Chapter 2
VLSI Test and Hardware Security

Background for Hardware Obfuscation

Fareena Saqib and Jim Plusquellic

2.1 Introduction

Hardware obfuscation is a technique to conceal the design from malicious insider and
outsider adversaries. Obfuscation techniques transform the original design such that
the obfuscated version is functionally equivalent to the original design, but it does
not reveal the design details and is much harder to reverse-engineer [1]. As discussed
earlier in Chap. 1, the business model of distributed and outsourced design, integra-
tion, manufacturing, packaging, and distribution channels creates challenges such
as intellectual property (IP) piracy, reverse engineering of the netlist from GDSII,
integrated circuit (IC) cloning, and counterfeiting opportunities.

Nanometer-sized integrated circuit feature sizes and increased gate density per
wafer have been made possible with the advancements in photolithography tech-
niques. However, this has driven the cost and maintenance of fabrication facilities
into the billions of dollars, making the business model difficult to justify and sustain.
Consequently, many major companies have become fabless and instead outsource
their designs to offshore foundries as a cost-effective alternative to owning and operat-
ing their own fabs. Unfortunately, the horizontal dissemination of the design process
to companies all over the world decreases the trustworthiness and increases the secu-
rity risks of the design process [2, 3].

This chapter overviews the traditional design flow of integrated circuits and
assesses processes in terms of how much information is revealed to aid in reverse engi-
neering the design. We survey the proposed schemes that are designed to enhance
the security properties of traditional verification and testing mechanisms to make
designs resilient to attacks. This chapter also investigates IP protection schemes that

F. Saqib ()
Florida Institute of Technology, Melbourne, FL, USA
e-mail: fsaqib@fit.edu

J. Plusquellic
University of New Mexico, Albuquerque, NM, USA

© Springer International Publishing AG 2017 33
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_2

http://dx.doi.org/10.1007/978-3-319-49019-9_1

34 F. Saqib and J. Plusquellic

are designed to prevent illegal modifications and piracy for system-on-chip (SoC)
IP reuse-based design flows. This problem is challenging because IP can be distrib-
uted as soft (RTL level), firm (netlist level), or hard (GDSII level) and is usually
transparent at system design level, in manufacturing facility, and in the distribu-
tion chain, making it susceptible to security and privacy attacks. The objective of
hardware obfuscation is to make it difficult for an adversary to reverse-engineer the
functionality at any level of abstraction throughout the design process.

Threat Models:

IC piracy, cloning, counterfeiting, and sabotage have become major security con-
cerns under the current business model of IP reuse and offshore manufacturing. The
following provides a partial list of attack vectors open to an adversary:

(1) Reverse engineering: GDSII-to-netlist reverse engineering enables the adversary
to steal and reproduce the IP.

(2) Clones: An attacker in the system design flow can steal the IP or IC and make
exact clones or, with a few modifications, claim the ownership and make illegal
copies.

(3) Overbuilding: Building more copies of the IC than requested by the customer is
referred as overbuilding. Overbuilt ICs can be sold on the black market. Without
specialized metering techniques, preventing overbuilding is a challenge.

(4) Counterfeit chips: Counterfeit chips are intended to deceptively represent an
authentic component and can be created from recycled chips or from cloning [4].

(5) Trojan detection insertion: After reverse engineering the design, the adversary
can insert hardware Trojans in a set of counterfeit clones. Hardware Trojans
are hidden malicious circuits that can be designed to allow activation through
backdoors during the fielded operation of the chip. Activation can involve leaking
sensitive information or causing the chip and system to fail catastrophically.

This chapter is organized as follows: Sect.2.2 introduces the VLSI verification
and test concepts and discusses the vulnerabilities, attacks, and countermeasures.
Section2.3 describes the obfuscation techniques that can be integrated into the
design flow to make the design more resilient to reverse engineering and summa-
rizes the evaluation metrics for these techniques. Section2.4 covers the review of
nonvolatile memory and emerging technologies and discusses the associated vulnera-
bilities of key management on nonvolatile memories (NVMs). Section 2.5 introduces
the hardware-based cryptographic primitives, physical unclonable functions (PUFs),
and true random number generator (TRNG) and their use in hardware obfuscation
techniques to improve the resilience against reverse engineering.

2.2 VLSI Verification and VLSI Test Concepts

Very large-scale integration (VLSI) verification is a presilicon procedure to verify the
design before fabrication. Random test vectors and formal verification techniques are
used to verify design behavior and coverage of generated test vectors. Satisfiability

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 35

(SAT) solvers are used in formal verification to find design issues presilicon. Several
SAT solver algorithms have been integrated into the electronic design automation
(EDA) tools.

In contrast, VLSI testing is applied post-silicon to ensure high quality and reliabil-
ity in the shipped IC products and to find design problems that affect yield early. The
increasing level of complexity and smaller geometries used in modern IC fabrication
introduces new failure mechanisms that act to reduce the yield and the quality of
shipped products. VLSI testing is critically important to screening defective prod-
ucts, with the ultimate goal of reaching zero defects. VLSI testing also provides
important feedback for accelerating product yield ramps and has a direct impact on
profitability.

2.2.1 Satisfiability (SAT) Problem

Satisfiability is defined as a condition of boolean expression evaluating to be true
for a set of logical values of the variables. Outputs of combinational logic can be
expressed as boolean expressions, constituting conjunctions (and) of disjunctive (or)
clauses and variables in the form of conjunctive normal form (CNF).

An example of function in the CNF form is as follows:

F=(Gvbve)"@vecvd) "' vd) (2.1)

where a, b, ¢, and d are the variables that can be ‘1’ or ‘0’.

The decision problem for SAT, to find a satisfying assignment that makes the
function true, is a nondeterministic polynomial (NP) problem. For example, for
n variables, 2" boolean combinations of input variables are examined. Each SAT
formula has a polynomial time verifier that takes an input string, a zero, or one
assignment for all the variables and outputs a true or false evaluation for the provided
inputs.

The SAT problem has exponential complexity in the worst case, but given the
importance of the algorithm in CAD, researchers have developed many types of
efficient heuristically SAT solvers that provide near-optimal solutions. These SAT
solvers have many applications in the electronic design automation (EDA) in ver-
ification as well as in the synthesis. The SAT solver algorithms are categorized as
conflict-driven clause learning and stochastic local search algorithms. These algo-
rithms have been developed to automatically solve the instances/combinations with
large number of variables and clauses. Recent work in the development of efficient
SAT solvers includes GRASP [5], Satz [6], and Chaff [7]. These algorithms use SAT
solvers in formal or semiformal verification methods.

SAT solvers can also be used by malicious attackers to circumvent logic
encryption-based hardware obfuscation by applying SAT-based algorithms to derive
the keys [8]. The technique utilizes the approach of iteratively applying input pat-

36 F. Saqib and J. Plusquellic

terns on a set of selected inputs and identifying distinguishing inputs, for which
the functions become unsatisfiable. This approach of testing key combinations has
proven to weaken the security of hardware obfuscation, and research has focused
on countermeasures designed to instill worst-case (exponential) behavior in SAT
algorithms.

2.2.2 Equivalence of Circuits

Equivalence checking is one approach to functional verification. Equivalence check-
ing is performed at different stages of design flow to verify the functional equivalence
of combinational and sequential logic. Equivalence checking takes two descriptions
of the design that are structurally different and verifies whether their behavior is func-
tionally equivalent. The designs are compared using formal methods and simulation
techniques. Formal methods such as binary decision diagram (BDD) and SAT-based
are applied to the compare points in both the reference design and the implemented
design, and functional equivalence is verified using simulations. Traditional equiva-
lence checking utilizes the logic cones by analyzing the compare points. Logic cones
are generic attributes of digital circuits consisting of reconvergent segments that fan-
in to a common output. The input and outputs of cones are connected to the primary
inputs, registers, or primary outputs that are also referred as compare points.

The implemented design is verified to prove or disprove the functional equivalence
once all the compare points are verified. Several commercial tools such as Cadence
Conformal equivalence checker and Synopsys Formality are equivalence checking
tools. These tools use the netlist generated from Genus (Cadence) or Design Compiler
(Synopsys) synthesis generated netlist to compare with the RTL design description
using mathematical models.

Additional research is needed that investigates the equivalence checking in the
design flows that implement obfuscation techniques. Equivalence checking of the
reference design with the obfuscated netlists shown in Fig.2.1 is further discussed
in another chapter.

m{ P {

Logic Cone
created from

_—
obfuscated

Logic Con
created from
RTL

PO/Registers Check Points

Check Points

11

Fig. 2.1 Logic equivalence of reference and obfuscated design

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 37

2.2.3 Types of Testing: Functional Testing and Structural
Testing

2.2.3.1 Functional Testing

Functional test verifies that the chip performs the correct operations, i.e., can the chip
run the Windows operating system or carry out a matrix inverse software operation.
ATPG can alternatively and/or additionally be used to generate functional test vectors.
For example, vectors can be generated to test the ‘critical paths,” which are the longest
paths in the chip, and test the chip under worst-case power conditions. Therefore,
the roles of functional testing also include timing and power verification.

