Chapter 2
Vector-matrix Differential Equation and
Numerical Inversion of Laplace Transform

2.1 Vector-matrix Differential Equation

A differential equation and a set of differential (simultaneous linear ordinary
differential equations or partial differential equations) equations are written in the
form of a Vector-matrix differential equation which is then solved by eigenvalue
approach methodology.

Examples
1.
dV1 +
— =a vy +apv
s 11V1 12V2
dV2
= 2.1
ar a vy + anwv 2.1)
Or, equivalently written as:
dv
— = Ay 2.2
7 (2.2)
where v = :1 i| , A = [ajjli j=1,, = Constant coefficients of the differential
2
Eq.(2.1).
Similarly, we can take v = [v; v» ...v,]T, A = laijli,j=1,2,....» for n linear

differential equations, whereas the elements g;; of the matrix A are not all simul-
taneously zero. Equation (2.1) can be modified as

2.

dV]

—— =apvy +apv2+ fi

dt f

dV2

< = @em +anv+ fo (2.3)
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where f;’s (i = 1, 2) are any scalars.
Then, Eq.(2.2) becomes

D sy (2.4)
_— = vV o
dt

where f =[fi f]".

In a similar way, the Egs. (2.2) and (2.4) can be generalized for n equations, where

f=Uhf o ful'.

Another type of linear differential equations are

Lt =x*At (2.5)

where L is the Bessel operator and L = xzﬁ + xp(x)% +qx), t =
[t1tr ...1,]7, and A = [aijli,j=1,2,..n, aij is constant for all i and j, and p(x)
and ¢ (x) are real-valued continuous functions in [0, 1].

Expanded form of equation (2.5) is

4 ajp a ... Ay h
15 ar; a» ... ay 15

L =x? " (2.6)
Iy anpl Ap2 - .. Qpp ty

which also gives the n linear differential equations.

This Eq. (2.6) can be restricted for one, two, three,... equations, putting the value
ofn=1,2,3,....

Henceforth, the Egs. (2.2), (2.4), and (2.5) are defined as vector-matrix differ-
ential equations.

2.2 Solution of Vector-matrix Differential Equation

The problem of thermoelasticity and magnetoelasticity should be solved. In this field,
governing equation in laplace and/or Fourier transformed domain should be written
in the form of vector—matrix differential equation and solved them by eignvalue
approach. So, the above-discussed vector—matrix differential equations are given
below:

e (VL =Av; X=Av + f

o (ii) Lt = x%At

(1) Taking the Egs. (2.2) and (2.4) for n-differential equations, the solution of the
vector—matrix differential equation of the form of Egs.(2.2) and (2.4) with initial
condition v(0) = ¢, and we make a substitution v = Xe* such that X is a nonzero
independent vector and obviously A is a scalar.
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This implies that
(A-ADX =0 2.7)

this equation interprets that A(A;; i = 1(1)n) are nothing, but the eigenvalues of the
matrix A and corresponding eigenvectors are X (X;;i = 1(1)n). These n-linearly
independent vectors form a basis of complex n-dimensional Euclidean space E". If
we take into consideration any vector ¢ which is belong to E”, then for any scalars
(c1,¢2y 00y Cp).

ccanbeexpressed as ¢ = ¢; X1 + 2 Xo + -+, X = D0 i Xi.

If u(x) = >'_, c; X;e™* is the solution of equation (2.2).

Then v(0) = D7, ¢; X;e"% = > ¢ix; = c.

Which also satisfies the initial condition.

