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Abstract. The question whether an ontology can safely be replaced by
another, possibly simpler, one is fundamental for many ontology engi-
neering and maintenance tasks. It underpins, for example, ontology ver-
sioning, ontology modularization, forgetting, and knowledge exchange.
What ‘safe replacement’ means depends on the intended application of
the ontology. If, for example, it is used to query data, then the answers
to any relevant ontology-mediated query should be the same over any
relevant data set; if, in contrast, the ontology is used for conceptual
reasoning, then the entailed subsumptions between concept expressions
should coincide. This gives rise to different notions of ontology insepara-
bility such as query inseparability and concept inseparability, which gen-
eralize corresponding notions of conservative extensions. In this chapter,
we survey results on various notions of inseparability in the context of
description logic ontologies, discussing their applications, useful model-
theoretic characterizations, algorithms for determining whether two
ontologies are inseparable (and, sometimes, for computing the difference
between them if they are not), and the computational complexity of this
problem.

1 Introduction

Description logic (DL) ontologies provide a common vocabulary for a domain
of interest together with a formal modeling of the semantics of the vocabu-
lary items (concept names and role names). In modern information systems,
they are employed to capture domain knowledge and to promote interoperabil-
ity. Ontologies can become large and complex as witnessed, for example, by the
widely used healthcare ontology SNOMED CT, which contains more than 300,000
concept names, and the National Cancer Institute (NCI) Thesaurus ontology,
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which contains more than 100,000 concept names. Engineering, maintaining and
deploying such ontologies is challenging and labour intensive; it crucially relies
on extensive tool support for tasks such as ontology versioning, ontology modu-
larization, ontology summarization, and forgetting parts of an ontology. At the
core of many of these tasks lie notions of inseparability of two ontologies, indicat-
ing that inseparable ontologies can safely be replaced by each other for the task
at hand. The aim of this article is to survey the current research on insepara-
bility of DL ontologies. We present and discuss different types of inseparability,
their applications and interrelation, model-theoretic characterizations, as well as
results on the decidability and computational complexity of inseparability.

The exact formalization of when an ontology ‘can safely be replaced by
another one’ (that is, of inseparability) depends on the task for which the ontol-
ogy is to be used. As we are generally going to abstract away from the syntactic
presentation of an ontology, a natural first candidate for the notion of insepara-
bility between two ontologies is their logical equivalence. However, this can be
an unnecessarily strong requirement for most applications since also ontologies
that are not logically equivalent can be replaced by each other without adverse
effects. This is due to two main reasons. First, applications of ontologies often
make use of only a fraction of the vocabulary items. As an example, consider
SNOMED CT, which contains a vocabulary for a multitude of domains related to
health case, including clinical findings, symptoms, diagnoses, procedures, body
structures, organisms, pharmaceuticals, and devices. In a concrete application
such as storing electronic patient records, only a small part of this vocabulary
is going to be used. Thus, two ontologies should be separable only if they differ
with respect to the relevant vocabulary items. Consequently, all our inseparabil-
ity notions will be parameterized by a signature (set of concept and role names)
X, when we want to emphasize Y/, we speak of Y-inseparability. Second, even for
the relevant vocabulary items, many applications do not rely on all details of the
semantics provided by the ontology. For example, if an ontology is employed for
conjunctive query answering over data sets that use vocabulary items from the
ontology, then only the existential positive aspects of the semantics are relevant
since the queries are positive existential, too.

A fundamental decision to be taken when defining an inseparability notion
is whether the definition should be model-theoretic or in terms of logical con-
sequences. Under the first approach, two ontologies are inseparable when the
reducts of their models to the signature X' coincide. We call the resulting insep-
arability notion model inseparability. Under the second approach, two ontologies
are inseparable when they have the same logical consequences in the signature ..
This actually gives rise to potentially many notions of inseparability since we
can vary the logical language in which the logical consequences are formulated.
Choosing the same language as the one used for formulating the ontologies results
in what we call concept inseparability, which is appropriate when the ontologies
are used for conceptual reasoning. Choosing a logical language that is based on
database-style queries results in notions of query inseparability, which are appro-
priate for querying applications. Model inseparability implies all the resulting
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consequence-based notions of inseparability, but the converse does not hold for
all standard DLs. The notion of query inseparability suggests some additional
aspects. In particular, this type of inseparability is important both for ontologies
that contain data as an integral part (knowledge bases or KBs, in DL parlance)
and for those that do not (TBozes, in DL parlance) and are maintained inde-
pendently of the data. In the latter case, two TBoxes should be regarded as
inseparable if they give the same answers to any relevant query for any possible
data. One might then even want to work with two signatures: one for the data
and one for the query. It turns out that, for both KBs and TBoxes, one obtains
notions of inseparability that behave very differently from concept inseparability.

Inseparability generalizes conservative extensions, as known from classical
logic. In fact, conservative extensions can also be defined in a model-theoretic
and in a consequence-based way, and they correspond to the special case of
inseparability where one ontology is syntactically contained in the other and
the signature is the set of vocabulary items in the smaller ontology. Note that
none of these two additional assumptions is appropriate for many applications
of inseparability, such as ontology versioning. Instead of directly working with
inseparability, we will often consider corresponding notions of entailment which,
intuitively, is inseparability ‘in one direction’; for example, two ontologies are
concept X-inseparable if and only if they concept X-entail each other. Thus, one
could say that an ontology concept (or model) entails another ontology if it is
sound to replace the former by the latter in applications for which concept insep-
arability is the ‘right’ inseparability notion. Algorithms and complexity upper
bounds are most general when established for entailment instead of inseparabil-
ity, as they carry over to inseparability and conservative extensions. Similarly,
lower bounds for conservative extensions imply lower bounds for inseparability
and for entailment.

In this survey, we provide an in-depth discussion of four inseparability rela-
tions, as indicated above. For TBoxes, we look at X-concept inseparability (do
two TBoxes entail the same concept inclusions over X'?7), X-model inseparability
(do the X-reducts of the models of two TBoxes coincide?), and (X7, X5)-O-
inseparability (do the answers given by two TBoxes coincide for all X;-ABoxes
and all Xy-queries from the class Q of queries?). Here, we usually take Q to
be the class of conjunctive queries (CQs) and unions thereof (UCQs), but some
smaller classes of queries are considered as well. For KBs, we consider X-Q-
inseparability (do the answers to X-queries in @ given by two KBs coincide?).
When discussing proof techniques in detail, we focus on the standard expressive
DL ALC and tractable DLs from the ££ and DL-Lite families. We shall, however,
also mention results for extensions of ALC and other DLs such as Horn-ALC.

The structure of this survey is as follows. In Sect. 2, we introduce descrip-
tion logics. In Sect. 3, we introduce an abstract notion of inseparability and
discuss applications of inseparability in ontology versioning, refinement, re-use,
modularity, the design of ontology mappings, knowledge base exchange, and
forgetting. In Sect. 4, we discuss concept inseparability. We focus on the descrip-
tion logics £L and ALC and give model-theoretic characterizations of X-concept
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inseparability which are then used to devise automata-based approaches to decid-
ing concept inseparability. We also present polynomial time algorithms for acyclic
EL TBoxes. In Sect. 5, we discuss model inseparability. We show that it is unde-
cidable even in simple cases, but that by restricting the signature X' to con-
cept names, it often becomes decidable. We also consider model inseparability
from the empty TBox, which is important for modularization and locality-based
approximations of model inseparability. In Sect. 6, we discuss query inseparabil-
ity between KBs. We develop model-theoretic criteria for query inseparability
and use them to obtain algorithms for deciding query inseparability between KBs
and their complexity. We consider description logics from the ££ and DL-Lite
families, as well as ALC and its Horn fragment. In Sect.7, we consider query
inseparability between TBoxes and analyse in how far the techniques devel-
oped for KBs can be generalized to TBoxes. We again consider a wide range of
DLs. Finally, in Sect.8 we discuss further inseparability relations, approxima-
tion algorithms and the computation of representatives of classes of inseparable
TBoxes.

2 Description Logic

In description logic, knowledge is represented using concepts and roles that are
inductively defined starting from a set N¢ of concept names and a set Ng of
role names, and using a set of concept and role constructors [1]. Different sets
of concept and role constructors give rise to different DLs.

We start by introducing the description logic ALC. The concept constructors
available in ALC are shown in Table 1, where r is a role name and C and D are
concepts. A concept built from these constructors is called an ALC-concept. ALC
does not have any role constructors. An ALC TBoz is a finite set of ALC concept
inclusions (CIs) of the form C' C D and ALC concept equivalences (CEs) of the
form C = D. (A CE C = D can be regarded as an abbreviation for the two Cls
C C Dand DLC C.) The size |T| of a TBox T is the number of occurrences of
symbols in 7.

Table 1. Syntax and semantics of ALC.

Name Syntax | Semantics

Top concept T AT

Bottom concept 1 %]

Negation -C AT\ T

Conjunction cnbD |ctnD?

Disjunction cubD |cfuD?*

Existential restriction | 3r.C | {d € AT | 3e € CT (d,e) € T}

Universal restriction |Vr.C | {d€ AT |Ve € AT ((d,e) € 7 — e € CT)}
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DL semantics is given by interpretations T = (AZ%,-%) in which the domain
AT is a non-empty set and the interpretation function - maps each concept
name A € Nc¢ to a subset A7 of AT, and each role name r € Ng to a binary
relation 7 on AZ. The extension of -7 to arbitrary concepts is defined inductively
as shown in the third column of Table 1. We say that an interpretation Z satisfies
aCI C C D if CT C DT, and that 7 is a model of a TBox T if it satisfies all the
ClIs in 7. A TBox is consistent (or satisfiable) if it has a model. A concept C' is
satisfiable w.r.t. T if there exists a model Z of 7 such that C% # @. A concept C
is subsumed by a concept D w.r.t. T (T | C C D, in symbols) if every model Z
of T satisfies the CI C' C D. For TBoxes 71, T3, we write 77 = 75 and say that
Ty entails To if Ty = o for all a € To. TBoxes Ty and 73 are logically equivalent
if they have the same models. This is the case if and only if 7; entails 75 and
vice versa.

A signature X is a finite set of concept and role names. The signature sig(C')
of a concept C' is the set of concept and role names that occur in C, and likewise
for TBoxes 7, CIs C' C D, assertions r(a,b) and A(a), ABoxes A, KBs K,
UCQs g. Note that the universal role is not regarded as a role name, and so does
not belong in any signature. Similarly, individual names are not in any signature
and, in particular, not in the signature of an assertion, ABox, or KB. We are often
interested in concepts, TBoxes, KBs, and ABoxes that are formulated using a
specific signature. Therefore, we talk of a ¥-TBox 7 if sig(7) C X, and likewise
for X-concepts, etc.

There are several extensions of ALC relevant for this chapter, which fall into
three categories: extensions with (i) additional concept constructors, (ii) addi-
tional role constructors, and (i) additional types of statements in TBoxes.
These extensions are detailed in Table2, where #X denotes the size of a set
X and double horizontal lines delineate different types of extensions. The last
column gives an identifier for each extension, which is simply appended to the
name ALC for constructing extensions of ALC. For example, ALC extended with
number restrictions, inverse roles, and the universal role is denoted by ALCQT".

Table 2. Additional constructors: syntax and semantics.

Name Syntax | Semantics Identifier

Number restrictions | (<nr C) {d|#{e|(d,e) erf ANe€ CT} <n} Q
(znrC)|{d|#{e| (de)erTANec CT} >n}

Inverse role r- {(d,e) | (e,d) € r*} 7z

Universal role U AT x AT -

Role inclusions (RIs) [r C s T C st H

We next define a number of syntactic fragments of ALC and its extensions,
which often have dramatically lower computational complexity. The fragment of
ALC obtained by disallowing the constructors L, =, U and V is known as EL.
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Thus, £L concepts are constructed using T, M and 3 only [2]. We also consider
extensions of £L with the constructors in Table 2. For example, ELZ" denotes
the extension of £L£ with inverse roles and the universal role. The fragments of
ALCT and ALCHZ, in which Cls are of the form

Bl E B2 and Bl M B2 E J_,

and the B; are concept names, T, L or 37.T, are denoted by DL-Lite ... and
DL-Litelt _ (or DL-Liteg ), respectively [3,4].

core

Ezample 1. The CI VchildOf~.Tall C Tall (saying that everyone with only tall
parents is also tall) is in ALCZ but not in ALC, EL or DL-Lite’t . The RI
childOf ™ C parentOf is in both ALCHZ and DL-Lite’}

core*

EL and the DL-Lite logics introduced above are examples of Horn DLs, that
is, fragments of DLs in the ALC family that restrict the syntax in such a way that
conjunctive query answering (see below) becomes tractable in data complexity.
A few additional Horn DLs have become important in recent years. Following
[5,6], we say that a concept C' occurs positively in C itself and, if C' occurs
positively (negatively) in C’, then

— C occurs positively (respectively, negatively) in C' U D, C'M D, 3r.C’, Vr.C’,
DC(C, and
— C occurs negatively (respectively, positively) in =C” and C' C D.

Now, we call a TBox 7 Horn if no concept of the form C L D occurs positively
in 7, and no concept of the form —C or Vr.C' occurs negatively in 7. For any
DL £ from the ALC family introduced above (e.g., ALCHZ), the DL Horn-L
only allows for Horn TBoxes in L. Note that VchildOf~.Tall occurs negatively in
the CI « from Example 1, and so the TBox 7 = {a} is not Horn.

TBoxes 7 used in practice often turn out to be acyclic in the following sense:

e all CEs in 7 are of the form A = C (concept definitions) and all ClIs in 7 are
of the form A C C (primitive concept inclusions), where A is a concept name;

e no concept name occurs more than once on the left-hand side of a statement
in 7T;

e 7 contains no cyclic definitions, as detailed below.

Let 7 be a TBox that contains only concept definitions and primitive concept
inclusions. The relation <7 C N¢ x sig(7) is defined by setting A <7 X if there
exists a TBox statement A 1 C such that X occurs in C, where < ranges over
{C,=}. A concept name A depends on a symbol X € Nc UNg if A <F X, where
-7 denotes transitive closure. We use depend(A) to denote the set of all symbols
X such that A depends on X. We can now make precise what it means for 7
to contain no cyclic definitions: A & depend;(A), for all A € N¢. Note that the
TBox 7 = {a} with a from Example1 is cyclic.

In DL, data is represented in the form of ABoxes. To introduce ABoxes, we
fix a set N, of individual names, which correspond to constants in first-order
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logic. An assertion is an expression of the form A(a) or r(a,b), where A is a
concept name, r a role name, and a, b individual names. An ABoz A is just a
finite set of assertions. We call the pair K = (7, .A) of a TBox 7 in a DL £
and an ABox A an £ knowledge base (KB, for short). By ind(A) and ind(K), we
denote the set of individual names in A and KC, respectively.

To interpret ABoxes A, we consider interpretations Z that map all individual
names a € ind(A) to elements aZ € AT in such a way that a # b” if a # b (thus,
we adopt the unique name assumption). We say that Z satisfies an assertion A(a)
if aZ € CZ, and r(a,b) if (a®,b?) € rZ. It is a model of an ABox A if it satisfies
all assertions in A, and of a KB K = (7, .A) if it is a model of both 7 and A. We
say that K is consistent (or satisfiable) if it has a model. We use the terminology
introduced for TBoxes for KBs as well. For example, KBs K1 and Kq are logically
equivalent if they have the same models (or, equivalently, entail each other).

We next introduce query answering for KBs, beginning with conjunctive
queries [7-9]. An atom is of the form A(z) or r(x,y), where z,y are from a
set of wvariables Ny, A is a concept name, and r a role name. A conjunctive
query (or CQ) is an expression of the form g(x) = Jy p(x,y), where & and
y are disjoint sequences of variables and ¢ is a conjunction of atoms that only
contain variables from x U y—we (ab)use set-theoretic notation for sequences
where convenient. We often write A(z) € g and r(z,y) € g to indicate that A(z)
and r(z,y) are conjuncts of . We call a CQ g rooted (rCQ) if every y € y is
connected to some z € x by a path in the undirected graph whose nodes are
the variables in g and edges are the pairs {u,v} with r(u,v) € q, for some r.
A union of CQs (UCQ) is a disjunction g(xz) = \/; q;(x) of CQs g;(x) with
the same answer variables x; it is rooted (rUCQ) if all the g, are rooted. If the
sequence x is empty, q(x) is called a Boolean CQ or UCQ.

Given a UCQ g(x) =V, q;(x) and a KB K, a sequence a of individual names
from IC of the same length as @ is called a certain answer to q(x) over K if, for
every model Z of K, there exist a CQ g, in g and a map (homomorphism) A of
its variables to A% such that

e if z is the j-th element of & and a the j-th element of a, then h(z) = a?;

e A(z) € q implies h(z) € AT, and r(z,2') € q implies (h(2), h(2')) € r~.

If this is the case, we write K = g(a). For a Boolean UCQ gq, we also say that
the certain answer over K is ‘yes’ if £ E q and ‘no’ otherwise. CQ or UCQ
answering means to decide, given a CQ or UCQ g(x), a KB K and a tuple a
from ind(K), whether £ E q(a).

3 Inseparability

Since there is no single inseparability relation between ontologies that is appro-
priate for all applications, we start by identifying basic properties that any
semantic notion of inseparability between TBoxes or KBs should satisfy. We
also introduce notation that will be used throughout the survey and discuss a
few applications of inseparability.
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For uniformity, we assume that the term ‘ontology’ refers to both TBoxes
and KBs.

Definition 1 (inseparability). Let S be the set of ontologies (either TBoxes or
KBs) formulated in a description logic £. A map that assigns to each signature X'
an equivalence relation =y on S is an inseparability relation on S if the following
conditions hold:

(i) if Op and Oy are logically equivalent, then O =5 O, for all signatures X
and 01,0, € S;
(i) X1 C X5 implies =5, 2 =5x,, for all finite signatures Xy and Y.