2.2.3.2 Structural Testing

Structural testing refers to techniques that are based on fault models as discussed
above. The goal is to check the integrity of the structural characteristics of the chip,
i.e., its individual wires and logic gate functions. SSF tests verify that circuit nodes
are not shorted to VDD or VSS, while transition and path delay tests verify that
the logic gates and selected paths are able to propagate transitions to capture points
(flip-flops and POs) using the functional (‘at-speed’) clock frequency. As indicated,
ATPG is used to derive the test vectors and automatic test equipment (ATE) is used
to apply them. Note that both functional testing and structural testing are constrained
by the economics of testing, i.e., a great deal of effort is made to determine the
smallest set of test vectors that meets the coverage requirements. This is true because
manufacturing tests are applied to every chip, and therefore, to be economical, the
test time per chip must be as small as possible.

2.2.4 Fault Modeling

Physical defects can occur in the IC during the manufacturing process, such as
interconnect defects or packaging defects, gate—oxide shorts, metal trace bridges,
open vias, and shorts to power or ground. Fault modeling is a mechanism to abstract
and simplify all the possible ways defects can cause a malfunction in a chip. The most
common fault models are single stuck-at fault (SSF), and transition and path delay
fault models. The SSF models have also been proposed as a mechanism to strengthen
hardware obfuscation techniques, as discussed below. The SSF model represents each
defect as a single gate-level pin or net shorted to VDD or VSS. The terms ‘stuck-at-1
(SA1)’ and ‘stuck-at-0 (SA0)’ are used to represent these conditions. The SSF model
assumes that only one fault (or no fault) exists in each chip. Figure 2.2a shows 6 gate
stuck-at faults for a two-input NAND gate, and Fig. 2.2b shows one instance of SAQ
fault in combinational logic.

38 F. Saqib and J. Plusquellic

stuck at 0

(a)

a sal,l

b sa0,1

Good Circuit: wxyz = 0111 F=1
Faulty Chip: wxyz = 0111 F =0

Fig. 2.2 a NAND gate inputs and output stuck-at model. b Combinational stuck-at fault

A combinational SSF is detected by determining the primary inputs (PIs) input
assignments that introduce the appropriate state on the target gate inputs while simul-
taneously ensuring that the target gate output is observable on one or more primary
outputs (POs). A stuck-at fault test determines whether the target node is SAO or
SA1 but also implicitly tests all gate inputs along the path for fault conditions.

The SSF model verifies the structural integrity and truth table description of com-
binational logic but does not verify whether the chip meets its timing specification.
Separate fault models and sets of test vector sequences are required to verify tim-
ing. The transition and delay fault models target timing-related defects that cause
logic transitions to take longer than expected to propagate through gates and along
paths in the chip, i.e., conditions that cause the chip to violate timing constraints.
Figure 2.3 shows the examples of delay faults. Defects that affect the drive strength of
the gate, transistor doping levels, metal capacitive loading, open vias, and/or resistive
gate—oxide shorts can introduce transition and delay faults in the chip.

The delay fault can be represented as a single gate fault, interconnect fault, or
path delay fault. A single gate delay fault models the defects that affect gate strength,
transistor doping, etc., i.e., anything that causes the timing of the input value at a
pin to be slow-to-rise or slow-to-fall. Interconnect delay faults model defects that
introduce variations in wire width or cause signal degradation because of resistive
shorts to other nodes. Path delay faults model distributed defects, i.e., defects that
effect the delay of the entire path. Delay tests are timed two-vector sequences (unlike
SSF tests) that are applied at a constant rate using the clock. Such tests are critical
for ensuring quality in modern nanometer-sized technologies.

2.2.5 Fault Coverage

Testing methods are evaluated in terms of fault coverage, where it is represented as
follows:

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 39

—_—
Added rise delay

(a) Rise Delay

Slow gate output

Logic Transistion delay

~

Wire Delay

Slow gate Input

(b) Logic Delay
Fig. 2.3 Delay fault model
Total detected faults

Fault coverage = - (2.2)
Total fault population

Fault coverage refers to fraction of faults under a given fault model that are covered
by the test patterns. Fault coverage is typically computed and reported by automatic
test pattern generation (ATPG) tools as these tools derive test patterns to test the
faults. Ideally, the coverage should be 100%. Unfortunately, deriving test patterns is
an NP-complete problem, and therefore, ATPG algorithms employ heuristics which,
in many cases, are not able to find tests for all of the faults. Despite this limitation, test
pattern generation using the SSF fault model is able to achieve high levels of coverage,
typically 95-99%. It should be noted that fault coverage can be reported differently
by different ATPG tools. For example, some tools eliminate the untestable faults
from the fault population before applying the equation given above, while others
do not. Fault coverage can also be used to identify difficult-to-test nodes and can
therefore serve as a basis to guide design-for-testability (DFT) strategies.

2.2.6 Automatic Test Pattern Generation (ATPG)

As indicated above, ATPG is CAD software tool that automatically derives a set
of test patterns for a specified list of faults using heuristic algorithms. The fault

40 F. Saqib and J. Plusquellic

model defines the nodes and/or paths in the chip that are the targets of ATPG. ATPG
algorithms automatically derive a fault list from the netlist and fault model given as
inputs. With the fault list available, a long, incremental process is started in which
tests are derived that detect the faults. The faults detected by a test pattern are checked
off in the fault list, and fault simulation is typically run to determine other faults that
are ‘accidentally’ detected by the test pattern. Commercial vendors provide a variety
of different runtime options and support for a fixed set of fault models, including SSF
and transition and path delay fault models. ATPG and fault models can be leveraged
in hardware obfuscation algorithms to produce strong keys, as discussed in Sect.2.3.
Figure 2.4 shows a typical ATPG flow.

Fault Models
Selection

b

Propagation path
Analysis
(Observability and
Controllability)

—

Test Vector
Generation

PR S

Test Vector Failed

Verification

Fault Drop

Passed

Test Vector
Database

Fig. 2.4 ATPG flow

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 41

2.2.7 Testing Metrics: Controllability and Observability

As indicated above, test pattern generation is an NP-complete problem. As is true of
many NP-complete problems, the task of generating a test pattern is doable in poly-
nomial time for most of the faults in the fault list. Unfortunately, there are typically
a small set of faults that elicit worst-case (exponential) time behavior in the ATPG
algorithm. In response to this issue, the manufacturing test community developed a
new set of algorithms that compute metrics for each of the faults in advance of ATPG
that reflect the likely level of difficulty in generating test patterns for the faults. The
metrics are probabilistic measures called controllability and observability. It should
be noted that these algorithms also address an NP-complete problem and, like ATPG
algorithms, employ heuristics. Unlike ATPG which can fail to find a test pattern for
hard-to-test nodes, the heuristics used in algorithms that compute controllability and
observability may produce inaccurate information for cases in which the task falls
into a worst-case scenario.

Algorithms that compute controllability and observability (first coined by Rutman
in 1972) produce numerical estimates regarding the difficulty of setting an internal
node to a specific logic value and making an internal node observable on an output
of the circuit. Several approaches to computing these testability measures have been
proposed including SCOAP [9, 10], CAMELOT [11], TMEAS [12], COP [13],
and PREDICT [14]. Testability analysis involves circuit topological analysis. For
example, SCOAP traces through the design description and assigns controllability
and observability weights to the nodes designated using the following six labels:

Combinational 0-controllability CCO(sig),
Combinational 1-controllability CC1(sig),
Combinational observability CO(sig),
Sequential O-controllability SCO(sig),
Sequential 1-controllability SC1(sig), and
Sequential observability SO(sig).

SNk D=

The primary inputs (PI-sig) are all set to 1 for both combinational and sequential
‘0’ and ‘1’ controllabilities, i.e., CCO(PI-sig) = 1, CC1(PI-sig) = 1, SCO(PI-sig) =
1, and SC1(PI-sig) = 1. Combinational 0 and 1 controllabilities of internal nodes
are calculated as the minimum number of combinational node assignments needed
to justify a ‘0’ or ‘1’ on the output of a gate driving the node. Sequential 0 and 1
controllabilities on the other hand estimate the minimum number of sequential nodes
that must be specified to set the internal node to ‘0’ or ‘1°. Starting from the primary
inputs to primary outputs, node weights are computed such that the circuit depth of
the node is factored into the combinational controllability equations. The following
rules are used to compute the output combinational controllability

42 F. Saqib and J. Plusquellic

a 2 CCO(z) = CCl(a)+1
CC1(z)= CCO(a)+1

CCO(z)= CCO(a)+CCO(b) +1
Z CCI1(z) = min(CCl(a), CCl(b))+1

CCO0(z) = min(CCO(a), CCO(b))+1
CC1(z)= CC1(a)+CC1(b) +1

O Q
N

CCO(z) = min(CCO(a)+CCO(b), CC1(a) + CC1(b))+1
Z CC1(z)= min{ CC1(a)+CCO(b), CCO(a) + CC1(b)) +1

b

Fig. 2.5 SCOAP controllability calculation

min(input controllability) + 1 , if one input sets gate output
sum(input controllability) + 1, if all inputs sets gate output
min (controllabilities of input sets), if output is determined
by multiple input sets, e.g., XOR

(2.3)

Outputcontrollability =

Figure2.5 describes the output controllability calculation for a set of standard
cells. In contrast, for observability, all the primary outputs (PO-sig) are set to O.
A PO to PI traversal adds 1 to internal nodes as their depth, measured to a PO, is
increased. For example, the observability of a gate input is computed using the gate’s
output observability and the controllabilities on its inputs as follows:

Input observability = output observability + sum (controllabilities of all other input pins to noncontrollable value) +1

2.4)

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 43

CO(z)=0
CO(a) = CO(z) +1 a

CO(a)= CO(2)+CCO(b) +1

7Y

CO(b) = CO(z) + min(CCO(a),CC1(a))+1 b

CO(z)=0
Z
CO(b)= CO(z)+CCO(a) +1 b
CO(a)= CO(z)+CC1(b) +1 4
CO(z)=0
i
CO(b)= CO(z)+CCl(a) +1 |
CO(a) = CO(z) + min(CCO(b),CC1(b))+1 a D CO@)=0
Z

Fig. 2.6 SCOAP observability calculation

Figure2.6 gives the equations for a common set of logic gates, including NOT,
AND, OR, and XOR. The SCO and SC1 calculations carried out for the sequential
gates, e.g., the D-FF, take into account how many times the FF must be clocked to
reach a particular output state of ‘0’ or ‘1°.

