
Chapter 2
Vector-matrix Differential Equation and
Numerical Inversion of Laplace Transform

2.1 Vector-matrix Differential Equation

A differential equation and a set of differential (simultaneous linear ordinary
differential equations or partial differential equations) equations are written in the
form of a Vector-matrix differential equation which is then solved by eigenvalue
approach methodology.

Examples

1.

dv1
dt

= a11v1 + a12v2

dv2
dt

= a21v1 + a22v2 (2.1)

Or, equivalently written as:
dv

dt
= Av (2.2)

where v =
[
v1
v2

]
, A = [ai j ]i, j=1,2 = Constant coefficients of the differential

Eq. (2.1).
Similarly, we can take v = [v1 v2 . . . vn]T , A = [ai j ]i, j=1,2,...,n for n linear
differential equations, whereas the elements ai j of the matrix A are not all simul-
taneously zero. Equation (2.1) can be modified as

2.

dv1
dt

= a11v1 + a12v2 + f1

dv2
dt

= a21v1 + a22v2 + f2 (2.3)
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14 2 Vector-matrix Differential Equation and Numerical…

where fi ’s (i = 1, 2) are any scalars.
Then, Eq. (2.2) becomes

dv

dt
= Av + f (2.4)

where f = [ f1 f2]T .
In a similar way, the Eqs. (2.2) and (2.4) can be generalized for n equations, where
f = [ f1 f2 . . . fn]T .
Another type of linear differential equations are

3.

Lt = x2A t (2.5)

where L is the Bessel operator and L = x2 d2

dx2 + xp(x) d
dx + q(x), t =

[t1 t2 . . . tn]T , and A = [ai j ]i, j=1,2,...,n , ai j is constant for all i and j , and p(x)
and q(x) are real-valued continuous functions in [0, 1].
Expandedform of equation (2.5) is

L

⎡
⎢⎢⎣

t1
t2
. . .

tn

⎤
⎥⎥⎦ = x2

⎡
⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .

an1 an2 . . . ann

⎤
⎥⎥⎦

⎡
⎢⎢⎣

t1
t2
. . .

tn

⎤
⎥⎥⎦ (2.6)

which also gives the n linear differential equations.
This Eq. (2.6) can be restricted for one, two, three,… equations, putting the value
of n = 1, 2, 3, . . ..
Henceforth, the Eqs. (2.2), (2.4), and (2.5) are defined as vector–matrix differ-
ential equations.

2.2 Solution of Vector-matrix Differential Equation

The problem of thermoelasticity andmagnetoelasticity should be solved. In this field,
governing equation in laplace and/or Fourier transformed domain should be written
in the form of vector–matrix differential equation and solved them by eignvalue
approach. So, the above-discussed vector–matrix differential equations are given
below:

• (i) dv
dt = A v; dv

dx = A v + f
• (ii) Lt = x2A t

(i) Taking the Eqs. (2.2) and (2.4) for n-differential equations, the solution of the
vector–matrix differential equation of the form of Eqs. (2.2) and (2.4) with initial
condition v(0) = c, and we make a substitution v = Xeλt such that X is a nonzero
independent vector and obviously λ is a scalar.
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This implies that

(A − λI )X = 0 (2.7)

this equation interprets that λ(λi ; i = 1(1)n) are nothing, but the eigenvalues of the
matrix A and corresponding eigenvectors are X (Xi ; i = 1(1)n). These n-linearly
independent vectors form a basis of complex n-dimensional Euclidean space En . If
we take into consideration any vector c which is belong to En , then for any scalars
(c1, c2, . . . , cn).

c can be expressed as c = c1X1 + c2X2 + · · · + cn Xn = ∑n
i=1 ci Xi .

If u(x) = ∑n
i=1 ci Xi eλi x is the solution of equation (2.2).

Then v(0) = ∑n
i=1 ci Xi eλi xo = ∑

ci xi = c.
Which also satisfies the initial condition.
For the uniqueness of the solution of equation (2.2), we can express the solution

as v(t) = c1X1eλ1t +c2X1eλ2t +· · ·+cn Xneλn t v(o) = c1X1+c2X2+· · ·+cn Xn =∑n
i=1 ci Xi = c
Hence, v(t) is the unique solution of the Vector-matrix differential equation

(2.2) satisfying the initial condition. We now show that the uniqueness of the
solution of Vector-matrix differential equation (2.4). For any n-scalar functions
b1(x), b2(x), . . . , bn(x), we can take

v(x) =
n∑

i=1

bi (x)Xie
λi x such that bi (xo) = 0 (2.8)