By condition (7), an inseparability relations does not depend on the syntactic
presentation of an ontology, but only on its semantics. Condition (4i) formalizes
the requirement that if the set of relevant symbols increases (X9 O X), then
more ontologies become separable. Depending on the intended application, addi-
tional properties may also be required. For example, we refer the reader to [10]
for a detailed discussion of robustness properties that are relevant for applica-
tions to modularity. We illustrate inseparability relations by three very basic
examples.

Ezxample 2

(1) Let S be the set of ontologies formulated in a description logic £, and let
O1 Zequiv O2 if and only if O; and O, are logically equivalent, for any
01,05 € §. Then =¢quiv is an inseparability relation that does not depend
on the concrete signature. It is the finest inseparability relation possible.
The inseparability relations considered in this survey are more coarse.

(2) Let S be the set of KBs in a description logic £, and let K1 =gt Ko if and only
if 1 and Ky are equisatisfiable, for any K1,y € §. Then =g, is another
inseparability relation that does not depend on the concrete signature. It has
two equivalence classes—the satisfiable KBs and the unsatisfiable KBs—and
is not sufficiently fine-grained for most applications. _

(3) Let S be the set of TBoxes in a description logic £, and let 73 E};eramhy Ty
if and only if

71 EACB <= 7T, AC B, for all concept namesA,B € X.

Then each relation Egeramhy is an inseparability relation. It distinguishes

between two TBoxes if and only if they do not entail the same subsumption
hierarchy over the concept names in X'| and it is appropriate for applications
that are only concerned with subsumption hierarchies such as producing a
systematic catalog of vocabulary items, which is in fact the prime use of
SNOMED CT!.

As discussed in the introduction, the inseparability relations considered in
this chapter are more sophisticated than those in Example 2. Details are given in

! http://www.ihtsdo.org/snomed-ct.
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the subsequent sections. We remark that some versions of query inseparability
that we are going to consider are, strictly speaking, not covered by Definition 1
since two signatures are involved (one for the query and one for the data).
However, it is easy to extend Definition 1 accordingly.

We now present some important applications of inseparability.

Versioning. Maintaining and updating ontologies is very difficult without tools
that support versioning. One can distinguish three approaches to versioning [11]:
versioning based on syntactic difference (syntactic diff), versioning based on
structural difference (structural diff), and versioning based on logical difference
(logical diff). The syntactic diff underlies most existing version control systems
used in software development [12] such as RCS, CVS, SCCS. It works with text
files and represents the difference between versions as blocks of text present
in one version but not in the other. As observed in [13], ontology versioning
cannot rely on a purely syntactic diff operation since many syntactic differences
(e.g., the order of ontology axioms) do not affect the semantics. The structural
diff extends the syntactic diff by taking into account information about the
structure of ontologies. Its main characteristic is that it regards ontologies as
structured objects, such as an is-a taxonomy [13], a set of RDF triples [14] or
a set of class defining axioms [15,16]. Though helpful, the structural diff still
has no unambiguous semantic foundation and is syntax dependent. Moreover,
it is tailored towards applications of ontologies that are based on the induced
concept hierarchy (or some mild extension thereof), but does not capture other
applications such as querying data under ontologies. In contrast, the logical diff
[17,18] completely abstracts away from the presentation of the ontology and
regards two versions of an ontology as identical if they are inseparable with
respect to an appropriate inseparability relation such as concept inseparability
or query inseparability. The result of the logical diff is then presented in terms
of witnesses for separability.

Ontology Refinement. When extending an ontology with new concept inclu-
sions or other statements, one usually wants to preserve the semantics of a large
part X of its vocabulary. For example, when extending SNOMED CT with 50
additional concept names on top of the more than 300K existing ones, one wants
to ensure that the meaning of unrelated parts of the vocabulary does not change.
This preservation problem is formalized by demanding that the original ontol-
08y Ooriginal and the extended ontology Ogriginal U Oadd are X-inseparable (for
an appropriate notion of inseparability) [19]. It should be noted that ontology
refinement can be regarded as a versioning problem as discussed above, where
Ocriginal and Ogyiginal U Oadd are versions of an ontology that have to be compared.

Ontology Reuse. A frequent operation in ontology engineering is to import an
existing ontology Oi, into an ontology Opest that is currently being developed,
with the aim of reusing the vocabulary of O;,. Consider, for example, a host
ontology Ohpest describing research projects that imports an ontology Oi,, which
defines medical terms X' to be used in the definition of research projects in Opost.
Then one typically wants to use the medical terms X exactly as defined in Oj,.
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However, using those terms to define concepts in Oy might have unexpected
consequences also for the terms in O, that is, it might ‘damage’ the modeling
of those terms. To avoid this, one wants to ensure that Onest U Oimy and O, are
XY-inseparable [20]. Again, this can be regarded as a versioning problem for the
ontology Oim.

Modularity. Modular ontologies and the extraction of modules are an impor-
tant ontology engineering challenge [21,22]. Understanding X-inseparability of
ontologies is crucial for most approaches to this problem. For example, a very
natural and popular definition of a module M of an ontology O demands that
M C O and that M is X-inseparable from O for the signature X of M (called
self-contained module). Under this definition, the ontology O can be safely
replaced by the module M in the sense specified by the inseparability rela-
tion and as far as the signature X of M is concerned. A stronger notion of
module (called depleting module [23]) demands that M C O and that O \ M
is X-inseparable from the empty ontology for the signature X' of M. The intu-
ition is that the ontology statements outside of M should not say anything
non-tautological about signature items in the module M.

Ontology Mappings. The construction of mappings (or alignments) between
ontologies is an important challenge in ontology engineering and integration [24].
Given two ontologies O and Os in different signatures X, and X5, the problem
is to align the vocabulary items in X with those in Y5 using a TBox 775 that
states logical relationships between X1 and Ys. For example, 775 could consist
of statements of the form A; = Ay or Ay C A, where A; is a concept name
in X and As is a concept name in Y. When constructing such mappings, we
typically do not want one ontology to interfere with the semantics of the other
ontology via the mapping [25-27]. This condition can (and has been) formalized
using inseparability. In fact, the non-interference requirement can be given by
the condition that O; and O; U Oy U 715 are X; inseparable, for i = 1, 2.

Knowledge Base Exchange. This application is a natural extension of data
exchange [28], where the task is to transform a data instance D; structured under
a source schema Y into a data instance D5 structured under a target schema
X5 given a mapping M5 relating X and ¥5. In knowledge base exchange [29],
we are interested in translating a KB K7 in a source signature X7 to a KB Iy in
a target signature Y5 according to a mapping given by a TBox 715 that consists
of CIs and RIs in Y U Xy defining concept and role names in X5 in terms of
concepts and roles in X7. A good solution to this problem can be viewed as
a KB Iy that it is inseparable from KC; U 772 with respect to a suitable Xo-
inseparability relation.

Forgetting and Uniform Interpolation. When adapting an ontology to a
new application, it is often useful to eliminate those symbols in its signature
that are not relevant for the new application while retaining the semantics of
the remaining ones. Another reason for eliminating symbols is predicate hiding,
i.e., an ontology is to be published, but some part of it should be concealed from
the public because it is confidential [30]. Moreover, one can view the elimination



Inseparability and Conservative Extensions of DL Ontologies: A Survey 37

of symbols as an approach to ontology summary: the smaller and more focussed
ontology summarizes what the original ontology says about the remaining sig-
nature items. The idea of eliminating symbols from a theory has been studied
in AT under the name of forgetting a signature X' [31]. In mathematical logic
and modal logic, forgetting has been investigated under the dual notion of uni-
form interpolation [32-37]. Under both names, the problem has been studied
extensively in DL research [38-44]. Using inseparability, we can formulate the
condition that the result Ofyger oOf eliminating X from O should not change
the semantics of the remaining symbols by demanding that O and Oforger are
sig(O) \ Y-inseparable for the signature sig(O) of O.

4 Concept Inseparability

We consider inseparability relations that distinguish TBoxes if and only if they
do not entail the same concept inclusions in a selected signature.? The result-
ing concept inseparability relations are appropriate for applications that focus
on TBox reasoning. We start by defining concept inseparability and the related
notions of concept entailment and concept conservative extensions. We give illus-
trating examples and discuss the relationship between the three notions and
their connection to logical equivalence. We then take a detailed look at concept
inseparability in ALC and in £L. In both cases, we first establish a model-
theoretic characterization and then show how this characterization can be used
to decide concept entailment with the help of automata-theoretic techniques. We
also briefly discuss extensions of ALC and the special case of ££ with acyclic
TBoxes.

Definition 2 (concept inseparability, entailment and conservative
extension). Let 77 and 75 be TBoxes formulated in some DL £, and let X
be a signature. Then

e the X-concept difference between T; and 73 is the set cDiff (77, 73) of all X-
concept inclusions (and role inclusions, if admitted by £) a that are formulated
in £ and satisfy 7o = a and 77 £ «;

o 71 X-concept entails Ty if cDiff 5 (71,75) = &;

e 71 and 75 are X-concept inseparable if 7; X-concept entails 75 and vice versa;

e 75 is a concept conservative extension of Ty if 7o O 77 and 77 and 75 are
sig(71)-inseparable.

We illustrate this definition by a number of examples.

Ezample 8 (concept entailment vs. logical entailment). If X' D sig(7; U73), then
X)-concept entailment is equivalent to logical entailment, that is, 77 X-concept
entails 75 iff 77 | 75. We recommend the reader to verify that this is a straight-
forward consequence of the definitions (it is crucial to observe that, because of
our assumption on Y, the concept inclusions in 75 qualify as potential members
of cDiff 5 (71, 73)).

2 For DLs that admit role inclusions, one additionally considers entailment of these.
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Ezample 4 (definitorial extension). An important way to extend an ontology is
to introduce definitions of new concept names. Let 77 be a TBox, say formulated
in ALC, and let 73 = {A = C} U Ty, where A is a fresh concept name. Then 75
is called a definitorial extension of 7;. Clearly, unless 77 is inconsistent, we have
71 = T5. However, T, is a concept-conservative extension of 77. For the proof,
assume that 7; f= « and sig(a) C sig(77). We show that 7o = «. There is a
model Z; of 77 such that Z }= a. Modify T by setting AZ = CZ. Then, since
A ¢ sig(Ty), the new 7 is still a model of 77 and we still have Z }= «. Moreover,
7 satisfies A = C, and thus is a model of 73. Consequently, 75 }= «.

The notion of concept inseparability depends on the DL in which the separat-
ing concept inclusions can be formulated. Note that, in Definition 12, we assume
that this DL is the one in which the original TBoxes are formulated. Throughout
this chapter, we will thus make sure that the DL we work with is always clear
from the context. We illustrate the difference that the choice of the ‘separating
DL’ can make by two examples.

Ezxample 5. Consider the ALC TBoxes
71={AC3r.T} and To={AC3Ir.BMN3Ir-B}

and the signature X' = {A,r}. If we view 73 and 73 as ALCQ TBoxes and
consequently allow concept inclusions formulated in ALCQ to separate them,
then A C (> 2r.T) € cDiffx(77,72), and so 77 and 7 are X-concept separable.
However, 77 and 75 are X-concept inseparable when we only allow separation in
terms of ALC-concept inclusions. Intuitively, this is the case because, in ALC,
one cannot count the number of r-successors of an individual. We will later
introduce the model-theoretic machinery required to prove such statements in a
formal way.

Ezample 6. Consider the £L£ TBoxes

71 = {Human C Jeats. T, Plant = Jgrows_in.Area, Vegetarian C Healthy},
7o = 71 U {Human C Jeats.Food, Food M Plant C Vegetarian}.

It can be verified that
Human M Veats.Plant C Jeats.Vegetarian

is entailed by 75 but not by 7;. If we view 7; and 75 as ALC TBoxes, then 75 is
thus not a concept conservative extension of 7;. However, we will show later that
if we view 77 and 75 as £L£ TBoxes, then 75 is a concept conservative extension
of 77 (i.e., 7; and 75 are sig(7)-inseparable in terms of £L£-concept inclusions).

As remarked in the introduction, conservative extensions are a special case
of both inseparability and entailment. The former is by definition and the latter
since 75 is a concept conservative extension of 71 C 75 iff 77 sig(77)-entails 75.
Before turning our attention to specific DLs, we discuss a bit more the relation-
ship between entailment and inseparability. On the one hand, inseparability is
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defined in terms of entailment and thus inseparability can be decided by two
entailment checks. One might wonder about the converse direction, i.e., whether
entailment can be reduced in some natural way to inseparability. This question
is related to the following robustness condition.

Definition 3 (robustness under joins). A DL L is robust under joins for
concept inseparability if, for all £ TBoxes 7; and 75 and signatures Y with
sig(71) Nsig(7T2) C X, the following are equivalent:

(i) 7y X-concept entails 73 in £;
(i1) 7y and T3 U 75 are X-concept inseparable in L.

Observe that the implication (ii) = () is trivial. The converse holds for
many DLs such as ALC, ALCZ and EL; see [10] for details. However, there are
also standard DLs such as ALCH for which robustness under joins fails.

Theorem 1. If a DL L is robust under joins for concept inseparability, then
concept entailment in L can be polynomially reduced to concept inseparability
n L.

Proof. Assume that we want to decide whether 73 X-concept entails 75. By
replacing every non-X-symbol X shared by 7; and 75 with a fresh symbol X in
7; and a distinct fresh symbol X5 in 75, we can achieve that X' D sig(77) Nsig(72)
without changing (non-)X-concept entailment of 75 by 7;. We then have, by
robustness under joins, that 7; X-concept entails 75 iff 7; and 77 U 75 are X-
concept inseparable. m]

For DLs £ that are not robust under joins for concept inseparability (such as
ALCH) it has not yet been investigated whether there exist natural polynomial
reductions of concept entailment to concept inseparability.

4.1 Concept Inseparability for ALC

We first give a model-theoretic characterization of concept entailment in ALC in
terms of bisimulations and then show how this characterization can be used to
obtain an algorithm for deciding concept entailment based on automata-theoretic
techniques. We also discuss the complexity, which is 2EXPTIME-complete, and
the size of minimal counterexamples that witness inseparability.

Bisimulations are a central tool for studying the expressive power of ALC and
of modal logics; see for example [45,46]. By a pointed interpretation we mean a
pair (Z, d), where 7 is an interpretation and d € AZ.

Definition 4 (X-bisimulation). Let X be a finite signature and (Z;,d;) and
(Z3,ds) pointed interpretations. A relation S C ATt x A%z is a X-bisimulation
between (Z1,d1) and (2o, ds) if (d1,d2) € S and, for all (d,d’) € S, the following
conditions are satisfied:
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(base) d € AT1 iff ' € A2 for all A € ¥ N Nc;

(zig) if (d,e) € 771, then there exists ¢/ € A2 such that (d',¢’) € r*2 and
(e,e’) € S, for all » € X' N Ng;

(zag) if (d',e’) € r?2, then there exists e € AZt such that (d,e) € r7* and
(e,e’) € S, for all r € X' N Ng.

We say that (Z1,dy) and (Za, d2) are X-bisimilar and write (Zy,d;) ~55™ (Zy, da)
if there exists a Y-bisimulation between them.

We now recall the main connection between bisimulations and ALC. Say that
(Z1,d1) and (Zy,d2) are ALC 5-equivalent, in symbols (Z7,d;) EZEC (Z2,d2), in
case d; € CT iff dy € C*> for all X-concepts C in ALC. An interpretation Z is
of finite outdegree if the set {d’ | (d,d’) € U, e, r*} is finite, for any d € AZ.

Theorem 2. Let (71, dl) and (Za, dz) be pointed interpretations and X a signa-
ture. Then (I1,d;) ths.m (Zo,do) implies (I1,dy) E“E‘wc (Zo,d2). The converse
holds if 71 and Zs are of finite outdegree.

Ezxample 7. The following classical example shows that without the condition of
finite outdegree, the converse direction does not hold.

Il d1 d2 IQ

s

O0+—0------0+«0

A
]

Here, (Z1,d1) is a pointed interpretation with an r-chain of length n starting
from d;, for each n > 1. (Z9,ds) coincides with (Z1,d;) except that it also
contains an infinite r-chain starting from dy. Let X' = {r}. It can be proved that
(Zy1,dy) EE£C (Z3,ds). However, (Z1,dy) gSim (Z,d2) due to the infinite chain
in (IQ, dg)

As a first application of Theorem 2, we note that ALC cannot distinguish
between an interpretation and its unraveling into a tree. An interpretation Z is
called a tree interpretation if rZ N s? = @ for any r # s and the directed graph
(A%, U, eng 1) is a (possibly infinite) tree. The root of Z is denoted by p”. By the
unraveling technique [45], one can show that every pointed interpretation (Z,d)
is X-bisimilar to a pointed tree interpretation (Z*,p” ), for any signature X.
Indeed, suppose (Z,d) is given. The domain A" of Z* is the set of words w =
dorody - - - rpdy such that dg = d and (d;,d;41) € riI for all i < n and roles
names ;. We set tail(dorod; - - - rndy,) = d,, and define the interpretation AT
and r7" of concept names A and role names r by setting:
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e we AT if tail(w) € AT,
o (w,w')er? if w =wrd.

The following lemma can be proved by a straightforward induction.

Lemma 1. The relation S = {(w,tail(w)) | w € AT} is a X-bisimulation
between (I*,p*") and (Z,d), for any signature X.

We now characterize concept entailment (and thus also concept inseparability
and concept conservative extensions) in ALC using bisimulations, following [40].

Theorem 3. Let 7; and T3 be ALC TBoxes and X a signature. Then 7; X-
concept entails Tz iff, for any model Iy of Ty and any dy € AT there exist a
model Ty of Ty and dy € A*2 such that (Iy,dy) Nbx's'm (Zs,ds).