For the uniqueness of the solution of equation (2.2), we can express the solution
as v(t) = 1 X1 e X e 44, Xt v(o) = a1 X F e Xo e X, =
DimiciXi=c

Hence, v(¢) is the unique solution of the Vector-matrix differential equation
(2.2) satisfying the initial condition. We now show that the uniqueness of the
solution of Vector-matrix differential equation (2.4). For any n-scalar functions
bi1(x), bry(x), ..., b,(x), we can take

n
v(x) = Zb,- (x)X;e™* such that b;(x,) =0 (2.8)

i=1

Differentiating both sides of Egs. (2.8) with respect to x, then we get v'(x) =
S bix)X e 4+ X bi(x)AehT
Substituting the values of v(x) in Eq.(2.8), we have

n n
Zb:(X)Xl e)\ix + Zb,’(X))L,‘X,’ ek”x
i=1 i=1

= > bi(x)A X; & + f(x) (2.9)
i=1

or,

D UB)X; e =D bi)[A X; — A X e
i=1

i=1

+/(x) = fx) (2.10)

Multiplying Eq.(2.10) by Z; e %% (where Z,, Z», Z, ..., Z, are left eigenvector
corresponding to the eigenvalues Ay, Ao, A3, ..., A,), we get



16 2 Vector-matrix Differential Equation and Numerical...

zb;(x)XzZ] e()\.i*)\.j)x — Zj f(x) e*)‘jx (211)

i=1

or,
bi(0)Z; X;=2Z; f(x) e ™", [Z; X; =0 fori # j]

b(x) = 7 X, Zj f(x) e M
bi(x) = / (Z; X)7'Z; fx) e Mids, (2.12)
taking b;(xo) =0, for j = 1(1)n Now take
v(x) = vi(x) 4+ va(x) (2.13)

By differentiating, we get
V() =vi’ () + ' (x) = Avi(x) + Anx) + f(x) = Avi(x) +va(0)]+ f(x) =
Av(x) + f(x)ie, V' (x) = vi'(x0) + v (x0) = ¢

Hence, v(x) = v;(x)+v2(x) is the unique solution of the Vector-matrix differential
equation (2.4), satisfying the condition v(xy) = c.

(ii) Now, we consider another type of Vector-matrix differential equation of the
form

Lt =x’At (2.14)

where A = [a;;], (i, j) = 1(1)n, all a;;’s are constant, not all simultaneously zero,
and p(x) and ¢ (x) are two real-valued continuous function in [0, 1].
The initial conditions are

t() =candt' (1) =d (2.15)
where t, ¢, and d are vectors with n-components.
Assume that 7 (x) = X (¢)w(x, o) be a solution of the equation (2.14), X is n-
vector independent of x, and w (x, «) is a non-trivial solution of second-order linear
differential equation

Ly = ax’y (2.16)

taking « as a scalar.
We now get using the operator L on ¢

Lt =L(X,0) = XLo = X(x*aw) = ax’Xo (2.17)
Hence, Eq. (2.14) becomes

2(@X —AX)w =0 (2.18)
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Since, ¢ (x) is the non-trivial solution of equation (2.14), w(x, @) # 0. So, it follows
that

aX=AX (2.19)

Equation (2.19) is an algebraic eigenvalue problem where « is the eigenvalue and
X is the corresponding eigenvector of the matrix Aj; also, Let o;, i = 1(1)n be the
distinct eigenvalues and let X;,i = 1(1)n be the corresponding eigenvectors of the
matrix A.

Then, X;,i = 1(1)n are linearly independent, it forms a complex space C", and
C is the field of the complex numbers.

We can find the scalars ¢;,i = 1(1)n and d;,i = 1(1)n, for any two vectors
CandD,suchthatC = 1 X+a, X0+ - -+c¢, X, and D = di X1+d> X2+ - -+dn X,

Taking f(x, ;) and g(x, «;) as two linearly independent solutions of the differ-
ential equations

Ly = ocixzy

with the initial conditions f(1,a;) = 1, f' (1, ;) = 0and g(1, i) = 1, g (1, o) =
1,we now get

1x) = D Xilei f(x, ) + dig(x, ;)] (2.20)

i=1
So, t(x) also satisfies the Eq. (2.14) also

n

1) =D Xilei f(l,e) +dig(l, )] = D e X; =C 2.21)

i=1 i=1

‘() =) Xileif (Ley) +dig (1)l = >_diX; = D (2.22)

i=l1 i=1

where prime (°) denotes the differentiation, and it satisfies the prescribed initial
conditions. Hence, 7 (x), which is given by Eq. (2.20), which is also the unique of the
system of linear differential equations (2.14) satisfying the initial conditions (2.15).

