
Chapter 2
Theory

This chapterwill give a brief introduction to themost relevant theoretical aspects used
in this thesis, with the aim of explaining the most important formulae and ideas. We
will startwith basic theory of electrons inmetals.Moving on from free electron theory
wewill give the outline to amore realistic theory for our experimental results.Wewill
then describe the theory of quantumoscillations, which is necessary to understand the
main results of this thesis.Wewill then turn to a brief introduction to the fundamental
superconducting properties that we will need in the discussion and interpretation of
experimental results. One of the main aspects of this thesis is the quantum critical
system BaFe2(As1−xPx)2. Also in the cuprate superconductor quantum criticality is
often discussed as possible origin of high temperature superconductivity. A brief
introduction to the topic of quantum criticality shall therefore be given from the
starting point of classical phase transition.

2.1 From Free to Nearly Free Electrons

We begin by a brief introduction following the historical development that led to our
current understanding of the behaviour of electrons in metals that will be given in
the next section. While a first model proposed by Drude treated the electrons as a
classical free electron gas, we will start by modelling the electrons in a solid as free
electron gas in a one dimensional potential considering electrons as waves rather
than particles. This ansatz was first proposed by Sommerfeld and Bethe. Solving
the time-independent Schrödinger equation for this system we find standing waves
whose energies are equivalent to those of a free electron but with discrete wave-
numbers k. In three dimensions a constant energy in reciprocal space is represented
by a sphere that contains a certain number of discrete k-states. The density of states
can then be determined from the number of states per energy interval. This leads to
the relation D(E) ∝ m3/2E1/2 for the density of states in three dimensions, which
holds as long as we consider a non-interacting single electron picture.
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16 2 Theory

The distribution f (T ,E) of electrons among the available states is determined by
the temperature of the system. The density of electrons is given by

n =
∫ ∞

0
D(E)f (T ,E)dE. (2.1)

Since electrons are Fermions (spin 1/2), we need to use the Fermi-Dirac distribution
function

f (T ,E) = 1

e(E−μ)/kBT + 1
, (2.2)

with the chemical potential μ of the system and the Boltzmann-constant kB and the
Pauli exclusion principle. Form this we find that at T = 0 all electrons populate the
lower energy states up to the chemical potential μ. The sphere of constant energy
EF = μ in k-space that contains all these states is known as the Fermi-surface, and
the energy EF as Fermi-energy.

This simple model of the electrons in a solid produced for the first time the cor-
rect interpretation of the heat capacity of simple metals like copper, where a linear
dependence of the electronic specific heat in temperature was found. However we
would not be able to understand the origin of metallic, semi-conducting or insulat-
ing behaviour in this context. Hence the assumptions made can only give a crude
understanding of the system. In the further course of this work we will now try to
reduce these assumptions of a constant background potential (nearly free electron),
non-interaction (Fermi-liquid theory) and one-electron treatment (density functional
theory) step by step to try to obtain a better understanding of the complex nature of
electrons in solids.

2.1.1 Nearly Free Electron

A more realistic scenario for the background potential in a solid is the use of a
periodic potential. The potential represents the Coulomb potential of the ionic lattice.
We further include the Born-Oppenheimer approximation in our treatment. In this
the electrons respond immediately to any lattice vibration as their typical velocity
is orders of magnitude higher than that of the lattice. Therefore the lattice potential
is given as mean field result, typically represented by the equilibrium state. The
electrons in this scenario are split. While low energy electrons are bound to the
ions, reducing the Coulomb potential by shielding, the so called valence electrons
are free to move without any other interaction than those with the lattice potential.
From symmetry arguments the solutions ψk(r) of the time-independent Schrödinger
equation is now represented by a plane-wavesmodulated by a factor uk(r) periodic on
the lattice, meaning uk(r) = uk(r + rn), with the lattice periodicity rn. The resulting
single-electron solutions
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ψk(r) = uk(r)e
ikr (2.3)

are known as Bloch-waves. In reciprocal space we find that the potential is periodic
with the vector G, so that ψk+G(r) = ψk(r) and hence E(k) = E(k + G). This
shows that the single particle energy E(k) is periodic in reciprocal space and hence
in further treatment we only need to consider the first Brillouin-zone (BZ).

We will now consider the dispersion E(k) for a very weak potential, meaning that
we first only consider the periodicity, leaving the strength of the potential negligible.
In this casewe find the dispersion relationE(k) for a free electron periodically spaced
in reciprocal space as shown in Fig. 2.1a. At the BZ boundaries the energies E(k) are
degenerate. In quantum mechanics this leads to the superposition of the two plane
waves. Now we add the magnitude of the periodic potential. The two superimposed
plane waves will have different energies resulting from a phase difference. This leads
to the lifting of the degeneracy of E(k) and a splitting of the energies at the crossing
points. This is schematically shown in Fig. 2.1c. Therefore we find now that electrons
in the presence of a periodic potential do not possess a continuous energy spectrum.
This we know as the band structure of a solid. With this we can also understand the
origin of metallic and insulating behaviour. If the Fermi energy is located in between
bands then the available bands are filled and we need to overcome the energy-gap
to the next band in order to excite electrons. In the case where the Fermi energy
lies within a band this is not the case and a continuous increase in energy will lead
immediately to excited electrons.

(a) (b) (c)

Fig. 2.1 Dispersion relationE(k) for (a) a free electronmodel (b) for an infinitesimal small periodic
potential and (c) a periodic background potential leading to the band structure in solids
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2.2 Fermi-Liquid Theory

In the next step towards our understanding of electrons in metals we want to include
interactions of electrons. For this wewill turn toFermi liquid theory (FL). This theory
developed by Landau [1] for neutral Fermions was originally motivated to describe
the rare isotope of Helium 3He. Fermi liquid theory has been a powerful tool as it
correctly describes properties such as the quadratic temperature dependence of the
resistivity at low temperatures and the temperature dependence of the susceptibility.
Today however most novel phenomena are concerned with the emergence of non-
Fermi liquid like behaviour such as one-dimensional systems, or systems that are
tuned close to a quantum critical point where the approximation of weak interacting
Fermions does not hold any more. We find this non-Fermi liquid behaviour, typically
characterized by ρ ∝ T in systems like the iron-pnictides and cuprates studied in this
work [2–4]. However lacking a theory with the same predictive power as the Fermi
liquid theory, especially close to quantum critical points, we try to understand these
materials based on how they deviate from the conventional prediction by FL theory.

In order to implement interactions to the free-electronmodel we start by assuming
thedistribution functionn0(k,σ)of thenon-interacting system.When introducing the
interactions to this non-interacting systemwe have to keep inmind that any excitation
will only possess a certain life-time τ after which the system will relax. However we
need to turn on the excitations adiabatically such that the same distribution function
also describes the interacting system. This leads to the limitation that the life-time τ
in the system needs to be sufficiently long such that they are longer than the adiabatic
introduction of excitations. This limits the theory to describe weak interactions that
produce excited states close to the Fermi level.

