Chapter 2
Hilbert Spaces

Throughout this book, # is a real Hilbert space with scalar (or inner) product
(] -). The associated norm is denoted by || - || and the associated distance by
d, i.e.,

(Ve eH)(Vy e H) |zl = V{z[z) and d(z,y) =[z—yl.  (21)

The identity operator on H is denoted by Id.

In this chapter, we derive useful identities and inequalities, and we review
examples and basic results from linear and nonlinear analysis in a Hilbert
space setting.

2.1 Notation and Examples

The orthogonal complement of a subset C of H is denoted by C*, i.e.,
Cl:{ue’H‘(VxGC) (z | u) =0}. (2.2)

An orthonormal subset C of H is an orthonormal basis of H if Span C' = H.
The space H is separable if it possesses a countable orthonormal basis. Now
let (x;);cr be a family of vectors in H and let Z be the class of nonempty
finite subsets of I, directed by C. Then (z;);cs is summable if there exists
x € H such that the net (3>, ;z;) ez converges to z, i.e., by (1.26),

iced
(VeeRy)EKe)(VIeI) JOK = |z-) zf<e  (23)
icJ
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28 2 Hilbert Spaces

In this case we write x = Y _._; x;. For every family (a;)icr in [0, 4+00], we

N iel
ave
Z Q; = sup Zai. (2.4)
iel TEL ey

Here are specific real Hilbert spaces that will be used in this book.

Example 2.1 Let I be a nonempty set. The Hilbert direct sum of a family
of real Hilbert spaces (H;, || - [|:)ier is the real Hilbert space

PH = {:c = (2i)ies € ><7-L > il < —l—oo} (2.5)

el el

equipped with the addition (x,y) — (x; + y:)ier, the scalar multiplication
(o, ) — (ax;)ier, and the scalar product

(ac,y) = Z <$1 | yi>i y (26)
el

where (- |-), denotes the scalar product of H; (when I is finite, we shall
sometimes adopt a common practice and write X,_,H,; instead of P,;; Hi)-
Now suppose that, for every ¢ € I, f;: H; — ]—00,+00] and that, if I is
infinite, inf;c; f; = 0. Then

P fi: PHi—-00,+00] : (wi)ies = filws). (2.7)

i€l i€l i€l

Example 2.2 If each H; is the Euclidean line R in Example 2.1, then we
obtain (2(I) = @, R, which is equipped with the scalar product (z,y) =
((&)ier> (Mi)ier) — ;e &ni- The standard unit vectors (e;);e of £2(I) are
defined by

1, if j=4

(Viel) ei:I%R:]W—){ (2.8)

0, otherwise.
Example 2.3 If I = {1,..., N} in Example 2.2, then we obtain the standard
Euclidean space RY.

Example 2.4 Let M and N be strictly positive integers. Then RM*N
denotes the Hilbert space of real M x N matrices equipped with the scalar
product (A, B) + tra (AT B), where tra is the trace function. The associated
norm is the Frobenius norm || - ||g.

Example 2.5 Let N be a strictly positive integer. The Hilbert space SV is
the subspace of RY*¥ that consists of all the symmetric matrices.

Example 2.6 Let (£2,F, 1) be a (positive) measure space. A property is said
to hold p-almost everywhere (p-a.e.) on 2 if there exists a set C' € F such that
p(C) = 0 and the property holds on 2\ C. Let (H, (- | -),;) be a separable
real Hilbert space, and let p € [1, +oo[. Denote by LP((§2,F, u); H) the space
of (equivalence classes of) Borel measurable functions x: {2 — H such that
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Jo llz(w) [fu(dw) < +o0. Then L2((£2,5,u); H) is a real Hilbert space with
scalar product (z,y) = [, (@(w) | y(w))y pldw).

Example 2.7 In Example 2.6, let H = R. Then we obtain the real
Banach space LP(2,F, pu) = LP((£2,F,p);R) and, for p = 2, the real
Hilbert space L?($2,F, i), which is equipped with the scalar product (z,y)

f_Q w(dw).

Example 2.8 In Example 2.6, let T € Ry 1, set 2 = [0,T], and let u be the
Lebesgue measure. Then we obtain the Hilbert space L?([0,T];H), which is

equipped with the scalar product (z,y) — fo t) | y(t))y dt. In particular,
when H = R, we obtain the classical Lebesgue space L3([0,T]) = L?([0, T]; R).

Example 2.9 Let (12,3, P) be a probability space, i.e., a measure space such
that P(£2) = 1. A property that holds P-almost everywhere on 2 is said to
hold almost surely (a.s.). A random variable (r.v.) is a measurable function
X: 2 — R, and its expected value is EX = [, X(w)P(dw), provided that
the integral exists. In this context, Example 2.7 ylelds the Hilbert space

L*(2,F,P) = {X r.v. on (£2,F,P) | E|X|* < +o0} (2.9)

of random variables with finite second absolute moment, which is equipped
with the scalar product (X,Y) — E(XY).

Example 2.10 Let '€ R and let (H, (- | -),;) be a separable real Hilbert
space. For every y € L2([0,T]; H), the function z: [0,T] — H: t — fo s)ds
is differentiable almost everywhere (a.e.) on |0,T[ with z/(t) = y(¢) a.e. on
10, T[. We say that z: [0,7] — H belongs to W12([0,T];H) if there exists
y € L2([0,T); H) such that

(Ve [0,T]) «(t) = 2(0) + /0 y(s)ds. (2.10)
Alternatively,
Wh2([0,T];H) = {z € L*([0,T];H) | 2’ € L*([0,T]; H)}. (2.11)
The scalar product of this real Hilbert space is (z,y) — fo t) | y(t)y dt+
Jo @' (t) |9/ (@) dt.

2.2 Basic Identities and Inequalities

Fact 2.11 (Cauchy—Schwarz) Let x andy be in H. Then

(@ [yl < [yl (2.12)

Moreover, (x| y) = ||lz|| ly]] & Ba €Ry) v =ay or y = ax.



