Traceability in a Fine Grained Software
Configuration Management System

Martin Eyll(g), Clemens Reichmannl, and Klaus Miiller-Glaser?

! Vector Informatik GmbH, Ingersheimer StraBe 24, 70499 Stuttgart, Germany
Martin. eyl@vector. com
2 Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

Abstract. Traceability between artefacts from different domains (e.g. require-
ments management or test data management) is important in the software
development process. Therefore modern application lifecycle management
solutions support traceability links between these artefacts. But the support of
traceability links into the source code is still very rudimentary or does not exist
at all, although the source code is of central importance. Traceability links
between artefacts in a repository and source code can break very easily when
changing the text. To solve this problem we store the source code as Abstract
Syntax Tree (AST) in a repository. A special editor for the source code, which
supports refactoring, makes robust traceability between the AST artefacts and
other artefacts possible. The repository provides the version history of all AST
artefacts including their traceability links for a better understanding of changes
over time. This paper introduces an implementation of such a system based on
Eclipse.

Keywords: Traceability + Fine grained software configuration management
system * Abstract syntax tree

1 Introduction

The importance of traceability between development artefacts created during the
software development life-cycle is well understood and incorporated in numerous
software development standards [1]. Traceability, in particular requirements trace-
ability, has received quite a lot of attention from the research community [2-7].
Traceability links from the requirement into the source code are crucial and can help to
answer among others the following questions [6]: Where can I find the source code,
which implements this requirement? Do all functional requirements have a concrete
implementation? Why has this source code been developed? But not only requirements
traceability requires links into the source code. There are more important use cases:
Which defects have been fixed in this “if-statement” in the source code (Change
Management)? Where can I find the source code for the automated tests which verify
this requirement (Test Data Management)? Is there any additional documentation or a
UML diagram for this class available (Design and Documentation) [8]?

Some commercial application lifecycle management solutions (e.g. Polarion Soft-
ware [9] or Rational Team Concert [10]) integrate several domains in one application

© Springer International Publishing AG 2017
D. Winkler et al. (Eds.): SWQD 2017, LNBIP 269, pp. 15-29, 2017.
DOI: 10.1007/978-3-319-49421-0_2

16 M. Eyl et al.

and in one repository. These applications support the creation of traceability links
between artefacts of different domains e.g. between test data management and
requirement management. But the support of traceability links into the source code is
still rudimentary. Very common is the possibility to link a requirement to a set of source
code files which has been changed for the requirement. At most traceability links to
classes [7] are supported. The reason is that the smallest unit stored in the source code
configuration management systems is a file which usually contains a class. A traceability
link into the text is difficult to maintain because by changing the text the link can break.

A Java class contains fields and methods. A method contains statements like a “for
loop” or an “if statement”. At least for all of these artefacts traceability links should be
possible. In addition the expectation towards a software configuration management
system is that the complete history of these artefacts including the traceability links can
be retrieved. Fine granular traceability links are needed because of the following
reasons:

e The traceability between a test case and a method of a unit test in the source code is
important because of the following reason: If the test case is linked with a
requirement (test case tests the requirement), it is possible to find all test methods in
the source code which verifies a certain requirement.

e Usually not only one requirement is implemented in a Java class. This would be too
restrictive. Different methods might be linked to different requirements. Over time
after several changes and refactorings (for example moving statements to another
class) there is the need for traceability links between requirements and single
statements otherwise we would lose the information why this statement has been
developed.

e The software developer is not only interested in the last reason for change of the
statement but also the developer wants to know all requirements and defects which
caused a statement to be changed over the complete history regardless of how often
the statement has already been moved in the source code between different classes
and methods.

e Documents (e.g. an activity diagram or an image) which are linked to only parts of a
class can provide additional information for a better understanding of the source
code. For example a presentation explaining an algorithm can be linked to the “for
loop” which implements the algorithm.

In order to support this kind of fine granular traceability links into the source code and
to benefit from the links the following concepts are needed:

1. A consistent metamodel which allows us to define traceability links between dif-
ferent artefacts and the source code. This can be achieved by defining a metamodel
for the source code.

2. An editor which allows us to change the source code without losing the traceability
links into the source code.

3. Very good support for creating and maintaining the traceability links to keep
expense low for the developer.

4. Visualization of the traceability links during the development of the source code in
the source code editor.

Traceability in a Fine Grained Software Configuration 17

These concepts have been implemented in a prototype called Morpheus. Morpheus is
an extension for the Eclipse Integrated Development Environment (IDE) [11]. We did
not want to develop a new IDE and therefore one major goal was that the software
developer still can use all the powerful features of a standard IDE including the
management of the projects and the Java editor.