As we are interested in electrons in a solid we use the Fermi distribution at T=0
for our non-interacting system. Hence all occupied states take the value n0(k,σ) = 1
and all others are zero. The adiabatic introduction of interactions to the system, has
two further consequences. While the distribution n(k,σ) of the new quasiparticle is
given by the same form as n0(k,σ) at T = 0, the eigenstates are superpositions of
the original non-interacting eigenstates. The difference between the distribution of
free-electrons and quasiparticles and that of electrons in a Fermi liquid is shown in
Fig. 2.2 [5]. While the quasiparticles, as required have the same distribution as the

n(k) n(k)
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kF kF

(a) (b)

Fig. 2.2 Probability distribution n for a state k to be occupied at T=0. a For a non-interacting
electron system, or quasiparticles in a Fermi liquid and b for electrons in an interacting Fermi liquid
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free electron system, the interacting electrons in the Fermi liquid show a reduced
step at the Fermi level. The remaining step causes the picture of a Fermi surface
to remain valid in the case of an interacting system and the size of the jump Z is
inversely proportional to the effective mass of the quasiparticles.

From the concept of quasiparticles,which form the basis of this theory,we can now
understand why the free-electron theory was so powerful in its predictions. The qua-
siparticles, describing the interacting system, are thought of as non-interacting gas,
where the collective interactions of the system are represented by changes in charac-
teristic parameters such as the quasiparticle mass. This however will not change the
qualitative results of the temperature dependence of for example the specific heat,
but only their absolute magnitude. Further it allows us, within the approximation
of a weakly interacting system, to map the problem of collective interaction on a
non-interacting single particle wave-function.

We now consider what happens to the energy ε of the system when we add one
quasiparticle. For weak interactions we assume a linear dispersion around εF , which
leads to the new energy of the system [5]

εp = εF + pF(�k − pF)

2m∗ , (2.4)

with the Fermi momentum pF . Here we assume that the Fermi wave vector kF is
unchanged from the non-interaction system. The velocity of the quasiparticle is
given by the energy-momentum derivative

v = dε

dp
= pF

m∗ = m

m∗ vF . (2.5)

This shows that the group velocity of the quasiparticle, which is modified due to
interactions, is modified by the ratio of the bare electron mass to the massm∗ known
as effective mass or quasiparticle mass.

So far we have only considered a single quasiparticle neglecting any contribu-
tion of interaction to the total energy. The energy dispersion including exchange
interactions is given as [6]

ε = εF + pF(�k − pF)

m∗ +
∑
k,σ

fkσ,k′σ′δnk′σ′, (2.6)

where δnk′σ′ represent changes in the particle distribution and fkσ,k′σ′ are a second
phenomenological parameter known as Landau interaction function. Commonly in
textbooks the properties of the Fermi-liquid are described by the so called Landau-
parameter Fa,s

l , which can be derived from fkσk′σ′ [7].
Both m∗ and f are not independent of each other. Using the Landau-parameter

we can express the effective mass as [7]

m∗

m
= 1 + Fs

1. (2.7)
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Here the superscript s represents spin symmetric interaction. From this we find that in
the casewhere quasiparticle interaction become too strong, for example on approach-
ing an ordered state, the effective mass will diverge. The fact that even in heavy
fermion materials effective masses of m∗ ≈ 1000 were found to be in good agree-
ment with measurements of Sommerfeld coefficient γ, shows the wide variety of
possible applications.

Wewant to point out that the parametersm∗ andFa,s
l are phenomenological values

that need to be experimentally determined. The power of Fermi liquid theory does
not rely in predicting experimental results, but rather helps finding the hallmarks
of strongly correlated effects in solid state physics. It also allows further inside by
linking experimental results on different properties such as heat capacity, magnetic
susceptibility and quantum oscillations.

2.3 Density Functional Theory

At this point we have developed an understanding of relative behaviour of experi-
mental values and their origin within the properties of electrons in system using the
nearly free electron picture. By adding Fermi liquid theory we are further able to
understand the origin of different absolute behaviour of physical properties, such as
the Sommerfeld coefficient, between different materials. We have seen that we can
explain the interacting Fermi liquid as Fermi gas of quasiparticles, where the inter-
actions are taken into account by only two intertwined parameters, the quasiparticle
mass m∗ and the Landau parameter Fa,s

l . However these are so far of phenomeno-
logical nature and need to be experimentally determined. For a better understanding
of the evolution of correlated electron systems, it would be desirable to be able to
predict these values theoretically. For this the density functional theory is a powerful
tool.

The density functional theory (DFT) gets its name from the Hohenberg-Kohn
theorem. This states that the ground state energy is a unique functional of the ground
state density [6]. So far we had assumed plane waves or in the picture of nearly
free electron system Bloch-waves. However we don’t know what the ground state
wave-function of the real electron-system looks like. Therefore here the transition is
made from the ground state wave function to the function of electron-density at place
r. Using the Ritz method one can then write the ground state energy of the system

E0 = E{n0(r)} ≤ 〈ψ|H|ψ〉, (2.8)

with the ground state density n0(r) and the ground state of the system |ψ〉. This could
theoretically be used to find the exact ground state by variation of δE{n(r)} = 0.
DFT hence offers us the possibility to predict the ground state energy of a system
and compare it to experimental findings.

In reality this is not straight forward as the functionals of the kinetic energy
T{n(r)}, the potential energy V {n(r)} and the interaction U{n(r)}, that make up E,



2.3 Density Functional Theory 21

are unknown. While V {n(r)} can be assumed to follow the single particle potential
as we used in nearly free electron theory, the kinetic functional remains unknown
and the interaction functional can only be estimated to the electrostatic exchange
plus a term Eex{n(r)}, the exchange interaction [6].

Kohn and Sham proposed to solve the problem by writing the energy again as a
functional of a single particle wave functions ψi(r) using [6]

n(r) =
Ne∑
i=1

|ψi(r)|2. (2.9)

This leads to theKohn-Sham equationswhich can be used iteratively to get a solution
of the kinetic energy functional. The assumption to use a single particlewave function
leads to the fact that the use of the kinetic energy and single particle potential leads
still to an exact solution of the many body problem. The reason that the use of a
single particle wave-function is applicable lays again in the concept of quasiparticles
which we can describe in this way. The interactions are then described by their band
mass, enhanced over the free electron mass. On the other hand this limits application
to weakly coupled systems. All aspects of the many body problem are now contained
in the exchange interaction Eex{n(r)}, whose form is unknown. We therefore have
the same problem as in Fermi liquid theory where the form of the Landau-parameter
was not unknown.