For 7; of finite outdegree, one can prove this result directly by employing
compactness arguments and Theorem 2. For the general case, we refer to [40].
We illustrate Theorem 3 by sketching a proof of the statement from Example5
(in a slightly more general form).

Ezample 8. Consider the ALC TBoxes
T1={AC3r.T}UT and To={AC3Ir.BMNIr-B}UT,

where 7 is an ALC TBox and B ¢ ¥ = {A,r} Usig(T). We use Theorem 3
and Lemmal to show that 77 X-concept entails 75. Suppose Z is a model of
T, and d € AT. Using tree unraveling, we construct a tree model Z* of T;
with (Z,d) ~5%™ (Z* p? ). As bisimilations and ALC TBoxes are oblivious
to duplication of successors, we find a tree model J of 7; such that e € A7
implies #{d | (e,d) € r7} > 2 for all e € A and (Z*,p? ) ~55™ (7, p7). By
reinterpreting B ¢ X, we can find 7’ that coincides with J except that now we
ensure that e € A7 implies e € (37.B M Hr.ﬂB)jl for all e € A7 . But then J’
is a model of 75 and (Z,d) ~55™ (J', p7), as required.

Below, we illustrate possible interpretations Z*, J and J’ satisfying the
above conditions, for a given interpretation Z.

* !

A0 d IApI* Apjj Apjj

o ) o o o o BO o
Theorem 3 is a useful starting point for constructing decision procedures for
concept entailment in ALC and related problems. This can be done from first
principles as in [19,47]. Here we present an approach that uses tree automata.
We use amorphous alternating parity tree automata [48], which actually run on
unrestricted interpretations rather than on trees. They still belong to the family
of tree automata as they are in the tradition of more classical forms of such

automata and cannot distinguish between an interpretation and its unraveling
into a tree (which indicates a connection to bisimulations).
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Definition 5 (APTA). An (amorphous) alternating parity tree automaton (or
APTA for short) is a tuple A = (Q, X'n, Xg, qo,0, 2), where Q is a finite set of
states, Xy C Nc is the finite node alphabet, X'y C Ng is the finite edge alphabet,
qgo € Q is the initial state, § : Q@ — mov(A) is the transition function with
mov(A) = {true, false, A, A, q,qA\¢, gV, {(r)q,[r]qg | A € Xn,q,¢ € Q,r € X}
the set of mowves of the automaton, and (2 : @ — N is the priority function.

Intuitively, the move ¢ means that the automaton sends a copy of itself in
state ¢ to the element of the interpretation that it is currently processing, (r)q
means that a copy in state ¢ is sent to an r-successor of the current element,
and [r]g means that a copy in state ¢ is sent to every r-successor.

It will be convenient to use unrestricted modal logic formulas in negation nor-
mal form when specifying the transition function of APTAs. The more restricted
form required by Definition 5 can then be attained by introducing intermediate
states. We next introduce the semantics of APTAs.

In what follows, a X-labelled tree is a pair (T, ¢) with T a tree and £ : T — X
a node labelling function. A path 7 in a tree T is a subset of T" such that ¢ € 7
and for each x € 7 that is not a leaf in T, 7 contains one child of z.

Definition 6 (run). Let (Z,dp) be a pointed X' U Xg-interpretation and let
A=(Q, XN, YE,q,0,2) bean APTA. A run of A on (Z, dp) is a Q x AZ-labelled
tree (T, ¢) such that £(e) = (qo,dp) and for every x € T with £(z) = (g, d):

0(q) # false;

(¢) = A (0(q) = —A), then d € A* (d ¢ A");

(9) = ¢ N q", then there are children y,y’ of x with ¢(y) = (¢’,d) and
) = (q",d); item if §(¢) = ¢’ V ¢”, then there is a child y of x such that
(¢,

o if §
o if §
oy

£(y) d) or £(y') = (¢", d);

e if 6(g) = (r)¢’, then there is a (d,d’) € r7 and a child y of = such that
Uy) = (¢, d);
e if §(¢) = [r]¢’ and (d,d’) € v, then there is a child y of z with £(y) = (¢, d’).

A run (T,¢) is accepting if, for every path 7 of T, the maximal ¢ € N with
{z e 7| l(z) = (¢g,d) with £2(q) =i} infinite is even. We use L(2) to denote the
language accepted by 2, i.e., the set of pointed Xy U Xg-interpretations (Z, d)
such that there is an accepting run of 2 on (Z, d).

APTASs can easily be complemented in polynomial time in the same way as
other alternating tree automata, and for all APTAs 2(; and 2y, one can con-
struct in polynomial time an APTA that accepts L(2;) N L(2A3). The emptiness
problem for APTAs is EXPTIME-complete [48].

We now describe how APTAs can be used to decide concept entailment in
ALC. Let 77 and 75 be ALC TBoxes and X' a signature. By Theorem 3, 77 does
not Y-concept entail 75 iff there is a model Z; of 7; and a d; € At such that
(Zy,dy) 76%5““ (Z,dy) for all models Z, of T, and do € AZz. We first observe
that this still holds when we restrict ourselves to rooted interpretations, that is,
to pointed interpretations (Z;, d;) such that every e € A% is reachable from d; by
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some sequence of role names. In fact, whenever (Z1,d;) £55™ (Zy,ds), then also
(Z7,dy) A5sm (I3, dy) where Z7 is the restriction of Z; to the elements reachable
from d;. Moreover, if 7; and Zs are models of 77 and 75, respectively, then the same
is true for 7] and Zj. Rootedness is important because APTAs can obviously not
speak about unreachable parts of a pointed interpretation. We now construct two
APTAs 2(; and 25 such that for all rooted sig(77)-interpretations (Z, d),

1. (Z,d) e L(2,) if T = Tq;
2. (Z,d) € L(Ay) iff there exist a model J of 73 and an e € A7 such that
(Z,d) ~Bsm (T, e).

Defining 2 as ; N Ay, we then have L(A) = @ iff 7; Y-concept entails To. It is
easy to construct the automaton ;. We only illustrate the idea by an example.
Assume that 7; = {A C =V r.B}. We first rewrite 77 into the equivalent TBox
{T C =AU 3r.—~B} and then use an APTA with only state ¢g and

6(q0) = /\ [slao A (A V (r)=B).

seNgr

The acceptance condition is trivial, that is, 2(qo) = 0. The construction of
2y is more interesting. We require the notion of a type, which occurs in many
constructions for ALC. Let cl(73) denote the set of concepts used in 7Tz, closed
under subconcepts and single negation. A type t is a set ¢t C cl(73) such that, for
some model Z of 75 and some d € AZ, we have t = {C € cl(T3) | d € CT}. Let
TP(73) denote the set of all types for 75. For ¢,t' € TP(72) and a role name r,
we write ¢t ~», t' if (i) Vr.C' € ¢ implies C € ¢ and (ii) C € t/ implies 3r.C € t
whenever 37.C € cl(7). Now we define s to have state set @ = TP(72) W {qo}
and the following transitions:

3(g0) = V TP(Zs),

sty = N An N\ -4

AetnNNcNX Ae(NcNX)\t

AN Y €TP(T) |t t')
reXNNgR

AN\ OV ETP(T) [t~ t, Cet'}.
Ir.Cet,reX

Here, the empty conjunction represents true and the empty disjunction rep-
resents false. The acceptance condition is again trivial, but note that this might
change with complementation. The idea is that 2> (partially) guesses a model
J that is Y-bisimilar to the input interpretation Z, represented as types. Note
that 205 verifies only the Y-part of J on Z, and that it might label the same
element with different types (which can then only differ in their non-Y-parts).
A detailed proof that the above automaton works as expected is provided in [40].
In summary, we obtain the upper bound in the following theorem.

Theorem 4. In ALC, concept entailment, concept inseparability, and concept
conservative extensions are 2EXPTIME-complete.
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The sketched APTA-based decision procedure actually yields an upper bound
that is slightly stronger than what is stated in Theorem4: the algorithm for
concept entailment (and concept conservative extensions) actually runs in time
2p( 7122 for some polynomial p() and is thus only single exponential in |7|.
For simplicity, in the remainder of the chapter we will typically not explicitly
report on such fine-grained upper bounds that distinguish between different
inputs.

The lower bound stated in Theorem4 is proved (for concept conservative
extensions) in [19] using a rather intricate reduction of the word problem of
exponentially space bounded alternating Turing machines (ATMs). An interest-
ing issue that is closely related to computational hardness is to analyze the size
of the smallest concept inclusions that witness non-X-concept entailment of a
TBox 7> by a TBox 77, that is, of the members of cDiff (77, 73). It is shown in
[19] for the case of concept conservative extensions in ALC (and thus also for
concept entailment) that smallest witness inclusions can be triple exponential in
size, but not larger. An example that shows why witness inclusions can get large
is given in Sect. 4.3.

4.2 Concept Inseparability for Extensions of ALC

We briefly discuss results on concept inseparability for extensions of ALC and
give pointers to the literature.

In principle, the machinery and results that we have presented for ALC can
be adapted to many extensions of ALC, for example, with number restrictions,
inverse roles, and role inclusions. To achieve this, the notion of bisimulation
has to be adapted to match the expressive power of the considered DL and the
automata construction has to be modified. In particular, amorphous automata
as used above are tightly linked to the expressive power of ALC and have to be
replaced by traditional alternating tree automata (running on trees with fixed
outdegree) which requires a slightly more technical automaton construction.

As an illustration, we only give some brief examples. To obtain an analogue of
Theorem 2 for ALCZ, one needs to extend bisimulations that additionally respect
successors reachable by an inverse role; to obtain such a result for ALC Q, we need
bisimilations that respect the number of successors [45,46,49]. Corresponding
versions of Theorem 3 can then be proved using techniques from [46,49].

Example 9. Consider the ALCQ TBoxes
T1={AC>2r.T}UT and T2 ={AC3Ir.BN3Ir-B}UT,

where 7 is an ALCQ TBox that does not use the concept name B. Suppose
Y = {A,r} Usig(T). Then 7; and 7 are X-concept inseparable in ALCQO.
Formally, this can be shown using the characterizations from [49].

The above approach has not been fully developed in the literature. How-
ever, using more elementary methods, the following complexity result has been
established in [47].
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Theorem 5. In ALCQZ, concept entailment, concept inseparability, and con-
cept conservative extensions are 2EXPTIME-complete.

It is also shown in [47] that, in ALCQZ, smallest counterexamples are still
triple exponential, and that further adding nominals to ALCQZ results in unde-
cidability.

Theorem 6. In ALCQTZO, concept entailment, concept inseparability, and con-
cept conservative extensions are undecidable.

For a number of prominent extensions of ALC, concept inseparability has
not yet been investigated in much detail. This particularly concerns extensions
with transitive roles [50]. We note that it is not straightforward to lift the above
techniques to DLs with transitive roles; see [51] where conservative extensions
in modal logics with transitive frames are studied and [36] in which modal log-
ics with bisimulation quantifiers (which are implicit in Theorem 3) are studied,
including cases with transitive frame classes. As illustrated in Sect. 8, extensions
of ALC with the universal role are also an interesting subject to study.

4.3 Concept Inseparability for ££

We again start with model-theoretic characterizations and then proceed to deci-
sion procedures, complexity, and the length of counterexamples. In contrast to
ALC, we use simulations, which intuitively are ‘half a bisimulation’, much like
EL is ‘half of ALC’. The precise definition is as follows.

Definition 7 (X-simulation). Let X' be a finite signature and (Z1,d1), (Z2,d2)
pointed interpretations. A relation S C ATt x A%z is a S-simulation from (Zy,d;)
to (Zz,ds) if (dy,d2) € S and, for all (d,d’) € S, the following conditions are
satisfied:

(base’) if d € ATt then d' € A%z, for all A € ¥ N Nc;
(zig) if (d,e) € rT1, then there exists ¢/ € A2 such that (d',¢/) € 772 and
(e,e') € S, for all r € X N Ng.

We say that (Za, ds) X-simulates (Z1,d1) and write (Z1,d;) <S™ (Za, d2) if there
exist a X-simulation from (Zy,dy) to (Z2,d2). We say that (Z;,d;) and (Zz, d2)
are X-equisimilar, in symbols (Z1,dy) ~&™ (Za, ds), if both (Z1,d;) <S™ (Zo, ds)
and (Ig,dg) Sszlvm (Il,dl).

A pointed interpretation (Z1,d;) is ELx-contained in (Za,ds), in symbols
(Z4,d1) ggﬁ (Za,da), if di € CT1 implies dy € CF2, for all £Ls-concepts C.
We call pointed interpretations (Z1,d1) and (Za, ds) ELs-equivalent, in symbols
(Z1,d1) =5F (T, da), in case (Z1,d1) <5¢ (Z2,ds) and (Za,ds) <§F (Z1,d1). The
following was shown in [52,53].

Theorem 7. Let (Il,dl_) and (Za,ds) be pointed interpretations and X a sig-
nature. Then (Iy,d1) <3™ (Iy,ds) implies (Z1,d1) <§F (Z2,d2). The converse
holds if Ty and Zs are of finite outdegree.
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The interpretations given in Example 7 can be used to show that the converse
direction in Theorem 7 does not hold in general (since (Zz, d2) €5 (Z1,d1)). It is
instructive to see pointed interpretations that are equisimilar but not bisimilar.

Ezample 10. Consider the interpretations Z; = ({d1,e1}, ATt = {ei}, r1t =
{(d1761)}) and 7 ::({d2562763}7‘412 ::{62}77'1-2 ::{(d2762)v(d2763)}) and let
Y ={r,A}. Then (Z1,d;) and (Za,ds) are Y-equisimilar but not X-bisimilar.

d1 d2
I Iy
T T T
A O A O [e]
e1 €2 €3

Similar to Theorem 3, X-equisimilarity can be used to give a model-theoretic
characterization of concept entailment (and thus also concept inseparability and
concept conservative extensions) in EL£ [53].

Theorem 8. Let 77 and T3 be EL TBoxes and X a signature. Then T, X-
concept entails Tz iff, for any model Iy of Ty and any dy € AT1 | there exist a
model Ty of Ty and dy € AT2 such that (I, d1) ~&™ (T2, d2).

We illustrate Theorem 8 by proving that the TBoxes 7; and 75 from Exam-
ple 6 are Y-concept inseparable in EL.

Ezample 11. Recall that X = sig(77) and

71 = {Human C Jeats.T, Plant C Jgrows.in.Area, Vegetarian C Healthy},
T = 71 U {Human C Jeats.Food, Food M Plant C Vegetarian}.

Let Z be a model of 7; and d € AZ. We may assume that Food? = @. Define
7' by adding, for every e € Human?, a fresh individual new(e) to AT with
(e,new(e)) € eats” and new(e) € Food” . Clearly, T’ is a model of 5. We
show that (Z,d) and (Z’,d) are X-equisimilar. The identity {(e,e) | e € AT}
is obviously a X-simulation from (Z,d) to (Z’,d). Conversely, pick for each e €
Human?  an old(e) € AT with (e,old(e)) € eats®, which must exist by the first
CI of 77. It can be verified that

S ={(e,e) | e € AT} U {(new(e),old(e)) | e € AT}

is a X-simulation from (Z',d) to (Z,d). Note that (Z,d) and (Z',d) are not
guaranteed to be X-bisimilar.

As in the ALC case, Theorem 8 gives rise to a decision procedure for con-
cept entailment based on tree automata. However, we can now get the com-
plexity down to EXPTIME.? To achieve this, we define the automaton s in a
more careful way than for ALC, while we do not touch the construction of 2.

3 An alternative elementary proof is given in [52].
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Let sub(73) denote the set of concepts that occur in 73, closed under subconcepts.
For any C € sub(73), we use con(C') to denote the set of concepts D € sub(73)
such that 7 |= C' C D. We define the APTA based on the set of states

Q ={a}¥{ec,qc | C €sub(T3)},

where qq is the starting state. The transitions are as follows:

Sa)= N\ (acVae)A N I,

Cesub(732) rex
5(ga)=AAN  /\  gcand §(74) = —A for all A € sub(Tz) "Nc N X,
Cecony (A)
6(gcnp) = qc Ngp A AN apand
E€ccont (CMD)

0(Germp) =T Vqp for all C M D € sub(7y),

0(qar.c) = (rYgc A /\ qp and
Deconr (37.C)
5(q3,.c) = [r]de for all 3r.C € sub(7Tz) with r € X,

s(gr)= " /\  ac and §(gr) = false.
Céecony(T)

Observe that, in each case, the transition for g, is the dual of the transition for
qc, except that the latter has an additional conjunction pertaining to conz. As
before, we set {2(q) = 0 for all ¢ € . An essential difference between the above
APTA 2, and the one that we had constructed for ALC is that the latter had
to look at sets of subconcepts (in the form of a type) while the automaton above
always considers only a single subconcept at the time. A proof that the above
automaton works as expected can be extracted from [53].

Theorem 9. In EL, concept entailment, concept inseparability, and concept
conservative extensions are EXPTIME-complete.

The lower bound in Theorem 9 is proved (for concept conservative extension)
in [52] using a reduction of the word problem of polynomially space bounded
ATMs. It can be extracted from the proofs in [52] that smallest concept inclu-
sions that witness failure of concept entailment (or concept conservative exten-
sions) are at most double exponentially large, measured in the size of the input
TBoxes.* The following example shows a case where they are also at least double
exponentially large.