Differentiating both sides of Eqs. (2.8) with respect to x , then we get v′(x) =∑n
i=1 b

′
i (x)Xieλi x + ∑n

i=1 bi (x)λi eλi x

Substituting the values of v(x) in Eq. (2.8), we have

n∑
i=1

b′
i (x)Xi e

λi x +
n∑

i=1

bi (x)λi Xi e
λi x

=
n∑

i=1

bi (x)A Xi e
λi x + f (x) (2.9)

or,

n∑
i=1

b′
i (x)Xi e

λi x =
n∑

i=1

bi (x)[A Xi − λi Xi ] eλi x

+ f (x) = f (x) (2.10)

Multiplying Eq. (2.10) by Z j e−λ j x (where Z1, Z2, Z3, . . . , Zn are left eigenvector
corresponding to the eigenvalues λ1, λ2, λ3, . . . , λn), we get
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n∑
i=1

b′
i (x)Xi Z j e

(λi−λ j )x = Z j f (x) e−λ j x (2.11)

or,

b′
j (x)Z j X j = Z j f (x) e−λ j x , [Z j X j = 0 f or i �= j]

b′
j (x) = 1

Z j X j
Z j f (x) e−λ j x

b j (x) =
∫ x

x0

(Z j X j )
−1Z j f (x) e−λ j sds, (2.12)

taking b j (x0) = 0, f or j = 1(1)n Now take

v(x) = v1(x) + v2(x) (2.13)

By differentiating, we get
v′(x) = v1′(x)+ v2′(x) = A v1(x)+ A v2(x)+ f (x) = A[v1(x)+ v2(x)]+ f (x) =
A v(x) + f (x) i.e., v′(x0) = v1′(x0) + v2′(x0) = c

Hence, v(x) = v1(x)+v2(x) is the unique solutionof theVector-matrix differential
equation (2.4), satisfying the condition v(x0) = c.

(ii) Now, we consider another type of Vector-matrix differential equation of the
form

Lt = x2A t (2.14)

where A = [ai j ], (i, j) = 1(1)n, all ai j ’s are constant, not all simultaneously zero,
and p(x) and q(x) are two real-valued continuous function in [0, 1].
The initial conditions are

t (1) = c and t ′(1) = d (2.15)

where t , c, and d are vectors with n-components.
Assume that t (x) = X (α)ω(x, α) be a solution of the equation (2.14), X is n-

vector independent of x , and ω(x, α) is a non-trivial solution of second-order linear
differential equation

Ly = αx2y (2.16)

taking α as a scalar.
We now get using the operator L on t

Lt = L(X, ω) = XLω = X (x2αω) = αx2Xω (2.17)

Hence, Eq. (2.14) becomes

x2(αX − AX)ω = 0 (2.18)
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Since, t (x) is the non-trivial solution of equation (2.14), ω(x, α) �= 0. So, it follows
that

α X = A X (2.19)

Equation (2.19) is an algebraic eigenvalue problem where α is the eigenvalue and
X is the corresponding eigenvector of the matrix A; also, Let αi , i = 1(1)n be the
distinct eigenvalues and let Xi , i = 1(1)n be the corresponding eigenvectors of the
matrix A.

Then, Xi , i = 1(1)n are linearly independent, it forms a complex space Cn , and
C is the field of the complex numbers.

We can find the scalars ci , i = 1(1)n and di , i = 1(1)n, for any two vectors
CandD, such thatC = c1X1+a2X2+· · ·+cn Xn, and D = d1X1+d2X2+· · ·+dnXn

Taking f (x, αi ) and g(x, αi ) as two linearly independent solutions of the differ-
ential equations

Ly = αi x
2y

with the initial conditions f (1, αi ) = 1, f
′
(1, αi ) = 0 and g(1, αi) = 1, g

′
(1, αi ) =

1,we now get

t (x) =
n∑

i=1

Xi [ci f (x, αi ) + di g(x, αi )] (2.20)

So, t (x) also satisfies the Eq. (2.14) also

t (1) =
n∑

i=1

Xi [ci f (1, αi ) + di g(1, αi )] =
n∑

i=1

ci Xi = C (2.21)

t
′
(1) =

n∑
i=1

Xi [ci f ′
(1, αi ) + di g

′
(1, αi )] =

n∑
i=1

di Xi = D (2.22)

where prime (’) denotes the differentiation, and it satisfies the prescribed initial
conditions. Hence, t (x), which is given by Eq. (2.20), which is also the unique of the
system of linear differential equations (2.14) satisfying the initial conditions (2.15).