The heuristics used in computing testability metrics provide the algorithms with
linear runtime complexity. The analysis aids in the design process and can be used to
provide guidance to ATPG algorithms as to which nodes are difficult to test. Designs
for testability (DFT) techniques can be used in the design flow to add additional nodes
as ameans of improving the overall controllability and observability of circuit nodes.
DFT methods are categorized as ad hoc methods and structured methods. In ad hoc
methods, test structures are inserted into designs to target-specific problem areas on a
case-by-case basis. Structured DFT methods, on the other hand, include standardized
test structures such as scan and built-in self-test (BIST). DFT is typically carried out
as an integral component of the design flow to ensure testing requirements can be
met. For example, DFT can improve fault coverage and reduce the test generation
time.

44 F. Saqib and J. Plusquellic

2.2.8 Testing and Security

The goal of manufacturing test is to detect defects that occur during fabrication
or packaging before chips are shipped to customers or enter the supply chain. For
security and trust, the goal is to provide a high assurance, trusted product. Unfor-
tunately, detecting security and trust problem is much more difficult than providing
high-quality, defect-free chips. This is true because the random nature of manufac-
turing defects makes it possible to find nearly all of them with the test vectors that
provide high levels of fault coverage. The adversary for security and trust, on the
other hand, will apply sophisticated techniques to break security systems and add
malicious components (hardware Trojans) that are nearly impossible to activate and
discover using current manufacturing test techniques.

Secondly, traditional approaches that are based on ‘security-by-obscurity,” where
internal design components are manipulated to impair reverse engineering attacks,
are in fact partially defeated by DFT structures that assist with manufacturing test.
Scan and other ad hoc DFT approaches that increase controllability and observability
make it easier for adversaries to obtain internal design details in reverse engineering
attacks. In subsequent sections, we discuss the security vulnerabilities introduced by
DFT and the proposed countermeasures to allow test engineers to leverage them for
finding defects, but simultaneously prevent adversaries from using them for reverse
engineering attacks and as a ‘backdoor’ to break security mechanisms. DFT strategies
that enable attack vectors include the following:

(1) Scan,
(2) Boundary scan, and
(3) Built-in self-test (BIST)

2.2.8.1 Scan-Based

Scan Cells

Most DFT strategies, including scan insertion, are implemented during synthesis.
Scan insertion replaces the flip-flops (FFs) in the design with a special scan-based
FFs. Scan FFs add a special ‘test mode’ of operation to the FF that allows all or a
portion of the FFs to be linked together into a scan chain. The scan input of the scan
chain is connected to a primary input, and the scan-chain output is connected to a
primary output. This enables the test engineer to set and observe the internal state
of the FFs directly and therefore significantly simplifies the task of testing internal
combinational blocks for defects.

Figure 2.7 shows the modifications that are made to conventional DFF to convert
them into scan FFs. Two styles of scan insertion are shown, called MUXD-SFF and
LSSD-SFFE. The MUXD-SFF cell now includes a multiplexed input and a control
signal that allows functional mode (with normal D input selected) and scan mode

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 45

(a) Logic
over!wad\ D flip-flop
D Master latch Slave latch
TC - -
—Q
SD MUX] ’ —Q
CK Dc
(b) Logic Master latch Slave latch
overhea D
SD \ =Q
v LY
[D :
SCK D flip-flop

Fig. 2.7 Scan flip-flop design. a MUXD-SFE. b LSSD-SFF

(with scan input selected). During manufacturing test, the test mode signal called
scan enable is asserted to enable the scan operation. The operation of scan-based
testing (Fig.2.8) is a three-step process:

(a) Configuration of the scan cells with a test vector,
(b) Application of the system clock to capture the results, and
(c) Readout of the scan data for analysis.

Built-in self-test (BIST) also adds DFT components to the chip as a mechanism
to enable a self-testing mode of operation. BIST can significantly reduce the test
costs by making it possible for the chip to self-detect problems, which reduces the
dependency and time required on expensive automatic test equipment (ATE).

Scan-Based Attacks on Obfuscation

Scan-based testing is a significant and important tool for reducing cost and improv-
ing coverage of manufacturing test, but it can also be used to support noninvasive
attacks designed to steal important information such as keys or to bypass security
mechanisms and aid adversaries in reverse engineering attacks. Scan chains are easily
exploitable by an adversary who has access to the chip and can use it as a ‘side chan-
nel” for malicious activities such as cryptanalysis [15, 16]. Scan-based attacks are
categorized broadly into two categories: scan-based observability attacks and scan-
based controllability/observability attacks. A scan chain provides the adversary with

46 F. Saqib and J. Plusquellic

e L
Pls : -] - } POs
L o
z ScanOut
B —
" Combinational Crouit -
i ;’:j Scan Chain ’
_.1 Scan Chain }

Scan IN

Test Control

Fig. 2.8 Scan-based testing

the ability to take snapshots of the chip in different states to help reverse-engineer the
design. Alternatively, the adversary can set registers to specific values while operat-
ing the chip in test mode and hence can access internal secrets, such as key registers,
and change key operational modes as a means of bypassing any inserted security
mechanisms.

Countermeasures for Scan-Based Attacks

Several techniques are proposed to secure the scan chain, such as disabling scan
chain after manufacturing test and scrambling scan chain to make it harder for the
adversary to carry out reverse engineering attacks. The scan infrastructure can be
secured by blowing fuses to disable scan chain after manufacturing test [17]. In this
approach, the protected registers can be made uncontrollable and unobservable by
eliminating physical access to them. The disadvantage of this approach includes the
fuse-blowing post-processing step and the vulnerability of fuses to focused ion beam
(FIB) attacks [18]. FIB tools have been developed to enable ‘circuit edit,’ i.e., the
adding and removal of metal at specific regions in the chip. The adversary can use
FIB to repair the blow fuses and re-enable access to the secret keys and design details.

Scan-chain scrambling techniques obfuscate the register-to-scan-chain mapping
to make it harder to interpret scan data [19]. The technique requires a key to establish
the correct assignment of register-to-scan-chain mapping. Incorrect keys randomly
map the registers to scan-chain elements, effectively scrambling the data. This tech-
nique protects embedded secret information as well as details of the internal design,
making it difficult to reverse-engineer the chip.

An alternative is to implement a key separation method that disables access to the
secret key register in test mode [16]. The proposed method introduces a mirror key
register (MKR) which is muxed-in when scan mode is enabled and which prevents

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 47
Controller Algorithmic State Machine DataPath Key selection

Load_Key Scan_chain_enable

X Y

b

Secure

Load_key ='0"
scan_chain_enable='1"

u :
=
E

Fig. 2.9 Algorithmic state machine and data path for mirror key

access to the cryptographic key register. This approach enables the cryptographic
unit to be tested for manufacturing defects but prevents an adversary from using scan
to steal the secret key during functional mode. The control signal to the MKR is
the scan-enable signal, so the switch to the MKR is performed automatically when
scan is enabled. A block diagram of the proposed method is shown in Fig.2.9 using
the algorithmic state machine and data path. This technique protects the secret key,
but still allows the probing of internal design details and therefore does not prevent
reverse engineering attacks.

A low-cost secure scan (LCSS) technique is proposed to overcome this deficiency
by introducing dummy flip-flops in the scan chain [20]. The proposed architecture is

48 F. Saqib and J. Plusquellic

Dummy Cell

NN EENEEEEEENE,
Test Vectors: L

1011010100100110 | Dumesy-Sedt Dummy Cell

=
I CLIIT I T IO IA LS =

Scan Chain Insertion on Macro under Test with Dymmy Zells
Key Check
Logic

Scramble output Random
Response

Network

CLIT LTI Tl

Fig. 2.10 Low-cost secure scan (LCSS)

shown in Fig. 2.10. LCSS requires only small changes to be made in the design flow
to accommodate the insertion of additional scan cells and can be used to protect secret
embedded keys and the chip’s intellectual property. All the dummy cells are checked
with key checking logic (KCL) to determine whether the dummy cells have been
programmed with the correct code. Incorrect codes disable access to the scan-chain
data and instead enable a g-bit LFSR which generates random data on the scan-chain
output.

2.2.8.2 Boundary Scan

Boundary scan is a DFT mechanism for printed circuit board (PCB)-level testing,
that is similar to the scan DFT technique used inside the chip. Boundary scan creates
a shift register out of the I/O pads of chip and allows the chip solder connections
and interconnect on the PCB to be tested for manufacturing defects. JTAG is an
IEEE standard 1149.1 developed by a working group called the Joint Test Access
Group, along with other scan architectures including IEEE Std. 1500 and IEEE P1687
(JTAG) for reconfigurable scan networks.