As mentioned, the DFT formalism is theoretically exact, but in order proceed we
need to make some approximations and hence the results obtained by calculations
can only be as good as the validity of the approximation to the real system. The
typical approaches to find Eex{n(r)} involves the local density approximation (LDA)
where Eex at place r only depends on the density n at point r or the generalized
gradient approximation (GGA) that involves in addition to the density at point r, the
gradient ∂n/∂r. Both methods are limited to static exchange and correlation effects
that are approximated locally. It hence leads to a band structure that lacks long
range and fluctuating interactions as well as strong coupling. For this more advanced
theories such as dynamic mean field theory (DMFT) are necessary. Typically the
theoretically determined values of band structure and derived mass, band mass, are
compared to experimental results. The comparison then holds information whether
the local approximation describes the system well or if additional effects need to be
taken into account.

DFT calculations have been successfully used in weakly correlated systems such
as sodium. In strongly correlated systems however it has its limits, for example in the
cuprate-superconductors where it predicts a metallic behaviour while experiments
have found insulating behaviour in the parent compounds. The reason for this can
be best described when we turn back to Fermi liquid picture. The use of a single-
particle description, as present in the Kohn-Sham equations, is a good approach as
long as we can define the quasiparticles as free electron gas. This treatment is correct
when the spectral weight E(k,ω) is well represented by strong peaks as seen in
Fig. 2.3a for a non-interacting, or (b) for a weakly interacting system as described by
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Fig. 2.3 Spectral function A(k,ω), gives the probability of an electron with momentum k to be
found with a given energy ω. a For a non-interacting electron the probability is a delta-function,
b for a Fermi liquid, where the quasiparticles are superimposed of non-interacting states, the peak is
smeared out and c for a strongly correlated system, likeMott-Hubbard insulators, where the weakly
coupled treatment breaks down and no quasiparticle peak is found

Fermi liquid theory. The stronger the interactions become, themore eigenstates of the
non-interacting eigenstates need to be taken into account, which leads to enhanced
broadening or even a shift of the spectral weight as shown in Fig. 2.3c which is
typically found in Mott-Hubbard physics where strong Coulomb repulsion U needs
to be taken into account. In this case the system is no longer well described by a
LDA.

2.4 Bandstructure Calculations

The following section shall give a brief introduction to the basis of band structure
calculations as performed in this work and the most common terms found within.
The aim is to sketch the process rather than a detailed theoretical description. Amore
detailed treatment can be found in Ref. [6, 8].
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2.4.1 LAPW

The linear augmented plane wave (LAPW) is a combination of the Wigner-Seitz-
method which assumes spherical harmonics for the wave functions of the atoms and
the plane wave method which is based on the solution of the Schrödinger equation
using Bloch-functions. While the first method proves to be inaccurate in the region
between atoms the second is challenging when trying to describe the atomic orbitals,
as it requires higher order terms. The way around this is to split theWigner-Seitz cell
in two parts. For the inner part of radius R we assume a spherical potential, while for
r > R a constant potential us used. Due to its shape, the resulting potential is known
as muffin tin potential. For the solution of the Schrödinger equation one uses linear
combinations of the form

ψε(r) =
∑
l,m

Al,mYl,m(ϑ,ϕ)χl,ε(r), (2.10)

for r < R. Yl,m(ϑ,ϕ) and χl,ε(r) are spherical and radial part of the wave functions
and Al,m are Bloch-coefficients. In the region where r > R plane-waves of the from

φk(r) = eikr (2.11)

are used. The dispersion relation ε(k) is then achieved by the condition ψε(R) =
φk(R).

2.4.2 WIEN2k

In this work the WIEN2k package [9] was used for bandstructure calculations in the
iron-based superconductors. Within this package the functions described in LAPW
are used as basis set for the Kohn-Sham equations within the DFT algorithm. The
calculation then follow the Ritz method to minimize the differential with respect to
the linear combinations of augment plane waves. In order to estimate the exchange
interaction the LDA or GGA approach can be used. The used procedure follows the
outline:

1. start with a guess of the density n0(r)
2. determine the single-particle potential from ni(r)
3. application of LDA or GGA to determine the exchange correlation function

Eex(ni)
4. solving the Kohn-Sham Equation HKSψ = εψ
5. determine the new density ni+1((r)) from ψ
6. if ni+1 
= ni start over with ni+1 as input if not we have have found ground-state

density and energy
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2.4.3 Dynamic Mean Field Theory

In the course of this work we will compare our experimental results to those obtained
by GGA band structure calculations. However there is also a variety of studies in the
field of iron-based superconductors that go beyond this approximation and incorpo-
rate dynamic mean field theory (DMFT) into their calculations [10–12]. DMFT is
in these calculations based on LDA calculations. While in LDA we don’t make any
assumptions on interactions, except of limiting ourself to a local mean field effect,
DMFT includes correlations due to Hubbard U and Hund’s rule coupling J . These
input parameters can more or less be tuned freely and are mostly limited by physical
validity.

The choice of input parameter however leads to the fact that we can not see it as a
first principle calculation. Also we have to take into account that while systems like
the cuprates, where strong onsite Coulomb interaction can be well represented with
DMFT [13], the long wave length spin interactions, likely present in the iron-based
systems, are not captured in these calculations [11].

2.5 Quantum Oscillation

So far we have focused on the theoretical description of electrons in metals. In this
section we will add the magnetic field to this description with the focus on quantum
oscillations. In Fermi liquid theory as well as in DFT we have pointed out that we
do not possess an exact knowledge of the exchange interaction of electrons in solid.
However within Fermi liquid theory we know that those interactions are contained in
the Landau parameters. This can be accessed experimentally using the temperature
dependence of quantumoscillation amplitude and are determined as effectivemasses.

Using quantum oscillations in combination with LDA calculations we can further
find a theoretical model of the Fermi surface topology that can help us understand
electronic correlations in the system.

Within this study we will determine how the effective mass is enhanced over the
free electron mass. We should bear that the band mass can refer to different theories
and so we need to point out that throughout the context of this work we will use
band mass mb as the mass that has been determined by LDA calculations and hence
already includes on-site interactions, at the mean-field level.

Wewill beginwith a semi-classical treatment and then include quantummechanics
to reach the Lifshitz-Kosevich formula that describes the de Haas-van Alphen effect
and lets us extract the relevant information from our experimental results.
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2.5.1 Semi-classical Electron in a Magnetic Field

Lets start by considering a free electron in a uniform magnetic field. The motion of
the electron will be governed by the Lorentz-force

�
dk
dt

= −ev × B. (2.12)

dk/dt is only non-zero perpendicular to the magnetic field B and the velocity of
the electron v. The energy of the electron is then constant and its velocity can be
expressed as

v(k) = 1

�
∇kE(k). (2.13)

From this we conclude that the electrons are bound to orbits in k-space of constant
energy perpendicular to B.