2 Metamodel

For all domains in the software development process it is useful to define a metamodel
with meta classes like requirement, test specification, test case, or ticket and traceability
links between these meta classes. Often the following two solutions are used to store
traceability links from the artefacts of these domains into the source code:

1. The full qualified name for example in Java the package name, class name and the
method name are stored with the artefact. If the developer for example renames the
method, all traceability links to this method have to be searched and updated. This
can be quite expensive and complex. Also it is not possible to store links to source
code which does not have an explicit name for example a “for loop” or an “if
statement”. As well it is difficult and costly to follow the link from the source code
to the artefact.

2. The directory name, the file name and the line number are stored with the artefact.
But this information is only valid for a certain version of the file (which also has to
be stored with the artefact) because with every change in the file the line number
can get invalid. So, we can only follow the traceability link to a certain version of
the file in the history and actually we have no information where the link points to
in the current version of the file.

Surely it would make a lot more sense if everything including the source code could
be defined as one consistent metamodel. Then all traceability links could be handled
in the same way whether the traceability link points into the source code or not. The
solution is to integrate the Abstract Syntax Tree (AST) of Java into the entire
metamodel. The complete model including all requirements, test cases, tickets and all
AST artefacts can then be stored into one data backbone. The goal is to define one
metamodel for all aspects of the software development process with traceability links
between the meta classes. The links are bidirectional and can be traced with little
effort.

For Morpheus we used the Meta Data Framework (MDF) of PREEvision [12—14].
MDF is based on the OMG’s Meta Object Facility (MOF) Standard [15]. MDF pro-
vides an editor for defining the metamodel and to generate the Java source code for the
model. We also use the data backbone of PREEvision to persist the model. The client
of PREEvision is based on Eclipse and so several plugins of PREEvision are used to
load and store the model and to visualize the model in the graphical user interface. Also
parts of the metamodel of PREEvision are reused (e.g. requirements or tickets).

18 M. Eyl et al.

2.1 Metamodel Generator

The Java AST metamodel can be derived from the Java Language Specification of
Oracle [16]. By doing this manually many errors can creep into such a metamodel. To
avoid this we developed a metamodel generator, which allows us to generate a MDF
metamodel from the Backus-Naur Format (BNF).

Eclipse has a lot of functionality regarding parsing and processing of Java source
code. Eclipse provides a Java AST and an AST parser, which creates an AST from a
source code file. To use these and other functions, it is beneficial if the metamodel is
very similar to the Eclipse AST. Therefore we extended the metamodel generator so
that it is also possible to process the Eclipse Java AST classes as input and to generate a
suitable metamodel. With this additional feature of the generator it is now possible to
use the MDF metamodel with the Eclipse functionality.

2.2 Traceability into the Source Code

In the first version of Morpheus we have considered the following use cases in the
metamodel.

Test Data Management. The TestSpecification describes how functional require-
ments must be tested in order to ensure the quality of the software (see Fig. 1). It is
created in natural language regardless of the test implementation. Typically, the Tes-
tltems include different use cases and they are linked to the corresponding Require-
ments and Tickets.

A Ticket can be a change request or a defect. To ensure that a defect will not
reappear in the next releases and to increase the test coverage of the automated tests it
makes sense to create a test for a defect. A Requirement represents not the complete
requirement specification but only one single requirement within a specification. The
requirement has to be specific and it is written in natural language. Usually the
requirement is a functional requirement which can be expressed directly in source code.

PREE

TestSpecification AbstractTestCaselmplementation

(eea.mm pianningm (eea i

{copyable; moveabie} festC " 8

testSpecification 1 -
0.5 0.5
o . testitems
AbstractSubjectToVerify FIRY Testitem TestCaseAutomatic TestCaseManual
(eea i testd... (eea.mm.planning eea.mm.plannin,
o 0.x {copyable; moveable} gea mmpiannngmmt E:opyabie,‘l’ncveabige)
subjectsToVerify testCaseAutomatic 1
CompilationUnit
<0.%|, testScripts (eeamm java javaast)
i o
TestScript
N B (eea.mm.planning
Ticket Requirement {copyable; moveable} MethodDeclaration
(eea.mm planning (eeamm eea.requi 1
{copyable; moveabie) Saoyeable;icopyabie)] - R
7 ¢

Fig. 1. The metamodel for test data management

Traceability in a Fine Grained Software Configuration 19

The Requirements can be hierarchically structured in requirement packages which build
up a complete requirement specification.

