Show that Δ(xn, [x]) → 0 if and only if
there exists a sequence (λn)n∈N in R++ such that λn → 0 and λnxn → x.

Exercise 2.10 Consider Exercise 2.8 and its notation. Let ([xn])n∈N be a
sequence in hznH and let [x] ∈ hznH. Show that Δ([xn], [x]) → 0 if and
only if there exists a sequence (λn)n∈N in R++ such that λnxn → x.

Exercise 2.11 Suppose that H is finite-dimensional and consider Exer-
cise 2.8 and its notation. Show that csmH is compact and sequentially com-
pact with respect to the distance Δ.

Exercise 2.12 Let N be a strictly positive integer, set I = {1, . . . , N}, and
suppose that (xi)i∈I are points in H such that (∀i ∈ I) ‖xi‖ = 1. Show the
following:

(i) ‖∑i∈I xi‖2 = N + 2
∑

1�i<j�N 〈xi | xj〉.
(ii) Suppose that, for every (i, j) ∈ I× I such that i �= j we have 〈xi | xj〉 =

−1/(N − 1). Then
∑

i∈I xi = 0.
(iii) Suppose that

∑
i∈I xi = 0. Then 2

∑
1�i<j�N−1 〈xi | xj〉 = 2−N .

(iv) Suppose N = 3. Then x1 + x2 + x3 = 0 if and only if 〈x1 | x2〉 =
〈x1 | x3〉 = 〈x2 | x3〉 = −1/2.

Exercise 2.13 Let x and y be points in H, and let α and β be real numbers
in R+. Show that 4 〈αx− βy | y − x〉 � α‖y‖2 + β‖x‖2.
Exercise 2.14 Let x and y be in H, and let α and β be in R. Show that

α(1− α)‖βx+ (1− β)y‖2 + β(1− β)‖αx− (1− α)y‖2
= (α+ β − 2αβ)

(
αβ‖x‖2 + (1− α)(1− β)‖y‖2). (2.55)
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Exercise 2.15 Let x, y, and z be points in H such that ‖2x − y − z‖ =
‖2y − x− z‖ = ‖2z − x− y‖. Show that ‖x− y‖ = ‖y − z‖ = ‖z − x‖.
Exercise 2.16 Suppose that H is infinite-dimensional. Show that every
weakly compact set has an empty weak interior.

Exercise 2.17 Provide an unbounded convergent net in R and compare with
Lemma 2.46.

Exercise 2.18 Construct a sequence in H that converges weakly and pos-
sesses a strong sequential cluster point, but that does not converge strongly.

Exercise 2.19 Let C be a subset of H such that (∀n ∈ N) C ∩ B(0;n) is
weakly sequentially closed. Show that C is weakly sequentially closed and
compare with Lemma 1.40.

Exercise 2.20 Show that the conclusion of Lemma 2.51(iii) fails if the strong
convergence of (un)n∈N is replaced by weak convergence.

Exercise 2.21 (Opial’s condition) Let (xn)n∈N be a weakly convergent
sequence in H and let x ∈ H. Show that xn ⇀x if and only if

(∀y ∈ H) lim ‖xn − y‖2 = ‖x− y‖2 + lim ‖xn − x‖2. (2.56)

In particular, if xn ⇀x and y ∈ H � {x}, then lim ‖xn − y‖ > lim ‖xn − x‖.
This implication is known as Opial’s condition.

Exercise 2.22 Suppose that H is infinite-dimensional and let (en)n∈N be an
orthonormal sequence inH. Construct a bounded sequence (xn)n∈N inH such
that xn−xn+1 → 0 and the set of strong cluster points of (xn)n∈N is {e0,−e0}.
Compare to the Ostrowski results (Theorem 1.49 and Lemma 2.53).

Exercise 2.23 Show that if the derivative DT (x) exists in Definition 2.54,
then it is unique.

Exercise 2.24 Let D be a nonempty open interval in R, let f : D → R, and
let x ∈ D. Show that the notions of Gâteaux and Fréchet differentiability
of f at x coincide with classical differentiability, and that the Gâteaux and
Fréchet derivatives coincide with the classical derivative

f ′(x) = lim
0 �=h→0

f(x+ h)− f(x)

h
. (2.57)

Exercise 2.25 Consider the function

f : R2 → R : (ξ1, ξ2) �→
⎧
⎨

⎩

ξ21ξ
4
2

ξ41 + ξ82
, if (ξ1, ξ2) �= (0, 0);

0, if (ξ1, ξ2) = (0, 0).

(2.58)

Show that f is Gâteaux differentiable, but not continuous, at (0, 0).
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Exercise 2.26 Consider the function

f : R2 → R : x = (ξ1, ξ2) �→
⎧
⎨

⎩

ξ1ξ
4
2

ξ21 + ξ42
, if (ξ1, ξ2) �= (0, 0);

0, if (ξ1, ξ2) = (0, 0).

(2.59)

Show that f is Fréchet differentiable at (0, 0) and that ∇f is not continuous
at (0, 0). Conclude that the converse of Fact 2.62 does not hold.

Exercise 2.27 Consider the function

f : R2 → R : (ξ1, ξ2) �→
⎧
⎨

⎩

ξ1ξ
3
2

ξ21 + ξ42
, if (ξ1, ξ2) �= (0, 0);

0, if (ξ1, ξ2) = (0, 0).

(2.60)

Show that, at (0, 0), f is continuous and Gâteaux differentiable, but not
Fréchet differentiable.

Exercise 2.28 Consider the function

f : R2 → R : (ξ1, ξ2) �→
⎧
⎨

⎩

ξ1ξ
2
2

ξ21 + ξ22
, if (ξ1, ξ2) �= (0, 0);

0, if (ξ1, ξ2) = (0, 0).

(2.61)

Show that f is continuous and that, at (0, 0), the limit on the right-hand side
of (2.37) exists but it is not linear as a function of (η1, η2). Conclude that f
is not Gâteaux differentiable at (0, 0).
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