
Chapter 2

Heat Transfer Through a Porous Medium

2.1 Energy Equation: Simple Case

In this chapter we focus on the equation that expresses the first law of thermody-

namics in a porous medium. We start with a simple situation in which the medium

is isotropic and where radiative effects, viscous dissipation, and the work done by

pressure changes are negligible. Very shortly we shall assume that there is local

thermal equilibrium so that Ts¼ Tf¼ T, where Ts and Tf are the temperatures of the

solid and fluid phases, respectively. Here we also assume that heat conduction in the

solid and fluid phases takes place in parallel so that there is no net heat transfer from

one phase to the other. More complex situations will be considered in Sect. 6.5. The

fundamentals of heat transfer in porous media also are presented in Bejan et al.

(2004) and Bejan (2004a).

Taking averages over an elemental volume of the medium we have, for the solid

phase,

1� φð Þ ρcð Þ s
∂Ts

∂t
¼ 1� φð Þ∇ � ks∇Tsð Þ þ 1� φð Þq000

s ð2:1Þ

and, for the fluid phase,

φ ρcPð Þ f
∂Tf

∂t
þ ρcPð Þ fv �∇Tf ¼ φ∇ � kf∇Tfð Þ þ φq

000
f : ð2:2Þ

Here the subscripts s and f refer to the solid and fluid phases, respectively, c is the
specific heat of the solid, cP is the specific heat at constant pressure of the fluid, k is
the thermal conductivity, and q000[W/m3] is the heat production per unit volume.

In writing Eqs. (2.1) and (2.2) we have assumed that the surface porosity is equal

to the porosity. This is pertinent to the conduction terms. For example, �ks∇Ts is
the conductive heat flux through the solid, and thus∇�(ks∇Ts) is the net rate of heat
conduction into a unit volume of the solid. In Eq. (2.1) this appears multiplied by
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the factor (1�φ), which is the ratio of the cross-sectional area occupied by solid to
the total cross-sectional area of the medium. The other two terms in Eq. (2.1) also

contain the factor (1�φ) because this is the ratio of volume occupied by solid to the

total volume of the element. In Eq. (2.2) there also appears a convective term, due to

the seepage velocity. We recognize that V�∇Tf is the rate of change of temperature

in the elemental volume due to the convection of fluid into it, so this, multiplied by

(ρcP)f, must be the rate of change of thermal energy, per unit volume of fluid, due to

the convection. Note further that in writing Eq. (2.2) use has been made of the

Dupuit–Forchheimer relationship v¼φV.
Setting Ts¼ Tf¼ T and adding Eqs. (2.1) and (2.2) we have

ρcð Þm
∂T
∂t

þ ρcð Þfv �∇T ¼ ∇ � km∇Tð Þ þ q
000
m; ð2:3Þ

where

ρcð Þm ¼ 1� φð Þ ρcð Þs þ φ ρcPð Þf ; ð2:4Þ
km ¼ 1� φð Þks þ φkf ; ð2:5Þ
q

000
m ¼ 1� φð Þq000

s þ φq
000
f ð2:6Þ

are, respectively, the overall heat capacity per unit volume, overall thermal con-

ductivity, and overall heat production per unit volume of the medium.

2.2 Energy Equation: Extensions to More Complex
Situations

2.2.1 Overall Thermal Conductivity of a Porous Medium

In general, the overall thermal conductivity of a porous medium depends in a

complex fashion on the geometry of the medium. As we have just seen, if the

heat conduction in the solid and fluid phases occurs in parallel, then the overall

conductivity kA is the weighted arithmetic mean of the conductivities ks and kf:

kA ¼ 1� φð Þks þ φkf : ð2:7Þ

On the other hand, if the structure and orientation of the porous medium is such that

the heat conduction takes place in series, with all of the heat flux passing through

both solid and fluid, then the overall conductivity kH is the weighted harmonic mean

of ks and kf:

38 2 Heat Transfer Through a Porous Medium



1

kH
¼ 1� φ

ks
þ φ

kf
: ð2:8Þ

In general, kA and kH will provide upper and lower bounds, respectively, on the

actual overall conductivity km. We always have kH� kA, with equality if and only if
ks¼ kf. For practical purposes, a rough and ready estimate for km is provided by kG,
the weighted geometric mean of ks and kf, defined by

kG ¼ k1�φ
s kφ

f : ð2:9Þ

This provides a good estimate so long as ks and kf are not too different from each

other (Nield 1991b). More complicated correlation formulas for the conductivity of

packed beds have been proposed. Experiments by Prasad et al. (1989b) showed that

these formulas gave reasonably good results provided that kf was not significantly
greater than ks. The agreement when kf� ks was not good, the observed conduc-

tivity being greater than that predicted. This discrepancy may be due to porosity

variation near the walls. Since km depends on φ there is an effect analogous to the

hydrodynamic effect already noted in Sect. 1.7. Some of the discrepancy may be

due to the difficulty of measuring a truly stagnant thermal conductivity in this case

(Nield 1991b).