The time that is needed for one revolution tc is given by

tc = �
2

eB

∂S(E, k‖)
∂E

, (2.14)

where S is the k-space area of the electron orbit. This is expressed more commonly
using the cyclotron frequency

ωc = 2π

tc
= eB

mc
, (2.15)

with the cyclotron mass

mc = �
2

2π

∂S(E, k‖)
∂E

. (2.16)

In the case of a free electron system mc = me.

2.5.2 Quantum Mechanical Description

To describe the electrons in the system in a more precise way, a quantummechanical
treatment is necessary. The motion of the electron in the magnetic field has to satisfy
the Bohr-Sommerfeld-condition

∮
pdq = 2π(r + γ)�. (2.17)
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In this notation r is an integer value, γ a phase which still needs to be determined
and p the canonical moment

p = �k − eA, (2.18)

with the vector potential A defined by B = (∇ × A).
By substituting for p and solving the integral it turns out that the orbits are such,

that they enclose integer values of flux-quanta φ0 = h/e. Transferred into k-space
the area of the orbits is given by

S⊥(E, k‖) = (r + γ)
2πB

φ0
, (2.19)

which is known as theOnsager-relation [14]. It is immediately clear that for constant
magnetic field the area S⊥ is constant for all k‖. These tubes are the Landau-tubes
illustrated for a free-electron system in Fig. 2.4.

We are still left to determine the phase γ. This can be done by solving the
Schrödinger equation for a free electron in an applied externalmagnetic field.Assum-
ing the field pointing along the z-direction we obtain for the orbital energy levels

Fig. 2.4 Schematic of
Landau tubes parallel to the
applied magnetic field B for
a free electron gas with
spherical Fermi surface
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En =
(
n + 1

2

)
�ωc + �

2

2m
k2z . (2.20)

While the energy parallel to the field stays unaffectedwe again obtain the quantization
of energy perpendicular to the magnetic field direction. Comparing this result with
the previous and substituting the cyclotron frequency ωc we obtain the phase γ = 1/2.

As the size of the orbit changes with field, the Landau-tubes will eventually cross
the Fermi-level. The rate at which this happens is determined by the spacing of two
consecutive orbits in field

�

(
1

B

)
= 1

Bn
− 1

Bn+1
= 2π

φ0Sextr
. (2.21)

Here only extremal orbits on the Fermi-surface perpendicular to Bwith area Sextr are
taken into account. Why this is the case will be discussed later. This determines the
frequency

F = 1

�(1/B)
= φ0

2π
Sextr (2.22)

at which the Landau-tubes cross the Fermi-level. As we consider the non-interacting
case at T = 0, only states up to the Fermi-level are populated. This means that as
the Landau-tube crosses the Fermi-level the states empty and cause a changes to the
density of states at the Fermi-level. This periodicity is reflected in the heat-capacity,
magnetization and other physical properties which are related to the density of states
at the Fermi-level.

2.5.3 De Haas-Van Alphen Effect

The system which we are studying is best described by the temperature T , the
volume V and the chemical potential μ. Therefor to study this system in more detail
we will turn to the thermodynamic potential �. The magnetic moment of the system
can be derived from � by the derivative

M = −(∇H�)|μ=const . (2.23)

In order to obtain the thermodynamic potential for the Landau tubes of interest here,
it is necessary to derive � at the previously determined energy levels (Eq.2.19)
and the degeneracy of each Landau tube. A detailed derivation of this can be found
in reference [15]. At this point we will focus on the resulting expression for the
thermodynamic potential and its implications on the magnetic moment.
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The thermodynamic potential of electrons in amagnetic field is expressed as series
over all harmonics p [15]

� =
( e

2π�

)3/2 e�B5/2

m∗π2

∣∣∣∣∂
2S

∂k2z

∣∣∣∣
−1/2 ∞∑

p=1

p−5/2RTRDRS cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
. (2.24)

Following Eq.2.23 we obtain the parallel magnetic moment

M‖ = −
( e

2π�

)3/2 2Fe�B1/2

m∗π

∣∣∣∣∂
2S

∂k2z

∣∣∣∣
−1/2 ∞∑

p=1

p−3/2RTRDRS cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
. (2.25)

This formula is known as the Lifshitz-Kosevich formula. The component perpendic-
ular to the field direction

M⊥ = − 1

F

∂F

∂θ
M‖, (2.26)

will be used later in the description of the torque magnetometery and should only be
mentioned for completeness.

In the Lifshitz-Kosevich (LK) formula we find that the amplitude of the signal is
altered by the second derivative of the cross-sectional area |∂2S/∂k2z |−1/2. This is
known as the curvature factor. In the case of an almost cylindrical Fermi-surface the
variation of the orbits along the kz direction will be very small in the vicinity of the
extremal orbits. This will lead to the fact that the curvature factor will get large, there-
fore favour the observation of quasi-2-dimensional sheets of Fermi-surface rather
than spherical sheets where the change along kz is much larger. Physically this can
be understood by imagining a Landau tube crossing the Fermi-surface in the case of
a cylinder and in the case of a sphere. While for the cylinder in the case of B ‖ kz all
state suddenly empty at the same time, the Landau-tube empties continuously in the
case of the sphere only leaving a small portion of the original state to empty at the
extremal orbit.

The factors RT , RD and RS describe damping of the quantum oscillation due to
sample and material specific parameters. While there are more influences such as
mosaic effects that can reduce the oscillation amplitude we will focus on these three
main factors and discuss them in the next section.

2.5.4 Damping Factors

In the following we will discuss the the main damping factors influencing the oscilla-
tion amplitude. While the LK-formula was derived for a non-interacting electron gas
the origin of the damping factor comes from many-body interaction and scattering
mechanisms. However it can be shown that this does not influence the form of the
LK-formula [16].
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2.5.4.1 Finite Temperature

In the case of finite temperature the Fermi-Dirac distribution-function becomes
smeared out. This has the effect that instead of a sudden depopulation of the Landau
tubes when crossing the Fermi level the depopulation becomes smooth. In the case
that the Landau-level spacing is smaller than the smearing kBT of the Fermi-dirac
distribution the depopulation of Landau tubes becomes continuous. As there is no
sharp energy-level of depopulation anymore, we need to consider the contribution of
a range of depopulation around the Fermi-level EF . The change of dS/dEwithin kBT
of the Fermi-level will, as we have seen in the previous section (Eq.2.22), contribute
a spectrum of frequencies. The superposition of these and their individual phases
will cause a reduction in the oscillation amplitude. This reduction can be expressed
as [15]

RT = X

sinh(X)
, (2.27)

with

X = 2π2pkBTm∗

e�B
≈ 14.69pm∗ T

B
. (2.28)

The temperature dependence at constant magnetic field is entirely determined by the
effective mass m∗. The reason for this can be seen when we combine the origin of
the phase smearing dS/dEwith Eq.2.16. At finite temperature the Fermi distribution
leads to the population of a states around EF . From this we find a distribution of
frequencies that due to interference lead to a reduced spectral weight of the main
frequency. For flat bands crossing the Fermi-level one finds large values of dS/dE
and hence a wide spread of frequencies. In order to observe a sharp peak in the
oscillation spectrum one needs to go to much lower temperatures than for bands that
have small variation of S around EF .