Test implementations are provided for the specified test items, which can be brought
to execution. A test implementation is a manual test which is executed by a human
tester (TestCaseManual) or an automated test (TestCaseAutomatic). The automated
tests can then be linked to a compilation unit (e.g. unit test class) or a method of a
compilation unit. The meta classes CompilationUnit and MethodDeclaration are AST
artefacts. The MethodDeclaration is contained below a CompilationUnit. If the soft-
ware developer renames or moves a test method to another unit test class the trace-
ability link to the test case and therefore also to the Requirement or Ticket survives. The
TestCaseAutomatic is linked to the CompilationUnit or the MethodDeclaration because
the complete test class or the test method can be executed during automated test
execution.

Traceability links can be traced in both direction and so it is possible to find all
automated test code for a requirement or ticket and it is possible to see which
requirement or ticket is tested by a certain test method or test class.

Requirement and Change Management. The meta class ASTNode is the base class
of all AST artefacts in the metamodel (see Fig. 2). When the developer changes the
source code, already existing AST artefacts are changed or deleted and new AST
artefacts are created. This set of AST artefacts is put into the ChangedArtefactSet which
is connected to a Requirement or Ticket. Therefore traceability between the reason for
change (requirement and ticket) and the changed source code is possible in both
directions.

With every change of an AST artefact a traceability link to a requirement or ticket is
created. There can be more than one requirement because the source code can be
relevant for different requirements. For the requirements all test methods can be
identified. All this information together (source code — requirement — test method) can
be used to determine which automated tests should be executed when source code
(AST artefacts) has been changed. This test selection strategy can be very useful during
Continuous Integration (CI) to determine which automated tests shall be executed for
the committed source code [17].

Documentation. The source code can be documented by comments in the source code
text. But the software developer can only use characters. Some formatting is possible
with HTML tags but editing is difficult. It is not possible to use images, diagrams,

REE
Ticket
(eea mm. planning.
e] Cnangeaa
(eea.mm planningmm ticketiayer)
o
Requirement
(eeamm.eea.requi changedArtefactSetsOwner,
{movesble; copysble} 1
0.1 [changedArtefactSets inc cts
ChangedA rtefactSet 0.
ChangedArtefactSets atefactChangeSets R ASTNode
eea.mm java)
(eea.mm java) 1 changedArtefactSet é = el ’ Q0.5 | (eeammjavajava...
) XdedB
= an +V commitText:String U

Fig. 2. The metamodel for requirement and change management

20 M. Eyl et al.

spreadsheets, or presentations. Traceability links between any kind of document con-
taining documentation for the source code and the source code itself is a substantial
improvement. Design documents can also be linked to all relevant AST artefacts.
The metamodel of MDF has the special meta class called FileAttachment which
makes it possible to store files with the model in the data backbone (see Fig. 3). The
meta class FileAttachment supports any document format, e.g. WinWord, Powerpoint
or Excel document. The file attachment can be placed in a SourceCodePackage or in a
FileAttachmentPackage contained in a SourceCodePackage independent from the AST
artefacts. The software developer can then link the file attachment with any AST
artefacts via the meta class ModelContext to express the relevance of the file attachment
for this source code. Additional documentation stored in a FileAttachment can be
useful for any AST artefact for example a class, a method, a statement or a field
declaration. Moving the source code to another class will not break the traceability link.

e
FileAttachmentPackage SourceCodePackage AbstractContextA rtefact
(eeamm.commoncore file. (eea.mm java) (eea.mm.commoncore.repo...
{moveable; copyable} {moveable}] - ASTNode

+VisScopeRoot:Boolean ™~ (eeamm javajava...

contextArtefacts &
«0.%
0.r contextOf

ModelContext

AbstractFileAttachmentOwner
(eea.mm.commonc

(eea.mm.commoncore fileattachm.... {moveable; copyable}
contexts 0.%
1 fileAttachmentOwner
<0..%)| fileAttachments 1 contextOwner
FileAttachment ContextOwner

(eea.mm.commonc [~ (eeamm commoncor..
{moveable; copyable} i)
[

Fig. 3. The metamodel for documentation

2.3 Implications of the AST Model

The following implications have to be considered when using an AST model instead of
text.

1. For editing the AST model we need a special AST editor. It is not possible to
convert the AST into text and to change the text in any text editor and to convert the
text back to an AST because then we could lose traceability links to the source code
(for more details see next section). Therefore we need a special text editor or a
complete new AST editor.

2. The syntax of Java can change with every new Java version and so a new meta-
model is needed for a new Java version. The source code of Java 1.8 cannot be

Traceability in a Fine Grained Software Configuration 21

stored in the metamodel for Java 1.7. Usually the changes are backwards com-
patible so that the source code must not be changed and a migration of the model
via a model to model transformation [18] is not necessary. The metamodel will only
be extended.

3. Whatever the user enters in the editor must be convertible to an AST so that it can
be stored in the model. Therefore it is not possible to store certain kinds of syntax
errors in the model.