Example 12. For each n > 1, we give TBoxes 77 and 75 whose size is polynomial
in n and such that 75 is not a concept conservative extension of 77, but the
elements of cDiff (77, T3) are of size at least 22" for X = sig(77). It is instructive
to start with the definition of 75, which is as follows:

4 This should not be confused with the size of uniform interpolants, which can even
be triple exponential in £ [54].
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ACXoM-MNX,,
Hoe{rs}ag-(yiHXOI_I"'mXi—l) C X, for i < n,
oe{rs}30-(Xi M Xo M-+ 11X 1) C X, for i < n,
ng{m}aa(zﬂyj) C X, for j <i<n,
ve(rst30-(Xi nX,) cE X, for j < i <mn,
XoM---nX,_1 C B.
The concept names X, ..., X,_1 and Xg,..., X,_1 are used to represent a

binary counter: if X; is true, then the i-th bit is positive and if X; is true, then
it is negative. These concept names will not be used in 7; and thus cannot occur
in cDiff5;(77,72) for the signature X' of 7;. Observe that Lines 2-5 implement
incrementation of the counter. We are interested in consequences of 75 that are
of the form Cs» C B, where

Co=A, C; =3r.C;_1N3s.C;_q,

which we would like to be the smallest elements of cDiffx;(77,73). Clearly, Con
is of size at least 22". Ideally, we would like to employ a trivial TBox 7; that
uses only signature X' = {A, B, r, s} and has no interesting consequences (only
tautologies). If we do exactly this, though, there are some undesired (single
exponentially) ‘small’ Cls in cDiff 5 (77, 72), in particular C], C B, where

C(/):A, CQ:AI‘IEIT.C’i_lﬂzls.Ci_l.

Intuitively, the multiple use of A messes up our counter, making bits both true
and false at the same time and resulting in all concept names X; to become true
already after travelling n steps along r. We thus have to achieve that these Cls
are already consequences of 77. To this end, we define 77 as

Jo.AC A, ANACBHB, 3JoBCB, BCB

where o ranges over {r,s}, and include these concept assertions also in 73 to
achieve 7; C 75 as required for conservative extensions.

4.4 Concept Inseparability for Acyclic ££ TBoxes

We show that concept inseparability for acyclic £L TBoxes can be decided in
polynomial time and discuss interesting applications to versioning and the logical
diff of TBoxes. We remark that TBoxes used in practice are often acyclic, and
that, in fact, many biomedical ontologies such as SNOMED CT are acyclic ££
TBoxes or mild extensions thereof.

Concept inseparability of acyclic ££ TBoxes is still far from being a triv-
ial problem. For example, it can be shown that smallest counterexamples from
cDiff (77, 73) can be exponential in size [11]. However, acyclic ££ TBoxes enjoy
the pleasant property that if cDiffx(7;,73) is non-empty, then it must contain
a concept inclusion of the form C C A or A C C, with A a concept name. This
is a consequence of the following result, established in [11].
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Theorem 10. Suppose Ty and T are acyclic EL TBoxes and X a signature. If
C C D € cDiff (71, 72), then there exist subconcepts C' of C and D’ of D such
that C" C D' € cDiff(7T1,72), and C' or D' is a concept name.

Theorem 10 implies that every logical difference between 77 and 75 is asso-
ciated with a concept name from X (that must occur in 73). This opens up
an interesting perspective for representing the logical difference between TBoxes
since, in contrast to cDiff (77, 73), the set of all concept names A that are associ-
ated with a logical difference C C A or A C C' is finite. One can thus summarize
for the user the logical difference between two TBoxes 7; and 75 by presenting
her with the list of all such concept names A.

Let 7; and 73 be acyclic ££ TBoxes and Y a signature. We define the
set of left-hand X-concept difference witnesses cWtn'™(77,73) (or right-hand
Y-concept difference witnesses cWtn'?*(77,73)) as the set of all A € X N Nc
such that there exists a concept C with A C C € cDiffx(71,72) (or CC A €
cDiff (71, 73), respectively). Note that, by Theorem 10, 7; X-concept entails 75
iff CWtn' (77, T5) = cWtn'5¥ (71, T3) = @. In the following, we explain how both
sets can be computed in polynomial time. The constructions are from [11].

The tractability of computing thngs(Tl,Tg) follows from Theorem 7 and
the fact that £L has canonical models. More specifically, for every ££ TBox 7
and £L concept C one can construct in polynomial time a canonical pointed
interpretation (Z7 ¢, d) such that, for any €L concept D, we have d € D*7.c iff
T | CC D. Then Theorem 7 yields for any A € X' that

AecWin'™S(T1, ) <= (I, dy) €37 (1y,dy)

where (Z;,d;) are canonical pointed interpretations for 7; and A, i = 1,2. Since
the existence of a simulation between polynomial size pointed interpretations
can be decided in polynomial time [55], we have proved the following result.

Theorem 11. For EL TBozes T, and Ty and a signature X, cWtn'ts (71, ) can
be computed in polynomial time.

We now consider cWtn'*(7;,73), that is, £-CIs of the form C T A. To
check, for a concept name A € X, whether A € cWtn's(7;,T3), ideally we
would like to compute all concepts C such that 7; = C C A and then check
whether 75 = C C A. Unfortunately, there are infinitely many such concepts
C'. Note that if 7o = C' C A and C’ is more specific than C' in the sense that
E C'C C, then 7o = C' C A. If there is a most specific concept Cy4 among
all C with 77 J= C C A, it thus suffices to compute this C'4 and check whether
7, &= C4 C A. Intuitively, though, such a Cy is only guaranteed to exist when
we admit infinitary concepts. The solution is to represent C'4 not as a concept,
but as a TBox. We only demonstrate this approach by an example and refer the
interested reader to [11] for further details.

Ezample 13. (a) Suppose that 7; = {A = 3r. A1}, To = {A = Ir. Ay} and
Y ={A, Ay, As,r}. A concept C'4 such that 7; f= Cy C A should have neither
A nor 37.A; as top level conjuncts. This can be captured by the Cls
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XAEA1|_|A2|_|E|7“.(A|_|A2|_|E|T.XZ), (1)
XsCANA NMANIr. Xy, (2)

where X 4 and X5, are fresh concept names and X 4 represents the most specific
concept C4 with 73 = C4 T A. We have T2 U {(1),(2)} E X4 C A and thus
A€ Wtnx(Th, To).

(b) Consider next 7; = {A = Ir. Ay N3IAr.Ay}, To = {A = Ir. A3} and
Y ={A A, Ay, r}. A concept C4 with 7y = C4 C A should not have both
dr.A; and Ir.As as top level conjuncts. Thus the most specific C'4 should con-
tain exactly one of these top level conjuncts, which gives rise to a choice. We
use the Cls

XiCANANIr(ANANITXy), (3)
X2 CANAMNIr(ANA N3IrXs), (4)

where, intuitively, the disjunction of X'} and X?% represents the most specific C4.
We have 75, U {(3),(4)} E X} C A4 and thus A € Wtnx(71,73).

The following result is proved by generalizing the examples given above.

Theorem 12. For EL TBozes T; and Ty and signatures X, thanhs(Tl,Tg) can
be computed in polynomial time.

The results stated above can be generalized to extensions of acyclic ££ with
role inclusions and domain and range restrictions and have been implemented
in the CEX tool for computing logical difference [11].

An alternative approach to computing right-hand X-concept difference wit-
nesses based on checking for the existence of a simulations between polynomial
size hypergraphs has been introduced in [56]. It has recently been extended [57]
to the case of unrestricted ££ TBoxes; the hypergraphs then become exponential
in the size of the input.

5 Model Inseparability

We consider inseparability relations according to which two TBoxes are indis-
tinguishable w.r.t. a signature X' in case their models coincide when restricted
to X. A central observation is that two TBoxes are X-model inseparable iff they
cannot be distinguished by entailment of a second-order (SO) sentence in X. As
a consequence, model inseparability implies concept inseparability for any DL
L and is thus language independent and very robust. It is particularly useful
when a user is not committed to a certain DL or is interested in more than just
terminological reasoning.

We start this section with introducing model inseparability and the related
notions of model entailment and model conservative extensions. We then look
at the relationship between these notions and also compare model inseparability
to concept inseparability. We next discuss complexity. It turns out that model
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inseparability is undecidable for almost all DLs, including £L£, with the exception
of some DL-Lite dialects. Interestingly, by restricting the signature X' to be a
set concept names, one can often restore decidability. We then move to model
inseparability in the case in which one TBox is empty, which is of particular
interest for applications in ontology reuse and module extraction. While this
restricted case is still undecidable in £L, it is decidable for acyclic ££ TBoxes.
We close the section by discussing approximations of model inseparability that
play an important role in module extraction.

Two interpretation Z and J coincide for a signature X, written 7 =y 7,
if AT = A7 and X? = X7 for all X € X¥. Our central definitions are now as
follows.

Definition 8 (model inseparability, entailment and conservative exten-
sions). Let 7; and 73 be TBoxes and let X' be a signature. Then

e the Y-model difference between 7; and 73 is the set mDiff 5 (77,73) of all
models Z of 77 such that there does not exist a model J of 73 with J =5 Z;

o 71 Y-model entails T3 if mDiff (77, 72) = @;

e 71 and 75 are X-model inseparable if 7, X-model entails 75 and vice versa;

e 75 is a model conservative extension of Ty if 7o O 77 and 7; and 75 are
sig(77)-model inseparable.

Similarly to concept entailment (Example3), model entailment coincides with
logical entailment when X D sig(7; U 72). We again recommend to the reader
to verify this to become acquainted with the definitions. Also, one can show
as in the proof from Example4 that definitorial extensions are always model
conservative extensions.

Regarding the relationship between concept inseparability and model insep-
arability, we note that the latter implies the former. The proof of the following
result goes through for any DL L that enjoys a coincidence lemma (that is, for
any DL, and even when L is the set of all second-order sentences).

Theorem 13. Let 77 and 73 be TBoxes formulated in some DL L and X a
signature such that Ty X -model entails To. Then Ty X-concept entails 1.

Proof. Suppose 77 Y-model entails 75, and let a be a Y-inclusion in £ such
that 7o | «. We have to show that 73 = «a. Let Z be a model of 7;. There
is a model J of 73 such that J =5 Z. Then J E «, and so Z | « since
sig(a) C X. O

As noted, Theorem 13 even holds when L is the set of all SO-sentences. Thus, if
7; Y-model entails 75 then, for every SO-sentence ¢ in the signature X, 7o | ¢
implies 7; |= . It is proved in [10] that, in fact, the latter exactly characterizes
2)-model entailment.

The following example shows that concept inseparability in ALCQ does not
imply model inseparability (similar examples can be given for any DL and even
for full first-order logic [10]).
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Example 14. Consider the ALCQ TBoxes and signature from Example 9:
Ti={AC>2rT} T ={AC3r.BMN3Ir-B} Y ={Ar}.

We have noted in Example 5 that 7; and 75 are X-concept inseparable. However,
it is easy to see that the following interpretation is in mDiff (77, 73).

We note that the relationship between model-based notions of conservative
extension and language-dependent notions of conservative extensions was also
extensively discussed in the literature on software specification [58-62].

We now consider the relationship between model entailment and model insep-
arability. As in the concept case, model inseparability is defined in terms of
model entailment and can be decided by two model entailment checks. Con-
versely, model entailment can be polynomially reduced to model inseparability
(in constast to concept inseparability, where this depends on the DL under con-
sideration).

Lemma 2. In any DL L, model entailment can be polynomially reduced to model
inseparability.

Proof. Assume that we want to decide whether 7; X-model entails 75 holds. By
replacing every non-X-symbol X shared by 77 and 75 with a fresh symbol X7 in
71 and a distinct fresh symbol X5 in 75, we can achieve that X' D sig(77) Nsig(72)
without changing the original (non-)X-model entailment of 75 by 73. We then
have that 7; Y-model entails 75 iff 77 and 7; U 75 are Y-model inseparable. O

The proof of Lemma?2 shows that any DL L is robust under joins for model
inseparability, defined analogously to robustness under joins for concept insepa-
rability; see Definition 3.

5.1 TUndecidability of Model Inseparability

Model-inseparability is computationally much harder than concept inseparabil-
ity. In fact, it is undecidable already for ££ TBoxes [63]. Here, we give a short
and transparent proof showing that model conservative extensions are undecid-
able in ALC. The proof is by reduction of the following undecidable N x N tiling
problem [64—66]: given a finite set T of tile types T, each with four colors left(T),
right(T), up(T) and down(T'), decide whether ¥ tiles the grid N x N in the sense
that there exists a function (called a tiling) 7 from N x N to ¥ such that

o up(7(i, 7)) = down(7(i,j + 1)) and

o right(7(i, 7)) = left(t(i + 1, 7)).

If we think of a tile as a physical 1 x 1-square with a color on each of its four
edges, then a tiling 7 of N x N is just a way of placing tiles, each of a type from
%, to cover the N x N grid, with no rotation of the tiles allowed and such that
the colors on adjacent edges are identical.
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Theorem 14. In ALC, model conservative extensions are undecidable.

Proof. Given a set ¥ of tile types, we regard each T € ¥ as a concept name
and let « and y be role names. Let 77 be the TBox with the following Cls:

Te|r

TeX
TnT'cdl, forT#T,
TN3zT C L, for right(T) # left(T"),
T3y T C 1, forup(T) # down(T"),
TCdz.TMN3y.T.

Let 73 =7, UT, where 7 consists of a single CI:
TC3Ju.(qz.BMNIz.~B)UJu.(FJy.BNIy.~B)UIJu.(3x.Jy.B N Iy.Jz.~B),

where u is a fresh role name and B is a fresh concept name. Let X' = sig(77).
One can show that 7 can be satisfied in a model J =5 7 iff in 7 either z is not
functional or y is not functional or x o y # y o x. It is not hard to see then that
T tiles N x N iff 77 and 75 are not X-model inseparable. O

The only standard DLs for which model inseparability is known to be decidable
are certain DL-Lite dialects. In fact, it is shown in [23] that X-model entail-
ment between TBoxes in the extensions of DL-Lite.,.. with Boolean operators
and unqualified number restrictions is decidable. The computational complexity
remains open and for the extension DL-Lite! , of DL-Lite.o, with role hierar-
chies, even decidability is open. The decidability proof given in [23] is by reduc-
tion to the two-sorted first-order theory of Boolean algebras (BA) combined with
Presburger arithmetic (PA) for representing cardinalities of sets. The decidabil-
ity of this theory, called BAPA, has been first proved in [67]. Here we do not go
into the decidability proof, but confine ourselves to giving an instructive example
which shows that uncountable models have to be considered when deciding model
entailment in DL-Lite., extended with unqualified number restrictions [23].

Example 15. The TBox 7; states, using auxiliary role names r and s, that the
extension of the concept name B is infinite:

T71={TC3r.T, Ir .TC3Is.T, Is~.T C B,
BLC3sT, (>2s.T)C L, 3r~.TN3Is".TC L}

The TBox 75 states that p is an injective function from A to B:
Ty={A=3p.T, Ip".TLCB, (>2pT)C L, (=2p .T)C L}.

Let X = {A, B}. There exists an uncountable model Z of 7; with uncountable
AT and at most countable BZ. Thus, there is no injection from A% to BZ, and so
7 € mDiff 5(71,73) and 77 does not X-model entail 75. Observe, however, that if
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T is a countably infinite model of 77, then there is always an injection from A%
to BZ. Thus, in this case there exists a model Z’ of 75 with 7’ =y Z. It follows
that uncountable models of 77 are needed to prove that 7; does not X-model
entail 75.

An interesting way to make X-model inseparability decidable is to require
that X' contains only concept names. We show that, in this case, one can use the
standard filtration technique from modal logic to show that there always exists a
counterexample to X-model inseparability of at most exponential size (in sharp
contrast to Example 15).

Lemma 3. Suppose T and Ty are ALC TBoxes and X contains concept names
only. If mDiff (71, 73) # @, then there is an interpretation T in mDiff (71, 7T2)
such that |AT| < 21T+ 72|

Proof. Assume Z € mDiff5(7;, 7). Define an equivalence relation ~ C AT x AT
by setting d ~ d’ iff, for all C' € sub(7; UT3), we have d € C7t iff & € CT2. Let
[d] = {d' € AT | d’ ~ d}. Define an interpretation Z’ by taking

AT = {[d)| d € AT},
AT = {[d] | d € AT} for all A € sub(T7),
= {([d],[d']) | Fe € [d]Fe € [d](e,e) € rT} for all role names 7.

It is not difficult to show that d € CZ iff [d] € CT for all d € AT and C € sub(T;).
Thus Z’ is a model of 7;. We now show that there does not exist a model J’ of
75 with 7/ =5 J'. For a proof by contradiction, assume that such a J’ exists.
We define a model J of 75 with J =5 Z, and thus derive a contradiction to the
assumption that Z € mDiff o(7;,72). To this end, let A7 = AZ for all A € ¥
and set

AT ={d|[d € A7} forall A¢ %,
r7 = {(d,d) | ([d],[d']) € r7} for all role names -

Note that the role names (which are all not in X), are interpreted in a ‘maximal’
way. It can be proved that d € CV iff [d] € C7 for all d € AT and C € sub(T3).
Thus J is a model of 75 and we have derived a contradiction. O

Using the bounded model property established in Lemma 3, one can prove a
coNExpP™ upper bound for model inseparability. A matching lower bound and
several extensions of this result are proved in [63].

Theorem 15. In ALC, X-model inseparability is CONEXPNT -complete when X
is restricted to sets of concept names.

Proof. We sketch the proof of the upper bound. It is sufficient to show that
one can check in NExp™Y whether mDiff 5, (71,732) # @. By Lemma3, one can
do this by guessing a model Z of T; of size at most 2/7t/T172l and then calling an
oracle to verify that there is no model J of 75 with J =5 Z. The oracle runs
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in NPsince we can give it the guessed 7 as an input, thus we are asking for a
model of 75 of size polynomial in the size of the oracle input.