JTAG

JTAG provides a single test interface across heterogeneous components/devices on
a printed circuit board (PCB) and hence facilitates testing. Figure2.11 shows the
interface signals of the test access port (TAP).

The test signals for the JTAG interface are defined as follows:

TCK: Test clock—all the boundary scan cells are shifted with the event on TCK.

TMS: Test mode select determines the next state. There are 16 states in JTAG.

TDI: Test data in—test vectors are provided through this signal. Additional JTAG
instructions are also provided by TDI.

TDO: Test data out—scan out the responses.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 49

TMS

TCK
o—t +

— T™4s | Macro
TCK under
TO1 Test

OD—AT0oI TDO

TDO
(-,

Fig. 2.11 JTAG

JTAG-Based Attacks on Obfuscation

JTAG makes the chips and entire PCB vulnerable to attacks because it does not
implement any type of device authentication in its daisy chain topology. Several
attacks have been reported that exploit the JTAG interface as a means of stealing
secret keys, of carrying out piracy of intellectual property, and to circumvent standard
policies. The adversary can also replace genuine chips with counterfeit clones without
fear of being detected. Therefore, JTAG has the same type of vulnerabilities as scan-
chain design and additionally is vulnerable to the insertion of malicious devices.
One such attack model is discussed in [21] explaining that the adversary can hijack
the shared resources, such as bus, and launch a denial-of-service attack or spoof
information.

Countermeasures Against JTAG Attacks

One countermeasure proposed in [22] is to implement JTAG interface using fuses and
electronically destroy it after the completion of manufacturing test, thus eliminating
security risks. A better solution is to add a security mechanism to JTAG that is
designed to limit the access to authorized users. An authentication mechanism can
also be added to allow a controller or centralized trusted server to authorize chips
to perform certain tests [23]. An alternative is to allow the controller chip to abort
test traffic by introducing security policies [24]. Compact cryptographic modules
can be further included to encrypt test data and carry out key-based authentication of
chip under test [21]. Keys can be programmed on chip in tamper-evident nonvolatile
memory or they can be generated on the fly using physical unclonable functions [25].

2.2.8.3 Built-In Self-Test (BIST)

Built-in self-test is a testing technique that can generate and apply random test vectors
on chip and then validate that the results are fault-free, thus eliminating ATE at the
cost of additional area overhead on the chip. BIST is commonly used to test embedded
memories that do not provide external pins for direct access. An example showing

50 F. Saqib and J. Plusquellic

Generate random .
—_— test vectors T
Controller Test (MUT)
Test Pass/ Response | _
Comparator o

Test Failed

Fig. 2.12 Built-in self-test process

how BIST can be implemented is shown in Fig. 2.12. The controller applies random
test vectors to the macro under test (MUT) and verifies the responses on chip. The
interface control signals only convey whether the circuit is passed or failed and does
not transfer the responses. BIST can be implemented with chips and boards that also
include JTAG. Since BIST does not reveal the data or state of the system, it naturally
provides obfuscation.

2.3 Hardware-Based Obfuscation Design Primitives

To better understand hardware primitives that are currently used in several obfusca-
tion techniques, we first discuss a classification scheme for obfuscation techniques.

2.3.1 Types of Hardware Obfuscation

Hardware-based obfuscation is broadly categorized as passive hardware obfuscation,
active hardware obfuscation, and reconfigurable logic-based obfuscation. Recently
proposed method includes active key-based hardware obfuscation schemes that can
be further classified as combinational logic obfuscation and finite state machine
(FSM)-based obfuscation.

2.3.1.1 Passive Hardware Obfuscation

In keyless or passive hardware obfuscation techniques, the design description is
obfuscated and/or encrypted using cryptographic primitives. A register transfer-level
(RTL) design obfuscation technique is discussed in [26], which renames signals and
reorganizes the code to obscure its meaning to adversaries. Research reported in
[27-29] encrypts the hardware description language (HDL) before distributing to
untrusted entities in the supply chain. The IP designer provides key to legal customers
to decrypt the design for integration or for fabrication.

In passive or keyless hardware obfuscation, the functionality is not modified and
only the design file or netlist is obfuscated. Passive hardware obfuscation techniques

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 51

do not stop the adversary from using the design as a black box or from distributing
or overbuilding the design. Also, passive techniques cannot prevent the customers
from distributing the decrypted copy.

2.3.1.2 Active Hardware Obfuscation

Active hardware obfuscation or key-based techniques, on the other hand, modify
the functionality as a mechanism to harden the design against reverse engineering.
Logic-based obfuscation involves embedding the key in the functional unit itself and
requires the user to provide the correct keys along with the functional inputs to get the
correct results. Key integration is accomplished by the insertion of key-based logic
in the combinational logic paths and/or finite state machine (FSM) of the design.
For example, most proposed techniques add states to the FSM and XOR and XNOR
gates to the data path.

Combinational Logic Obfuscation

Logic obfuscation modifies the design by incorporating additional gates such as
XOR and XNOR to the data path, which have one or more of their inputs driven
by registers that store the key. Timing analysis is typically performed in advance to
select insertion points that do not impact the timing characteristics of the design.
The insertion points can be selected randomly [30, 31] among the noncritical paths
available, or more sophisticated techniques can be employed, such as those based
on graph theory [32] or fault model analysis [33]. These techniques are covered in
detail in Chaps. 5 and 6.

FSM-Based Logic Obfuscation

FSM-based obfuscation, also referred as IC metering, modifies the circuit design
and locks each chip using a unique state transition path that can only be unlocked
when the chip receives the correct key from a key management authority or design
house. The key ensures the chip follows an unlocking sequence of state transitions
when powered up to run in functional mode [34]. These techniques can be designed
to require a unique key for each chip, that is either stored in a NVM such as an
EEPROM or fuses or be generated on the fly using a physical unclonable function
(PUF). The key is paired with an augmented FSM in such a way that only the design
house can unlock the chip. Sections2.4 and 2.5 discuss the key management using
NVMs, PUFs, and TRNGs.

Reconfigurable Logic-Based Obfuscation

Reconfigurable logic-based obfuscation technique suggests to make a small com-
ponent of the design reconfigurable in the chip. This approach hides the functional
details of the obfuscation method during the manufacturing process which hinders
the untrusted fabrication facility from reverse engineering the design. The technique
proposed in [35] utilizes a fingerprinting technique by altering the implementation

http://dx.doi.org/10.1007/978-3-319-49019-9_5
http://dx.doi.org/10.1007/978-3-319-49019-9_6

52 F. Saqib and J. Plusquellic

slightly as a mechanism to detect clones or overbuilding. The use of embedded recon-
figurable logic against code injection attacks on an open source SPARC processor is
discussed in [36, 37].

2.3.2 Metrics of Hardware Obfuscation

Active hardware-based obfuscation hardens the design against reverse engineering,
but such a scheme is vulnerable to side-channel attacks on keys and simulation-based
attacks designed to decode key—gate values. It is assumed that if the malicious user
is given enough time and resources, the obfuscation will fail. The authors of [38]
propose the following objectives and metrics for hardware obfuscation:

(I) The size of the input space must be large enough to make brute force attacks on
FSM and combinational logic obfuscation infeasible.
(II) The obfuscation method should attempt to maximize the impact of wrong key
guesses, such as the hamming distance between the correct outputs and obfus-
cated outputs is 50%.

2.4 Volatile and Nonvolatile Memories

Active hardware obfuscation techniques require a key storage mechanism to produce
the correct results, and for the case of programmable logic, netlist configuration
information must be available at power-on to reconfigure the field programmable gate
components. A variety of technologies exist to permanently store the keys including
volatile memory and nonvolatile memory (NVM).

2.4.1 Volatile Memory

Key-related information stored in a volatile memory, such as dynamic random-access
memory (DRAM) or static RAM (SRAM)), is lost over power cycles of the chip unless
it is powered from a battery, which represents a cost overhead for the system and
reduces its reliability and availability. Other disadvantages of using volatile memory
for key storage are that it is vulnerable to ‘cold boot attacks’ and requires the key
communication process to be secure.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 53

2.4.2 Nonvolatile Memory

NVM retains data across power cycles and can be categorized according to the writing
mechanism that they employ. ROM, EPROM, EEPROM, and FLASH are common
NVMs that are read-only, read mostly, and rewritable, respectively.

2.4.2.1 Read-only Memory (ROM)

ROM is a read-only memory that is programmed during the manufacturing process
and cannot be changed in the field. ROM is a high-speed, high-density, and low-cost
memory, thus making it an attractive medium for low-cost and embedded devices.
Keys are permanently stored, are immutable, and are usually the same for all the man-
ufactured devices. Furthermore, ROMs are vulnerable to attacks whereby adversaries
can use specialized tools to read out their contents.

2.4.2.2 Reprogrammable Memory

EPROM and EEPROM are reprogrammable memories that can be programmed after
manufacturing. These memories utilize floating gate-type technology which allows
the data storage transistor to be reprogrammed by changing the trapped charge on
the gate input. The floating gate retains the trapped charge across power cycles, and
therefore, it does not require a battery. However, specialized hardware is required to
add and remove the trapped charge. A benefit of floating gate technologies is that
keys can be programmed after manufacturing, thereby preventing the manufacturer
from engaging in reverse engineering attacks.

2.4.2.3 One-Time Programmable Memory

Antifuse, e-fuse, and laser fuses are one-time programmable memories and therefore
represent a class of fused-based technologies. Fused-based storage is more vulnerable
to invasive attacks which probe the layout of the chip as a means of stealing the secret
information and bypassing the security mechanisms.