2.3 Applications

In this section, we shall show that the results obtained by the applications of the
present theory are in complete agreement with those in the existing literature.
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AI

Wecan solve an ordinary differential equationwith the help of above theory. Consider
the differential equation

d2y

dx2
− 5

dy

dx
+ 6y = e4x (2.23)

The Eq. (2.23) can be written as

d

dx

[ dy
dx
y

]
=

[
5 −6
1 0

] [ dy
dx
y

]
+

[
e4x

0

]
=⇒ dv

dx
= A v + f (2.24)

Therefore v =
[ dy

dx
y

]

A =
[
5 −6
1 0

]
; f =

[
e4x

0

]

The eigenvalues are λ1 = 2 and λ2 = 3, and eigenvectors are

V1 =
[
2
1

]
when λ1 = 2 and V2 =

[
3
1

]
when λ2 = 3

Therefore,

V = [
V1 V2

] =
[
2 3
1 1

]

and also V−1 =
[−1 3

1 −2

]

The r-th equation of the Vector-matrix differential equation (2.24) is

dyr
dx

= λr yr + Qr (2.25)

where, Qr = V−1
r f ; V−1 = [wi j ];

Qr =
n∑

i=1

Wri fi ; r = 1, 2 (2.26)

V−1 f =
[−1 3

1 −2

] [
e4x

0

]
=

[−e4x

e4x

]

From Eq. (2.25), we get

yr = cr e
λr x + eλr x

∫
Qre

−λr xdx (2.27)

Taking r = 1, we get

y1 = c1e
λ1x + eλ1x

∫
Q1e

−λ1xdx (2.28)
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Putting λ1 = 2, we get

y1 = c1e
2x + e2x

∫
−e4xe−2xdx

= c1e
2x − 1

2
e4x (2.29)

Again from Eq. (2.25),we get

y2 = c2e
λ2x + eλ2x

∫
Q2e

−λ2xdx (2.30)

Putting λ2 = 3, we get

y2 = c2e
3x + e3x

∫
−e4xe−3xdx

= c2e
3x + e4x (2.31)

Now we get, v = V1 y1 + V2 y2
Combining Eqs. (2.29) and (2.31), we get

[ dy
dx
y

]
=

[
2
1

]
(c1e

2x − 1

2
e4x )

+
[
3
1

]
c2e

3x + e4x (2.32)

Then, the general solution of equation (2.23) is

y = c1e
2x + c2e

3x + 1

2
e4x (2.33)

AII

We can solve a set of differential equations with the help of above theory.
Consider the set of differential equations

d2e

dy2
= b1e + b2θ + b3 (2.34)

d2θ

dy2
= c1e + c2θ + c3 (2.35)

where bi ’s and ci ’s are arbitrary parameters which can be determined from the initial
conditions.

As in the theory stated above, Eqs. (2.34) and (2.35) are written in the form of
vector–matrix differential equation
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dV

dy
= A V + F (2.36)

where

V =
[
e θ

de

dy

dθ

dy

]T

and F = [0 0 b3 c3]
T (2.37)

The matrix A is given by

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
b1 b2 0 0
c1 c2 0 0

⎤
⎥⎥⎦ (2.38)

For the solution of the vector–matrix differential equation (2.36), we now apply
the method of eigenvalue approach methodology.

The characteristic equation of the matrix A is given by

λ4 − (b1 + c2)λ
2 + (b1c2 − b2c1) = 0 (2.39)

The roots of the characteristic equation (2.39) are λ = λi ; (i = 1(1)4), and these
are of the form λ = +λ1, λ = −λ1, λ = +λ2, and λ = −λ2, which are also the
eigenvalues of the matrix A.

The eigenvector X corresponding to the eigenvalue λ can be calculated as

X = [
(c2 − λ2) − c1 λ(c2 − λ2) − λc1

]T
(2.40)

Let Vi be the eigenvectors of the matrix A corresponding to the eigenvalues λi

respectively, where

V1 = [X ]λ=λ1
, V2 = [X ]λ=−λ1

, V3 = [X ]λ=λ2
, V4 = [X ]λ=−λ2

(2.41)

The general solution of equation (2.36) can be written as:

V =
4∑

i=1

Vi xi

where xi = Aie
λi y + eλi y

∫
qie

−λi ydy

and qi = V−1 F

where V = [Vi ], i = 1(1)4 (2.42)

Ai ’s are the arbitrary parameterswhich are determined from the boundary conditions.
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2.4 Numerical Inversion of Laplace Transform

Numerical inversion of Laplace transform is carried out by two different methods:

(i) Bellman method and
(ii) Zakian method.