The lower bound is proved in [63] by a reduction of satisfiability in circum-
scribed ALC KBs, which is known to be cONExpP™ -hard. O

In [63], Theorem 15 is generalized to ALCZ. We conjecture that it can be further
extended to most standard DLs that admit the finite model property. For DLs
without the finite model property such as ALCQOT, we expect that BAPA-based
techniques, as used for circumscription in [68], can be employed to obtain an
analog of Theorem 15.

5.2 Model Inseparability from the Empty TBox

We now consider model inseparability in the case where one TBox is empty. To
motivate this important case, consider the application of ontology reuse, where
one wants to import a TBox 7;, into a TBox 7 that is currently being developed.
Recall that the result of importing 7, in 7 is the union 7 U 7;,, and that, when
importing 7;,, into 7, the TBox 7 is not supposed to interfere with the modeling
of the symbols from 7;,,. We can formalize this requirement by demanding that

e 7 U7, and T, are Y-model inseparable for X = sig(Zim).

In this scenario, one has to be prepared for the imported TBox 7;,, to be revised.
Thus, one would like to design the importing TBox 7 such that any TBox 7, can
be imported into 7 without undesired interaction as long as the signature of Ziy,
is not changed. Intuitively, 7 provides a safe interface for importing ontologies
that only share symbols from some fixed signature X with 7. This idea led to
the definition of safety for a signature in [20]:

Definition 9. Let 7 be an £ TBox. We say that 7 is safe for a signature X
under model inseparability if T U Ty, is sig(Tim)-model inseparable from 7;, for
all £ TBoxes Ty, with sig(7) Nsig(Zim) C X.

As one quantifies over all TBoxes 7i, in Definition 9, safety for a signature
seems hard to deal with algorithmically. Fortunately, it turns out that the quan-
tification can be avoided. This is related to the following robustness property.®

Definition 10. A DL £ is said to be robust under replacement for model insep-
arability if, for all £ TBoxes 7; and 75 and signatures X', the following condition
is satisfied: if 77 and 75 are Y-model inseparable, then 73 U7 and 75 U7 are
Y-model inseparable for all £ TBoxes 7 with sig(7) Nsig(7; UT3) C X.

The following has been observed in [20]. It again applies to any standard DL,
and in fact even to second-order logic.

5 Similar robustness properties and notions of equivalence have been discussed in logic
programming, we refer the reader to [69-71] and references therein. We will discuss
this robustness property further in Sect. 8.
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Theorem 16. In any DL L, model inseparability is robust under replacement.

Using robustness under replacement, it can be proved that safety for a signa-
ture is nothing but inseparability from the empty TBox, in this way eliminating
the quantification over TBoxes used in the original definition. This has first been
observed in [20]. The connection to robustness under replacement is from [63].

Theorem 17. A TBox T is safe for a signature X under model-inseparability
iff T is X-model inseparable from the empty TBox.

Proof. Assume first that 7 is not X-model inseparable from @. Then 7 U 7,
is not X-model inseparable from 7;,,, where 7, is the trivial X-TBox 7;,, =
{ACA| A€ 2NN} U{3r.TC T |re XNNgr}. Hence T is not safe for X.
Now assume 7 is X-model inseparable from & and let 7;,, be a TBox such that
sig(T) Nsig(Tim) € X. Then it follows from robustness under replacement that
T U T, is sig(Tim )-model inseparable from 7;,, . O

By Theorem 17, deciding safety of a TBox 7 for a signature X' under model insep-
arability amounts to checking Y-model inseparability from the empty TBox. We
thus consider the latter problem as an important special case of model insepa-
rability. Unfortunately, even in ££, model inseparability from the empty TBox
is undecidable [63].

Theorem 18. In £L, model inseparability from the empty TBoz is undecidable.

We now consider acyclic ££ TBoxes as an important special case. As we
have mentioned before, many large-scale TBoxes are in fact acyclic ££ TBoxes
or mild extensions thereof. Interestingly, model inseparability of acyclic TBoxes
from the empty TBox can be decided in polynomial time [63]. The approach
is based on a characterization of model inseparability from the empty TBox
in terms of certain syntactic and semantic dependencies. The following example
shows two cases of how an acyclic ££ TBox can fail to be model inseparable from
the empty TBox. These two cases will then give rise to two types of syntactic
dependencies.

Ezxample 16

(a) Let T ={AC 3r.B,BLC 3s.F} and X' = {4, s}. Then 7 is not X-model
inseparable from the empty TBox: for the interpretation Z with A% = {d},
AT = {d}, and s = @, there is no model J of 7 with J =5 Z.

(b) Let T = {A1 C dr.B1,As C dr.By,A = B N BQ} and XY = {A17A2,A}.
Then 7 is not X-model inseparable from the empty TBox: for the interpre-
tation 7 with A7 = {d}, AT = AZ = {d}, and AT = &, there is no model J
of T with J =5 7.

Intuitively, in part (a) of Example 16, the reason for separability from the
empty TBox is that we can start with a X-concept name that occurs on some
left-hand side (which is A) and then deduce from it that another X-symbol
(which is s) must be non-empty. Part (b) is of a slightly different nature.
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We start with a set of X-concept names (which is {A;, A2}) and from that
deduce a set of concepts that implies another X-concept (which is A) via a
concept definition, right-to-left. It turns out that it is convenient to distinguish
between these two cases also in general. We first introduce some notation. For
an acyclic TBox 7, let

e |hs(7) denote the set of concept names A such that there is some CI A = C
or ACCin 7T;

e def(7) denote the set of concept names A such that there is a definition A = C
in7T;

e depend7(A) be defined exactly as depend,(A) in Sect.2, except that only
concept definitions A = C' are considered while concept inclusions A C C' are
disregarded.

Definition 11. Let 7 be an acyclic ££ TBox, Y a signature, and A € Y. We
say that

o A has a direct X-dependency in T if depend,(A) N X # @;
o A has an indirect X-dependency in T if A € def(T) N X and there are
A1, ..., Ay €lhs(T) N X such that A ¢ {A4;1,...,A4,} and

dependZ(A) \ def(7) C U depend(4;).

1<i<n

We say that T contains an (in)direct X-dependency if there is an A € X
that has an (in)direct X-dependency in 7.

It is proved in [63] that, for every acyclic ££ TBox 7 and signature X', 7 is
Y)-model inseparable from the empty TBox iff 7 has neither direct nor indirect
J)-dependencies. It can be decided in PTIME in a straightforward way whether
a given £L TBox contains a direct X-dependency. For indirect X-dependencies,
this is less obvious since we start with a set of concept names from lhs(7) N X.
Fortunately, it can be shown that if a concept name A € X has an indirect
XY-dependency in 7 induced by concept names Aj,..., A, € |hs(7) N X, then
A has an indirect XY-dependency in 7 induced by the set of concept names
(Ihs(7) N X)) \ {A}. We thus only need to consider the latter set.

Theorem 19. In £L, model inseparability of acyclic TBoxes from the empty
TBox is in PTIME.

Also in [63], Theorem 19 is extended from £L to £LZ, and it is shown that,
in ALC and ALCZ, model inseparability from the empty TBox is I15-complete
for acyclic TBoxes.

5.3 Locality-Based Approximations

We have seen in the previous section that model inseparability from the empty
TBox is of great practical value in the context of ontology reuse, that it is
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undecidable even in £L, and that decidability can (sometimes) be regained by
restricting TBoxes to be acyclic. In the non-acyclic case, one option is to resort
to approximations from above. This leads to the (semantic) notion of @-locality
and its syntactic companion 1 -locality. We discuss the former in this section and
the latter in Sect. 8.

A TBox 7 is called @-local w.r.t. a signature X if, for every interpretation
Z, there exists a model J of 7 such that Z =5, J and A7 =7 = @, for all
A € Nc\ X and r € Ng \ 2; in other words, every interpretation of X-symbols
can be trivially extended to a model of 7 by interpreting non-X symbols as the
empty set. Note that, if 7 is @-local w.r.t. X, then it is X-model inseparable from
the empty TBox and thus, by Theorem 17, safe for X under model inseparability.
The following example shows that the converse does not hold.

Ezample 17. Let T = {A C B} and X' = {A}. Then T is Y-model inseparable
from @, but 7 is not @-local w.r.t. X.

In contrast to model inseparability, @-locality is decidable also in ALC and
beyond, and is computationally not harder than standard reasoning tasks such
as satisfiability. The next procedure for checking @-locality was given in [72].

Theorem 20. Let T be an ALCQOT TBox and X a signature. Suppose T | s—y is
obtained from T by replacing all concepts of the form A, 3r.C, Ir~.C, (> nr.C)
and (> nr=.C) with L whenever A ¢ X andr ¢ X. Then T is @-local w.r.t. X
iff T|s—gz is logically equivalent to the empty TBox.

While Theorem 20 is stated here for ALCQZ—the most expressive DL con-
sidered in this chapter—the original result in [73] is more general and applies
to SHOZQ knowledge bases. There is also a dual notion of A-locality [20], in
which non-Y symbols are interpreted as the entire domain and which can also
be reduced to logical equivalence.

We also remark that, unlike model inseparability from the empty TBox,
model inseparability cannot easily be reduced to logical equivalence in the style
of Theorem 20.

Ezample 18. Let T = {AC BUC}, 7' = {AC B} and ¥ = {A, B}. Then
the TBoxes 7 |x—g and 7’| 5x—x are logically equivalent, yet 7 is not X-model
inseparable from 7.

J-locality and its syntactic companion |-locality are prominently used in
ontology modularization [20,73-75]. A subset M of 7 is called a @-local X-
module of T if T\ M is @-local w.r.t. X. It can be shown that every g-local
Y-module M of 7 is self-contained (that is, M is Y-model inseparable from 7)
and depleting (that is, 7 \ M is X' U sig(M)-model inseparable from the empty
TBox). In addition, @-local modules are also subsumer-preserving, that is, for
every A € ¥ N Ncand B € Nc, f T = AC B then M = A C B. This
property is particular useful in modular reasoning [76-78].

A @-local module of a given ontology 7 for a given signature X' can be com-
puted in a straightforward way as follows. Starting with M = &, iteratively add
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to M every a € T such that a|susgam)—e is not a tautology until 7\ M is
@-local w.r.t. X Usig(M). The resulting module might be larger than necessary
because this procedure actually generates a @-local X U sig(M)-module rather
than only a X-module and because @-locality overapproximates model insepa-
rability, but in most practical cases results in reasonably small modules [74].

6 Query Inseparability for KBs

In this section, we consider inseparability of KBs rather than of TBoxes. One
main application of KBs is to provide access to the data stored in their ABox
by means of database-style queries, also taking into account the knowledge from
the TBox to compute more complete answers. This approach to querying data is
known as ontology-mediated querying [79], and it is a core part of the ontology-
based data access (OBDA) paradigm [80]. In many applications of KBs, a rea-
sonable notion of inseparability is thus the one where both KBs are required to
give the same answers to all relevant queries that a user might pose. Of course,
such an inseparability relation depends on the class of relevant queries and on
the signature that we are allowed to use in the query. We will consider the
two most important query languages, which are conjunctive queries (CQs) and
unions thereof (UCQs), and their rooted fragments, rCQs and rUCQs.

We start the section by introducing query inseparability of KBs and related
notions of query entailment and query conservative extensions. We then discuss
the connection to the logical equivalence of KBs, how the choice of a query
language impacts query inseparability, and the relation between query entail-
ment and query inseparability. Next, we give model-theoretic characterizations
of query inseparability which are based on model classes that are complete for
query answering and on (partial or full) homomorphisms. We then move to
decidability and complexity, starting with ALC and then proceeding to DL-
Lite, ££, and Horn-ALC. In the case of ALC, inseparability in terms of CQs
turns out to be undecidable while inseparability in terms of UCQs is decidable
in 2ExPTIME (and the same is true for the rooted versions of these query lan-
guages). In the mentioned Horn DLs, CQ inseparability coincides with UCQ
inseparability and is decidable, with the complexity ranging from PTIME for ££
via ExpTIME for DL-Lite’f ,, DL-Litel!  and Horn-ALC to 2ExPTIME for
Horn-ALCT.

Definition 12 (query inseparability, entailment and conservative
extensions). Let IC; and Ko be KBs, X a signature, and Q a class of queries.
Then

e the Y-Q difference between K1 and K is the set qufF%(lCl,ICg) of all g(a)
such that g(x) € Qx, a Cind(Az), Ko E g(a) and K1 = q(a);

o K1 2-Q entails Ky if qDiffS (K1, Ks) = @;

e 1 and Ky are X-Q inseparable if K1 X-Q entails Ko and vice versa;

o [Cy is a Q-conservative extension of Ky if Ko O Ki, and Ky and Ky are
sig(K1)-Q inseparable.

If g(a) € qDIffE(K1, Ks), then we say that q(a) Y-Q separates K; and Ks.
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Note that slight variations of the definition of query inseparability are possi-
ble; for example, one can allow signatures to also contain individual names and
then consider only query answers that consist of these names [81].

Query inseparability is a coarser relationship between KBs than logical equiv-
alence even when X' D sig(K;) Usig(K2). Recall that this is in sharp contrast to
concept and model inseparability, for which we observed that they coincide with
logic equivalence under analogous assumptions on /.

Ezample 19 (query inseparability and logical equivalence). Let K; = (7;,A;),
i = 1,2, where A; = {A(c¢)}, Th = {A C B}, Ay = {A(c),B(¢)}, and 75 = @.
Then K7 and Ky are X-UCQ inseparable for any signature X’ but clearly Ky and
Ko are not logically equivalent.

This example shows that there are drastic logical differences between KBs
that cannot be detected by UCQs. This means that, when we aim to replace
a KB with a query inseparable one, we have significant freedom to modify the
KB. In the example above, we went from a KB with a non-empty TBox to a KB
with an empty TBox, which should be easier to deal with when queries have to
be answered efficiently.

We now compare the notions of Q inseparability induced by different choices
of the query language Q. A first observation is that, for Horn DLs such as £L,
there is no difference between UCQ inseparability and CQ inseparability. The
same applies to rCQs and rUCQs. This follows from the fact that KBs formulated
in a Horn DL have a universal model, that is, a single model that gives the same
answers to queries as the KB itself —see Sect. 6.1 for more details.%

Theorem 21. Let K1 and Ky be KBs formulated in a Horn DL, and let X be
a signature. Then

(i) K1 X-UCQ entails Ko iff K1 X-CQ entails Ko;
(i) K1 X-rUCQ entails Ko iff K1 X-rCQ entails K,.

The equivalences above do not hold for DLs that are not Horn, as shown by
the following example:

Ezample 20. Let K; = (7;, A), for i = 1,2, be the ALC KBs where 71 = &,
75 = {A C Bl L BQ}, and A = {A(C)} Let Y = {A,Bl,BQ}. Then ’Cl E—CQ
entails Ko, but the UCQ (actually rtUCQ) g(z) = B;(x) V Ba(z) shows that kg
does not X-UCQ entail Ks.

As in the case of concept and model inseparability (of TBoxes), it is instruc-
tive to consider the connection between query entailment and query insepara-
bility. As before, query inseparability is defined in terms of query entailment.
The converse direction is harder to analyze. Recall that, for concept and model

5 In fact, when we say ‘Horn DL’, we mean a DL in which every KB has a universal
model.
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inseparability, we employed robustness under joins to reduce entailment to insep-
arability. Robustness under joins is defined as follows for X-Q-inseparability: if
Y D sig(Kq) Nisig(Ke), then K X-Q entails Ky iff K1 and K1 U Ko are X-Q
inseparable. Unfortunately, this property does not hold.

Ezample 21. Let K; = (7;, A), i = 1,2, be Horn-ALC KBs with
Tm={AC3r.BMN3r-B}, TL={ACIr.BNvVr.B}, A={A(c)}.

Let ¥ = {A, B,r}. Then, for any class of queries Q introduced above, K1 X-Q
entails Co but Ky and K1 U Ky are not X-Q inseparable since K; U Ky is not
satisfiable.

Robustness under joins has not yet been studied systematically for query
inseparability. While Example 21 shows that query inseparability does not enjoy
robustness under joins in Horn-ALC, it is open whether the same is true in £L£
and the DL-Lite family. Interestingly, there is a (non-trivial) polynomial time
reduction of query entailment to query inseparability that works for many Horn
DLs and does not rely on robustness under joins [81].

Theorem 22. Y-CQ entailment of KBs is polynomially reducible to X -CQ)
inseparability of KBs for any Horn DL containing EL or DL—LiteZ)Te, and con-
tained in Horn-ALCHZ.

6.1 Model-Theoretic Criteria for Query Inseparability

We now provide model-theoretic characterizations of query inseparability. Recall
that query inseparability is defined in terms of certain answers and that, given
a KB K and a query g(x), a tuple @ C ind(K) is a certain answer to g(x) over
K iff, for every model 7 of IC, we have Z = q(a). It is well-known that, in many
cases, it is actually not necessary to consider all models Z of K to compute
certain answers. We say that a class M of models of K is complete for K and a
class Q of queries if, for every q(x) € Q, we have K = q(a) iff Z | q(a) for
allZ € M.

In the following, we give some important examples of model classes for which
KBs are complete.

Ezample 22. Given an ALC KB K = (T, .A), we denote by M?,..(K) the class
of all models 7 of K that can be constructed by choosing, for each a € ind(A), a
tree interpretation Z, (see Sect.4.1) of outdegree bounded by |7 | and with root
a, taking their disjoint union, and then adding the pair (a,b) to r? whenever
r(a,b) € A. Tt is known that M?,._(K) is complete for £ and UCQs, and thus
for any class of queries considered in this chapter [7]. If K is formulated in Horn-
ALC or in £L, then there is even a single model Cxc in M?___(K) such that {Cx}
is complete for K and UCQs, the universal (or canonical) model of K [82].