2.4.2.4 Emerging Technologies: RRAM or ReRAM, PCM, and
STT-MRAM

Resistive random-access memory (RRAM) or ReRAM is a NVM that stores ‘0’ and
‘I’ by changing the resistance of memristor devices. PCM is similar to ReRAM,
which stores information using resistance levels. STT-RAM stores information on
ferromagnetic layers using magnetic polarization and has the access speeds close to

54 F. Saqib and J. Plusquellic

the caches. These memories are nonvolatile and therefore do not require an energy
source to maintain their contents.

2.4.3 Limitations of Current Key Storage Mechanisms

The advantage of storing information in RAM is that the secret information is lost
after a power cycle. On the other hand, the battery-backed RAM introduces reliability
issues because data is lost if the battery fails. Conventional key management systems
utilize NVMs to store master keys or session keys, but as pointed out earlier, NVMs
are vulnerable to invasive and noninvasive attacks.

Invasive attacks such as microprobing and laser-cutting attacks allow the adversary
to learn the secrets by decapping the chip and reading the memory cells. To mitigate
physical attacks, variants of tamper-resistant NVM include sensors to detect physical
access to the device. The sensors require a battery to remain active while power is
turned off. Therefore, NVM is not attractive for use in embedded and resource-
constraint devices.

Noninvasive attacks that target key extraction from NVM include glitch attacks,
fault injection (timing, voltage, temperature, radiation), and power analysis. Mitiga-
tion techniques include randomized design flows or design techniques that equalize
power consumption. The drawback of these approaches is that it does not follow tradi-
tional design flows and increase area overhead to the design. Furthermore, emerging
NVM technologies are promising but have not been validated as to whether they
provide enhanced security properties over conventional NVMs.

2.5 Design Obfuscation: PUF and TRNG

2.5.1 Physical Unclonable Functions (PUFs)

Physical unclonable function (PUF) is an emerging physical layer cryptographic
primitive used in hardware security and privacy protocols. They are embedded struc-
tures that utilize inherent manufacturing process variations to extract unique but
reproducible secrets. The concept was first introduced as physical one-way func-
tions [39] and later as physical unclonable functions [40]. PUFs measure variations in
propagation delays, wire resistances, and other analog circuit parameters to produce
digital bitstrings that are random and unique across instances of the chip popula-
tion. PUFs are unclonable because the random information source on which they are
based (the source of entropy) cannot be replicated, i.e., manufacturing process con-
trol cannot reduce the physical and electrical variations that occur across and within
chips to zero tolerance levels. PUF bitstrings are generated on the fly as needed and
therefore eliminate the need for NVM, e.g., EEPROM and e-fuses. This new key

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 55

generation mechanism eliminates the probing attack vulnerabilities discussed earlier
in reference to NVMs because PUFs do not store digital versions of the bitstrings and
the analog nature of the entropy source makes it tamper-evident whereby physical
probing changes and/or destroys the ability to regenerate the same bitstring.

2.5.1.1 PUF Operation

(a) Apply Challenges

PUFs are based on a challenge—response pair (CRP) mechanism. The challenge
for a PUF is defined as a digital input, usually in the form of a bitstring of ‘0’s
and ‘1’s. The output of a PUF is also digital, but for most PUFs, this requires an
on-chip mechanism to convert the small analog variations leveraged by the PUF to
be digitized. The digitization process occurs automatically for some PUFs, such as
the SRAM PUF, where the bitstring is produced immediately after power-up. The
challenge to the PUF typically selects a unique set of elements from the entropy
source or, as is more common, selects a set of elements that are combined in a
unique fashion. The randomness of the entropy source ensures that the CRPs are
unique across chips, i.e., the response bitstring produced by the PUF is different for
each chip even when using the same challenge. In the best case, 50% of the bits in
the response bitstring are uniquely defined by each PUF instance.

(b) Enrollment

PUF-based security applications require an enrollment process. Enrollment is
carried out in a secure environment where CRPs are measured and stored by a trusted
authority in a secure database. Enrollment can also be done while the chip is in the
field as long as the PUF’s existing secrets can be used to securely transmit new CRPs
to the trusted authority.

(c) Regeneration

Regeneration is a process that is carried out by a fielded chip usually in response
to a request issued by an application that requires a key for encryption or a unique
bitstring for authentication. When exact replication of the bitstring is required, e.g.,
key generation for encryption, PUFs require some type of helper data as a means
of fixing or avoiding bit flip errors that occur when the CRPs are reapplied. Helper
data is typically stored by the trusted authority during the enrollment process and
is transmitted to the fielded device in-the-clear when needed. Therefore, helper data
does not leak any, or leaks very little information, about the secret bitstring. In other
applications such as authentication, exact reproduction of the bitstring may not be
required, and instead, a close match is sufficient to confirm the identity of the chip.

56 F. Saqib and J. Plusquellic

2.5.2 PUF Evaluation Measures and Parameters:

2.5.2.1 Effect of Environmental Variations

Reproducing the bitstring exactly without helper data is challenging for PUFs because
of changes that occur to the entropy source when the environment changes, i.e.,
the outside temperature is high or a low battery causes the supply voltage to drop
on the chip. Changes in the environment introduce bit flip errors in the response
bitstring, making it difficult to achieve high reliability. Error-tolerant mechanisms
can be designed into the PUF architecture to help mitigate these types of adverse
effects, e.g., [41]. However, error tolerance is not sufficient in many applications, and
helper data must also be used as described above to meet the reliability requirements.

2.5.2.2 Evaluation Metrics of PUF

A survey on the PUF evaluation metrics is reported in [42] and includes techniques
designed to measure and quantify the quality of PUF response bitstrings. The most
important of these are summarized as follows:

1. Uniqueness

Uniqueness is a quality metric that ensures the responses generated by any two
chips for a given challenge should be substantially different. Interchip hamming
distance (HD) is used to quantize the difference, and in the ideal case, it is 50%.

n

n—1

. 2 HD(R;, Rj))

uniqueness = ——— . _— (2.5)
k(k —1) i=1 j;l (n

where ‘R’ is the response, ‘k’ is the number of chips, and ‘n’ is the length of the
response bitstring. Interchip (HD) quantifies the number of differences that occur
across a set of response bitstrings. Ideally, each bit position of the response bitstring
has the equal probability of being a ‘0’ or ‘1’. If some bits are biased to one value
or the other, then these bits are ‘more predictable’ from an adversarial point of view.
Bit biasing is measured across each bit position in the response bitstrings from a set
of chip using hamming weight as given by Eq.2.3, where ‘i’ is the bit position and
‘m’ is the number of chips.

Bit aliasingli] =

i (R;) (2.6)

j=1

&=

2. Reproducibility

Response bitstring reliability or reproducibility is measured using intrachip HD.
The data used in the analysis is the response bitstring measured under different

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 57

environmental conditions from the same chip using the same challenge. The data
from other chips is typically factored in by computing the average intrachip HD from
the individual analyses. The ideal value is 0%, i.e., no chip has any bit flip errors under
any environmental conditions. As indicated above, this ideal result is not possible
using the ‘raw’ response bitstrings directly, and instead, helper data is required to
achieve error-free regeneration. PUFs that are able to achieve relatively low interchip
HDs without helper data can be used in some authentication applications that just
require most of the bits in enrollment and regeneration bitstrings to match.

1
Reproducibility = — Z
m n

i'=1

- (HD (R, Ri/)) @

Equation 2.4 gives the formula for computing intrachip HD. It counts the number
of bits that are different in the bitstrings collected over ‘m’ different environmental
conditions, called temperature—voltage corner conditions.

2. Randomness

The PUF architecture, including the circuit structure used as the source of entropy,
and measurement technique can induce bias and reduce the randomness in the
sequence of bits generated by each chip. Bitstring randomness is measured using
statistical tests; for example, NIST has developed statistical testing software for
evaluating randomness in bitstrings generated by pseudorandom number generators
[43]. The test includes uniformity and frequency tests that count the number of ‘0’s
and ‘1’s in a bitstring. The frequency test requires the balance of ‘0’s and ‘1’s in any
given bitstring to fall within a tolerance; otherwise, the bitstring fails the test. The test
suite includes other tests that look for patterns in a set of bitstring subsequences that
occur more often than expected from bitstrings drawn from a truly random source.
The NIST software tool suite applies a set of up to 15 different tests to each of the
input bitstrings and reports the number of tests that each bitstring passes. Several
other randomness evaluation tools have also been developed including DIEHARD
[44] and AIS.31 [45].

2.5.3 C(Classification of PUF's

PUFs are classified into weak and strong PUFs, based primarily on two criteria:
the size of their CRP space and the level of resilience they have against model-
building attacks. A third related criteria is the size of the entropy source, i.e., how
many independent random varying components are used to generate the bitstrings. A
second PUF classification uses the terms ‘intrinsic’ and ‘nonintrinsic,” which relates
to whether the PUF is self-contained on the chip (intrinsic) or requires external
instrumentation to support it. Yet a third classification uses the terms ‘nonelectronic’
and ‘electronic’ to refer to the underlying structure of the entropy source, e.g., silicon
versus a material that exhibits random properties.