(i) Bellman Method [8]
The definition1 of Laplace transform is

f (p) =
∫ ∞

0
f (t)e−ptdt (2.43)

It is assumed that f (t) is integrable and also is of exponential order σ > 0. For the
approximation of the integral of Eq. (2.43), we substitute, u = e−t

f (p) =
∫ ∞

0
u p−1h(u)du (2.44)

by taking f (−logu) = h(u)

Using the Gaussian quadrature formula, we get from Eq. (2.44)

n∑
i=1

Xiu
p−1
i h(ui ) = f (p) (2.45)

where Xi ’s are coefficients, and Xi ’s are the corresponding roots of the Legendre
equation Pn(u) = 0.

Putting the values p = 1, 2, 3, . . . , N in Eq. (2.45), we get

X1h(u1) + X2h(u2) + · · · + Xnh(un) = f (1)

X1u1h(u1) + X2u2h(u2) + · · · + Xnunh(un) = f (2)

. . . . . . . . . . . . . . . . . .

X1u
N−1
1 h(u1) + X2u

N−1
2 h(u2) + · · · + Xnu

N−1
n h(un) = f (N )

(2.46)

From Eq. (1.46), we get the values of h(ui ’s, i = 1(1)n, where f (−logu1) =
h(u1), f (−logu2) = h(u2), . . . , f (−logun) = h(un).

From equation (2.46), we get the numerical inversion of Laplace transform
according to the numeric values of p.

(ii) Zakian Method [30]
The definition2 of Laplace transform of the piecewise continuous function f (t) of
exponential order σ > 0 which is given by

1“Numerical Inversion of Laplace Transform,” Amer. Elsevier Pub. Com., New York, 1966.
2“Electronics Letters,” 5(6), 120–121, 1969.

http://dx.doi.org/10.1007/978-3-319-48808-0_1
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f (p) =
∫ ∞

0
f (t)e−ptdt (2.47)

Now, we define the scaled delta function as

∫ T

0
δ(

α

t
− 1)dα = t; such that 0 < t < T,

where as δ(
α

t
− 1) = 0 when t �= α (2.48)

We can define the integral as

I1 = 1

t

∫ T

0
g(α)δ(

α

t
− 1)dα; t ∈ (0, T ) (2.49)

where δ(α
t − 1) is the delta function. So, using the property of the delta function, we

have from Eq. (2.48)

I1 = g(t)

t

∫ T

0
δ(

α

t
− 1)dα, where as t ∈ (0, T ) (2.50)

We also have from Eqs. (2.48) and (2.49)

g(t) = 1

t

∫ T

0
g(α)δ(

α

t
− 1)dα; where as, t ∈ (0, T ) (2.51)

The function g is the discontinuous function and has the jump discontinuity from
g(t−) to g(t+) is 1

2 {s1g(t−) + s2g(t+)}, where s1 and s2 are two nonnegative real
parameters such that s1 + s2 = 2.

So, the delta function δ(α
t − 1) may be expanded as

δ(
α

t
− 1) = δn(

α

t
− 1) =

n∑
j=1

s j e
(−β j

α
t ) (2.52)

and for every point of continuity at t , we get

g(t) = lim
n→∞ gn(t); where as, t ∈ (0, T ) (2.53)

From Eqs. (2.51) and (2.52), we get

gn(t) = 1

t

∫ T

0
g(α)δn(

α

t
− 1)dα; where as, t ∈ (0, T )

= 1

t

∫ T

0
g(α)

n∑
j=1

s j e
(−β j

α
t )dα = 1

t

n∑
j=1

s j

∫ T

0
g(α)e(−β j

α
t )dα (2.54)
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Taking T → ∞ and the definition of Laplace transform, i.e., Eq. (2.47), we get

gn(t) = 1

t

n∑
j=1

s jG(
β j

t
); f or any region 0 < t < tc (2.55)

where,

tc = min
j=1,2,...,n

{Re(β j

σ
)}; σ > 0 (2.56)

So, making as n → ∞, Re(β j ) → ∞, we get tc → ∞.
We get the explicit expression for the inversion of Laplace transform as

g(t) = lim
n→∞

1

t

n∑
j=1

s jG(
β j

t
); 0 < t < ∞

where G(
β j

t
) =

∫ T

0
g(α)e(−β j

α
t )dα (2.57)
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