4. If the user temporarily comments source code out e.g. for testing purpose, trace-
ability links could get lost. It is of course possible to save the comment in the AST,
but the original AST artefacts with possible traceability links are then deleted. After
removing the comment and thereby restoring the original source code the AST
artefacts are newly created without any traceability links. For such a use case a
special support is needed. Here is potential for improvement for Morpheus.

3 Java Editor

A special Abstract Syntax Tree (AST) editor is needed for editing the AST model. The
Java Editor of Eclipse is very powerful with many functions like syntax highlighting,
code assistant, quick fix, integrated debugging and more. So, we wanted to reuse this
editor and only extend the functionality for editing the AST. We call this editor “Java
AST Editor”.

The input and output of the Java editor is text. Therefore the AST has to be converted
to text before editing and the text has to be converted to an AST after editing. Thereby
the following problem has to be solved (shown as an example for renaming a method): If
the developer renames a method and saves the source code in the AST model, a new
method declaration is created and the existing method declaration is deleted including all
traceability links to this method. During saving it is impossible to know whether the
developer has renamed the method or deleted a no longer needed method and created a
new one. This is determined by how the user has changed the text: The developer
changes the name of the method in the text or the developer deletes the text of the method
and starts writing a new method. Therefore we have to keep track of the AST artefacts in
the text. This is accomplished by the following features of the Java AST Editor:

e During opening the Java AST Editor the AST artefacts from the model are con-
verted to text. For each AST artefact the start position and the length in the created
text is determined and stored in the editor as mapping information. So, the editor
knows for each position in the editor which AST artefacts are located on this
position.

e If the developer enters new characters or deletes characters, the start position and
length of the AST artefacts have to be corrected. If the changed text is located at the
position of the AST artefact, the length has to be corrected. For all other AST
artefacts behind the changed position, the start positions have to be adapted.

e If the developer moves text in the editor (e.g. per drag and drop), removes text via
the clipboard command cut or adds text via the clipboard command insert, the start
position and length of all relevant AST artefacts have to be adapted.

22 M. Eyl et al.

e If the developer copies source code text into the clipboard via the clipboard com-
mand cut, not only the text itself is put into the clipboard but also all AST artefacts
contained in the text and their start positions and lengths. If the developer pastes the
text back into the editor, the developer can decide whether only the text or the AST
artefacts shall be used. In the first case new AST artefacts are created. In the second
case the list of AST artefacts stored in the editor is updated with the information
from the clipboard. So, it is possible to move source code from one class to another
without losing any traceability links to the moved AST artefacts.

When the text of the editor is saved, the text is converted back to AST artefacts.
These AST artefacts are then merged into the model. Why cannot the new created AST
artefacts from the editor just replace the original AST artefacts in the model? The
reason is that the AST artefacts from the editor do not have any traceability links which
might exist in the model and these traceability links have to be merged. MDF provides
a powerful merge engine which is used for this purpose. The merge engine uses the
mapping information of the editor (the AST artefacts from the model and their current
position in the current text) so that the AST artefacts from the editor can be matched to
the AST artefacts in the current model and so a merge can be executed. The AST
artefacts in the current model are then modified during the merge.

With the Java AST Editor the developer can just edit the source code as before
without knowing that the source code is stored as AST artefacts in a model. But the
Java AST Editor cannot really know what the developer intends to do. Does the
developer want to modify a method although the developer deletes the text of the
method and creates a new one with the same name? Does the developer want to create a
new method although the developer just changes the name of the method? So the
developer must be aware that AST artefacts with traceability links are edited and the
developer must understand when a method will be created, changed or deleted: As long
as the developer is not deleting the text of the method and is only changing text, no new
method is created and the current method will be changed. With this knowledge the
developer can change the text in the proper way according to his or her intentions.

Via the clipboard it is possible to copy source code. In this case new AST artefacts
are created. The developer can decide whether to take over the traceability links from
the copied source code or not.

4 Traceability Link Creation and Visualization

In the first version of Morpheus the focus was on supporting the software developer for
traceability link creation and visualization. For the roles test manager, product manager
or project manager additional functionality and additional reports are possible and
useful.