30 2 Hilbert Spaces

Lemma 2.12 Let z, y, and z be in H. Then the following hold:
@) llz+yl* = llel* + 2 (= | ) + [yl*.
(ii) Parallelogram identity: ||z + y||* + ||z — y|* = 2||z* + 2||y||*.
(iii) Polarization identity: 4 (x | y) = ||z + y||* — ||z — y||*.
(iv) Apollonius’s identity: ||z —yl|? = 2||z—z|>+2||z—y||*—4[|z— (z+y) /2|*.
Proof. (i): A simple expansion.
(i1)&(iii): It follows from (i) that
lz = ylI* = lllI* = 2z | y) + lyl*- (2.13)
Adding this identity to (i) yields (ii), and subtracting it from (i) yields (iii).
(iv): Apply (ii) to the points (z — x)/2 and (z — y)/2. O
Lemma 2.13 Let x and y be in H. Then the following hold:
(1) (z [y) <O & (Va € Ry)|lz] < [le—ay| < (Va € [0,1]) 2] < [e—ay].-
(i) z Ly & (VaeR) |zl <z -ayll & (Vae[-11]) [lz] <[z —ayl.
Proof. (i): Observe that
(VaeR) o —ayl* -z = alally]* - 2(z | y)). (2.14)

Hence, the forward implications follow immediately. Conversely, if for every
€10,1], ||z]| < ||z — ay||, then (2.14) implies that (z | y) < afly||?/2. As
a | 0, we obtain (z | y) < 0.
(ii): A consequence of (i), sincex L y < [(x |y) < O0and (z | —y) <0]. O

Lemma 2.14 Let (x;)icr and (u;)ier be finite families in H and let (o;)icr
be a family in R such that ), ; a; = 1. Then the following hold:

(1) (Xier i | Xjer ajug) + Yier Djer ey (i — aj | ug —uj) /2
= ZieI @i (Ti | ug).

.. 2
(ii) H Zie[ aixi” + Zie[ Zje[ aiagl|zi — $j||2/2 = Eie] a2
Proof. (i): We have

2<Z Qi | Y ajuj>

il jer
= ZZO@O@((I@ | Uj> =+ <Ij | Ui>)
icl jel
=33 aioy (i | wa) + (o | ug) — (s — 5 | us — uy))
i€l jeI
—22061 x; | wg) ZZ&ZOAJ T — x| g —uy) . (2.15)
el el jel

(ii): This follows from (i) when (u;)ier = (;)ier- O
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The following two results imply that Hilbert spaces are uniformly convex

and strictly convex Banach spaces, respectively.

Corollary 2.15 Letx € H, let y € H, and let « € R. Then

laz + (1= a)yl® + a(l = o)z - y|* = alz|* + 1 - a)|ly|*.  (2.16)
Corollary 2.16 Suppose that x and y are distinct points in H such that
Izl = lyll, and let « €10,1[. Then ||az + (1 — @)yl < ||z
Proof. An immediate consequence of Corollary 2.15. O

Lemma 2.17 Let (x,y) € H x H. Then the following hold:
(i) Let a €]0,1[. Then

a?([l=* = (1 = o™z + ™ y?)
= (2a = Dlfz[* +2(1 = a) (= [ y) — [lyll*
=2(1—a) (= |y) — (lyl* + @ = 20)]z]?)
= a([lz]* = a7 (1 = a) |z — ylI* — yll*)-

(ii) We have

lll* = |12y — 2l = 4({2 | v) = llyl*)
de—yly)
2(Jlz)l* = llz = ylI* = lly[1?)-

Proof. (i): These identities follow from Lemma 2.12(i).
(ii): Divide by o2 in (i) and set o = 1/2. O

The following inequality is classical.

Fact 2.18 (Hardy—Littlewood—Pdlya) (See [196, Theorems 368 and
369]) Let x and y be in RY, and let z; and y; be, respectively, their re-
arrangement vectors with entries ordered decreasingly. Then

(@ y) <(zylu), (2.17)

and equality holds if and only if there exists a permutation matrix P of size
n x n such that Px =z and Py =y,.

2.3 Linear Operators and Functionals

Let X and ) be real normed vector spaces. We set

B(X,Y)={T: X - Y| T is linear and continuous} (2.18)
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and B(X) = B(X,X). Equipped with the norm

(VT € B(X,Y)) |T| =sup||T(B(0;1))] = sup | T, (2.19)

le|<1

B(X,Y) is a normed vector space, and it is a Banach space if ) is a Banach
space.

Example 2.19 Let A € RM*N_ Then A € B(RY,RM) and the operator
norm of A given by (2.19) is the spectral norm of A, i.e., the largest singular
value of A, and it is denoted by || A||2. We have ||A]l2 < ||A]l¢.

Fact 2.20 Let X and Y be real normed vector spaces and let T: X — ) be
linear. Then T is continuous at a point in X if and only if it is Lipschitz
continuous.

Fact 2.21 (See [116, Proposition II1.6.1]) Let X, ), and Z be real normed
vector spaces and let T: X & )Y — Z be a bilinear operator. Then T is
continuous if and only if

@B eR) (Ve e X)(Vy € Y) [T(x, )| < Bl llyll- (2.20)

The following result is also known as the Banach—Steinhaus theorem.

Lemma 2.22 (Uniform boundedness principle) Let X' be a real Banach
space, let Y be a real normed vector space, and let (T;);cr be a family of op-
erators in B(X,Y) that is pointwise bounded, i.e., (Vz € X) sup;¢; ||Tiz|| <
+00. Then (T});er is uniformly bounded, i.e., sup,c; || T3] < +oo.

Proof. Apply Lemma 1.44(i) to ({z € X | sup,¢; || Tiz| < n})neN. O

Definition 2.23 Let T: H — H be linear and let « € Ry ;. Then T is:
(i) monotone if (Vx € H) (Tx | ) > 0;
(ii) strictly monotone if (Vo € H ~ {0}) (Tx | =) > 0;

(iii) a-strongly monotone if (Vo € H) (Tx | x) > of|x|]?.