If the KB is formulated in an extension of ALC, the class of models needs
to be adapted appropriately. The only such extension we are going to consider

is ACCHZ and its fragment DL-Lite’! . In this case, one needs a more liberal

core*
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definition of tree interpretation where role edges can point both downwards and
upwards and multi edges are allowed. We refer to the resulting class of models

b
as M

utree*

It is well-known from model theory [83] that, for any CQ g(x) and any tuple
a Cind(K), wehave T = g(a) for all Z e M if [[M [ q(a), where [[ M is
the direct product of interpretations in M. More precisely, if M = {Z, | i € I},
for some set I, then [[ M = (AIIM IIM) where

AIIM — [Lics ATi is the Cartesian product of the A%:;
alIM — (gi),c;, for any individual name a;

AITM — £(q),c1 | d; € A% for all i € T}, for any concept name A;
rlIM = {(d;, e;)ier | (di,e;) € rFi for all i € I}, for any role name r.

It is to be noted that in general [[ M is not a model of K, even if every inter-
pretation in M is.

Ezxample 23. Two interpretations Z; and Z, are shown below together with their
direct product Z; x Zy (all the arrows are assumed to be labelled with r):

a a 62
a A a B .........
dltN, e2)
di 0 C,B e1 0 C (di,a) C o.C
I I NN’
- ’ d27

Iy 1y T x Ty

Now, consider the CQ g, (x) = Jy, z (r(x,y) Ar(y,z) A B(y) AC(z)). We clearly
have 77 | q4(a), 7o E qq(a), and Z7; x Zo = q;(a). On the other hand, for
the Boolean CQ g, = 3z,y, z (r(x,y) Ar(y, )/\C’( )AB(z)), we have 77 = q,
but Zy = g5, and so 71 X Iy = q5.

Another well-known model-theoretic notion that we need for our character-
izations is that of homomorphism. Let Z; and Zs be interpretations, and X a
signature. A function h: AT2 — AT is a X-homomorphism from Iy to I, if

e h(a®2) = a®* for all a € N| interpreted by Zs,
e d ¢ ATz implies h(d) € AT: for all d € A”> and Y-concept names A,
o (d,e) € r¥2 implies (h(d), h(e)) € ¥t for all d,e € A?2 and Y-role names r.

It is readily seen that if Z, = g(a), for a ¥-CQ gq(x), and there is a X-
homomorphism from Z5 to Z;, then Z; | g(a). Furthermore, if we regard g(a)
as an interpretation whose domain consists of the elements in a (substituted
for the answer variables) and of the quantified variables in g(x), and whose
interpretation function is given by its atoms, then Zo = g(a) iff there exists a
Y-homomorphism from gq(a) to Zs.
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To give model-theoretic criteria for CQ entailment and UCQ entailment, we
actually start with partial X-homomorphisms, which we replace by full homo-
morphisms in a second step. Let n be a natural number. We say that 7, is
nX-homomorphically embeddable into I, if, for any subinterpretation ) of Z,
with |AZz| < n, there is a Y-homomorphism from Z} to Z,.7 If Z is nX-homo-
morphically embeddable into Z; for any n > 0, then we say that Z, is finitely
X-homomorphically embeddable into I;.

Theorem 23. Let Ky and Ky be KBs, X' a signature, and MiQ a class of inter-
pretations that is complete for IC; and the class of queries Q, for i = 1,2 and

Qe {CQ,UCQs}. Then

(i) K1 X-UCQ entails Ky iff, for any n > 0 and Ty € MYC?, there exists
Iy € MQUCQ that is nX-homomorphically embeddable into I;.

(i) K1 X-CQ entails Ko iff [] MQCQ is finitely X -homomorphically embeddable
into T[] M?.

As finite X-homomorphic embeddability is harder to deal with algorithmi-
cally than full X-homomorphic embeddability, it would be convenient to replace
finite X-homomorphic embeddability with Y-homomorphic embeddability in
Theorem 23. We first observe that this is not possible in general:

Ezample 24. Let K; = (T;,A), i = 1,2, be DL-Lite,,r. KBs where A = {A(c)},
and

Th={AC3s.T, I3s~.TCIr.T, Ir~.TCIrT}
To={AC3sT,Is . TCIr . T, Ir.TCIr .T}

Let X = {A,r}. Recall that the class of models {Ck,} is complete for K; and
UCQs, where Ci, is the canonical model of K;:

T T
Ck, ae o——>0——0 -- Ck, ae O+—O0<+«—O0 --
A A

The KBs K and Ky are X-UCQ inseparable, but Cx, is not X-homomorphically
embeddable into Cx; .

The example above uses inverse roles and it turns out that these are indeed
needed to construct counterexamples against the version of Theorem 23 where
finite homomorphic embeddability is replaced with full embeddability. The fol-
lowing result showcases this. It concentrates on Horn-ALC and on ALC, which
do not admit inverse roles, and establishes characterizations of query entailment
based on full homomorphic embeddings.

T i§ a sub/mterpretation of Tp if AT C A%z, AT = A2 0 A% and v = 172 0
(A%2 x A%2), for all concept names A and role names 7.
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Theorem 24

(i) Let Ky and Ko be Horn-ALC KBs. Then K1 X-CQ entails Ko iff Cx, is
X'-homomorphically embeddable into C, .

(i) Let KC1 and Kq be ALC KBs. Then K1 X-UCQ entails Ko iff, for every Iy €
M?® (K1), there exists Iy € M?® (Ks) such that I is X-homomorphically

tree tree

embeddable into 1.

Claim (7) of Theorem 24 is proved in [81] using a game-theoretic characteriza-
tion (which we discuss below). The proof of (i) is given in [84]. One first proves
using an automata-theoretic argument that one can work without loss of gener-
ality with models in M?,___(K;) in which the tree interpretations Z, attached to
the ABox individuals a are regular. Second, since nodes in Z, are related to their
children using role names only (as opposed to inverse roles), X-homomorphisms
on tree interpretations correspond to X-simulations (see Sects.4.3 and 6.3).
Finally, using this observation one can construct the required X-homomorphism
as the union of finite X-homomorphisms on finite initial parts of the tree
interpretations Z,.

Note that Theorem 24 omits the case of ALC KBs and CQ entailment, for
which we are not aware of a characterization in terms of full homomorphic
embeddability.

Another interesting aspect of Example 24 is that the canonical model of Ks
contains elements that are not reachable along a path of X-roles. In fact, just
like inverse roles, this is a crucial feature for the example to work. We illus-
trate this by considering rooted UCQs (rUCQs). Recall that in an rUCQ), every
variables has to be connected to an answer variable. For answering a X-rUCQ,
XY -disconnected parts of models such as in Example 24 can essentially be ignored
since the query cannot ‘see’ them. As a consequence, we can sometimes replace
finite homomorphic embeddability with full homomorphic embeddability. We
give an example characterization to illustrate this. Call an interpretation Z X-
connected if, for every u € AZ, there is a path r7(a,u1),...,r%(u,,u) with
an individual a and r; € X. An interpretation Zs is con-X-homomorphically
embeddable into I if the maximal Y-connected subinterpretation Zj of Zo is
Y-homomorphically embeddable into 7.

Theorem 25. Let Ky and Ko be ALCHZ KBs and X a signature. Then K
Z-rUCQ entails Ko iff for any T, € MY, . (K1), there exists Ty € M?,. .(K2)

utree utree

that is con-X-homomorphically embeddable into 1.

Theorem 25 is proved for ALC in [85]. The extension to ALCHZ is straight-
forward. The model-theoretic criteria given above are a good starting point for
designing decision procedures for query inseparability. But can they be checked
effectively? We first consider this question for ALC and then move to Horn DLs.

6.2 Query Inseparability of ALC KBs

We begin with CQ entailment and inseparability in ALC and show that both
problems are undecidable even for very restricted classes of KBs. The same is
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true for rCQs. We then show that, in contrast to the CQ case, UCQ inseparability
in ALC is decidable in 2EXPTIME.
The following example illustrates the notion of CQ-inseparability of

ALC KBs.

Ezample 25. Suppose 1 = @, T, = {E C AU B}, A looks like on the left-hand
side of the picture below, and X' = {r, A, B}. Then we can separate Ko = (72,.A)
from Ky = (71, .A) by the X-CQ g(x) shown on the right-hand side of the picture
since clearly (77,.A) f= q(a), whereas (73, A) = g(a). To see the latter, we first
observe that, in any model Z of Ky, we have (i) ¢ € AZ or (i) ¢ € B. In case (i),
7 E q(a) because of the path r(a,c),r(c,d); and if (i) holds, then T | q(a)
because of the path r(a,b),r(b,c) (cf. [86, Example 4.2.5]).

a r c , d
—eo
A: ; b ;;E B q(x): T Y1 ——— 2
A B
A

Theorem 26. Let Q € {CQ, rCQ}.

(i) X-Q entailment of an ALC KB by an EL KB is undecidable.
(i1) X-Q inseparability of an ALC and an EL KBs is undecidable.

The proof of this theorem given in [85] uses a reduction of an undecidable
tiling problem. As usual in encodings of tilings, it is not hard to synchronize tile
colours along one dimension. The following example gives a hint of how this can
be achieved in the second dimension.

Ezample 26. Suppose a KB K has the two models Z;, i = 1, 2, that are formed
by the points on the path between a and e; on the right-hand side of the picture
below (this can be easily achieved using an inclusion of the form D C D; U Dsy),
with a being an ABox point with a loop and the e; being the only instances
of a concept C. Let g be the CQ on the left-hand side of the picture. Then we
can have K = q(a) only if dy,d3 € AT2 and do,d, € B?2, with the fat black
and grey arrows indicating homomorphisms from g to the Z; (the grey one sends
Zo—r2 to a using the ABox loop). This trick can be used to pass the tile colours
from one row to another.

q(z) 0 a
| T

) T dy
' —,
A 1;3 €1 ds
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As we saw in Example 20, UCQs distinguish between more KBs than CQs,
that is, UCQ inseparability is a different and in fact more fine-grained notion
than CQ inseparability. This has the remarkable effect that decidability is
regained [84].

Theorem 27. In ALC, X-Q entailment and X'-Q inseparability of KBs are
Z2EXPTIME-complete, for Q € {UCQ, rUCQ}.

The proof of the upper bound in Theorem 27 uses tree automata and relies
on the characterization of Theorem 24 (ii) [84]. In principle, the automata con-
struction is similar to the one given in the proof sketch of Theorem 4. The main
differences between the two constructions is that we have to replace bisimula-
tions with homomorphisms. Since homomorphisms preserve only positive and
existential information, we can actually drop some parts of the automaton con-
struction. On the other hand, homomorphisms require us to consider also parts
of the model Z5 (see Theorem 24) that are not reachable along X-roles from an
ABox individual, which requires a bit of extra effort. A more technical issue is
that the presence of an ABox seems to not go together so well with amorphous
automata and thus one resorts to more traditional tree automata along with a
suitable encoding of the ABox and of the model Z; as a labeled tree. The lower
bound is proved by an ATM reduction.

6.3 Query Inseparability of KBs in Horn DLs

We first consider DLs without inverse roles and then DLs that admit inverse
roles. In both cases, we sketch decision procedures that are based on games
played on canonical models C as mentioned in Example 22. It is well known
from logic programming and databases [87] that such models can be constructed
by the chase procedure. We illustrate the chase (in a somewhat different but
equivalent form) by the following example.

Ezample 27. Consider the DL-Lite’ KB Ko = (73, Az) with Ay = {A(a)} and

core
T,={ACB, ACdp.T, dp” . TC 3r~.T, Ir. T CAq".T, d¢.T C 3¢ .T,
Ir.TC3Is™.T, Is.TLCI¢.T, ILTCIs™. T, t MsC L}

We first construct a ‘closure’ of the ABox A under the inclusions in 75. For
instance, to satisfy A © 3p.T, we introduce a witness w, for p and draw an arrow
~ from a to w, indicating that p(a,w,) holds. The inclusion Ip~.T C Ir~.T
requires a witness w,- for v~ and the arrow w, ~» w,-. Having reached the
witness w,- for ¢~ and applying d¢.T E dqg~.T to it, we ‘Teuse’ w,- and
simply draw a loop w,- ~» w,-. The resulting finite interpretation G, shown
below is called the generating structure for Ka:

Z;\’::J .
7
w,— —
[\ i q
A, B P T ¢
g2 @ NANAANAAS-ONANANANAND m Wy —
a Wp w,— s W

Eh s™
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Note that G is not a model of Ky because (w,—,w,~) € (t7)92Ns92. We can
obtain a model of o by unravelling the witness part of the generating structure
Go into an infinite tree (in general, forest). The resulting interpretation Z shown
below is a canonical model of Ks.

A B 40’/0‘ O O o- - -
1'2 ® >0 o O O O o- - -

a P r s t s t

The generating structure underlying the canonical model Cx of a Horn KB K
defined above will be denoted by Gx. By Theorem 24, if ;1 and Iy are KBs for-
mulated in a Horn DL, then ; X-CQ entails Ko iff Cx, is n2-homomorphically
embeddable into Cx, for any n > 0.

In what follows, we require the following upper bounds on the size of gener-
ating structures for Horn KBs [81]:

Theorem 28

(i) The generating structure for any consistent Horn-ALCHZ KB (T,A) can
be constructed in time |A| - 2PUT1) where p is some fized polynomial;

(i) The generating structure for any consistent KB (T, A) formulated in a DL
from the EL or DL-Lite family can be constructed in time |A|-p(|T|), where
p is some fized polynomial.

We now show that checking whether a canonical model is nX-homomor-
phically embeddable into another canonical model can be established by playing
games on their underlying generating structures. For more details, the reader is
referred to [81].

Suppose K1 and Ky are (consistent) Horn KBs, C; and Cy are their canon-
ical models, and X a signature. First, we reformulate the definition of nX-
homomorphic embedding in game-theoretic terms. The states of our game are of
the form (7 — o), where 7 € A®2 and o € A% Intuitively, (7 — o) means that
‘m is to be Y-homomorphically mapped to o’. The game is played by player 1
and player 2 starting from some initial state (7o — (). The aim of player 1 is to
demonstrate that there exists a X-homomorphism from (a finite subinterpreta-
tion of) Cy into C; with 7y mapped to o, while player 2 wants to show that there
is no such homomorphism. In each round i > 0 of the game, player 2 challenges
player 1 with some m; € AC? that is related to m;_; by some Y-role. Player 1,
in turn, has to respond with some o; € A€ such that the already constructed
partial X-homomorphism can be extended with (7; — o;), in particular:

— m; € A% implies 0; € A%, for any Y-concept name A, and
— (mi_1,m;) € r°2 implies (0;_1,0;) € 7%, for any Z-role r.

A play of length n starting from a state sg is any sequence s, ..., s, of states
obtained as described above. For any ordinal A < w, we say that player 1 has a
A-winning strategy in the game starting from s if, for any play s, ...,s, with
n < A that is played according to this strategy, player 1 has a response to any
challenge of player 2 in the final state s,,.
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It is easy to see that if, for any 7y € AC2, there is 0 € At such that player 1
has an w-winning strategy in this game starting from (79 — o0¢), then there is a
Y-homomorphism from Cs into C1, and the other way round. That Cy is finitely
Y-homomorphically embeddable into C; is equivalent to the following condition:

— for any my € A% and any n < w, there exists oy € AC! such that player 1 has
an n-winning strategy in this game starting from (my — op).

Example 28. Suppose C; and Cs look like in the picture below. An w-winning
strategy for player 1 starting from (a — a) is shown by the dotted lines with the
rounds of the game indicated by the numbers on the lines.

Ci

Note, however, that the game-theoretic criterion formulated above does not
immediately yield any algorithm to decide finite homomorphic embeddability
because both Co and C; can be infinite. It is readily seen that the canonical
model Cy in the game can be replaced by the underlying generating structure
Go, in which player 2 can only make challenges indicated by the generating
relation ~». The picture below illustrates the game played on G, and C; from
Example 28.

Cy

If the KBs are formulated in a Horn DL that does not allow inverse roles,
then C; can also be replaced with its generating structure G; as illustrated by
the picture below:
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Ga Gi

Reachability or simulation games on finite graphs such as the one discussed
above have been extensively investigated in game theory [88,89]. In particular,
it follows that checking the existence of n-winning strategies, for all n < w,
can be done in polynomial time in the number of states and the number of the
available challenges. Together with Theorem 28, this gives the upper bounds in
the following theorem. Claim (i) was first observed in [52], while () and the
results on data complexity are from [81].

Theorem 29. Y'-CQ entailment and X -CQ inseparability of KBs are

(i) in PTIME for EL;
(i) EXPTIME-complete for Horn-ALC.

Both problems are in PTIME for data complexity for both EL and Horn-ALC.

Here, by ‘data complexity’ we mean that only the ABoxes of the two involved
KBs are regarded as input, while the TBoxes are fixed. Analogously to data
complexity in query answering, the rationale behind this setup is that, in data-
centric applications, ABoxes tend to be huge compared to the TBoxes and thus
it can result in more realistic complexities to assume that the latter are actually
of constant size. The lower bound in Theorem 29 is proved by reduction of the
word problem of polynomially space-bounded ATMs. We remind the reader at
this point that, in all DLs studied in this section, CQ entailment coincides with
UCQ entailment, and likewise for inseparability.

If inverse roles are available, then replacing canonical models with their gen-
erating structures in games often becomes less straightforward. We explain the
issues using an example in DL-Litelt , where inverse roles interact in a prob-
lematic way with role inclusions. Similar effects can be observed in Horn-ALCZ,
though, despite the fact that no role inclusions are available there.