4.1 Test Data Management and Documentation

Traceability Link Creation. PREEvision provides a view called “Model View”
(1) (see Fig. 4) which shows all artefacts of the currently loaded model. This view is

Traceability in a Fine Grained Software Configuration 23

"= Model View (no filter) 52 = B || [UnitTestjava 2 = B || 5 Outline & =0
v |EE F= package vi.morpheus.test.ui; E B 1% | s e | ~
s P X heus test.ui
import junit.framework.TestCase; & vimorp
Search... ‘ port 3 4 © UnitTest
public class UnitTest extends TestCase { ©° UnitTest)
= blic UnitTest() { © testViewSourceCodeLink()

O | d
79 3 Integration into Eclipse / -0 © testCommitDislog() : voi

4 ERAU 0
G4 4.1 Commit Dialog / -0
G4 4.2 Source Code Linked Artefacts View / -0

4 - (@ Implementation / -0

4 - (M SourceCode / =0
4 v (8 Head / 50

=2 vimorpheus.test / <0
= vi.morpheus.ui/ -0
(1] TestMethod.pptx / -0,
o junitjar / -0

public void testviewSourceCodeLink() {

public void testComnitdialog() f =
for (int i = @; i < 180; i++) {

4[5 Test Projects / -0

4B/
4 -+ [1 Test Specification Package / -10 ||| = Project View | £ Source Code Linked Artifacts i3 | [E] Property View | [Package Explorer = g
4 v [B) 11 TestSpecification / -0 =
[2a1.11 Commit Dialog / -0 [
[2a 1.1.2 Source Code Linked Artefacts View/ - =
EJ TestImplementation Package / -:0 Qescription oczton g givee
q = o 4 Java Ast Marker for Documentation (1 item)
TestMethod.ppbx/ -0 (File Attachment) linel2 Documentation
4 Search | B8 Favorites & @ B = 0 || a Java Ast Marker for Test Code (2 items)
o tetCommitDialog verifies "4.1 Commit Dialog / -0 (Requirement)” linell Test Management
verifies "4.2 Source Code Linked Artefacts View / -0 (Requirement)’ line8 Test Management

@ testViewSourceCodelink

« i »

Fig. 4. Support of drag and drop to create links

integrated into the Eclipse Integrated Development Environment (IDE). The Java AST
Editor (2) knows for every cursor position the corresponding Abstract Syntax Tree
(AST) artefact. Therefore drag and drop into the editor or out of the editor is possible.

If the developer wants to document that the newly created method “testView-
SourceCodeLink™ verifies the requirement “Source Code Linked Artefacts View”, then
the developer drags the requirement from the model view into the editor and drops it
onto the method (a). Alternatively the developer can also drag the text with the name of
the method onto the requirement in the model view. It is also possible to use the
“Outline” view (3) as drop target or as a starting point of a drag and drop operation.
After dropping the requirement on the test method declaration Morpheus creates
automatically a test specification (if not already existing), a test item and a test case in
the model and links all the artefacts including the method declaration. Of course the
developer can also use an existing test item or test case for the drag and drop operation.

A similar drag and drop operation can be executed with the file attachment with the
difference that the file attachment can be dropped on any AST artefact and not only on
a method declaration (b). Again both directions from model view into the Java AST
Editor or from the Java AST Editor into the model view are possible.

Traceability Link Visualization. For the traceability link visualization in the
Java AST Editor the marker functionality of Eclipse has been used. The traceability
link markers are shown in the “Source Code Linked Artefacts” view (4) and on the
marker bar (5) in the editor area (see Fig. 4). By double clicking on a traceability link
marker in the view the according source code text is highlighted and the linked artefact
in the model view is selected. By clicking on the icon in the marker bar a list of all
linked artefacts is displayed in a popup window and a tool tip for each artefact provides
additional, detailed information (see Fig. 5). Double clicking on the linked artefact in

24 M. Eyl et al.

heus / -0
odud

The subject to verify "4.1 Commit Dialog / -;0 (Requirement)" is
3 Red verified by the source code "testCommitDialog
(MethodDeclaration)".

£44.1 Commit Dialog / <0 (Requirement)

4.1 Commit Dialog / -;0 (Requirement)
The commitdialog needs the following UI elements:

88588

- Selection requirement

\pleny - Selection AST artefact
i Soy

= - 55 4.1CommitD ~20150912 vismey
& 3| = = B8 Contacts
Tect Dlannina Name: Commit Dialog

Fig. 5. Popup window showing linked requirements

the popup window selects the artefact in the model view and in the case of a file
attachment opens the file in the according editor.

The relevant information (requirement, ticket or document) for the method or the
current line of source code is directly available without switching to a different
application and without searching for the information. The deletion of a traceability
link can be done via a context menu in the “Source Code Linked Artefacts” view.

4.2 Requirement and Change Management

Traceability Link Creation. For the traceability between requirement and the source
code implementing the requirement, links are needed between these artefacts. Similarly
traceability links can be created between tickets and the changed source code which
solves the ticket. Morpheus handles requirement and ticket equally. So, in this section
the term requirement can also be replaced by ticket.