The Riesz—Fréchet representation theorem states that every continuous
linear functional on the real Hilbert space H can be identified with a vector

in H.

Fact 2.24 (Riesz—Fréchet representation) Let f € B(H,R). Then there
exists a unique vector u € H such that (Vx € H) f(x) = (a: | u). Moreover,

1FIF= el

If K is a real Hilbert space and T' € B(H, K), then the adjoint of T is the
unique operator T € B(K,H) that satisfies

Vo e H)(Vy € K) (Tx|y) = (z | T*y). (2.21)
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Fact 2.25 Let K be a real Hilbert space, let T € B(H,K), and let
kerT = {CE et | Tx = O} be the kernel of T'. Then the following hold:
)T =T.

() [T} = T[] = /T

(iii) Suppose that K = H and that T =T*. Then

17 = sup {|(Tz | 2)] | = € B(O:1)}. (2.22)

Fact 2.26 Let K be a real Hilbert space and let T € B(H,K). Then ranT
is closed < ranT™* is closed < ranTT™* is closed < ranT*T is closed <
(Ba € Ry 1)(va € (ker T)b) |Ta] > afall.

Suppose that H # {0}. Let f: H — R be nonzero and linear, and let
n € R. A hyperplane in ‘H is a set of the form

{xeH | f(z)=n}, (2.23)

and it is closed if and only if f is continuous; if it is not closed, it is dense
in H. Alternatively, let u € H ~ {0}. Then it follows from Fact 2.24 that a
closed hyperplane in H is a set of the form

{reH | (x|u)=n} (2.24)
Moreover, a closed half-space with outer normal u is a set of the form

{zeH | (x|u) <n}, (2.25)
and an open half-space with outer normal u is a set of the form

{zeH | (x| u) <n}. (2.26)
The distance function to C = {z € H | (x| u) =n} is (see (1.47))

de:H—=-Ri:z—
[[ul

We conclude this section with an example of a discontinuous linear
functional.

Example 2.27 Assume that #H is infinite-dimensional and let H be a
Hamel basis of H, i.e., a maximally linearly independent subset. Then H
is uncountable. Indeed, if H = (J, oy span{hi}ocr<n for some Hamel basis
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H = {hp}nen, then Lemma 1.44(i) implies that some finite-dimensional lin-
ear subspace span{hy}o<k<n has nonempty interior, which is absurd. The
Gram—Schmidt orthonormalization procedure thus guarantees the existence
of an orthonormal set B = {e, }neny and an uncountable set C' = {c,}aca
such that B U C is a Hamel basis of H. Thus, every point in H is a (finite)
linear combination of elements in B U C and, therefore, the function

f:H—)R:xZZEnen-FZ??aCaHan (2.28)

neN a€A neN

is well defined and linear. Now take (a,)nen € £2(N) N 1(N) (e.g., (Vn € N)
an, =1/(n+1)) and set

(VneN) =z, = Z ageg. (2.29)

Then (z,)nen converges strongly to some point z € H and f(x,) — +oo.
This proves that f is discontinuous at z and hence discontinuous everywhere
by Fact 2.20. Now set (Vn € N) y, = (z, — f(2n)eo)/ max{f(xy,),1}. Then
(Yn)nen lies in C = {z € H | f(z) =0} and y,, — —eo. On the other hand,
—eg ¢ C, since f(—eg) = —1. As a result, the hyperplane C is not closed. In
fact, as will be proved in Example 8.42, C' is dense in H.

2.4 Strong and Weak Topologies

The metric topology of (H, d) is called the strong topology (or norm topology)
of H. Thus, a net (z4)qea in H converges strongly to a point z if ||z, —z| — 0;
in symbols, x, — x. When used without modifiers, topological notions in H
(closedness, openness, neighborhood, continuity, compactness, convergence,
etc.) will always be understood with respect to the strong topology.

Fact 2.28 LetU andV be closed linear subspaces of H such that V has finite
dimension or finite codimension. Then U +V is a closed linear subspace.

In addition to the strong topology, a very important alternative topology
can be introduced.

Definition 2.29 The family of all finite intersections of open half-spaces of
H forms the base of the weak topology of H; H¥°** denotes the resulting
topological space.

Lemma 2.30 1Y is a Hausdorff space.

Proof. Suppose that x and y are distinct points in H. Set u = x — y and
w=(z+y)/2. Then {z € H | (z —w | u) >0} and {z € H | z—w|u <0}
are disjoint weak neighborhoods of = and y, respectively.
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A subset of H is weakly open if it is a union of finite intersections of open
half-spaces. If H is infinite-dimensional, nonempty intersections of finitely
many open half-spaces are unbounded and, therefore, nonempty weakly open
sets are unbounded. A net (x4)qca in H converges weakly to a point x € H
if, for every u € H, (zq | u) — (x| u); in symbols, x, — z. Moreover (see
Section 1.7), a subset C of H is weakly closed if the weak limit of every weakly
convergent net in C'is also in C, and weakly compact if every net in C has a
weak cluster point in C. Likewise (see Section 1.11), a subset C' of H is weakly
sequentially closed if the weak limit of every weakly convergent sequence in
C is also in C, and weakly sequentially compact if every sequence in C' has a
weak sequential cluster point in C'. Finally, let D be a nonempty subset of H,
let I be a real Hilbert space, let T: D — K, and let f: H — [—o0, +00]. Then
T is weakly continuous if it is continuous with respect to the weak topologies
on H and K, i.e., if, for every net (24)qeca in D such that z, =z € D, we
have Tx, — Tx. Likewise, f is weakly lower semicontinuous at x € H if, for
every net (z,)qca in H such that z, — x, we have f(z) < lim f(xg).

Remark 2.31 Strong and weak convergence of a net (z4)qca in H to a
point x in H can be interpreted in geometrical terms: z, — = means that
diz)(7q) — 0 whereas, by (2.27), r, — x means that dc(zq) — 0 for every
closed hyperplane C' containing x.