2.3 Applications

In this section, we shall show that the results obtained by the applications of the
present theory are in complete agreement with those in the existing literature.
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Al

We can solve an ordinary differential equation with the help of above theory. Consider
the differential equation

dzy dy 4
L 5 46y =¥ 2.23
dx? dx toy=e ( )

The Eq.(2.23) can be written as

d [ 5614 e+ dv
ol dx | = dx — =A 2.24
dx[y} [10][y}+[0]:>dx Avtl o @2

dy
Therefore v = |: ‘;f :|

5 -6 e
10 | i 10
The eigenvalues are A; = 2 and A, = 3, and eigenvectors are

Vi = |:ﬂ when A =2and V; = [ﬂ when A3 =3

A=

Therefore,
23
V=[ViVv]= [1 1}
—-13
-1 _
and also V™' = | o
The r-th equation of the Vector-matrix differential equation (2.24) is
dy,
Y+ 0, (2.25)
dx
where, O, = Vfli; vl = [wi;1;
Qr=ZW”-fl-; r=1,2 (2.26)
i=1
—~13 e4x _e4x
—1g_ —
=[5 -]
From Eq. (2.25), we get
y, = cpe 4 / Q,e M dx (2.27)

Taking r = 1, we get

yi = creM* + em/ Qe M dx (2.28)



2.3 Applications
Putting A} = 2, we get

Vi :Cler +62x/ _e4xe—2xdx

1
— Cler _ _e4x
2

Again from Eq. (2.25),we get

yr = cre™t 4 e'\zx/ Qre ¥ dx

Putting A, = 3, we get
yy = Cz€3x + eSx/ _e4xe—3xdx
— C2€3x +e4x

Now we get,v=V, y; + Vo »
Combining Eqs. (2.29) and (2.31), we get

d
][ 3

4 |:§:|c2e3x +e4x

Then, the general solution of equation (2.23) is

1
y:C1€2x+C2€3x+§€4x

AIl

We can solve a set of differential equations with the help of above theory.

Consider the set of differential equations

d%e
W =b1€+b29 +b3
d*o
W =cire+ 0 +c3

19

(2.29)

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

where b;’s and ¢;’s are arbitrary parameters which can be determined from the initial

conditions.

As in the theory stated above, Eqgs.(2.34) and (2.35) are written in the form of

vector—matrix differential equation
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—=AV+F (2.36)

where

and F=10 0 by c3]’ (2.37)

The matrix A is given by

0010
0001
by by 00 (2.38)
6‘16‘200

A=

For the solution of the vector—matrix differential equation (2.36), we now apply
the method of eigenvalue approach methodology.
The characteristic equation of the matrix A is given by

W= (b1 + )W + (bicy — bye)) =0 (2.39)
The roots of the characteristic equation (2.39) are A = A;; (i = 1(1)4), and these

are of the form A = +A;, A = —X;, A = +Xp, and A = —A,, which are also the
eigenvalues of the matrix A.

The eigenvector X corresponding to the eigenvalue A can be calculated as

X =[(e2—2) —c Mer—2D) —ra] (2.40)

Let V; be the eigenvectors of the matrix A corresponding to the eigenvalues A;
respectively, where

vl = [X])\,=A.l ’ V2 = [X])sz)»l ’ V3 = [X]A=X2 ’ V4 = [X])\:,)\z (241)

The general solution of equation (2.36) can be written as:

4
V= Z Vixi
i=1

where x; = A;je*” + ek"y/ gie MVdy

and g =V~ ' F
where V. =1[V;], i = 1(1)4 (2.42)

A;’s are the arbitrary parameters which are determined from the boundary conditions.
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2.4 Numerical Inversion of Laplace Transform

Numerical inversion of Laplace transform is carried out by two different methods:

(i) Bellman method and
(i1) Zakian method.