58 F. Saqib and J. Plusquellic
2.5.3.1 Weak and Strong PUFs

Strong PUFs can produce a very large, unique set of bits per device and have a very
large CRP space to support this characteristic. The very large CRP space makes it
impractical for an adversary, who has possession of the PUF chip, to apply them all
as a means of building a database, i.e., a ‘digital’ clone of the PUF. Many consider a
second property, i.e., model-building resistance, to be equally important to the very
large CRP space. Model-building refers to an attack mechanism whereby the adver-
sary uses the machine learning algorithms to derive a system capable of predicting
the response of the PUF after being trained on only a small portion of the CRPs.
Resistance to model-building attacks is best realized using an entropy source with
a large set of randomly varying components, but many proposed PUF architectures,
e.g., the Arbiter PUF, only have a small set and instead use cryptographic primitives
such as secure hash functions and XOR networks to obscure the CRP interface. The
HELP PUF is an example of a PUF which is based on a large entropy source, i.e.,
the best-case scenario [25].

Weak PUFs on the other hand have fewer CRPs and, in some cases, only one
response pair which is the case for the SRAM PUF. Weak PUFs are usually limited
to key generation where model-building attacks do not apply because the secret
does not leave the chip. Weak PUFs can also serve applications that require only a
unique ID from the PUF. Weak PUFs have capabilities similar to those provided by
an NVM, but provide a tamper-evident property which enhances their security over
NVM. Examples of weak PUFs include physically obfuscated keys (POKs) [41],
SRAM PUF [46], and Butterfly PUF [47].

2.5.3.2 Intrinsic and Nonintrinsic PUFs

As indicated above, intrinsic PUFs are completely self-contained architectures on the
chip, capable of making measurements, and carry out bitstring generation, whereas
nonintrinsic PUFs require benchtop instrumentation, e.g., photonic-based sensors,
to implement the measurement components. Intrinsic PUFs are far more popular,
and the number of proposed architectures continues to grow. Manufacturing process
variations on the chip manifest in many forms on the chip including within-transistor
threshold voltages and metal resistance characteristics. For example, PUFs based on
variations in delay include the Arbiter [48, 49], Ring Oscillator [41], and HELP
[25] PUFs. Delay is popular because there are many well-defined on-chip delay
measurement techniques that are available.

2.5.3.3 Sources of Entropy
Examples of nonelectronic PUFs include coating PUFs, optical PUFs, and CD Player

PUFs. Nonelectronic PUFs, to date, have not been considered as support primitives
for implementing hardware obfuscation functions. Electronic intrinsic PUFs are the

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 59

most common class of PUFs proposed for this purpose and include those based
on variations in transistor threshold voltages [50, 51], propagation delay (as indi-
cated above, the Arbiter, Ring Oscillator [41], and HELP [25] PUF are examples),
and power-up patterns in memory, e.g., the SRAM PUF [46]. The list of electronic
intrinsic PUFs keeps growing and includes the ROM PUF [52], leakage current PUF
[53], the metal resistance PUF [54, 55], the transistor transconductance PUF [56],
and other path delay-based PUFs [57, 58].

2.5.4 PUFs: Candidates for Hardware Obfuscation

In this section, we discuss the following PUFs, both weak and strong, that are con-
sidered good candidates for hardware obfuscation applications:

(1) Memory-based intrinsic SRAM PUF.
(2) Delay-based intrinsic PUFs including the Arbiter, Ring Oscillator, and HELP
PUFs.

(1) SRAM PUF

The SRAM PUF is classified as a weak intrinsic PUF that uses the randomness
in the power-up bit patterns of SRAM as source of entropy [46]. The SRAM cell
is implemented as a pair of cross-coupled invertors whose geometries are identical
(Fig.2.13). Manufacturing process variations cause mismatches in the transconduc-
tance parameters of the inverters resulting in the random power-up states that remain
constant for the majority of the cells. The power-up pattern varies from one chip
to the next, enabling the SRAM PUF to serve in chip identification roles and in
PUF-based hardware obfuscation protocols to map reconfigurable logic to a specific
function.

SRAM PUF behavior is affected by the systematic variations, where the number of
‘I’s and ‘0’s can be biased, thus degrading its randomness statistical metric, making
it vulnerable to model-building attacks (SRAM PUFs cannot be model-built). SRAM

Fig. 2.13 Cross-oupled
NOT gate SRAM cell

60 F. Saqib and J. Plusquellic

Arbiter

™\ Response bit

:

Rising Edge

—% g

T

C-bit Challenge

Fig. 2.14 Arbiter PUF

PUFs typically have poor reproducibility, reported as high as 20% or more in some
cases.

(2) Arbiter PUF

The Arbiter PUF is a delay-based PUF defined using a sequence of multiplexers
and an arbiter, e.g., a cross-coupled NAND latch as a mechanism to provide an
unbiased evaluation mechanism as shown in Fig.2.14 [48, 49]. The PUF leverages
the delay variation between two identical paths to generate a bit. Challenge bits select
the configuration of the switches that in turn determines the specific configuration of
the paths. The pairs of multiplexers serve as switch boxes, either routing the two paths
straight through the switches or flipping their connections. For a given challenge,
the Arbiter PUF measures the delay of two identical length paths. A rising signal is
given input to leftmost pair of multiplexers, as shown in Fig.2.14. The input signal
races along the two delay lines, and the arbiter at the end assigns a ‘0’ or ‘1’ based
on which path is faster. The connection of the path endpoints to the D and Clk inputs
allows the arbiter gate to automatically compute the result of the race.

The arbiter PUF is vulnerable to model-building attacks because of its linear struc-
ture and small number of components. A precise timing model can be constructed
to learn the parameters from a relatively small set of CRPs. To reduce the effective-
ness of model-building attacks, the authors of [41, 59] propose a parallel Arbiter
architecture which includes an XOR obfuscation network on the outputs.

(3) Ring Oscillator PUF

A Ring Oscillator PUF (RO PUF) is a weak PUF composed of identical delay
loops and counters [41]. RO PUFs measure path delay variations as differences in the
‘ring’ frequency of the delay loops (Fig.2.15). Challenges select a pair of identical
oscillators and compare the number of oscillations produced by each oscillator of
the pair. Frequency is measured by connecting the output of each RO to a separate

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 61

o S
L3 ATV

Comparator

D > > >

Fig. 2.15 Ring oscillator PUF

counter. The result of the comparison generates a single ‘0’ or ‘1’ bit in the bitstring.
Other pairings are used to construct the additional components of the bitstring.

RO PUFs are also subject to model-building attacks in common usage scenarios
in which the same RO is used in multiple different pairings. Machine learning algo-
rithms attempt to determine the relative frequencies of all ROs, which, once known,
make it possible to predict the response bitstring to any sequence of challenges used
to build the bitstring [60].

(4) HELP PUF

A hardware-embedded delay PUF (HELP PUF) proposed in [25, 57] is a strong
PUF. It leverages delay variations in existing design functional units and does not
require identical structures, unlike other existing delay-based PUFs. HELP also
implicitly provides tamper protection of the existing functional unit(s), i.e., any
change in the structural characteristics of the functional unit will change the measured
path delays.

Figure 2.16 shows the architecture of HELP with the functional unit representing
the entropy source. The inputs and outputs of the functional unit are connected to a
set of launch row and capture row flip-flops (FFs), respectively. A series of launch—
capture clocking events are applied to the functional unit using two clocks, Clk;
and Clk, as shown on the left side of Fig.2.16. The phase shift between Clk; and
Clk; is adjusted dynamically across the sequence of launch—capture tests, where the
digitally selected value of the fine phase shift between the two clocks is referred as the
launch—capture interval (LCI). The smallest LCI interval that allows the propagating
edge along a path to be captured in the capture FF is used as the digitized timing
value for the path.

PUF response bits are computed from delay differences between nonidentical
path delays. A modulus technique is proposed as a means of removing the bias in
the path delays of the nonidentical paths used in the difference operation while fully
preserving the smaller within-die delay variations.

62 F. Saqib and J. Plusquellic

Clk Strobing

Fig. 2.16 HELP PUF

2.5.5 True Random Number Generator (TRNG) Use in
Hardware Obfuscation

True random number generators are hardware primitives that are used in many
hardware-based security techniques, including hardware obfuscation. A true random
number generator (TRNG) uses randomness and noise to generate secrets that are
not reproducible. The randomness or noise should have uniform distribution to avoid
bias. The TRNG is an important primitive for cryptographic applications, which is
used for generating nonces for authentication protocols, for generating one-time pads
and for providing a selection mechanism for primes, as a unique key per device, etc.
Hardware obfuscation and hardware metering using a TRNG are proposed in [31] to
define randomized chip IDs upon power-up that are then stored in tamper-resistant
NVM.

A TRNG can be implemented using on-chip variations [46, 48]. Examples of
such TRNG are arbiter-based TRNGs, ring oscillator-based TRNGs, and technology-
independent TI-TRNGs [61]. TRNGs are evaluated with respect to randomness and
the uniformity of their distribution. Environmental variations such as supply voltage
or temperature variation can adversely affect the noise distribution and introduce
bias, making the output from the TRNG more predictable.

TRNGs are used to generate unique keys for input to key gates in combinational
logic and in obfuscated state machines. The obfuscated data path and control path
produce the correct output when the correct key is applied. TRNG-based key gener-
ation requires storage of the generated key in a battery-backed RAM or NVM.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 63

The disadvantages of using TRNGs for producing keys are that the stored keys
in battery-backed memory or NVM can be stolen and cloned, allowing designs to
be reverse-engineered and security features completely eliminated from the design.
Additionally, the overhead of manufacturing of NVM requires additional masks and
manufacturing steps, thus increasing the costs of the chip. Thus, other alternatives
such as physical unclonable functions are better suited for the generation of repro-
ducible secret keys, as long as high reliability to bit flip errors can be ensured.