Example 2.32 Suppose that H is infinite-dimensional, let (2,)neny be an
orthonormal sequence in H, and let u be a point in H. Bessel’s inequality
yields 32 oy [(@n | u)|? < [lulf?, hence (z, |u) — 0. Thus z, — 0. How-

ever, ||z,|| = 1 and therefore z,, 4 0. Actually, (z,,)neny has no Cauchy
subsequence since, for any two distinct positive integers n and m, we have
|lzn — 2mll®> = ||zal|®> + [|[2m]|*> = 2. This also shows that the unit sphere

{z € H | ||lz|| =1} is closed but not weakly sequentially closed.

Suppose that H is infinite-dimensional. As seen in Example 2.32, an or-
thonormal sequence in H has no strongly convergent subsequence. Hence, it
follows from Fact 1.39 that the closed unit ball of A is not compact. This
property characterizes infinite-dimensional Hilbert spaces.

Fact 2.33 The following are equivalent:

(i) H is finite-dimensional.
(ii) The closed unit ball B(0;1) of H is compact.

(iii) The weak topology of H coincides with its strong topology.
(iv) The weak topology of H is metrizable.

In striking contrast, compactness of closed balls always holds in the weak
topology. This fundamental and deep result is known as the Banach—Alaoglu—
Bourbaki theorem.

Fact 2.34 (Banach—Alaoglu—Bourbaki) The closed unit ball B(0;1) of
H is weakly compact.
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Fact 2.35 (See [192, p. 181] and [2, Theorems 6.30&6.34]) The weak topol-
ogy of the closed unit ball B(0;1) of H is metrizable if and only if H is
separable.

Lemma 2.36 Let C be a subset of H. Then C' is weakly compact if and only
if it is weakly closed and bounded.

Proof. First, suppose that C is weakly compact. Then Lemma 1.12 and
Lemma 2.30 assert that C is weakly closed. Now set C = {(z | )}zec C
B(H,R) and take u € H. Then (- | u) is weakly continuous. By Lemma 1.20,
{{z | w)}zec is a compact subset of R, and it is therefore bounded by
Lemma 1.41. Hence, C is pointwise bounded, and Lemma 2.22 implies that
sup,ec ||zl < +o0, ie., that C is bounded. Conversely, suppose that C' is
weakly closed and bounded, say C' C B(0; p) for some p € R, . By Fact 2.34,
B(0; p) is weakly compact. Using Lemma 1.12 in H"**¥ we deduce that C is
weakly compact. O

The following important fact states that weak compactness and weak se-
quential compactness coincide.

Fact 2.37 (Eberlein—Smulian) Let C be a subset of H. Then C is weakly
compact if and only if it is weakly sequentially compact.

Corollary 2.38 Let C be a subset of H. Then the following are equivalent:

(i) C is weakly compact.
(ii) C is weakly sequentially compact.
(iii) C is weakly closed and bounded.

Proof. Combine Lemma 2.36 and Fact 2.37. O

Lemma 2.39 Let C be a bounded subset of H. Then C is weakly closed if
and only if it is weakly sequentially closed.

Proof. If C is weakly closed, it is weakly sequentially closed. Conversely,
suppose that C is weakly sequentially closed. By assumption, there exists
p € Ry such that C' C B(0; p). Since B(0; p) is weakly sequentially compact
by Fact 2.34 and Fact 2.37, it follows from Lemma 2.30 and Lemma 1.34 that
C is weakly sequentially compact. In turn, appealing once more to Fact 2.37,
we obtain the weak compactness of C' and therefore its weak closedness by
applying Lemma 1.12 in H"¥eak, O

Remark 2.40 As will be seen in Example 3.33, weakly sequentially closed
sets need not be weakly closed.

Lemma 2.41 Let K be a real Hilbert space, and let T: H — K be a contin-
wous affine operator. Then T is weakly continuous.
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Proof. Set L: x — Tz —T0, let x € H, let y € K, and let (24)qca be a
net in H such that z, — 2. Then L € B(H,K) and (z, | L*y) — (x| L*y).
Hence, (Lz, | y) — (Lx | y), i.e., Lz, — Lz. We conclude that Tx, = T0 +
Lx,—T0+ Lx =Tx. a

Lemma 2.42 The norm of H is weakly lower semicontinuous, i.e., for every
net (Ta)aca in H and every x in H, we have

to—e = ol < limlle,]. (2.30)

Proof. Take a net (x4)qeca in H and a point x in H such that x, — x. Then,
by Cauchy—Schwarz, ||z||? = lim [{z, | z)| < lim ||z.]| || z]|- O

Lemma 2.43 Let G and KC be real Hilbert spaces and let T: HPB G — K be
a bilinear operator such that

BB eR (Ve e H)(Vueg) [T (z,u)| < Bl |ull- (2.31)

Let (4)aca be a net in H, let (uq)aca be a net in G, let © € H, and let
u € G. Suppose that (x4)aca is bounded, that x, — x, and that ug — u. Then
T(zq,uq) = T(z,u).

Proof. Since sup,e 4 ||zq|| < +o0 and |jug — ul — 0, we have ||T(zq,uq —
w)|| < B(suppea llz]))||tta — ul| = 0. On the other hand, T'(-,u) € B(H,K)
by Fact 2.21. Thus, T(-,u) is weakly continuous by Lemma 2.41. In turn,
T(xqg—x,u) =T(0,u) = 0. Altogether T'(z4, uq) —T(x,u) = T(xq, Ug —u) +
T(xq —x,u) — 0. O

Lemma 2.44 Let (24)aca and (ug)aca be nets in H, and let x and u be
points in H. Suppose that (24)aca is bounded, that x, — x, and that u, — u.
Then (xq | ug) — (x| u).

Proof. Apply Lemma 2.43to G =H, K=R, and F = (- | ). O

2.5 Weak Convergence of Sequences

Lemma 2.45 Let (x,)nen be a bounded sequence in H. Then (zy)nen pos-
sesses a weakly convergent subsequence.