Ezample 29. Consider the DL-Lite’! . KBs K1 = (71,{Q(a,a)}) with

core

T1={AC3s.T,3s . TCEI¢.T, It .TCEIs.T, sCq, tCq, 3¢ . TCIrT }

and KCo from Example 27. Let X' = {q,r, s, t}. The generating structure Go for Ko
and the canonical model C; for Ky, as well as a 4-winning strategy for player 1
in the game over Gy and C; starting from the state (ug,04) are shown in the
picture below:
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(In fact, for any n > 0, player 1 has an n-winning strategy starting from any
(up +— o) provided that m is even and m > n.)

This game over Go and C; has its obvious counterparts over Go and Gi; one
of them is shown on the left-hand side of the picture below. It is to be noted,
however, that—unlike Example 28—the responses of player 1 are in the reverse
direction of the ~-arrows (which is possible because of the inverse roles).

On the other hand, such reverse responses may create paths in G; that do not
have any real counterparts in C;, and so do not give rise to X~-homomorphisms
we need. An example is shown on the right-hand side of the picture above, where
u3 is mapped to wo and v to a in round 3, which is impossible to reproduce in
the tree-shaped C;.

One way to ensure that, in the ‘backwards game’ over G, and Gi, all the
challenges made by player 1 in any given state are responded by the same element
of Gy, is to use states of the form (5 — w), where = is the set of elements of Go
to be mapped to an element w of Gy. In our example above, we can use the state
({uz,v} — ws), where the only challenge of player 2 is the set of ~+- successors
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of ug and v marked by X-roles, that is, =’ = {us, v}, to which player 1 responds
with (£ +— wy).

By allowing more complex states, we increase their number and, as a con-
sequence, the complexity of deciding finite X-homomorphic embeddability. The
proof of the following theorem can be found in [81]:

Theorem 30. X'-CQ entailment and inseparability of KBs are

(i) EXpTIME-complete for DL-Lite)t  and DL-Litel:
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(i) 2EXPTIME-complete for Horn-ALCZ and Horn-ALCHZ.
For all of these DLs, both problems are in PTIME for data complexity.

The lower bounds are once again proved using alternating Turing machines.
We remark that CQ entailment and inseparability are in PTIME in DL-Lite o
and DL-Liteporn. In DL-Lite, it is thus the combination of inverse roles and role
hierarchies that causes hardness.

7 Query Inseparability of TBoxes

Query inseparability of KBs, as studied in the previous section, presupposes that
the data (in the form of an ABox) is known to the user, as is the case for example
in KB exchange [29]. In many query answering applications, though, the data
is either not known during the TBox design or it changes so frequently that
query inseparability w.r.t. one fixed data set is not a sufficiently robust notion.
In such cases, one wants to decide query inseparability of T'Boxes 77 and 7,
defined by requiring that, for all ABoxes A, the KBs (71,.A4) and (73, A) are
query inseparable. To increase flexibility, we can also specify a signature of the
ABoxes that we are considering, and we do not require that it coincides with the
signature of the queries. In a sense, this change in the setup brings us closer to
the material from Sects. 4 and 5, where also inseparability of TBoxes is studied.
As in the KB case, the main classes of queries that we consider are CQs and
UCQs as well as rCQs and rUCQs. To relate concept inseparability and query
inseparability of TBoxes, we additionally consider a class of tree-shaped CQs.

The structure of this section is as follows. We start by discussing the impact
that the choice of query language has on query inseparability of TBoxes. We then
relate query inseparability of TBoxes to logical equivalence, concept inseparabil-
ity, and model inseparability. For Horn DLs, query inseparability and concept
inseparability are very closely related, while this is not the case for DLs with
disjunction. Finally, we consider the decidability and complexity of query insep-
arability of TBoxes. Undecidability of CQ inseparability of ALC KBs transfers
to the TBox case, and the same is true of upper complexity bounds in DL-Lite.
New techniques are needed to establish decidability and complexity results for
other Horn DLs such as ££ and Horn-ALC. A main observation underlying our
algorithms is that it is sufficient to consider tree-shaped ABoxes when searching
for witnesses of query separability of TBoxes.
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Definition 13 (query inseparability, entailment and conservative
extensions). Let 7; and 73 be TBoxes, © = (X1, Y;) a pair of signatures,
and Q a class of queries. Then

e the ©-Q difference between 73 and 73 is the set quffg(Tl,Tg) of all pairs
(A, q(a)) such that A is a ¥1-ABox and g(a) € qufF%z (K1, Ks2), where IC; =
(7, A) for i = 1,2;

o T, 6-Q entails Ty if qDIffS (71, T) = &;

e 71 and 75 are ©-Q inseparable if Ty @-Q entails 75 and vice versa;

e Ty is a Q conservative extension of 7y iff 7o O 77 and 77 and 75 are ©-Q
inseparable for Xy = Xy = sig(Tq).

If (A, q(a)) € qDIffS (71, T3), we say that (A, q(a)) O-Q separates T, and Ts.

Note that Definition 13 does not require the separating ABoxes to be sat-
isfiable with 77 and 75. Thus, a potential source of separability is that there
is an ABox with which one of the TBoxes is satisfiable while the other is not.
One could also define a (more brave) version of query inseparability where only
ABoxes are considered that are satisfiable with 7; and 75. We will discuss this
further in Sect. 7.2.

We now analyze the impact that the choice of query language has on query
inseparability. To this end, we introduce a class of tree-shaped CQs that is closely
related to £L-concepts. Every £L-concept C' corresponds to a tree-shaped rCQ
qo(7) such that, for any interpretation Z and d € A%, we have d € C7 iff
T = qo(d). We denote g~ (x) by C(z) and the Boolean CQ 3z g~ (x) by Ja C(x).
We use Qgr to denote the class of all queries of the former kind and Qg w
for the class of queries of any of these two kinds. In the following theorem,
the equivalence of (4i4) with the other two conditions is of particular interest.
Informally it says that, in ££ and Horn-ALC, tree-shaped queries are always
sufficient to separate TBoxes.

Theorem 31. Let £ be a Horn DL, T; and Ty TBozxes formulated in L, and
O = (X1, 2s) a pair of signatures. Then the following conditions are equivalent:

(i) Ty ©-UCQ entails Tz;
(i) Ty ©-CQ entails Tz.

If L is EL or Horn-ALC, then these conditions are also equivalent to
(11i) Ty ©-Qgrn entails Ty.

The same is true when UCQs are replaced with rUCQs, CQs with rCQs, and
Qgerv with Qgr (simultaneously).

Proof. The first equivalence follows directly from the fact that KBs in Horn
DLs are complete w.r.t. a single model (Example 22). We sketch the proof that
O-Q¢ v entailment implies @-CQ entailment in £L and Horn-ALC. Assume that
there is a X1-ABox A such that K does not X5-CQ entail Ko for K1 = (771, .A)
and Ko = (72, A). Then Ci, is not finitely X-homomorphically embeddable into
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Ci, (see Theorem 23). We thus find a finite subinterpretation Z of an interpre-
tation Z, in Cx, (see Example22) that is not X-homomorphically embeddable
into Cx,. We can regard the Y-reduct of 7 as a Y-query in Qg o« which takes
the form C(x) if 7 contains a and 3xC(z) otherwise. This query witnesses that
K1 does not @-Q¢,u entail Ko, as required. O

For Horn DLs other than ££ and Horn-ALC, the equivalence between (ii)
and (iii) in Theorem 31 does often not hold in exactly the stated form. The
reason is that additional constructors such as inverse roles and role inclusions
require us to work with slightly different types of canonical models; see Exam-
ple 22. However, the equivalence then holds for appropriate extensions of Qg u,
for example, by replacing £L£ concepts with ££Z concepts when moving from
Horn-ALC to Horn-ALCZ.

Theorem 31 does not hold for non-Horn DLs. We have already observed in
Example 20 that UCQ entailment and CQ entailment of KBs do not coincide
in ALC. Since the example uses the same ABox in both KBs, it also applies
to the inseparability of TBoxes. In the following example, we prove that the
equivalence between CQ inseparability and Qg+ inseparability fails in ALC, too.
The proof can actually be strengthened to show that, in ALC, CQ inseparability
is a stronger notion than inseparability by acyclic CQs (which generalize Qg -« by
allowing multiple answer variables and edges in trees that are directed upwards).

Ezample 30. Let Xy = {r}, Yo = {r, A}, and © = (X, Xs). We construct an
ALC TBox 7, as follows:

e to ensure that, for any X1-ABox A, the KB (77, A) is satisfiable iff A (viewed
as an undirected graph with edges {{a,b} | 7(a,b) € A}) is two-colorable, we
take the Cls

BLCVr—-B, —-BLCLVr.B;

e to ensure that, for any X;-ABox A, any model in M?,_ (77, A) has an infinite
r-chain of nodes labeled with the concept name A whose root is not reachable

from an ABox individual along X5-roles we add the Cls
Ir.TC3Is.B', B CANIr.B.
75 is the extension of 7; with the CI
Jr. TC AUVr.A.

Thus, models of (72, A) extend models of (77,.A) by labeling certain individuals
in A with A. The non-A part is not modified as we can assume that its elements
are already labeled with A. Observe that 7; and 75 can be distinguished by
the ABox A = {r(a,b),r(b,a)} and the CQ q = Iz, y (A(z) Ar(z,y) Ar(y,z)).
Indeed, a € A% or b € A% holds in every model Z of (73, .A) but this is not the case
for (71, A). We now argue that, for every Xy ABox A and every Y5 concept C' in
EL, (T3, A) E FzC(x) implies (71, A) = JzC(z) and (73, A) = C(a) implies
(T1,A) = C(a). Assume that A and C are given. As any model in M? __(7;, A)

tree



74 E. Botoeva et al.

has infinite r-chains labeled with A, we have (7;,4) E Ja C(x) for any Y-
concept C' in EL. Thus, we only have to consider the case (73,.4) = C(a). If C
does not contain A, then clearly A = C(a), and so (71, A) | C(a), as required.
If A is not 2-colorable, we also have (71, A) = C(a), as required. Otherwise C
contains A and A is 2-colorable. But then it is easy to see that (7z,.4) = C(a)
and we have derived a contradiction.

7.1 Relation to Other Notions of Inseparability

We now consider the relationship between query inseparability, model insep-
arability, and logical equivalence. Clearly, 3-model inseparability entails @-Q
inseparability for © = (X, X) and any class Q of queries. The same is true for
logical equivalence, where we can even choose @ freely. The converse direction
is more interesting.

An ABox A is said to be tree-shaped if the directed graph (ind(A), {(a,b) |
r(a,b) € A}) is a tree and r(a,b) € A implies s(a,b) € A for any a,b € ind(A)
and s # r. We call A undirected tree-shaped (or utree-shaped) if the undirected
graph (ind(A), {{a,b} | r(a,b) € A}) is a tree and r(a,b) € A implies s(a,b) & A
for any a,b € ind(A) and s # r. Observe that every £L concept C corresponds to
a tree-shaped ABox A¢ and, conversely, every tree-shaped ABox A corresponds
to an £L-concept C 4. In particular, for any TBox 7 and £L concept D, we have
7 E CCDIiff (T,Ac) = D(pc), pc the root of Ac.

Theorem 32. Let £L € {DL-Lite'! ,EL} and let © = (X1,55) be a pair of

signatures such that X; D sig(Ty) Usig(Tz) for i € {1,2}. Then the following
conditions are equivalent:

(i) T1 and T3 are logically equivalent;

(i) Ty and Tz are ©-rCQ inseparable.

Proof. We show (ii) = (i) for L, the proof for DL-Lite’t  is similar and
omitted. Assume 77 and 73 are £L£ TBoxes that are not logically equivalent.
Then there is C C D € 73 such that 73 = C T D (or vice versa). We regard
C' as the tree-shaped X1-ABox A¢ with root pc and D as the Xo-rCQ D(z).
Then (72, Ac) &= D(pc) but (71, Ac) = D(pc). Thus 73 and 75 are ©-rCQ
separable. |

Of course, Theorem 32 fails when the restriction of @ is dropped. The following
example shows that, even with this restriction, Theorem 32 does not hold for
Horn-ALC.

Example 81. Consider the Horn-ALC TBoxes
T1={AC3r—-A} and TL={AC3IrT}

Clearly, 7; and 73 are not logically equivalent. However, it is easy to see that
they are ©-UCQ inseparable for any 6.
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We now relate query inseparability and concept inseparability. In ALC, these
notions are incomparable. It already follows from Example 31 that UCQ insepa-
rability does not imply concept inseparability. The following example shows that
the converse implication does not hold either.

Ezxample 32. Consider the ALC TBoxes 77 = @ and
T, ={BN3irBC A,-BN3r-BLC A}.

Using Theorem 3, one can show that 7; and 75 are X-concept inseparable, for
Y ={A,r}. However, 7; and 75 are not ©-CQ inseparable for any @ = (X, Xy)
with 7 € 3y and A € X5 since for the ABox A = {r(a,a)} we have (71, A) }=
A(a) and (T3, A) = A(a).

In Horn DLs, in contrast, concept inseparability and query inseparability are
closely related. To explain why this is the case, consider ££ as a paradigmatic
example. Since EL concepts are positive and existential, an £L concept inclusion
C C D which shows that two TBoxes 7; and 75 are not concept inseparable is
almost the same as a witness (A, g(a)) that query separates 7; and 7. In fact,
both ABoxes and queries are positive and existential as well, but they need not be
tree-shaped. Thus, a first puzzle piece is provided by Theorem 31 which implies
that we need to consider only tree-shaped queries q. This is complemented by
the observation that it also suffices to consider only tree-shaped ABoxes A. The
latter is also an important foundation for designing decision procedures for query
inseparability in Horn DLs. The following result was first proved in [52] for £L.
We state it here also for Horn-ALC [85] as this will be needed later on.

Theorem 33. Let 7; and T3 be Horn-ALC TBozes and © = (X1,X5). Then
the following are equivalent:

(i) Ty ©-CQ entails Tz;

(i) for all utree-shaped X1-ABoxes A and all EL-concepts C in signature Xy:
(a) if (T2, A) E C(a), then (T1, A) = C(a) where a is the root of A;
(b) if (T2, A) = 2 C(x), then (T1,A) E JzC(z).

If Ty and T3 are EL TBozes, then it is sufficient to consider tree-shaped A Bozes
in (11). The same holds when CQs are replaced with rCQs and (b) is dropped
from (i4).

Theorem 33 can be proved by an unraveling argument. It is closely related
to the notion of unraveling tolerance from [82]. As explained above, Theorem 33
allows us to prove that concept inseparability and query inseparability are the
same notion. Here, we state this result only for ££ [52]. Let X-EL"-concept
entailment between £L TBoxes be defined like X-concept entailment between €L
TBoxes, except that in cDiff5;(77,72) we now admit concept inclusions C' C D
where C is an £L-concept and D an £L"-concept.

Theorem 34. Let 7; and Ty be EL TBozes and © = (X, X). Then

(i) Ty X-concept entails Ty iff Ty ©-rCQ entails Ty;
(i) Ty X-ELY-concept entails Tz iff Ty ©-CQ entails T5.
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7.2 Deciding Query Inseparability of TBoxes

We now study the decidability and computational complexity of query insepara-
bility. Some results can be obtained by transferring results from Sect. 6 on query
inseparability for KBs (in the ALC and DL-Lite case) or results from Sect. 4 on
concept inseparability of TBoxes (in the £L case). In other cases, though, this
does not seem possible. To obtain results for Horn-ALC, in particular, we need
new technical machinery; as before, we proceed by first giving model-theoretic
characterizations and then using tree automata.

In DL-Lite.ore and DL—Lite?Om, there is a straightforward reduction of query
inseparability of TBoxes to query inseparability of KBs. Informally, such a reduc-
tion is possible since DL-Lite TBoxes are so restricted that they can only perform
deductions from a single ABox assertion, but not from multiple ones together.

Theorem 35. For Q € {CQ,rCQ}, ©-Q entailment and O-Q inseparability of
TBoxes are

(i) in PTIME for DL-Lite,ope;
(ii) ExPTIME-complete for DL-Lite!!

core*

Proof. Let © = (X, X5). Using the fact that every CI in a DL-Lite’f,, TBox
has only a single concept of the form A or 3. T on the left-hand side, one can
show that if 7; does not ©-Q entail 75, then there exists a singleton X;-ABox
(containing either a single assertion of the form A(c) or r(a, b)) such that X does
not Xs-Q entail o for IC; = (73, A) for i = 1,2. Now the upper bounds follow
from Theorem 30. The lower bound proof is a variation of the one establishing

Theorem 30. O

The undecidability proof for CQ (and rCQ) entailment and inseparability of
ALC KBs (Theorem 26) can also be lifted to the TBox case; see [85] for details.

Theorem 36. Let Q € {CQ, rCQ}.

(i) ©-Q entailment of an ALC TBox by an EL TBox is undecidable.
(i) ©-Q inseparability of an ALC and an EL TBoxes is undecidable.

In contrast to the KB case, decidability of UCQ entailment and inseparabil-
ity of ALC TBoxes remains open, as well as for the rUCQ versions. Note that,
for the extension ALCF of ALC with functional roles, undecidability of @-Q
inseparability can be proved for any class Q of queries contained in UCQ and
containing an atomic query of the form A(z) or 3xA(z). The proof is by reduc-
tion to predicate and query emptiness problems that are shown to be undecidable
in [90]. Consider, for example, the class of all CQs. It is undecidable whether for
an ALCF TBox 7, a signature X, and a concept name A ¢ Y, there exists a
Y-ABox A such that (7,.A) is satisfiable and (7,.4) = JzA(x) [90]. One can
easily modify the TBoxes 7 constructed in [90] to prove that this problem is
still undecidable if X¥-ABoxes A such that the KB (7,.A) is not satisfiable are
admitted. Now observe that there exists a X-ABox A with (7,A4) E JzA(x)
iff 7 is not ©-CQ inseparable from the empty TBox for © = (X, {A}).
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We now consider CQ inseparability in £L£. From Theorem 34 and Theorem 9,
we obtain EXPTIME-completeness of ©-rCQ inseparability when © is of the form
(X, X). ExpTiME-completeness of @-CQ inseparability in this special case was
established in [52]. Both results actually generalize to unrestricted signatures ©.