2.5.6 Applications of PUFs and TRNG in Hardware-Based
Obfuscation Techniques

PUFs and TRNGs can be incorporated into logic obfuscation for the chip authentica-
tion [31, 34] or for obfuscation of logic [62]. PUFs and TRNGs can use nonelectrical
properties such as heat, atmospheric noise, and fiber optics as a source of entropy;
however, focus has been on the silicon process variations that can be more easily
measured and digitized. PUF-based obfuscation and activation schemes can be used
to improve security by allowing each chip to be assigned its own unique challenge-
response pairs, thereby allowing each chip to exclusively modify and hide the design
and authenticate to allow correct functionality, respectively.

A finite state machine (FSM)-based metering technique described in [34] hides
the functionality with an augmented FSM structure known as black hole finite state
machine (BFSM). The PUF response directs the state transition from obfuscated
states to the valid state, and only valid transitions can bring the chip to a properly
functioning operational state. The PUF is used to generate a unique key for the finite
state-based activation and hides actual functionality from the adversary, thereby
preventing illegitimate overbuilt chips. This augmented FSM can be implemented
using reconfigurable logic, where each chip has a unique key based on the chip
identifier. A PUF-based BFSM technique is shown in Fig.2.17.

Incorrect transition leads to.

black hole \
— -
Correct Response P __; ! | P ®~

Chalenge

Response

Fig. 2.17 PUF-based BFSM technique

64 F. Saqib and J. Plusquellic

This technique was subsequently modified by [63] using a smaller number of
obfuscated states for remote activation of resource-constraint devices. Some valid
states are replicated, and the transition through the replicated states is only possible
with the correct key.

An FSM-based hardware obfuscation and metering technique using TRNG is
described in [31]. As explained earlier, a TRNG can be used to define randomized
and unique identification (ID) upon power-up that is burnt into the electrically pro-
grammable fuses, such as an electronic fuse unit (EFU).

A PUF is proposed in [62] to implement hardware obfuscation for logic and
interconnect obfuscation. The scheme is shown in Fig.2.18, where each instance
of the obfuscated integrated circuit is different, thus making it resilient to reverse
engineering. The adversary not only is required to guess the gates but also needs to
characterize the PUF responses or use a brute force method to explore all possibilities.
Interconnect obfuscation is achieved by using switching gates such as multiplexers
to create wire swapping. As shown in Fig.2.19, only the correct key or PUF response
will establish correct connections.

(@) (b)

Challenge (x1,x2)

Reconfigurable
logic with unique [——]
logic per device .
and interconnect

obfuscation

Z1

Response key

Pls PUF generated

Reconfigurable key

Logic Block

_Z2

Z1

Fig. 2.18 a PUF-based random logic obfuscation. b Integration in design flow

A B B A
Challenge

Mux Mux
Response

? 2

Fig. 2.19 Signal path obfuscation

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 65

By choosing PUF-based logic that affects multiple outputs, placement of obfus-
cated logic with uncontrollable flip-flops can further improve the security of these
types of obfuscation techniques. Additionally, the selection of wire pairs to imple-
ment swaps between highly correlated pairs can increase the difficulty in reverse
engineering. Therefore, hardware obfuscation schemes based on PUFs and TRNGs
can effectively mitigate piracy attacks.

Summary

This chapter covered preliminary concepts and techniques of VLSI verification and
testing. We describe a set of related vulnerabilities associated with VLSI verification
techniques and testing structures that can expose the design details and help reverse-
engineer the functionality to compromise the security through obscurity. Proposed
changes to existing techniques are discussed that are designed to provide counter-
measures against such attacks. The taxonomy of hardware obfuscation techniques is
also presented, as well as a set of hardware primitives and related concepts. Hard-
ware obfuscation techniques are motivated because of growing trend of offshoring
the fabrication process, where the foundry has the complete knowledge of the design
details in the form of GDSII. Obfuscation techniques modify the design and require
correct keys as input in order to make the designs functional. Section2.4 discusses
different key storage schemes, such as nonvolatile memory and their vulnerabilities
and overhead. Section 2.5 covers hardware-based cryptographic functions, physical
unclonable functions (PUFs), and true random number generator (TRNG) as build-
ing blocks that further enhance the IC design obfuscation resilience against reverse
engineering and mitigate IC piracy attacks. Subsequent chapters further discuss their
applications to mitigate IC piracy, cloning, overbuilding, and use of counterfeit chips.

References

1. Zhuang X, Hsien-Hsin TZ, Lee S, Pande S (2004) Hardware assisted control flow obfuscation
for embedded processors. In: Proceedings of international conferences on compilers, architec-
ture, and synthesis for embedded system, pp 292-302

2. Rajendran J, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of
the IEEE design, automation and test in Europe conference and exhibition (DATE), Grenoble,
France, 18-22 March 2013, pp 1259-1264

3. Tehranipoor M, Wang C (eds) (2011) Introduction to hardware security and trust. Springer,
New York, p 427

4. Guin U, DiMase D, Tehranipoor M (2014) Counterfeit integrated circuits: detection, avoidance,
and the challenges ahead. J Electr Test Theory Appl (JETTA) 30:9-23

5. Marques-Silva JAP, Sakallah KA (1996) GRASPVA new search algorithm for satisfiability. In:
Proceedings of the ICCAD, pp 220-227

6. Li CM, Anbulagan (1997) Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of IJCAI pp 366-371

7. Malik S, Zhao Y, Madigan CF, Zhang L, Moskewicz MW (2001) Chaff: engineering an efficient
SAT solver. In Proceedings of the DAC, pp 530-535. ([62] Marques-Silva JAP, Sakallah KA
(1996) GRASPVA new search algorithm for satisfiability. In: Proceedings of the ICCAD, pp
220-227)

66

10.

11.
12.

13.

14.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

31.

32.

F. Saqib and J. Plusquellic

Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms,
HOST

Goldstein LH (1979) Controllability/observability analysis of digital circuits. IEEE Trans Cir-
cuits and Syst (CAS) 26(9):685-693

Goldstein L, Thigpen E (1980) SCOAP sandia controlability/observability analysis program.
In: Proceedings of the 1980 design automation conference, pp 190-196

Bennetts R (1984) Design of testable logic circuits. Addison-Wesley, Reading
http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_
Tmeas.pdf

Brglez F, Pownall P, Hum R (1984, October) Applications of testability analysis: from ATPG
to critical delay path tracing. In Proceedings of the 1984 international test conference on the
three faces of test: design, characterization, production (ITC’84). IEEE Computer Society,
‘Washington, DC, USA, pp 705-712

Seth SC, Pan L, Agrawal VD (1985, June) PREDICT-probabilistic estimation of digital circuit
testability. In: Proceedings of the fault tolerant computing symposium, pp 220-225

. Yang B, Wu K, Karri R (2004) Scan based side channel attack on dedicated hardware imple-

mentations of data encryption standard. In: Proceeding of the IEEE international test conference
2004 (ITC 2004), 26-28 October 2004, pp 339-344

Yang B, Wu K, Karri R (2005) Secure scan: a design-for-test architecture for crypto chips.
IEEE Trans Comput Aided Des Integr Circuits Syst 25(10):2287-2293

Ebrard E, Allard B, Candelier P, Waltz P (2009) Review of fuse and antifuse solutions for
advanced standard CMOS technologies. Elsevier Microelectr J 40(12):1755-1765

Young R, Carlson P (2004) (Dual-beam FIB/SEM): a tool for advanced failure analysis. In:
Evaluation engineering, online magazine September 2004. http://www.evaluationengineering.
com/

Hely D, Flottes ML, Bancel F, Rouzeyre B, Berard N, Renovell M (2004) Scan design and
secure chip (secure IC testing). In: Proceedings of the 10th IEEE international on-line testing
symposium, pp 219-224

Lee J, Tehranipoor M, Patel C, Plusquellic J (2007) Securing designs against scan-based side-
channel attacks. IEEE Trans Dependable Secure Comput 4(4):325-336

Rosenfeld K, Karri R (2010) Attacks and defenses for JTAG. IEEE Des Test Comput 27(1):36—
47

Sourgen L (1993) Security locks for integrated circuit. US Patent # 5264742

Busky RF, Frosik BB (2006) Protected JTAG. Proceeding of the IEEE 2006 international
conference on parallel processing workshops. Columbus, OH, USA, pp 407414

Clark CJ, Riccihetti M (2004) A code-less BIST processor for embedded test and in-system
configuration of boards and systems. IEEE test conference 2004:857-866

Saqib F, Areno M, Aarestad J, Plusquellic J (2014) An ASIC implementation of a hardware-
embedded physical unclonable function. In: IET Comput Dig Tech 8(6):288-299 (Patent Pend-
ing)

Thicket family of source code obfuscators. http://www.semdesigns.com

Batra T, Methodology for protection and licensing of HDL IP. http://www.us.design-reuse.
com/news/?id=12745&print=yes

Goering R, Synplicity initiative eases IP evaluation for FPGAs. http://www.scdsource.com/
article.php?id=170

Xilinx IP evaluation. http://www.xilinx.com/ipcenter/ipevaluation/index.htm

Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC design methodol-
ogy for hardware protection. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
28(10):1493-1502