Proof. First, recall from Lemma 2.30 that H"°** is a Hausdorff space. Now
set p = sup,cy ||zn| and C = B(0; p). Fact 2.34 and Fact 2.37 imply that
C' is weakly sequentially compact. Since (x,,)nen lies in C, the claim follows
from Definition 1.33. O

Lemma 2.46 Let (z,)nen be a sequence in H. Then (z,)nen converges
weakly if and only if it is bounded and possesses at most one weak sequential
cluster point.
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Proof. Suppose that x,, = z € H. Then it follows from Lemma 2.30 and
Fact 1.9 that z is the unique weak sequential cluster point of (z,)nen. More-
over, for every u € H, (z,, | u) = (x | u) and therefore sup,, oy |(, | u)| < +o00.
Upon applying Lemma 2.22 to the sequence of continuous linear functionals
({xn | *))nen, we obtain the boundedness of (||z,|)nen. Conversely, suppose
that (z,)nen is bounded and possesses at most one weak sequential cluster
point. Then Lemma 2.45 asserts that it possesses exactly one weak sequen-
tial cluster point. Moreover, it follows from Fact 2.34 and Fact 2.37 that
(Zn)nen lies in a weakly sequentially compact set. Therefore, appealing to
Lemma 2.30, we apply Lemma 1.35 in H"*?¥ to obtain the conclusion. a

Lemma 2.47 Let (x,)nen be a sequence in H and let C be a nonempty
subset of H. Suppose that, for every x € C, (||x, —||)nen converges and that
every weak sequential cluster point of (x,)nen belongs to C. Then (n)nen
converges weakly to a point in C.

Proof. By assumption, (z,),en is bounded. Therefore, in view of Lemma 2.46,
it is enough to show that (x,),en cannot have two distinet weak sequential
cluster points in C. To this end, let = and y be weak sequential cluster points
of (xn)nen in C, say xg, — x and x;, — y. Since x and y belong to C, the
sequences (||x, — z|)nen and (||, — y||)nen converge. In turn, since

(VneN) 2(wn |2 —y) = lzn —yl® = llon — 2l® +ll2]* = ly]*, (2:32)

({xn | * — y))nen converges as well, say (z, | © — y) — £. Passing to the limit
along (zr, )neny and along (x;, )nen yields, respectively, £ = (z |z —y) =
(y | z — y). Therefore, ||z — y||*> = 0 and hence z = y. O

Proposition 2.48 Suppose that (Yn)nen i an orthonormal sequence in H
and let (zn)nen be a sequence in H such that x, — y, — 0. Then x,, — 0.

Proof. This follows from Example 2.32. a
The next result provides a partial converse to Proposition 2.48.

Proposition 2.49 Suppose that (x,)nen s a sequence in H such that x, —0
and (Vn € N) ||x,|| = 1. Then there exist an orthonormal sequence (Yn)nen
in " and a subsequence (x, Jnen Of (Tn)nen such that xp, — yn, — 0.

Proof. Let (en)nen be a sequence in ]0,1/2[ such that e, — 0. Set
V =span {z, }nen and let (e,)nen be an orthonormal basis of V. Let [y € N.
Since x,, — 0, there exists kg € N such that ug = 220:0 (K, | €i) €; € B(0;€0).
Because (e, )nen is an orthonormal basis of V', there exists I; € N such that
lh > o and wo = >, 41 (T, | €) e; € B(0;0). We continue in this fash-
ion and thus obtain inductively two strictly increasing sequences (I, )nen and
(kn)nen in N such that

ln
(YneN) w, = Z (xk, | ei)e; € B(0;ep) (2.33)
=0
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and
(VneN) w,= > (zx,|e)e; € B(0sey). (2.34)
i2lpp1+1
Now set
lnt1
(VneN) v, = Z (K, | €i) €5 = Tk, — Up, — Wy, (2.35)
i=ln+1
Then (Vn € N) 1 = |[zg, || > [lonll = llzx, | = [lunll = [lwnll = 1= 2e, >0

and ||z, — vn|l < |lunll + ||wnll < 2¢,. Moreover, (v,)nen is an orthogonal
sequence since (e, )nen is an orthonormal basis of V. Finally, set (Vn € N)
Yn = Un/||Vn|l- Then (yn)nen is an orthonormal sequence in H and (Vn € N)
2k, =Ynll < 2k, —nll+lvn =ynll = [[2n, —vnll+ (1 =[lon]]) < 4en = 0. O

Proposition 2.50 Let (e;)icr be a family in H such that span {e;};cr = H,
let (xn)nen be a sequence in H, and let x be a point in H. Then the following
are equivalent:

(i) xp — .
(i) (zn)nen is bounded and (Vi € I) (x,, | €;) = (x| €;) as n — +o0.

Proof. (1)=(ii): Lemma 2.46.

(i1)=(1): Set (Yn)nen = (Tn —2)nen. Lemma 2.45 asserts that (yn,)nen pos-
sesses a weak sequential cluster point y, say yi, — y. In view of Lemma 2.46,
it suffices to show that y = 0. For this purpose, fix ¢ € Ry . Then there
exists a finite subset J of I such that ||y — z|| sup, ey ||k, || < €, where
z=73;c;(y|ej)e;. Thus, by Cauchy-Schwarz,

(VneN)  [yk, | )] < Wk, [y =21+ [yr, | 2)]
<et ) I le ym, el (2.36)
jeJ
Hence lim |{yx, | y)| < e. Letting ¢ | 0 yields ||y|?> = lim (yx, | y) = 0. O

Lemma 2.51 Let (y)nen and (un)nen be sequences in H, and let x and u
be points in H. Then the following hold:

(i) [zn = 2 and lm|z,| < ||lz]]] & 2, — 2.
(ii) Suppose that H is finite-dimensional. Then x, = v < x, — T.
(iil) Suppose that x, — x and u, — u. Then (T, | u,) — (x| u).