(i) Bellman Method [8]
The definition! of Laplace transform is

f(p)=/0 f®e dr (2.43)

It is assumed that f (¢) is integrable and also is of exponential order o > 0. For the
approximation of the integral of Eq.(2.43), we substitute, u = ¢~*

f(p) = / ” u” "h(u)du (2.44)
0

by taking f(—logu) = h(u)
Using the Gaussian quadrature formula, we get from Eq. (2.44)

> X! () = f(p) (2.45)

i=1

where X;’s are coefficients, and X;’s are the corresponding roots of the Legendre
equation P,(u) = 0.
Putting the values p =1, 2, 3, ..., N in Eq.(2.45), we get

Xih(uy) + Xoh(up) + -+ + Xph(uy,) = f(l)

Xqurh(uy) + Xoush(uz) 4 - - + Xpu,h(u,) = £(2)

XY " h(uy) + Xoud h(u) + -+ XouN " hu,) = £(N)
(2.46)

From Eq.(1.46), we get the values of h(u;’s, i = 1(1)n, where f(—logu;) =
h(”l)s f(_loé’uz) = h(”Z)s ceey f(_logul‘l) = h(un)

From equation (2.46), we get the numerical inversion of Laplace transform
according to the numeric values of p.

(ii) Zakian Method [30]
The definition? of Laplace transform of the piecewise continuous function f(¢) of
exponential order o > 0 which is given by

1“Numerical Inversion of Laplace Transform,” Amer. Elsevier Pub. Com., New York, 1966.
2«Electronics Letters,” 5(6), 120-121, 1969.
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o0
o= [ roerar (2.47)
0
Now, we define the scaled delta function as
L
/ 8(? — Ddo =t; suchthat0 <t < T,
0
where as 6(% —1)=0when t # « (2.48)

We can define the integral as

1T o
h= / g@d(E = Ddas 1€ 0.7) (2.49)
0

where §(% — 1) is the delta function. So, using the property of the delta function, we
have from Eq. (2.48)

n [T
I = #/ 5(% — yda, whereast e (0,T) (2.50)
0
We also have from Egs. (2.48) and (2.49)

T
g(t) = %/ g(a)(S(% — Dda; whereas, t € (0,T) (2.51)
0

The function g is the discontinuous function and has the jump discontinuity from
g(t—) to g(t+) is %{slg(t—) + s,g(t+)}, where 51 and s, are two nonnegative real
parameters such that s; + s, = 2.

So, the delta function §(§ — 1) may be expanded as

o o - _B.¢
5(?—1)=5n(?—1)=zsje< A (2.52)
j=1
and for every point of continuity at 7, we get

g() = lim g,(t); whereas, t € (0,T) (2.53)
n—oQ
From Egs. (2.51) and (2.52), we get

1 T
gn(t) = ;/ g(a)S,l(% — Dda; whereas, t € (0,T)
0

LT $ p I < ! ;
= ;/ g(@) E sjet P da = - § sj/ g(@)e™PiDda (2.54)
0 . . 0
Jj=1 j=1
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Taking T — oo and the definition of Laplace transform, i.e., Eq. (2.47), we get

n

1 .
gn(t) = " Zst(%); for any region 0 <t <t, (2.55)
j=1

where,
f. = min {Re(&)}; oc>0 (2.56)
j=1.2,0n o

.....

So, making as n — o0, Re(;) — o0, we get t. — 00.
We get the explicit expression for the inversion of Laplace transform as

1 — Bi
t) = lim — G(=L); 0<1t
g(t) nl)rgozglfsj (t) =h=

) T
where G(%): / g(@)e P da (2.57)
0
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