In the case when the fluid is a rarefied gas and the Knudsen number has a large

value, temperature slip occurs in the fluid at the pore boundaries. In these circum-

stances one could expect that the fluid conductivity would tend to zero as the

Knudsen number increases. Then in the case of external heating the heat would

be conducted almost entirely through the solid matrix. In the case of just internal

heating in the fluid the situation is reversed as the fluid phase becomes thermally

isolated from the solid phase. Temperature slip in the context of microfluidics was

discussed in Section 9.4 of Straughan (2015d). Temperature slip at the interface

between porous and fluid layers was investigated by Takatsu and Masuoka (2007).

Further models for stagnant thermal conductivity have been put forward by Hsu

et al. (1994, 1995), Cheng et al. (1999), and Cheng and Hsu (1998, 1999). In

particular, Cheng et al. (1999), and also Hsu (2000), contain comprehensive

reviews of the subject. Volume averaging was used by Buonanno and Carotenuto

(1997) to calculate the effective conductivity taking into account particle-to-parti-

cle contact. Experimental studies have been made by Imadojemu and Porter (1995)

and Tavman (1996). The former concluded that the thermal diffusivity and con-

ductivity of the fluid played the major role in determining the effective conductivity

of the medium. Hsu (1999) presented a closure model for transient heat conduction,

while Hsiao and Advani (1999) included the effect of heat dispersion. Hu et al.

(2001) discussed unconsolidated porous media, Paek et al. (2000) dealt with

aluminum foam materials, and Fu et al. (1998) studied cellular ceramics. Boomsma

and Poulikakos studied the effective thermal conductivity of a three-dimensionally

structured fluid-saturated metal foam. Carson et al. (2005) obtained thermal con-

ductivity bounds for isotropic porous materials.
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A unified closure model for convective heat and mass transfer has been

presented by Hsu (2005). He notes that r.e.v. averaging leads to the introduction

of new unknowns (dispersion, interfacial tortuosity, and interfacial transfer) whose

determination constitutes the closure problem. More experiments are needed to

determine some of the coefficients that are involved. His closure relation for the

interfacial force contains all the components due to drag, lift, and transient inertia to

the first-order approximation. He concludes that the macroscopic energy equations

are expected to be valid for all values of the time scale and Reynolds number, for

the case of steady flows. Further investigations are needed for unsteady flows.

So far we have been discussing the case of an isotropic medium, for which the

conductivity is a scalar. For an anisotropic medium km will be a second-order

tensor. Lee and Yang (1998) modeled a heterogeneous anisotropic porous medium.

A fundamental issue has been raised by Merrikh et al. (2002, 2005a, b) and

Merrikh and Lage (2005). This is the question of how the internal regularity of a

solid/fluid physical domain affects global flow and heat transfer. These authors

have considered a situation (a regular distribution of rectangular solid obstacles in a

rectangular box) that is sufficiently simple for a comparison to be made between the

results of numerical modeling involving a treatment of the fluid and solid phases

considered separately (continuum model) and a standard r.e.v.-averaged porous

medium (porous continuum model). The results for the two models can be substan-

tially different. In other words, the internal regularity can have an important effect.

The authors considered situations where the obstacles were separated from the

boundary walls, and thus some of the difference is due to a channeling effect.

Further contributions have been made by Braga and de Lemos (2005a, b).

The effective thermal conductivity of rough spherical packed beds was studied

by Bahrami et al. (2006). Two effective conductivity models for porous media

composed of hollow spherical agglomerates were proposed by Yu et al. (2006a). A

collocated parameter model was employed by Reddy and Karthikeyan (2009) to

estimate the effective thermal conductivity of two-phase materials, a subject also

studied by Samantray et al. (2006).

Works on the effective thermal conductivity of saturated porous media have

been surveyed by Aichlmayr and Kulacki (2006).

The analogy between dual-phase-lagging and porous-medium conduction was

discussed by Wang et al. (2008d). The analogy permits existence, uniqueness, and

structural stability results established for the former to be applied to the latter.