Proof. (i): Suppose that z,, — z and that lim |lz,| < ||z||. Then it follows
from Lemma 2.42 that ||z| < lim ||z, || < lim ||z,.|| < ||z||, hence ||z, || — [|=]|.
In turn, ||z, — z|? = ||z.)*> — 2 (z. | ) + ||z]|> — 0. Conversely, suppose
that x, — x. Then ||z,| — ||z|| by continuity of the norm. On the other
hand, x,, — x since for every n € N and every u € H, the Cauchy—Schwarz
inequality yields 0 < [{x, — | w)| < ||zn — || ||u]].
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(ii): Set dimH = m and let (ex)1<k<m be an orthonormal basis of . Now
assume that z,, = z. Then ||z, — z||* = Y1, [{(zn, — 2| er)|” — 0.
(iii): Combine Lemma 2.44 and Lemma 2.46. a

The combination of Lemma 2.42 and Lemma 2.51(i) yields the following
characterization of strong convergence.

Corollary 2.52 Let (z,)nen be a sequence in H and let x be in H. Then
Tn =TS [z, =2 and |z,] — ||zf|].

We conclude this section with a consequence of Ostrowski’s theorem (The-
orem 1.49).

Lemma 2.53 Suppose that H is finite-dimensional and let (z,)nen be a
bounded sequence in H such that x, — xny1 — 0. Then the set of cluster
points of (Ty)nen 18 compact and connected.

2.6 Differentiability

In this section, K is a real Banach space.

Definition 2.54 Let C' be a nonempty subset of H, let T: C — K, and
suppose that = € C' is such that (Vy € H)(3a € Ryy) [z,2 + ay] C C. Then
T is Gateaur differentiable at x if there exists an operator DT'(z) € B(H, K),
called the Gdteaux derivative of T at x, such that

T(z+ay) - T(x)

VyeH) DT(z)y= li% (2.37)
Moreover, T is Gateaux differentiable on C' if it is Gateaux differentiable at
every point in C. Higher-order Géteaux derivatives are defined inductively.

Thus, the second Gdteauz derivative of T at z is the operator D*T'(z) €
B(H,B(H,K)) that satisfies

(¥ € H) DT(x)y = lim DT(w + O‘Z) — D7) (2.38)

The Géateaux derivative DT (z) in Definition 2.54 is unique whenever it
exists (Exercise 2.23). Moreover, since DT'(z) is linear, for every y € H, we
have DT (x)y = —DT'(z)(—y), and we can therefore replace (2.37) by

(Vy e H) DT(z)y= lim T +ay) = T(m)

2.39
0#a—0 (% ( )

Remark 2.55 Let C be a subset of H, let f: C' — R, and suppose that f
is Gateaux differentiable at © € C'. Then, by Fact 2.24, there exists a unique
vector V f(x) € H such that
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(VyeH) Df(x)y=(y|Vf(x)). (2.40)

We call Vf(z) the Gateauz gradient of f at x. If f is Gateaux differentiable
on C, the gradient operator is Vf: C — H: xz — V f(x). Likewise, if f is
twice Gateaux differentiable at x, we can identify D?f(z) with an operator
V2f(z) € B(H) in the sense that

(ye )tz H) (D f(y)= (= | V2i(@)y).  (241)
If the convergence in (2.39) is uniform with respect to y on bounded sets,

then x € int C' and we obtain the following notion.

Definition 2.56 Let € H, let C' € V(x), and let T: C — K. Then T is
Fréchet differentiable at x if there exists an operator DT'(z) € B(H, K), called
the Fréchet derivative of T at x, such that

im IT(x+y) =Tz = DT (x)y| _
0#[yll—0 1yl

0. (2.42)

Moreover, T is Fréchet differentiable on C' if it is Fréchet differentiable at
every point in C. Higher-order Fréchet derivatives are defined inductively.
Thus, the second Fréchet derivative of T at x is the operator D*T(z) €
B(H,B(H,K)) that satisfies

lim |IDT(x +y) — DTz — D2T'(z)y|| _
0#]jy | -0 [yl

0. (2.43)

The Fréchet gradient of a function f: C — R at x € C is defined as in
Remark 2.55. Here are some examples.

Example 2.57 Let L € B(H), let u € H, let x € H, and set f: H —
R:y— (Ly|y) — (y | u). Then f is twice Fréchet differentiable on H with
Vf(z)=(L+ L*)z —uand V2f(z) = L + L*.

Proof. Take y € ‘H. Since

fle+y) = f(@)=(Le|y)+ (Ly | z) + (Ly | y) — (v | u)
=(y [ (L+L")z) —(y|uw)+(Ly|y), (2.44)

we have

[f@+y) = fl@) = (y | (L+ L)z —u) [ = [(Ly [ )] < [LIIyl>.  (2.45)

In view of (2.42), f is Fréchet differentiable at « with V f(x) = (L+ L*)z —u.
In turn, (2.43) yields V2 f(z) = L + L*. O

Proposition 2.58 Let f: H — R be Gdteauz differentiable, let L € B(H),
and suppose that Vf = L. Then L = L*, f: z — f(0) + (1/2) (Lz | z), and
f is twice Fréchet differentiable.
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Proof. Fix x € H and set ¢: R — R: ¢t — f(tx). Then (V¢ € R) ¢'(t) =
(x| Vf(tx)) = (x| L(tz)) =t (x| Lz). It follows that f(z) — f(0) = ¢(1) —
$(0) = [ ¢'(t)dt = [t (La | x) dt = (1/2) (La | ). We deduce from Exam-
ple 2.57 that f is twice Fréchet differentiable and that L = V f = (L+ L*)/2.
Hence, L* = L. a

Example 2.59 Let F': H x H — R be a symmetric bilinear form such that,
for some g € Ry,

(Ve e H)(Vy e H) [F(z,y)| < Bl lyl, (2.46)

let £ € B(H,R),let z € H, and set f: H — R:y — (1/2)F(y,y) —£(y). Then
f is Fréchet differentiable on H with Df(x) = F(z,-) — .