Roy J, Koushanfar F, Markov I, EPIC: ending piracy of integrated circuits. In: Proceedings of
the design automation and test in Europe (DATE), pp 1069-1074

Rajendran J, Pino Y, Sinanoghu O, Karri R (2012) Security analysis of logic obfuscation. ACM/
IEEE49th design automation conference (DAC), 3—7 June 2012. CA, USA, San Francisco, pp
83-89

http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_Tmeas.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_Tmeas.pdf
http://www.evaluationengineering.com/
http://www.evaluationengineering.com/
http://www.semdesigns.com
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.scdsource.com/article.php?id=170
http://www.scdsource.com/article.php?id=170
http://www.xilinx.com/ ipcenter/ipevaluation/index.htm

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 67

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

RanjendranJ, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoghu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410-424

Alkabani Y, Koushanfar F (2007) Active hardware metering for intellectual property protection
and security. Proceedings of 16 USENIX security symposium, (2007) USENIX Association.
Berkley, CA, USA, pp 291-306

Koushanfar F, Qu G (2001) Hardware metering. In: Proceedings of the IEEE design automation
conference 2001 (DAC 2001), pp 490493

Liu B, Wang B (2014) Reconfiguration-based VLSI design for security. IEEE J Emerg Selected
Top Circuits Syst 2014 JETCAS 2014), 5(1):98-=108

Baumgarten A, Tyag A, Zambreno J (2010) Preventing IC piracy using reconfigurable logic
barriers. IEEE Des Test Comput 27(1):66-75

Rostami M, Koushanfar F, Rajendran J, Karri R (2013) Hardware security: threat models and
metrics. In: Proceedings of the 2013 IEEE/ACM international conference on computer-aided
design (ICCAD 2013). San Jose, CA, USA, 18-21 November 2013, pp 819-823

Pappu R (2001) Physical one-way functions, PhD thesis, Massachusetts Institute of Technology
Gassend B, Clarke D, Van Dijk M, Devadas S (2002) Silicon physical random functions. In:
Proceedings of the 9th ACM conference on computer and communication security, 2002, pp
148-160

Suh GE, Devadas S (2007) Physical unclonable functions for device authentication and secret
key generation. In: Proceedings of the 44th ACM/IEEE design automation conference (DAC
’07). San Diego, CA, USA, 4-8 June 2007, pp 9-14

Maiti A, Gunreddy V, Schaumont P (2011) A systematic method to evaluate and compare the
performance of physical unclonable functions. J Int Assoc Cryptogr Res (IACR) ePrint, 657:22
NIST: computer security division, statistical tests. http://csrc.nist.gov/groups/ST/toolkit/rng/
stats_tests.html

Marsaglia G (1995) Diehard battery of tests of randomness. http://www.stat.fsu.edu/pub/
diehard/

Killmann W, Schindler W (2011) A proposal for: functionality classes for random number
generators. In: AIS, September 2011, p 133

Su Y, Holleman J, Otis B (2007) A 1.6pJ/bit 96 percant stable chip ID generating circuit
using process variations. In: Proceedings of the 2007 IEEE international solid-state circuits
conferences (ISSCC), pp 200-201

Kumar SS, Guajardo J, Maes R, Schrijen GJ, Tuyls P (2008) Extended abstract: the butterfly
PUF protecting IP on every FPGA. In: Proceedings of the IEEE international workshop on
hardware-oriented security and Trust, 2008 (HOST 2008). Anaheim, CA, USA, June 2008, pp
67-70

Gassend B, Lim D, Clarke D, Van Dijk M, Devadas S (2004) Identification and authentication
of integrated circuits. Concurrency Comput Pract Exper 16(11):1077-1098

Lee JW, Lim D, Gassend B, Suh GE, Dijk MV, Devadas S (2004) A technique to build a
secret key in integrated circuits for identification and authentication applications. In: Digest of
Technical Papers, IEEE 2004 VLSI Circuits Symposium, 17-19 June 2004, pp 176-179
Lofstrom K, Daasch WR, Taylor D (2000) IC identification circuits using device mismatch.
In: IEEE digest of technical papers, (2000) international solid state circuits conference. IEEE,
San Francisco, CA, USA. February, 2000, pp 372-373

Puntin D, Stanzione S, Iannaccone G (2008) CMOS unclonable system for secure authentica-
tion based on device variability. Conference on solid-state circuits 2008:130-133

Ruhrmair U, Jaeger C, Bator M, Stutzmann M, Lugli P, Csaba G (2011) Applications of high-
capacity crossbar memories in cryptography. IEEE Trans Nanotech 10(3):489-498

GantaD, Vivekraja V, Priya K, Nazhandali L (2011) A highly stable leakage-based silicon phys-
ical unclonable functions. IEEE 2011 24th international conference on VLSI design. Chennai,
India, 2-7 January 2011, pp 135-140

Helinski R, Acharyya D, Plusquellic J (2009) Physical unclonable function defined using power
distribution system equivalent resistance variations. In: 46th ACM/IEEE design automation
conference. San Francisco, CA, USA 26-31 July 2009, pp 676-681

http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/

68

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

F. Saqib and J. Plusquellic

Ismari D, Plusquellic J (2014) IP-level implementation of a resistance-based physical unclon-
able function. In: 2014 IEEE international symposium on hardware-oriented security and trust
(HOST, 2014). Arlington, VA, USA, 6-7 May 2014, pp 64-69

Chakraborty R, Lamech C, Acharyya D, Plusquellic J (2013) A transmission gate physical
unclonable function and on-chip voltage-to-digital conversion technique. In: IEEE 2013 50th
ACM/EDAC/IEEE design automation conference (DAC, 2013). Austin, TX, USA, 29 May-7
June 2013, pp 1-10

Che W, Sagqib F, Plusquellic J (2015) PUF-based authentication, invited paper, international
conference on computer aided design, November 2015, pp 337-344

Zheng Y, Krishna AR, Bhunia S (2013) ScanPUF: robust ultralow-overhead PUF using scan
chain. In: IEEE 2013 18th Asia and South Pacific design automation conference (ASP-DAC,
2013). Yokohama, Japan, 22-25 January 2013, pp 626—631

Rahman T, Forte D, Fahrny J, Tehranipoor M (2014) ARO-PUF: An aging-resistant ring-
oscillator PUF design. In: IEEE design, automation, and test in Europe conference, 2014
(DATE, 2014). Dresden, Germany 24-28 March 2014, pp 1-6

Riihrmair U, Sehnke F, Solter J, Dror G, Devadas S, Schmidhuber J (2010) Modeling attacks
on physical unclonable functions. In: Proceedings of the 17th ACM conference computer and
communications security 2010 (CCS *10), pp.237-249

Rahman MT, Xiao K, Forte D, Zhang X, Shi J, Tehranipoor M (2014) TI-TRNG: technology
independent true random number generator. In: 2014 51st ACM/EDAC/IEEE design automa-
tion conference (DAC 2014). San Francisco, CA, USA, June 2014, pp 1-6

Wendt JB, Potkonjak M (2014) Hardware obfuscation using PUF-based logic. In: 2014
IEEE/ACM international conference on computer-aided design (ICCAD 2014). San Jose, CA,
USA, 2-6 November 2014, pp 270-271

Alkabani Y, Koushanfar F, Potkonjak M (2007) Remote activation of ICs for piracy prevention
and digital right management. In: Proceedings of the IEEE/ATM international conference on
computer-aided design (CAD), 2007. San Jose, CA, USA, 4-8 November 2007, pp 674-677
Eichelberger EB, Williams TW (1977) A logic design structure for LSI testability. In: Proceed-
ings of the design automatic conference (DAC), pp 462468

2 Springer
http://www.springer.com/978-3-319-49018-2

Hardware Protection through Obfuscation
Forte, D.; Bhunia, S.; Tehranipoor, M.M, (Eds.}
2017, X, 349 p, 148 illus., 121 illus, in color.,
Hardcowver

ISBN: 978-3-319-40018-2

	2 VLSI Test and Hardware Security Background for Hardware Obfuscation
	2.1 Introduction
	2.2 VLSI Verification and VLSI Test Concepts
	2.2.1 Satisfiability (SAT) Problem
	2.2.2 Equivalence of Circuits
	2.2.3 Types of Testing: Functional Testing and Structural Testing
	2.2.4 Fault Modeling
	2.2.5 Fault Coverage
	2.2.6 Automatic Test Pattern Generation (ATPG)
	2.2.7 Testing Metrics: Controllability and Observability
	2.2.8 Testing and Security

	2.3 Hardware-Based Obfuscation Design Primitives
	2.3.1 Types of Hardware Obfuscation
	2.3.2 Metrics of Hardware Obfuscation

	2.4 Volatile and Nonvolatile Memories
	2.4.1 Volatile Memory
	2.4.2 Nonvolatile Memory
	2.4.3 Limitations of Current Key Storage Mechanisms

	2.5 Design Obfuscation: PUF and TRNG
	2.5.1 Physical Unclonable Functions (PUFs)
	2.5.2 PUF Evaluation Measures and Parameters:
	2.5.3 Classification of PUFs
	2.5.4 PUFs: Candidates for Hardware Obfuscation
	2.5.5 True Random Number Generator (TRNG) Use in Hardware Obfuscation
	2.5.6 Applications of PUFs and TRNG in Hardware-Based Obfuscation Techniques

	References