The effort to link these artefacts can be enormous if it is done after the development
task has already been finished. The best time to create this traceability link is during the
commit of the changed source code [7]. The commit stores the changes in the data
backbone and makes them available for all users. The developer has to provide the
reason for change by selecting the requirement which can be done in the commit
dialog. Additionally a commit comment can be entered. If the developer works in
parallel on several requirements, the developer has to select more than one requirement
and has to decide which changed AST artefact belongs to which requirement. This can
also be done in the commit dialog.

Mylyn [19] is used to simplify this task for the developer. Mylyn is a task man-
agement tool for software developers integrated into Eclipse. The tasks are usually
imported from an application lifecycle management repository. In our case each
requirement or ticket in the model represents a task and they are imported into Mylyn if
these artefacts are assigned to the current developer. The developer can activate a task in

Traceability in a Fine Grained Software Configuration 25

Mylyn at the beginning of his or her work. Mylyn keeps then track of all touched
artefacts by creating a context for this task. During the commit Morpheus retrieves this
information from Mylyn (each task with its touched artefacts) and determines the correct
mapping between requirements and the relevant changed AST artefacts. If the developer
uses Mylyn then there is no additional effort during the commit of the source code.

With every commit of source code a ChangedArtefactSet is created with the fol-
lowing information: author, date of commit, commit comment and all changed AST
artefacts. Morpheus links the ChangedArtefactSet with the selected requirement or
ticket.

Traceability Link Visualization. Eclipse provides the functionality to display an
annotation bar in the editor area. In the Java editor this annotation bar is used to show
information about the last modifications in the source code. This information is
retrieved from the Software Configuration Management (SCM) system. Besides the
author and the change date also the commit comment is displayed in a popup window.
The color of the annotation represents the author (different colors for different authors)
or the date (newer changes are displayed in a lighter color).

For Morpheus the annotation bar has been modified in such a way that the necessary
information is now retrieved from the model. The traceability link from the source code
to the requirement or ticket can now be used to retrieve title and content of these
artefacts which are displayed in the annotation bar (1) and in a popup window (2) in
addition to author, change date and commit comment (see Fig. 6). Different colors are
used for different requirements or tickets.

The annotation bar of the Java editor can only show information about the last
modification for a line in the source code text. Although it is possible to compare two

[J] ArrayUtilities,java 2

R Utility package vi.text.utilities;

R Utility public class ArrayUtilities {
public ArrayUtilities() {

}

// boolean
R Utility public static int indexOf(final boolean[] array, final boolean element) {
R Utility for (int i = @; i < array.length; i++) {

boolean currentElement = array[i];

if (element == currentElement) {

@ vismey 21 2015-09-18 19:19:51
Added method indexOf @

T 990000
= R Utility 2.1 [Utility] Array indexOf / -,0 (Requirement)
R Utility A utilityclass for byte arrays shall be created with thefollowing feature:

1. search for avalue and return the index
2. isvalue contained in the array

ean element) {

= Project View || Press 'F2' for focusgric Editor| [# Package Explorer

Fig. 6. Annotation bar showing history information of AST nodes

26 M. Eyl et al.

arbitrary file versions from the history, a single AST artefact in two versions cannot be
compared. Eclipse is not able to find the matching AST artefacts because position
and/or name in the file might have changed. A typically use case is the following: the
developer wants to know when, why and who has changed the “for loop” in the last
two years. By comparing different versions of the file the developer can try to find the
“for loop” in the older versions of the file which can be very time-consuming and
difficult. If the “for loop” has been moved from one file to another file then the
developer has to check all committed files to find the “for loop”. The more changes
(beside the change in the “for loop”) have been made in the different versions of the file
the more difficult it is to find the relevant source code text.

Morpheus knows the exact history of any AST artefact because not only the latest
version is stored in the data backbone but also every committed version can be
retrieved from the data backbone. Via the context menu in the annotation bar or directly
in the editor the developer can receive detailed information about the history of an AST
artefact (see Fig. 7). In the popup window every commit, where the AST artefact has
been changed, is displayed in a list (in this example for the “return” statement) with the
information who has changed it and when was it changed. A tool tip window contains
information about the linked requirements and tickets with the reason for change.

Two entries in the list (two versions of the AST artefact) can be selected and can
then be compared. For this the complete compilation unit, where the AST artefact is
contained, is loaded from the data backbone and converted to source code text for both
selected versions. The source code text can then be displayed in the compare editor of
Eclipse. If the AST artefact has been moved from one compilation unit to another, two
different compilation units are loaded and compared with the AST artefact in two
different versions.

[3) ArrayUtilties java
RIUEHIEE)] package vi.text.utilit:

= 0150915 153555 | |Vismey 24 2015-09-18 19:25:55

2 2015-09-18 19:21:35 | Corrected wrong return value
2 2015-09-18 19:19:51

1990000-Array! indexOf: Wrong return value when no element has been found (Ticket)
If noelement has been found then 0 is returnedinstead of -1.