Proof. Take y € H. Then,

flx+y)— flz) =

Flz+y,a+y) -z +y) - 3F(z,2) + ()

1
2
1
2

Consequently, (2.46) yields

2|f(z +y) = f(z) = (Flo.y) — W) | = [Fy,9)] < Bllyl*,  (2.48)
and we infer from (2.42) and (2.46) that Df(x)y = F(z,y) — £(y). O

Example 2.60 Let K be a real Hilbert space, let L € B(H,K), let r € K,
let z € H, and set f: H — R:y > |[Ly — r||*>. Then f is twice Fréchet
differentiable on H with Vf(z) = 2L*(Lz —r) and V2 f(z) = 2L* L.

Proof. Set F: H x H — R: (y,2) — (1/2)(L*Ly | 2), £: H — R:y —
(y | L°r), and a = (1/2)[r|P- Then (vy € ) f(5) = 2(F(y,y) — (y) + o).
Hence we derive from Example 2.59 that Vf(x) = 2L*(Lz — r), and
from (2.43) that V2 f(x) = 2L*L. O

Lemma 2.61 Let x € H, let C € V(z), and let T: C — K. Suppose that T
is Fréchet differentiable at x. Then the following hold:

(i) T is Gdteaux differentiable at x and the two derivatives coincide.
(ii) T is continuous at x.

Proof. Denote the Fréchet derivative of T" at « by L,.
(i): Let o € Ryt and y € H ~ {0}. Then

H T(x+ay) — Tz (2.49)

(07

[yl

converges to 0 as « | 0.
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(ii): Fix £ € R14. By (2.42), we can find 6 € ]0,e/(e + ||L.||)] such that
(Vy € B(0;0)) |IT(@+y)~Ta— Loyl < ellyll. Thus (vy € B(0;8)) |T(x-+y)—
Tal| < IT(w+1) — To— Loyl + | Loyl < llyll+ 1Ll Inll < 8 + L) < e.
It follows that T is continuous at x. a

Fact 2.62 (See [146, Proposition 5.1.8]) Let T: H — K and let = € H.
Suppose that the Gateaux derivative of T' exists on a neighborhood of z and
that DT is continuous at . Then T is Fréchet differentiable at x.

Fact 2.63 (See [146, Theorem 5.1.11]) Let = € H, let U be a neighborhood
of x, let G be a real Banach space, let T: U — G, let V' be a neighborhood
of Tx, and let R: V — K. Suppose that R is Fréchet differentiable at « and
that T is Gateaux differentiable at Tx. Then R o T is Gateaux differentiable
at © and D(RoT)(z) = (DR(Tz)) o DT(x). If T is Fréchet differentiable at
x, then sois RoT.

Item (i) in the next result is known as the descent lemma.

Lemma 2.64 Let U be a nonempty open convex subset of H, let § € Ry,
let f: U — R be a Fréchet differentiable function such that V f is 3-Lipschitz
continuous on U, and let x and y be in U. Then the following hold:

@) 1f(y) = f@) = (y = | VI(@) | < (8/2)ly — >
(i) [z —y | Vf(z) = VW) < Bly — =,

Proof. (i): Set ¢: [0,1] = R: ¢t — f(z+¢(y — z)). Then, by Cauchy—Schwarz,
[fy) = fa) = (y—a | Vf(2))|
1

[ ¢0a-w-siviw))

yéuyx|Vﬂx+uy@>Vf@»w\

1
<A|W—ﬂwww—zmﬁ
=Sy —al, (2:50)

as claimed.
(ii): This follows from the Cauchy—Schwarz inequality. O

Example 2.65 Suppose that H # {0} and let f: H — R: 2 — ||z||. Then
f =1/l 1I? and, since Example 2.60 asserts that |-||? is Fréchet differentiable
with gradient operator V|| - [|? = 2Id, it follows from Fact 2.63 that f is
Fréchet differentiable on H ~ {0} with (Vz € H ~ {0}) Vf(x) = z/||z||. On
the other hand, f is not Gateaux differentiable at = = 0 since, although the
limit in (2.37) exists, it is not linear with respect to y: (Vy € H) limyo (||0+
ayll = [[0l))/a = llyll-
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Fact 2.66 (See [146, Proposition 5.1.22]) Let « € H, let U be a neighborhood
of z, let KC be a real Banach space, and let T': U — K. Suppose that T is twice
Fréchet differentiable at . Then (V(y, z) € HxH) (D*T(z)y)z = (D*T(z)2)y.

Example 2.67 Let x € H, let U be a neighborhood of x, and let f: U — R.
Suppose that f is twice Fréchet differentiable at . Then, in view of Fact 2.66
and (2.41), V2f(z) is self-adjoint.

Exercises

Exercise 2.1 Let z and y be points in H. Show that the following are equiv-
alent:

(i

Iyll> + [l =yl = =]

)
(i) [lyl* = (x| y).
(iif) (y [z —y) = 0.
(iv) (Ve € [=1,1]) [ly|l < [ex + (1 — a)y].
(Vg (Vo e R) |lyll < flaz + (1 = a)yll.

(vi

Exercise 2.2 Consider X = R? with the norms || - [|1: X — Ry (£1,&) —
[€1] + |&2] and || - [|oo: X = Ry (&1,&2) — max{|&1], |€2|}. Show that neither
norm satisfies the parallelogram identity.

12y — 2| = [l=]-

Exercise 2.3 Let « and y be points in H, and let a and S be real numbers.
Show that

la + Byll* + abllz — ylI* = ala + B)|lzl* + Bla+ B)|lyll*. (2.51)

Exercise 2.4 Set

A HXxH =R (x,y) »—)H (2.52)

Ltz 1+ ||yH H
Show that (#, A) is a metric space.

Exercise 2.5 Define A as in Exercise 2.4, let (2, )nen be a bounded sequence
in H, and let « € H. Show that z,, — « if and only if A(z,,z) — 0.

Exercise 2.6 Define A as in Exercise 2.4, let (2, )nen be a bounded sequence
in H, and let € H. Show that z,, — « if and only if A(z,,z) — 0.