We should keep in mind that the mass which will be determined using the temper-
ature dependence of the dHvA-amplitude is renormalized by many-body interaction
such as electron-electron and electron-phonon interaction over the band mass mb.

The reason for the magnetic field entering Eq.2.27 come from the spacing of
Landau-levels. In the previous section we had found (Eqs. 2.15 and 2.20) that the
Landau-level spacing is �E ∝ B/mc. Hence the effect of phase-smearing will be
reduced by higher magnetic fields as the spacing of Landau tubes will become larger.
An example of the temperature damping is given in Fig. 2.5 for different effective
masses in the range typically found in this work, and for a constant mass at different
magnetic fields used in the current study of the iron-based superconductors.
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Fig. 2.5 The temperature damping term is plotted at B = 30T for different effective masses m∗
(left panel) and for a constant effective mass m∗ = 6me at different magnetic fields (right panel)

2.5.4.2 Finite Lifetime

The effect of a finite life-time τ of the quasiparticle can be taken into account by intro-
ducing a Lorentzian broadening of the Landau-levels. The phase-smearing resulting
from this effect is represented by [15]

RD = exp

(
pπ

ωcτ

)
(2.29)

and is known as the Dingle-term. The expression in the exponent can also be
expressed in terms of the mean free path l. For this we substitute ωc using Eq.2.15

π

ωcτ
= πmc

eBτ

vF

vF
= π

eB

�kF
l

, (2.30)

where we used τ = vFl. By assuming a spherical orbit and Eq.2.22 we can simplify
this expression further

π

eB

�kF
l

= �π

e

√
2e

�

√
F

lB
≈ 1140

√
F

lB
. (2.31)

Themass, which enters the Dingle term,mc, is not the renormalized mass that was
found for the effective mass. It was derived theoretically by Wassermann et al. [17]
and experimentally proven by Harrison et al. [18] that the mass used in the Dingle
term is the band-massmb which can be found by band-structure calculation and only
includes the renormalization due to the ionic lattice of the system [16]. We can also
understand this by comparing the origin of the phase smearing in the two scenarios.
While for the temperature damping term the distribution function is modified at finite
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temperature, in the case of a finite life time the Landau levels are broadened. Many-
body effects like electron-phonon coupling, effecting the dispersion relation E(k)
at EF , hence enhance the effective mass measured in RT , but keep the Landau level
spacing, determined by ωc, constant. This holds that the field dependence and hence
the mean free path is unaffected by the many body interactions.

2.5.4.3 Spin Factor

In a paramagnetic system the electron-bands originating from spin-up and spin-down
electrons are degenerate in zero field. This degeneracy is lifted under the influence
of a magnetic field by Zeeman-splitting with an energy-difference of �E = gμBB,
with the Bohr magneton μB and the gyromagnetic ratio g.

This leads to a phase-smearing influenced by the spin-mass mS of the system,
which is related to the Pauli-susceptibility that is not enhanced by electron-phonon
interaction. Hence it differs from the effective mass determined by the temperature
dependence.

The damping-factor can be calculated as [15]

RS = cos

(
pπg

2

ms

mb

)
. (2.32)

The spin factor can lead to so call spin-zeros. Those are regions in the angle depen-
dence for which the field-direction causes the split energy levels to be different by
one flux-quantum, which cause a destructive superposition. However one has to be
careful not to mistake these spin zeros with geometric zeros in the angle dependence
caused by superposition of different extremal orbits. Those effects were for example
found in Tl2Ba2CuO6+δ [19].

2.5.4.4 Extremal Orbits

As mentioned before the observed quantum oscillations originate only from extreme
cross-section-areas perpendicular to the applied field. This powerful tool, which
allows us to map the topology of the observed quantum oscillation shall be discussed
in a bit more detail, as it might not be clear at first sight why this is the case. We
will assume a Fermi-surface which varies as k⊥ = cos(k‖), where k‖ refers to the
direction parallel to B. Using Eqs. 2.22 we will find a distribution of frequencies
along k‖. However, while most of these frequencies correspond to a smooth variation
of the electron motion along k‖ a strong effect in the energy of the system is observed
where dF(k‖)/dk‖ is minimal and hence large sections of Landau tubes empty. This
criteria describes the extremal orbits on the Fermi-surface.
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An alternative way to find this result is to assume the frequency distribution F(k‖)
which we already introduced. The expected signal can be calculated by

M =
∫

sin

(
2π

F(k‖)
B

)
dk‖. (2.33)

The integral has to be carried out over the entire frequency distribution and phase
smearing. This then gives the already known result that the signal only contains
significant contributions form the extremal orbits.

2.6 Drude Model—Electronic Transport

The Drude model, which was the first to describe transport of electrons in metals,
models the electrons as classical particles that follow Newton’s law of motion

m
dv
dt

= eE − m

τ
v, (2.34)

for an electron of charge e in a electrical field E. The second term on the right
hand side represent the friction that an electron experiences. The factor 1/τ is of
phenomenological nature, seen as strength of the friction whose microscopic origin
is not specified. The differential equation holds two solutions. The homogeneous
one v ∝ exp(−t/τ ), which shows that in absence of an electrical field the electron
velocity decays exponentially. The factor τ is therefore seen as a mean life time. For
the inhomogeneous differential equation at t � τ we obtain a constant velocity

v = eτ

m
E, (2.35)

which is proportional to the external field E. From this we find for the current density

j = nev = ne2τ

m
E = σE, (2.36)

where we have used Ohms law in the last step. We see that the electrical conductivity
σ of a metal is expected to be proportional to the carrier concentration and life time.
The mean life time of a carrier is similar to the scattering time that we found in the
description of the dHvA effect. While for the measurements of quantum oscillations
samples with large τ as found from the residual resistivity σ−1(T = 0) are beneficial,
the two values are not identical. The scattering rate τ in conductivity is mainly
dominated by large angle scattering, while the values found in the Dingle term in
dHvA include all types of scattering [15].
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We will now include an external magnetic field, which alters the movement of the
electrons and forces them on spherical orbits as already discussed in Sect. 2.5.1. The
equation for the movement of the electrons is then given by

dv
dt

= e

m
E + e

m
v × B − 1

τ
v. (2.37)