History of line “return -1;

array, element) > -1;

Fig. 7. Popup window showing the detailed history of the AST artefact “return —1”

5 Related Work

5.1 Fine-Grained Version Control Systems

All major and popular version control systems can only manage coarse grained data
chunks (files). But there are several research projects in the field of fine-grained version
control systems (for example COOP/Orm [20] or Sysiphus [21]) and some of them
support source code.

Traceability in a Fine Grained Software Configuration 27

MolhadoRef [22] is a refactoring-aware software configuration management sys-
tem. It stores program entities (classes, fields and methods) in nodes, slots and attri-
butes and records the refactoring operations that change them. A node represents a
program entity and a slot holds the values. Attributes map nodes to slots. The recorded
operations are replayed to transform one version to another. So, the history of refac-
tored program elements can be tracked. The generic versioned data model of Mol-
hadoRef allows storing programs in different languages. A concrete implementation for
Java with an integration into Eclipse has been developed. MolhadoRef does not support
AST artefacts below a method and provides no traceability functionality.

Stellation [23] is a software configuration system which supports fine (method
level) storage granularity by using so called fragments. One key feature is the multi-
dimensional program organization which allows multiple overlapping viewpoints of
the fragments instead of having only one viewpoint which is dominated by the layout
in source code files. Therefore Stellation provides a query language which allows the
developer to search the repository for relevant fragments and present the result in a
source-file like form. Stellation (as well as MolhadoRef) does not support traceability
to requirements, tests or documentation and does not include any AST artefacts below a
method.

5.2 Traceability

UNICASE Trace Client [6] is a tool which provides a traceability information model
consisting of artefacts from requirements engineering, project management and source
code and traceability links between these artefacts. The capturing of the traceability
links between requirements, work items and code has been solved similar to Morpheus
and is done during the commit of the source code into the software configuration
management system. Refactoring of a class (rename, delete, split up or unite classes) is
supported. UNICASE Trace Client supports only traceability links to classes. Links
below class level are not possible.

5.3 Domain-Specific Language (DSL) Development Environment

JetBrains Meta Programming System (MPS) [24] is an environment for language
engineering which allows to create own domain-specific languages. MPS can also be
used for Java. The editor of MPS is called a projectional editor because the Abstract
Syntax Tree (AST) is edited and not text. The developer is not completely free to enter
any text. The entered text must be transformable to an AST. Every AST artefact has a
unique identifier and refactoring is possible without losing the identity of the AST
artefact. The development environment stores the AST of one software module in an
XML file on the hard disc or in a software configuration management system (for
example Subversion [25]). The history of an AST artefact is expensive to calculate and
traceability links are not supported. The support of traceability links would be difficult
because the AST artefacts exist only inside the XML files.

28 M. Eyl et al.

6 Conclusion and Future Work

In this paper we presented Morpheus as an extension of Eclipse which allows the
software developer to create fine granular traceability links into the source code to
support traceability between source code and requirements, defects, test cases and
documentation. Morpheus supports refactoring of the source code (e.g. renaming or
moving of source code) so that the traceability links will not break. This is achieved by
integrating the Abstract Syntax Tree (AST) of Java into the model and by using a text
editor which is aware of the AST artefacts. The model can be stored in a data backbone.
With Morpheus integrated into Eclipse all features of Eclipse can still be used as usual.

We are currently working on the following improvements: Firstly, syntax errors in
the source code stored in the data backbone shall be prevented. Without any syntax
errors in the model the application can always be built and continuous integration will
no longer fail because of syntax errors. Some types of syntax errors are not possible
because the source code is stored as AST. But other syntax errors can even exist in an
AST for example a method invocation with wrong parameter types.

Secondly, we plan to avoid the effort for merging source code. When several
developers change the same code, they have to merge their changes and this is costly
and error-prone.

References

1. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability, vol. 2.
Springer, Heidelberg (2012)

2. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering. IEEE
(1994)

3. Pinheiro, F.A.C.: Requirements traceability. In: do Prado Leite, J.C.S., Doorn, J.H. (eds.)
Perspectives on Software Requirements. Kluwer International Series in Engineering and
Computer Science, pp. 91-114. Springer, Heidelberg (2004)

4. Bacchelli, A., Lanza, M., Robbes, R.: Linking e-mails and source code artifacts. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol.
1. ACM (2010)

5. Corley, C.S., et al.: Recovering traceability links between source code and fixed bugs via
patch analysis. In: Proceedings of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering. ACM (2011)

6. Egyed, A., Grunbacher, P.: Automating requirements traceability: beyond the record &
replay paradigm. In: 17th IEEE International Conference on Proceedings of the Automated
Software Engineering, ASE 2002. IEEE (2002)