Exercise 2.7 Construct a monotone operator T' € B(H) such that T is not
self-adjoint.
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Exercise 2.8 Suppose that H # {0} and define on H \ {0} a relation by
r =y < x € Ryyy. Show that = is an equivalence relation. For every
x € H~{0}, let [z] = {y € H ~ {0} | # = y} be the corresponding equivalence
class. The quotient set hznH = {[z] | x € H ~ {0}} is the horizon of H and
csm’H = H UhznH is the cosmic closure of H. Show that the function A of
Exercise 2.4 extends to a distance on csmH by defining

(V[z] € henH)(vy € H)  A([z],y) = Ay, [z]) =

x y
=71l (253)
Izl 1+ lyll H

and
(V[z] € hanH)(V[y] € hanH)  A([z], [y]) = A([y], [«])

_ ‘ ||Z:T|| - IZyJHH (2.54)

Exercise 2.9 Consider Exercise 2.8 and its notation. Let (x,)nen be a se-
quence in H and let [x] € hznH. Show that A(z,,[z]) — 0 if and only if
there exists a sequence (A, )nen in R4y such that A\, — 0 and A\, z, — z.

Exercise 2.10 Consider Exercise 2.8 and its notation. Let ([z,])nen be a
sequence in hznH and let [x] € hznH. Show that A([z,],[r]) — 0 if and
only if there exists a sequence (A, )nen in Ry such that Az, — .

Exercise 2.11 Suppose that H is finite-dimensional and consider Exer-
cise 2.8 and its notation. Show that csmH is compact and sequentially com-
pact with respect to the distance A.

Exercise 2.12 Let N be a strictly positive integer, set I = {1,..., N}, and
suppose that (x;);cs are points in H such that (Vi € I) |lz;]| = 1. Show the
following:

(1) 1> er il|* = N + 221<i<j<N (i | x;).
(ii) Suppose that, for every (i,j) € I x I such that ¢ # j we have (z; | z;) =
—1/(N —=1). Then ), ; 2; = 0.
(iii) Suppose that > ,c;2; =0. Then 237, ;. n_ (zi [ 7j) =2— N.
(iv) Suppose N = 3. Then z; + 22 + 3 = 0 if and only if (z1 | 22) =
<$1 | $3> = <£C2 | $3> = —1/2.

Exercise 2.13 Let x and y be points in H, and let a and 8 be real numbers
in R,. Show that 4 (ax — By | y — ) < o|y||® + B||=[].

Exercise 2.14 Let z and y be in H, and let o and 8 be in R. Show that

a(l = a)l|Bz + (1= Byl* + B0 = B)laz — (1 - a)y?
= (a+ B —2aB)(apllz|* + (1 - a)(1 = B)llyl*). (2.55)
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Exercise 2.15 Let z, y, and 2z be points in H such that |2z —y — 2| =
12y — 2 — z[| = |22 — x — y||. Show that ||z —y[| = [ly — z[| = [|z — z|.

Exercise 2.16 Suppose that H is infinite-dimensional. Show that every
weakly compact set has an empty weak interior.

Exercise 2.17 Provide an unbounded convergent net in R and compare with
Lemma 2.46.

Exercise 2.18 Construct a sequence in H that converges weakly and pos-
sesses a strong sequential cluster point, but that does not converge strongly.

Exercise 2.19 Let C be a subset of H such that (VYn € N) C' N B(0;n) is
weakly sequentially closed. Show that C is weakly sequentially closed and
compare with Lemma 1.40.

Exercise 2.20 Show that the conclusion of Lemma 2.51(iii) fails if the strong
convergence of (uy,)nen is replaced by weak convergence.

Exercise 2.21 (Opial’s condition) Let (z,),cn be a weakly convergent
sequence in H and let x € H. Show that z,, — z if and only if

(Vy e H) limllzn -yl = [lo - yl* +lim [, — 2. (2.56)

In particular, if z,, = z and y € H ~ {z}, then lim ||z, — y|| > lim ||z, — x|
This implication is known as Opial’s condition.

Exercise 2.22 Suppose that H is infinite-dimensional and let (e, )nen be an
orthonormal sequence in H. Construct a bounded sequence (z,)nen in H such
that x,, —x,+1 — 0 and the set of strong cluster points of (z, )nen is {€o, —€0 }-
Compare to the Ostrowski results (Theorem 1.49 and Lemma 2.53).

Exercise 2.23 Show that if the derivative DT'(x) exists in Definition 2.54,
then it is unique.

Exercise 2.24 Let D be a nonempty open interval in R, let f: D — R, and
let x € D. Show that the notions of Gateaux and Fréchet differentiability
of f at x coincide with classical differentiability, and that the Gateaux and
Fréchet derivatives coincide with the classical derivative

fa+h) = f@)

12 _ .
) = oilffgo h (2:57)
Exercise 2.25 Consider the function
&8 .
b lf b O’ 0 ;
FiRZ S R: (6,86) —{ &+ & (61.8) # (0,0 (2.58)

07 if (51752) = (070)

Show that f is Gateaux differentiable, but not continuous, at (0,0).
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Exercise 2.26 Consider the function
13%3) .
2 | ¢4 f 9 07 O 7
iR SRz =(6,8&) > &46 if (&,&2) # (0,0)
0, if (£1,&2) = (0,0).

Show that f is Fréchet differentiable at (0,0) and that V f is not continuous
at (0,0). Conclude that the converse of Fact 2.62 does not hold.

(2.59)

Exercise 2.27 Consider the function
&8 .
w2 | 40 f B 0, 0 N
R SR: (G &) & (61.8) # (0.0
O’ if (61752) - (0,0)

Show that, at (0,0), f is continuous and Géateaux differentiable, but not
Fréchet differentiable.

(2.60)

Exercise 2.28 Consider the function

&é . .
PR OR: (@6 o Grg 1) 200

0, if (£1,€2) = (0,0).
Show that f is continuous and that, at (0, 0), the limit on the right-hand side

of (2.37) exists but it is not linear as a function of (11, 72). Conclude that f
is not Gateaux differentiable at (0, 0).

(2.61)
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