We chose to apply the magnetic field along the z-axis B = (0, 0,Bz). In the presence
of a magnetic field the conductivity now given by a tensor as the magnetic field
breaks the symmetry of the system. The conductivity tensor is given as

σ = ne2τ

m

⎡
⎢⎣

1
1+ω2

c τ
2

ωcτ
1+ω2

c τ
2 0

− ωcτ
1+ω2

c τ
2

1
1+ω2

c τ
2 0

0 0 1

⎤
⎥⎦ , (2.38)

with the cyclotron frequency ωc = eB/m. In the limit of very high magnetic field or
high purity samples we find ωcτ � 1, which leads to

σxy = ne

B
(2.39)

for the transverse conductivity known as Hall conductivity and

σxx = 0 (2.40)

for the longitudinal conductivity. While the result found for the Hall effect is in
agreementwith experiments the vanishing conductivity is not verified in experiments.

To solve this problem we need to consider a system with two different carriers.
This can be realized by assuming different effective masses, charges or scattering
times. In this model one now finds that the total current j contains parts from both
carriers

j = σ1E + σ2E. (2.41)

Therefore we obtain a change of resistivity due to the presence of a magnetic field
[6]

�ρ = ρ(B) − ρ(0)

ρ(0)
. (2.42)

For clean systems we find that where the residual resistivity ρ(T = 0) becomes
small the magnetoresistance increases. In a single band system this scenario can be
realized by a k dependent effective mass or Fermi velocity.
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2.7 Superconductivity

It took almost 50 years from the discovery of superconductivity by Kermlingh Onnes
until the first microscopic understanding given by Bardeen, Cooper and Schrieffer
(BCS). On the way to this theory a number of attempts for the description of this
new ground state of electrons in a solid were made. In this section we will follow
this path and start by the phenomenological thermodynamic treatment of the London
brothers. From their work the London penetration depth is derived that describes the
Meissner effect, where an external magnetic field is expelled from the bulk of the
superconductor. We will then turn to the Ginzburg-Landau theory, which deals with
the upper and lower limiting fields of superconductors based on Landaus theory of
phase transitions. Finally we will end at the BCS theory which up to now is our
best microscopic understanding of superconductivity. On the way we will focus and
discuss those physical properties that will later be important in the analysis and
understanding of experimental results.

2.7.1 London Penetration Depth

The London-penetration depth was first expressed by the London-brothers in their
phenomenological work on the thermodynamics of superconductivity [20].
It describes the length-scale on which a magnetic field goes to zero inside a super-
conductor.

We start by assuming that for T < Tc a portion of the total carrier density n
has condensed to form the superconducting carrier density ns. We can describe their
motion analogue to the previous section

mv̇s = −eE, (2.43)

where we neglected the last term of the Drude-model as we assume the mean scatter-
ing of the electrons to go to infinity for a perfect conductor. By substituting vs with the
current density js = −nsevs, we come to the conclusion that unlike in Ohms-laws,
where the current density j is proportional to the electric field E, here the time-
derivative of js is proportional to E. This leads to the fact that for a direct current
there will be no potential difference over the sample. By using Maxwells-equation
∇ × E = −∂B/∂t we can transform Eq.2.43 to

∂

∂t

(
∇ × j + nse2

m
B

)
= 0. (2.44)

While this expression is valid for all conductors with the scatting time τ → 0, in
the Meissner state the flux is zero in the static case. Hence for a superconductor in
the Meissner state the expression in the brackets must be zero. This then gives the
London-equation
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∇ × j + nse2

m
B = 0. (2.45)

By applying this equation to find out how themagnetic field changes upon entering
a superconductor we find that it decays exponentially

B(x) = B0e
−x/λl , (2.46)

inside the sample, with the characteristic length-scale

λL =
√

m∗

μ0nse2
, (2.47)

the London-penetration depth. Two things are important to notice. First the value of
the London penetration depth is proportional to the superconducting carrier density
in the limit of T = 0. This means that since most metals have similar charge carrier
densities they will also possess similar penetration depth values only normalised by
the effective mass m∗ of the relevant system. Further at the superconducting critical
temperature Tc ns goes to zero and hence the penetration depth diverges. Secondly,
as mention, the penetration depth of a superconductor, even at T = 0, depends on
the normal state property m∗.

An alternative approach to derive the London penetration depth is from the finite
frequency Drude model

σ(ω) = neτ 2

m

1

1 − iωτ
. (2.48)

The integral over all real-part frequency is conserved and gives ω2
p = πne2/m, the

plasma-frequencyωp, which is independent of the scattering rate. By taking theDrude
model in the limit of τ = ∞ we obtain the conductivity for the ideal conductor, that
we can use with j = σE in the above expression and obtain the same result for λL,
which we could also write as

λ2
L = π

μ0ω2
p

. (2.49)

As the conductivity σ is also given as integral over the Fermi surface σ ∝ ∫
v2
xv

−1
F dS

[21] we can link the penetration depth to this and find λ−2
L ∝ ∫

v2
xv

−1
F dS. This shows

that the London penetration depth is dominated by sections of the Fermi surface
where the Fermi velocity vF is high and hence the effective mass is low.
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2.7.2 Ginzburg-Landau Theory

The Ginzburg-Landau (GL) theory is a powerful tool as a first attempt to explain
new experimental results in superconductors. Its macroscopic description from a
thermodynamic viewpoint provides the possibility to explain systems without an
exact microscopic understanding and can therefore hold more general results than a
microscopic theory.

Ginzburg andLandaubased their theoryon theLandau-theoryof phase-transitions.
It starts from the view-point of the enthalpy of a system with an order parameter ψ
which is zero above a critical temperature Tc, non-zero below and one at T = 0.
Unlike the Landau-theory of phase-transitions where the order-parameter is real
and constant in space, in the GL-theory the order parameter is given by the macro-
scopic superconducting wave-function ψ(r) = ψ0(r) exp[−iφ(r)]. This is of com-
plex nature and does not necessarily need to be constant in space. As the enthalpy is
real we need to take the absolute value of the complex wave-function, which repre-
sent the density of superconducting particle |ψ|2 = ns. We then develop in terms of
n2. Taking this ansatz the GL-theory is strictly only valid close to Tc where ns → 0.
In the vicinity of Tc the enthalpy per unit volume g is then given by

gs = gn + α|ψ(r)|2 + 1

2
β|ψ(r)|4 + 1

2μ0
|Ba − Bi|2 + 1

2ms
|(i�∇ − esA)ψ(r)|2, (2.50)

with the superconducting gs and normal-state gn enthalpy-density and the charge es
and mass ms of the superconducting wave function ψ. The last therm of Eq.2.50
represents the kinetic energy of the Cooper pair due to an external magnetic field
presented by the vector-potentialA. The second last is the displacement energy need
to reduce the applied magnetic field Ba to zero inside the superconductor Bi in the
Meissner-state. Since derived from a purely thermodynamic standpoint without any
knowledge of the microscopic origin, this is probably the most general theory we
have on superconductivity. However we will see in Sect. 4.3, where we discuss the
upper and lower critical field, that for quantumcritical systems, even thismost general
form fails.