7. Delater, A., Paech, B.: Tracing requirements and source code during software development:
an empirical study. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE (2013)

8. Marcus, A., Maletic, J.: Recovering documentation-to-source-code traceability links using
latent semantic indexing. In: 25th International Conference on Proceedings of the Software
Engineering. IEEE (2003)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Traceability in a Fine Grained Software Configuration 29

Inc., Siemens: Application Lifecycle Management (ALM), Requirements Management, QA
Management | Polarion Software (2016). http://www.polarion.com/. Accessed 30 July 2016
IBM: IBM - Rational Team Concert (2016). http://www-03.ibm.com/software/products/de/
rtc. Accessed 30 July 2016

Foundation, Eclipse: Eclipse Neon (2016). http://eclipse.org. Accessed 30 July 2016
Vector Informatik GmbH: PREEvision — Development Tool for model-based E/E
Engineering (2016). https://vector.com/vi_preevision_en.html. Accessed 30 July 2016
Matheis, J.: Abstraktionsebeneniibergreifende Darstellung von Elektrik/Elektronik-Architekturen
in Kraftfahrzeugen zur Ableitung von Sicherheitszielen nach ISO 26262. Shaker (2010)
Zhang, R., Krishnan, A.: Using delta model for collaborative work of industrial large-scaled
E/E architecture models. In: Whittle, J., Clark, T., Kiihne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 714-728. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24485-8_52
OMG: OMG’s MetaObject Facility (MOF) Home Page (2016). http://www.omg.org/mof/.
Accessed 30 July 2016

Oracle: Java SE Specifications (2016). https://docs.oracle.com/javase/specs/. Accessed 30
July 2016

Eyl, M., Reichmann, C., Miiller-Glaser, K.: Fast feedback from automated tests executed
with the product build. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2016. LNBIP,
vol. 238, pp. 199-210. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27033-3_14
Reichmann, C.: Grafisch notierte Modell-zu-Modell-Transformationen fiir den Entwurf
eingebetteter elektronischer Systeme. Shaker (2005)

Kersten, M.: Eclipse Mylyn Open Source Project (2016). http://www.eclipse.org/mylyn/.
Accessed 30 July 2016

Asklund, U.: Configuration management for distributed development in an integrated
environment. Lund University (2002)

Bruegge, B., Dutoit, A.H., Wolf, T.: Sysiphus: Enabling informal collaboration in global
software development. In: International Conference on Global Software Engineering, ICGSE
2006. IEEE (2006)

Dig, D., et al.: MolhadoRef: a refactoring-aware software configuration management tool.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications. ACM (2006)

Chu-Carroll, M.C., Wright, J., Shields, D.: Supporting aggregation in fine grained software
configuration management. In: Proceedings of the 10th ACM SIGSOFT symposium on
Foundations of software Engineering. ACM (2002)

JetBrains: MPS overview (2016). https://www.jetbrains.com/mps. Accessed 30 July 2016
Collins-Sussman, B., Fitzpatrick, B., Pilato, M.: Version Control with Subversion. O’Reilly
Media Inc., Sebastopol (2004)

http://www.polarion.com/
http://www-03.ibm.com/software/products/de/rtc
http://www-03.ibm.com/software/products/de/rtc
http://eclipse.org
https://vector.com/vi_preevision_en.html
http://dx.doi.org/10.1007/978-3-642-24485-8_52
http://www.omg.org/mof/
https://docs.oracle.com/javase/specs/
http://dx.doi.org/10.1007/978-3-319-27033-3_14
http://www.eclipse.org/mylyn/
https://www.jetbrains.com/mps

2 Springer
http://www.springer.com/978-3-319-49420-3

Software Quality. Complexity and Challenges of
Software Engineering in Emerging Technologies
Sth International Conference, SWQD 2017, Vienna,
Austria, January 17-20, 2017, Proceedings
Winkler, D.; Biffl, S.; Bergsmann,). (Eds.)

2017, XN, 189 p. 51 illus., Softcover

ISBM: 978-3-319-49420-3

	Traceability in a Fine Grained Software Configuration Management System
	Abstract
	1 Introduction
	2 Metamodel
	2.1 Metamodel Generator
	2.2 Traceability into the Source Code
	2.3 Implications of the AST Model

	3 Java Editor
	4 Traceability Link Creation and Visualization
	4.1 Test Data Management and Documentation
	4.2 Requirement and Change Management

	5 Related Work
	5.1 Fine-Grained Version Control Systems
	5.2 Traceability
	5.3 Domain-Specific Language (DSL) Development Environment

	6 Conclusion and Future Work
	References