Theorem 37. Let Q € {CQ,rCQ}. In EL, O-Q-entailment and inseparability
of TBozes are EXPTIME-complete.

Theorem 37 has not been formulated in this generality in the literature, so
we briefly discuss proofs. In the rooted case, the EXPTIME upper bound follows
from the same bound for Horn-ALC which we discuss below. In the non-rooted
case, the EXPTIME upper bound for the case ©® = (X, X) in [52] is based on
Theorem 34 and a direct algorithm for deciding X-£L"-entailment. It is not
difficult to extend this algorithm to the general case. Alternatively, one can
obtain the same bound by extending the model-theoretic characterization of Y-
concept entailment in £L given in Theorem 8 to ‘©-£L"-concept entailment’,
where the concept inclusions in cDiff (77, 73) are of the form C C D with C an
EL concept in signature X7 and D an £L£" concept in signature X5. Based on
such a characterization, one can then modify the automata construction from
the proof of Theorem 9 to obtain an ExpTIME upper bound.

We note that, for acyclic ££ TBoxes (and their extensions with role inclu-
sions and domain and range restrictions), @-CQ entailment can be decided in
polynomial time. This can be proved by a straightforward generalization of the
results in [11] where it is assumed that @ = (X, Xs) with ¥y = X5. The
proof extends the approach sketched in Sect.4 for deciding concept insepara-
bility for acyclic ££ TBoxes. A prototype system deciding ©-CQ inseparability
and computing a representation of the logical difference for query inseparability
is presented in [91].

We now consider query entailment and inseparability in Horn-ALC, which
requires more effort than the cases discussed so far. We will concentrate on CQs
and rCQs. To start with, it is convenient to break down our most basic problem,
query entailment, into two subproblems:

1. ©-Q entailment over satisfiable ABozes is defined in the same way as O-
Q entailment except that only ABoxes satisfiable with both 7; and 73 can
witness inseparability; see the remark after Definition 13.

2. A TBox 7; X-ABoz entails a TBox 7, for a signature 3/, if for every X-ABox
A, unsatisfiability of (73,.4) implies unsatisfiability of (77, .A).

Tt is easy to see that a TBox 73 is ©-Q-entailed by a TBox 77, © = (X, Xs), if To
is @-Q-entailed by 77 over satisfiable ABoxes and 75 is X'1-ABox entailed by 7;.
For proving decidability and upper complexity bounds, we can thus concentrate
on problems 1 and 2 above. ABox entailment, in fact, is reducible in polynomial
time and in a straightforward way to the containment problem of ontology-
mediated queries with CQs of the form 3 z A(x), which is EXPTIME-complete in
Horn-ALC [92]. For deciding query entailment over satisfiable ABoxes, we can
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find a transparent model-theoretic characterization. The following result from
[85] is essentially a consequence of Theorem 24 (i), Theorem 25, and Theorem 33,
but additionally establishes a bound on the branching degree of witness ABoxes.

Theorem 38. Let 7; and T3 be Horn-ALC TBoxes and © = (X1, Xs). Then

(i) Ty ©-CQ entails Ty over satisfiable ABoxes iff, for all utree-shaped X -
ABoxes A of outdegree < |Tz| and consistent with T1 and Tz, C(1, 4y 15
Ya-homomorphically embeddable into Ci7, a);

(ii) Ty O©-rCQ entails To over satisfiable ABoxes iff, for all utree-shaped X -
ABoxes A of outdegree < |Tz| and consistent with T1 and Tz, C(1, 4y 15
con-Ya-homomorphically embeddable into Ci1, a)-

Based on Theorem 38, we can derive upper bounds for query inseparability
in Horn-ALC using tree automata techniques.

Theorem 39. In Horn-ALC,

(i) ©-rCQ entailment and inseparability of TBozes is EXPTIME-complete;
(ii) ©-CQ entailment and inseparability of TBoxes is 2EXPTIME-complete.

The automaton constructions are more sophisticated than those used for
proving Theorem 27 because the ABox is not fixed. The construction in [85] uses
traditional tree automata whose inputs encode a tree-shaped ABox together
with (parts of) its tree-shaped canonical models for the TBoxes 77 and 7s.
It is actually convenient to first replace Theorem 27 with a more fine-grained
characterization that uses simulations instead of homomorphisms and is more
operational. Achieving the upper bounds stated in Theorem 39 requires a careful
automaton construction using appropriate bookkeeping in the input and mixing
alternating with non-deterministic automata. The lower bound is based on an
ATM reduction.

Interestingly, the results presented above for query inseparability between
DL-Lite TBoxes have recently been applied to analyse containment and insep-
arability for TBoxes with declarative mappings that relate the signature of the
data one wants to query to the signature of the TBox that provides the interface
for formulating queries [93]. We conjecture that the results we presented for £L£
and Horn-ALC can also be lifted to the extension by declarative mappings.

We note that query inseparability between TBoxes is closely related to pro-
gram expressiveness [94] and to CQ-equivalence of schema mappings [95,96].
The latter is concerned with declarative mappings from a source signature X to
a target signature X5. Such mappings M; and M are CQ-equivalent if, for any
data instance in X, the certain answers to CQs in the signature X5 under M,
and My coincide. The computational complexity of deciding CQ-equivalence of
schema mappings has been investigated in detail [95,96]. Regarding the former,
translated into the language of DL the program expressive power of a TBox 7°
is the set of all triples (A, g,a) such that A is an ABox, q is a CQ, and a is
a tuple in ind(A) such that 7,4 = ¢(a). It follows that two TBoxes 77 and
T, are ©-CQ inseparable for a pair @ = (X, Xs) iff 7; and 75 have the same
program expressive power.
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8 Discussion

In this chapter, we have discussed a few inseparability relations between descrip-
tion logic TBoxes and KBs, focussing on model-theoretic characterizations and
deciding inseparability. In this section, we briefly survey three other important
topics that were not covered in the main text. (1) We observe that many insepa-
rability relations considered above (in particular, concept inseparability) fail to
satisfy natural robustness conditions such as robustness under replacement, and
discuss how to overcome this. (2) Since inseparability tends to be of high com-
putational complexity or even undecidable, it is interesting to develop approxi-
mation algorithms; we present a brief overview of the state of the art. (3) One
is often not only interested in deciding inseparability, but also in computing
useful members of an equivalence class of inseparable ontologies such as uniform
interpolants and the result of forgetting irrelevant symbols from an ontology. We
briefly survey results in this area as well.

Inseparability and Robustness. We have seen that robustness under replace-
ment is a central property in applications of model inseparability to ontology
reuse and module extraction. In principle, one can of course also use other insep-
arability relations for these tasks. The corresponding notion of robustness under
replacement can be defined in a straightforward way [10,23].

Definition 14. Let £ be a DL and =5 an inseparability relation. Then L is
robust under replacement for =5, if 7y =5, 75 implies that 7, U7 =5 To U7 for
all £ TBoxes 71,73 and T such that sig(7) Nsig(7; UT3) C 2.8

Thus, robustness under replacement ensures that X-inseparable TBoxes can
be equivalently replaced by each other even if a new TBox that shares with
77 and 75 only X-symbols is added to both. This seems a useful requirement
not only for TBox re-use and module extraction, but also for versioning and
forgetting. Unfortunately, with the exception of model inseparability, none of
the inseparability relations considered in the main part of this survey is robust
under replacement for the DLs in question. The following counterexample is a
variant of examples given in [23,97].

Ezample 33. Suppose Ty = &, To = {AC3Ir.B,EMNBLC 1}, and ¥ = {A, E}.
Then 7; and 75 are Y-concept inseparable in expressive DLs such as ALC and
they are ©-CQ inseparable for © = (X, X). However, for T = {T C E} the
TBoxes 77 U7 and 75 U7 are neither YX-concept inseparable nor ©-CQ insepa-
rable.

The only DLs for which concept inseparability is robust under replacement
are certain extensions of ALC with the universal role. Indeed, recall that by
L* we denote the extension of a DL £ with the universal role u. Assume that

8 Robustness under replacement can be defined for KBs as well and is equally impor-
tant in that case. In this short discussion, however, we only consider TBox insepa-
rability.
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71 and 75 are X-concept inseparable in £* and let 7 be an L£* TBox with
sig(T) Nsig(7T1 UT3) C Y. As L extends ALC, it is known that 7 is logically
equivalent to a TBox of the form {C = T}, where C is an £* concept. Let
Dy C Dy be a X-CI in £*. Then

ZUT):D()EDl iff ’]]|:D0I_|VuC’ED1
iff 7o DynVu.C C Dy
iff 'TQUT':D()EDl,

where the second equivalence holds by X-concept inseparability of 77 and 73 if
we assume that sig(7T) C X (and so sig(C) C X). Recall that, in the definition
of robustness under replacement, we only require sig(7) Nsig(73 UT3) € X, and
so an additional step is needed for the argument to go through. This step is
captured by the following definition.

Definition 15. Let £ be a DL and =5 an inseparability relation. Then L is
robust under vocabulary extensions for =5 if 7y =5 75 implies that 73 =5 T
for all X’ O ¥ with sig(T; UT3) N X C X

Let us return to the argument above. Clearly, if £* is robust under vocabulary
extensions for concept inseparability, then the second equivalence is justified and
we can conclude that £ is robust under replacement for concept inseparability.
In [10], robustness under vocabulary extensions is investigated for many standard
DLs and inseparability relations. In particular, the following is shown:

Theorem 40. The DLs ALCY, ALCT", ALCQY, and ALCQI" are robust
under vocabulary extensions for concept inseparability, and thus also robust under
replacement.

Because of Theorem 40, it would be interesting to investigate concept insep-
arability for DLs with the universal role and establish, for example, the compu-
tational complexity of concept inseparability. We conjecture that the techniques
used to prove the 2EXPTIME upper bounds without the universal role can be
used to obtain 2EXPTIME upper bounds here as well.

We now consider robustness under replacement for DLs without the universal
role. To simplify the discussion, we consider weak robustness under replacement,
which preserves inseparability only if TBoxes 7 with sig(7) C X are added to
7y and 73, respectively. It is then a separate task to lift weak robustness under
replacement to full robustness under replacement using, for example, robust-
ness under vocabulary extensions. It is, of course, straightforward to extend the
inseparability relations studied in this survey in a minimal way so that weak
robustness under replacement is achieved. For example, say that two £ TBoxes
7, and 75 are strongly X-concept inseparable in L if, for all £ TBoxes 7 with
sig(7) C X, we have that 7; U7 and 75 U7 are X-concept inseparable. Simi-
larly, say that two £ TBoxes 77 and 75 are strongly ©-Q-inseparable if, for all
L TBoxes 7 with sig(7) C X7 N Y5, we have that 737 U 7 and 7, U 7 are
©-Q inseparable (we assume @ = (X1, X5)). Unfortunately, with the exception
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of results for the DL-Lite family, nothing is known about the properties of the
resulting inseparability relations. It is proved in [97] that strong ©-CQ insepa-
rability is still in EXpTIME for DL-Lite’ , if X} = X5. We conjecture that this
result still holds for arbitrary ©. A variant of strong ©-CQ inseparability is also
discussed in [23] and analyzed for DL-Lite.,r. extended with (some) Boolean
operators and unqualified number restrictions. However, the authors of [23] do
not consider CQ-inseparability as defined in this survey but inseparability with
respect to generalized CQs that use atoms C(x) with C' a X-concept in £ instead
of a concept name in Y. This results in a stronger notion of inseparability that is
preserved under definitorial extensions and has, for the DL-Lite dialects consid-
ered, many of the robustness properties introduced above. It would be of interest
to extend this notion of query inseparability to DLs such as ALC. Regarding
strong concept and query inseparability, it would be interesting to investigate
its algorithmic properties for ££ and Horn-ALC.

Approximation. We have argued throughout this survey that inseparability
relations and conservative extensions can play an important role in a variety
of applications including ontology versioning, ontology refinement, ontology re-
use, ontology modularization, ontology mapping, knowledge base exchange and
forgetting. One cannot help noticing, though, another common theme: the high
computational complexity of the corresponding reasoning tasks, which can hin-
der the practical use of these notions or even make it infeasible. We now give
a brief overview of methods that approximate the notions introduced in the
previous sections while incurring lower computational costs. We will focus on
modularization and logical difference.

Locality-based approximations have already been discussed in Sect. 5.3,
where we showed how the extraction of depleting modules can be reduced to
standard ontology reasoning. Notice that @-locality, in turn, can be approxi-
mated with a simple syntactic check. Following [72], let X be a signature. Define
two sets of ALCQT concepts Cxs and Cy., as follows:

Cy == At | =Cc" | cnct | 3t IrCt | >nrt.C | >nrCh
Cy == -C+ | ¢/ ncy,

where A+ ¢ ¥ is an atomic concept, 7 is a role (a role name or an inverse role)
and C'is a concept, C+ € Cy, C; € CJ,i=1,2,and r+isrorr~, forr € Ng\ 2.
A CI « is syntactically 1-local w.r.t. X if it is of the form C+ T C or C' C cT.
A TBox 7 is L-local if all CIs in 7 are l-local. Then every TBox 7 that is
syntactically L-local w.r.t. a signature X' is @-local w.r.t. X', as shown in [72].
Notice that checking whether a CI is syntactically L-local can be done in linear
time. A dual notion of syntactic T-locality has been introduced in [20]. Both
notions can be used to define |-local and T-local modules; T- and _-locality
module extraction can be iterated leading to smaller modules [75].

A comprehensive study of different locality flavours [98] identified that there
is no statistically significant difference in the sizes of semantic and syntactic local-
ity modules. In contrast, [63] found that the difference in size between minimal



82 E. Botoeva et al.

modules (only available for acyclic ££ TBoxes) and locality-based approxima-
tions can be large. In a separate line of research, [99] showed that intractable
depleting module approximations for unrestricted OWL ontologies based on
reductions to QBF can also be significantly smaller, indicating a possibility for
better tractable approximations. Reachability-based approximations [100,101]
refine syntactic locality modules. While they are typically smaller, self-contained
and justification preserving, reachability modules are only X'-concept insepara-
ble from the original TBox but not X-model inseparable. A variety of tractable
approximations based on notions of inseparability ranging form classification
inseparability to model inseparability can be computed by reduction to Datalog
reasoning [78].

Syntactic restrictions on elements of cDiff5;(77,72) lead to approximations
of concept inseparability. In [16], the authors consider counterexamples of the
foom AC B, AC -B, AC dr.B, AC Vr.B and r C s only, where A, B
are X-concept names and 7, s are X-roles, and use standard reasoners to check
for entailment. This approach has been extended in [102] to allow inclusions
between X-concepts to be constructed in accordance with some grammar rules.
n [97], CQ-inseparability for DL-Litelt _ is approximated by reduction to a
tractable simulation check between the canonical models. An experimental eval-
uation showed that this approach is incomplete in a very small number of cases
on real-world ontologies.

Computing Representatives. Inseparability relations are equivalence rela-
tions on classes of TBoxes. One is often interested not only in deciding insepara-
bility, but also in computing useful members of an equivalence class of inseparable
ontologies such as uniform interpolants (or, equivalently, the result of forgetting
irrelevant symbols from an ontology). Recall from Sect. 3 that an ontology Oforget
is the result of forgetting a signature I" in O for an inseparability relation = if
O uses only symbols in X' = sig(O) \ I and O and Oforger are X-inseparable for
=. Clearly, Oforget can be regarded as a representation of its equivalence class
under =y. For model-inseparability, this representation is unique up to logical
equivalence while this need not be the case for other inseparability relations.
Forgetting has been studied extensively for various inseparability relations.
A main problems addressed in the literature is that, for most inseparability
relations and ontology languages, the result of forgetting is not guaranteed to
be expressible in the language of the original ontology. For example, for the
TBox 7 = {A C 3r.B, B C 3r.B}, there is no ALC TBox using only symbols
from ¥ = {A,r} that is X-concept inseparable from 7. This problem gives
rise to three interesting research problems: given an ontology O and signature
X, can we decide whether the result of forgetting exists in the language of O
and, if so, compute it? If not, can we approximate it in a principled way? Or
can we express it in a more powerful ontology language? The existence and
computation of uniform interpolants for TBoxes under concept inseparability has
been studied in [38] for acyclic ££ TBoxes, in [43,53] for arbitrary £L TBoxes,
and for ALC and more expressive DLs in [40,42]. The generalization to KBs has
been studied in [39,41,44]. Approximations of uniform interpolants obtained by
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putting a bound on the role depth of relevant concept inclusions are studied
in [41,103-105]. In [42,44], (a weak form of) uniform interpolants that do not
exist in the original DL are captured using fix-point operators. The relationship
between deciding concept inseparability and deciding the existence of uniform
interpolants is investigated in [40]. Forgetting under model inseparability has
been studied extensively in logic [106] and more recently for DLs [107]. Note that
the computation of universal CQ solutions in knowledge exchange [29] is identical
to forgetting the signature of the original KB under X-CQ-inseparability.

Uniform interpolants are not the only useful representatives of equivalence
classes of inseparable ontologies. In the KB case, for example, it is natural to
ask whether for a given KB K and signature X there exists a KB K’ with empty
TBox that is X-query inseparable from K. In this case, answering a X-query in
K could be reduced to evaluating the query in an ABox. Another example is
TBox rewriting, which asks whether for a given TBox 7 in an expressive DL
there exists a TBox 77 that is sig(7 )-inseparable from 7 in a less expressive DL.
In this case tools that are only available for the less expressive DL but not for
the expressive DL would become applicable to the rewritten TBox. First results
regarding this question have been obtained in [49].
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