A comprehensive review of various models for the effective conductivity was

made by Singh (2011a, b), who pointed out that this quantity was dependent not

only on the conductivities and volume fractions of the constituents, the morphology

of the constituent particles, and the structure of the material but also on interphase

interactions. Qu et al. (2012a) introduce an octet-truss lattice unit cell model. Pedras

and de Lemos (2008) studied thermal dispersion in porous media as a function of

solid-fluid conductivity ratio. Yang and Nakayama (2010) provided a synthesis of

the effects of tortuosity and dispersion on effective conductivity. Wang et al.

(2016c) proposed a prediction model for effective thermal conductivity on mono-

sized pebble beds.
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2.2.2 Effects of Pressure Changes and Viscous Dissipation

If the work done by pressure changes is not negligible [i.e., the condition βT(gβ/cPf)
L� 1 is not met], then a term �βT(∂P/∂t+ v�∇P) needs to be added to the left-

hand side of Eq. (2.3). Here β is the coefficient of volumetric thermal expansion,

defined by

β ¼ �1

ρ

∂ρ
∂T

� �
P

: ð2:10Þ

Viscous dissipation is negligible in natural convection if (gβ/cPf)L� 1, which is

usually the case. If it is not negligible, another term must be added to the right-hand

side of Eq. (2.3), as noted first by Ene and Sanchez-Palencia (1982). If Darcy’s law
holds, that term is (μ/K )v � v in the case of an isotropic medium, and μv �K�1 � v if

the medium is anisotropic. To see this, note that the average of the rate of doing

work by the pressure, on a unit volume of an r.e.v., is given by the negative of div

(PφV)¼ div(Pv)¼ v.grad P, since div v¼ 0. The Forchheimer drag term, dotted

with the velocity vector, contributes to the dissipation, despite the fact that the

viscosity does not enter explicitly. This apparent paradox was resolved by Nield

(2000). The contribution of the Brinkman drag term is currently a controversial

topic. Nield (2004b) proposed that the Brinkman term be treated in the same way as

the Darcy and Forchheimer terms, so that the total viscous dissipation remains

equal to the power of the total drag force. Thus the viscous dissipationΦwould then

be modeled by

ϕ ¼ μ

K
v � vþ cP

K1=2

��v��v � v� eμv �∇2v: ð2:11Þ

Al-Hadhrami et al. (2003) prefer a form that remains positive and reduces to that for

a fluid clear of solid material in the case where the Darcy number tends to infinity.

Accordingly, they would add the usual clear fluid term to the Darcy and

Forchheimer terms. Nield (2004b) suggested that the Brinkman equation may

break down in this limit. In most practical situations the Brinkman term will be

small compared with the Darcy term, and so the form of the Brinkman term is then

not important. A derivation from a representative elementary volume was made by

Breugem and Rees (2006). Additional discussion of viscous dissipation in porous

media and the validity of the Brinkman equation can be found in Salama (2011a),

who included an additional term involving the gradient of the porosity. Salama et al.

(2013) compared the effects of various terms on boundary layer flow on a

vertical wall.

Nield (2000) noted that scale analysis, involving the comparison of the magni-

tude of the viscous dissipation term to the thermal diffusion term, shows that

viscous dissipation is negligible if N� 1, where N¼ μU2L2/KkmΔT¼Br/Da,

where the Brinkman number is defined by Br¼ μU2/kmΔT¼EcPr, where the
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Eckert number Ec is defined by Ec¼U2/cPΔT. For most situations the Darcy

number K/L2 is small, so viscous dissipation is important at even modest

values of the Brinkman number. For forced convection the choice of the charac-

teristic velocity is obvious. For natural convection, scale analysis leads to the

estimate U ~ (km/ρcPL )Ra
1/2 and the condition that viscous dissipation is negligible

becomes Ge� 1, where Ge is the Gebhart number defined by Ge¼ gβL/cP. The
above comments on forced convection are made on the assumption that the Péclet

number Pe¼ ρcP UL/km is not large. If it is large, then the proper comparison is one

between the magnitudes of the viscous dissipation term and the convective trans-

port term. This ratio is of order Ec/DaRe, where the Reynolds number Re¼ ρUL/μ.
Further aspects of the effects of viscous dissipation on the flow in porous media are

discussed in the survey by Magyari et al. (2005b).