2.7.2.1 Upper Critical Field

In addition to the London penetration depth λ, the GL theory predicts a second
characteristic length scale of a superconductor, the GL coherence length ξ. This is
derived in the zero field limit to [22]

ξ =
√

�

4m|α| . (2.51)

While α is unknown in this phenomenological approach a more precise formulation
of ξ is found in BCS theory. Ginzburg and Landau realised that for κ = λ/ξ > 1/

√
2

the systems can lower their energy in field by allowing additional superconducting-

http://dx.doi.org/10.1007/978-3-319-48646-8_4
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normal conducting interfaces. This causes the so call vortex-state between the lower
and upper critical field and leads to higher critical fields were the material shows a
finite resistivity. Using the GL-formalism we can determine this upper critical field
Hc2 at which the gs = gn. It can be shown [22] that this is the case for

μ0Hc2 = �0

2πξ2(T)
. (2.52)

The GL coherence-length ξ represents the length-scale at which the superconducting
wave-function can vary from ψ = 0 to ψ = ψ∞. The criteria of ψ = 0 is fulfilled
in the vortex core of a type-II superconductor in the mixed state. With this we can
identify ξ as the vortex-core radius and Hc2 as the field at which the normal-state
vortex-cores start to overlap. Energetically speaking Hc2 marks the magnetic field at
which the kinetic energy of the screening currents exceeds the condensation energy
gn − gs. This is also known as the orbital limiting effect. The Cooper pairs could
also be broken due to the alignment of the spins in the applied magnetic field. This
is known as the Pauli limiting field.

2.7.2.2 Lower Critical Field

The lower critical fieldHc1 of a type-II superconductor is the magnetic field at which
the Gibbs-free energy of a Abrikosov vortex inside or outside the sample is equal
[22]. For this we need the energy of a vortex line per unit length [22]

ε1 = Hc1�0

4π
. (2.53)

Inside the vortex the superconducting gap goes to zero and we find a normal state
core. As in GL theory we describe the superconducting state with the complex
function ψ, which varies at the superconducting-normal conducting interface like
|ψ| ≈ ψ∞ tanh r

ξ
[22]. In the case of a vortex we can therefore identify the parame-

ter ξ as the core radius. The presence of a single flux φ0 = h/2e causes screening
currents that lead to a field profile [22]

h(r) ≈ φ0

2πμ0λ
ln

λ

r
, (2.54)

in the limit of λ � ξ for ξ � r � λ. This would cause a divergent behaviour, which
is cut off at r ≈ ξ, the core radius. The vortex line energy can the also be expressed
as the contribution form the field energy h and the kinetic energy of the shielding
currents

ε1 ≈
(

�0

2πλ

)2

ln κ. (2.55)
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In the derivation of this expression the core has been neglected. We find that the
energy of a vortex line per unit length is inverse proportional to λ2. By combining
Eqs. 2.53 and 2.55 we obtain

Hc1 ≈ �0

4πμ0λ2
ln κ (2.56)

for the lower critical field. To account for the vortex core contribution that was
neglected in the derivation a constant correction factor is used such that we find the
result for lower critical field [22]

Hc1 ≈ �0

4πμ0λ2

(
ln κ + 1

2

)
(2.57)

2.7.3 BCS Theory

The first successful microscopic understanding of superconductivity was published
by Bardeen, Cooper and Schrieffer (BCS) [23]. It had been shown by Fröhlich
[24], that when electrons are placed inside a crystal most of the repulsive nature
of the Coulomb interaction is screen. By assuming a simple screening model like the
Thomas Fermi model we can limit the repulsive behavior to short range interactions.
Further Fröhlich showed that it is possible for the electrons to develop an attractive
interaction if one includes interactions with the lattice. Cooper then argued that by
taking two electrons at T = 0 and placing them just above the Fermi level one can
obtain a bound state which is energetically more favorable than having the electrons
just above the Fermi-level [25]. This bound state is known as a Cooper pair. Built on
Fröhlich’s result that the electrons can interact via the lattice, only electrons of order
�ωD were included (ωD is the Debye-frequency). Using the necessary conservation
of momentum one finds that the lowest energy state appears for k1 = −k2 where k1
and k2 are the wave-vectors of the interacting electrons. Hence the wavefunction is
symmetric under spatial inversion restricting the spin part to be antisymmetric. The
Cooper pairs therefore represent a singlet state.

Using the Cooper-pairs as a basis, BCS constructed a wavefunction to describe
all electrons in the system. Without going into too much detail the main results of
the BCS-theory shall be presented here.

Its was found that the energy of an elementary excitation can be expressed as [22]

Ek =
√

ε2k + �2
k (2.58)

with the normal state energy ε and the self-consistent expression for the energy gap

�k = −
∑
k′

Vkk′
�k′

2Ek′
. (2.59)
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The BCS-theory assumes that the interaction potential V is constant and negative
(attractive) for all k and hence results in a constant energy gap �. However in the
high-Tc materials that are discussed in this thesis this is not the case and hence the
more general form including the k-dependence has been used.

Further the BCS-theory gives a result for the coherence length ξ which we had
already discussed in the Ginzburg-Landau theory. Here the coherence length can be
calculated as

ξ = �vF

π�
. (2.60)

It now represents the length-scale, spacial extend, of a Cooper-pair.
The superconducting phase transition at Tc in zero field is is of second order,

showing a jump of the heat capacity. The size of the anomaly in the heat capacity
was determined in the BCS-theory for a s-wave superconductor in the weak coupling
limit to be

�C = 1.43γTc, (2.61)

where γ is the normal state Sommerfeld-coefficient which describes the electronic
contribution to the heat capacity and is related to the effective mass via the density
of states [26]

γ =
(

πk2bNAa2

3�2

)
m∗. (2.62)

2.8 Phase Transition

Understanding the emergence of newphases and their origin has been or great interest
for a long time.We can best understand phase-transitions by turning to thermodynam-
ics. In this work the energy of a systemwill be described using the Gibbs-free-energy
G as it depends on temperature T and magnetic field B, which are typical parameters
varied in the lab. Here we hold the particle number. and hence the chemical potential,
constant. We assume that a system undergoes a phase-transition as function of the
external parameter T . The point at which the phase transition occurs is determined
by the relation G(T < Tc) = G(T > Tc), where Tc is the critical point. Within the
Landau-theory of phase transitions [1] we find that the transition can be of different
order n. Following the classification of Ehrenfest the order of a phase transition is
given by the lowest derivative of the free energy with respect to a thermodynamic
parameter that is not continuous. If the order parameter, which is the first derivative
with respect to the external field, is discontinuous than the phase transition is of first
order. However for a continuous order parameter the phase transition is of higher
order. This classification fails in the case of divergent order parameter at the phase
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transition such as in ferro-magnetic materials. In modern physics we therefore dis-
tinguish between first-order phase transition, characterised by a latent heat involved
in the transition, and second-order or continuous phase transitions which are char-
acterized by a divergent fluctuations. In the transition that will be of interest for us
and were discussed by Landau are of the second type.

In this case the phase transition is characterized by a continuous thermodynamic
quantity m known as the order parameter, which is zero in the disordered state and
then increases to reach one in the zero-temperature limit. While the average over
the sample in the disordered state is zero, this does not rule out fluctuations of the
order parameter. Those fluctuation possess a coherence length ξ which at Tc goes to
infinity. We can express this in the form

ξ ∝ |t|−ν, (2.63)

with the dimensionless parameter t = |T − Tc|/Tc and the critical exponent ν.
While in this notation fluctuations are treated as spacial variations, when considering
systems in quantum field theory, one treats them quasi-classical in d+1 dimensions,
where the additional dimension is the imaginary time scale. For the fluctuation in
time a typical life-time τc is given by

τ ∝ ξz ∝ |t|−νz. (2.64)

Following these criteria we find for T > Tc a disordered state with dynamic fluctua-
tions of the order parameter and long-range static order of m for T < Tc. Hence we
call ν the correlation length critical exponent and z the dynamic critical exponent.

We now considered the energy �ωc of the fluctuations, which we compare to
the thermal excitation kBT of the system if Tc is finite. For a finite life-time of the
excitations we find that

ωc ∝ τ−1
c ∝ |t|zν . (2.65)

For the case where �ωc << kBT , which can be rewritten as

|T − Tc| < T−zν
c (2.66)

the system can be treated classical [27]. However as Tc → 0 this is not the case
anymore and hence the description of the critical behavior close the critical pointmust
take quantum mechanical effects into account. Therefore these phase transitions are
called quantum phase transitions (QPT) and the point at which the order parameter
goes to zero is called a quantum critical point (QCP). Also from the comparison
of the energy levels we find that in the vicinity of a QCP a region exists where
�ωc ≥ kBT and hence the properties of the system are governed by the fluctuations
and quantum mechanics.
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Before going into detail we should point out how a continuous phase transition
appears in experiments. For this we will consider the heat capacity. As mentioned
before the order parameterm is zero in the disordered state and changes continuously
in the ordered state fromzero. Thereforewe canperformaTaylor expansion atT = Tc
of the Gibbs-energy

G(m,T) − G(0,T) = 1

2
am2 + 1

4
bm4 + ..., (2.67)

which is valid for small m. Also we only consider the case where G(m) = G(−m),
hence systems that do not break time reversal symmetry, like magnetic systems in
an external field. By taking the second derivative T∂TG we obtain the expression for
the heat capacity

CV (m,T) − CV (0,T) =
{
Ta2/b T < Tc
0 T > Tc

. (2.68)

We see that for a continuous phase transition the heat capacity has a jump at Tc.
Remember this is a mean-field treatment and does not include any fluctuations of the
order-parameter in the disordered state. By including those fluctuations one obtains
the Gibbs-energy in the form G[m((r), τ ),T ], which is now a functional of the order
parameter. To solve this one needs to find the partition function of this ensemble.
An example of this can be found in Ref. [28]. In the case of fluctuations of the order
parameter the heat capacity takes the form

C ∝ |T − Tc|−α. (2.69)

Instead of a step at Tc, the heat capacity diverges when approaching the critical point.
The exponent α is a characteristic critical exponent. Following the same derivation
one can also find critical exponents for other observables which are all characteris-
tic for a given class of phase transitions [27]. For the Gaussian approximation the
exponent α can be written as α = 2 − d/2 with the dimensionality d of the system
[29]. However the Gaussian approximation only holds for not too big fluctuations.
In general the form α = 2 − dν is found, known as hyperscaling.

2.8.1 Quantum Phase Transition

Wewill assume a system to have an ordered ground state below a critical temperature
T0. By tuning a non-thermal parameter g(pressure, magnetic field or chemical poten-
tial) it is possible to suppress T0 to zero temperature (see Fig. 2.6). Following Eq.2.66
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Fig. 2.6 Schematic phase
diagram of a quantum critical
point. Taken from Ref. [3]
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we find that the region in which we can treat the critical behavior in the classical limit
vanishes as we approach the QCP gc. The only fluctuations available at this point
to break the order are quantum fluctuations, resulting from Heisenberg’s uncertainty
principal. However, as we are experimentally not able to reach this point, we should
raise the question: why is the appearance of a QCP important to the research con-
ducted in this work? It was found in a variety of experiments that in the case of a QCP,
physical properties such as transport, heat capacity andmagnetic susceptibility differ
from their typical behavior [3, 30]. While in most metals resistivity as a function of
temperature is ρ ∝ T 2, one finds ρ ∝ Tn, with n < 2 in systems for g = gc (see
for example Ref. [31, 32]). Quantum critical systems at finite temperature posses a
finite length scale [33, 34]

Lτ = �c

kBT
(2.70)

which limits the imaginary time axis for thermal fluctuations in two or more dimen-
sions. As Lτ was given in the Heisenberg model c is the spin-wave velocity, specific
to magnetic phase transitions. By comparing the length-scales Eqs. 2.64 and 2.70,
two regimes emerge in the phase diagram for finite temperatures. For Lτ > τc
conventional behaviour, as described by Landau Fermi-liquid theory, is found. For
the opposite case Lτ < τc a non-Fermi liquid behaviour, as indicated in Fig. 2.6,
evolves, which is found as typical v-shape region in the phase diagram using resis-
tivity measurements [30, 32]. Also we conclude that in the low-temperature regime
the excitations from the ground state are weakly affected by thermal fluctuation but
relax on the much shorter quantum-time scale. In a mean field approach the system
can therefore be explained by the ground-state wave-function. However starting at
g = gc and going to high temperatures an increasing range of the phase diagram is
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influenced by the quantum critical point, even for g 
= gc. The appearance of this
unusual part of the phase-diagrammotivates interest in QCP and might be the reason
for novel phases at finite temperature emerging from QPT.
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