The question of how the viscous dissipation relates to the pressure work and

other non-Boussinesq effects has been the subject of considerable discussion by

Costa (2009, 2010, 2013), Nield (2007a, b, 2009a), Barletta (2008), and Nield and

Barletta (2010a). Costa argued that the first law of thermodynamics required that

the contributions of viscous dissipation and pressure work had to be in balance.

Nield and Barletta argued that Costa had misapplied the first law to an unsteady

problem which he treated as a steady-state one, and that there are physical situations

where the viscous dissipation is significant and the pressure work is not significant.

2.2.3 Absence of Local Thermal Equilibrium

Usually it is a good approximation to assume that the solid and fluid phases are in

thermal equilibrium but there are situations, such as highly transient problems and

some steady-state problems (Nield 1998a), where this is not so. Now this is

commonly referred to as local thermal nonequilibrium (LTNE), though Vadasz

(2005a, b) prefers the expression lack of thermal equilibrium.

If one wishes to allow for heat transfer between solid and fluid (that is, one no

longer has local thermal equilibrium), then one can, following Combarnous (1972)

and Bories (1987), replace Eqs. (2.1) and (2.2) by

1� φð Þ ρcð Þs
∂Ts

∂t
¼ 1� φð Þ∇ � ks∇Tsð Þ þ 1� φð Þq000

s þ h Tf � Tsð Þ; ð2:12Þ

φ ρcPð Þf
∂Tf

∂t
þ ρcPð Þv �∇Tf ¼ φ∇ kf∇Tfð Þ þ φq

000
f þ h Ts � Tfð Þ; ð2:13Þ

where h is a heat transfer coefficient. See also Eqs. (2.18) and (2.19) later in this

section. A critical aspect of using this approach lies in the determination of the

appropriate value of h. Experimental values of h are found in an indirect manner;

see, e.g., Polyaev et al. (1996). According to correlations for a porous bed of

particle established in Dixon and Cresswell (1979),
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h ¼ afsh
*; ð2:14Þ

where the specific surface area (surface per unit volume) afs is given by

afs ¼ 6 1� φð Þ=dp; ð2:15Þ

and

1

h*
¼ dp

Nufskf
þ dp
βks

ð2:16Þ

where dp is the particle diameter and β¼ 10 if the porous bed particles are of

spherical form. The fluid-to-solid Nusselt number Nufs is, for Reynolds numbers

(based on dp) Rep> 100, well correlated by the expression presented in Handley

and Heggs (1968):

Nufs ¼ 0:255=φð ÞPr1=3Re2=3p ; ð2:17Þ

while for low values of Rep the estimates of Nufs vary between 0.1 and 12.4, these

being based on Miyauchi et al. (1976) and Wakao et al. (1976, 1979). As an

alternative to Eq. (2.17), Wakao and Kaguei (1982) proposed the correlation

Nufs ¼ 2:0þ 1:1Pr1=3Re0:6p ð2:17aÞ

Other authors have used alternative expressions for h* and afs and some of these

were considered by Alazmi and Vafai (2000), who found that the various models

give closely similar results for forced convection channel flow when the porosity is

high or the pore Reynolds number is large or the particle diameters are small.

Theoretical and experimental results reported by Grangeot et al. (1994) indicate

that h* depends weakly on the Péclet number of the flow. This subject is discussed

further in Sects. 6.5 and 6.9.2. The topic in the context of turbulence has been

discussed by Saito and de Lemos (2005b). An experimental study for a metallic

packed bed was reported by Carrillo (2005). The effect of different packings was

investigated experimentally by Yang et al. (2012b). They found that the formula in

Eq. (2.17a) overpredicted their results unless the coefficients 2.0 and 1.1 were

replaced by smaller values. Teruel (2016) pointed out that the interphase heat

transfer coefficient could depend on an entrance effect in a forced convective flow.

A discussion of further aspects of the two-medium approach to heat transfer in

porous media is given by Quintard et al. (1997) and Quintard and Whitaker (2000).

Nield (2002a) noted that Eqs. (2.12) and (2.13) are based on the implicit assumption

that the thermal resistances of the fluid and solid phases are in series. For the case of

a layered medium in a parallel plate channel with fluid/solid interfaces parallel to

the x-direction, he suggested that the appropriate equations in the absence of

internal heating are
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1� φð Þ ρcð Þs
∂Ts

∂t
¼ 1� φð Þ ∂

∂x
k0s
∂Ts

∂x

� �
þ ∂
∂y

ks
∂Ts

∂y

� �� �
þ h Tf � Tsð Þ;

ð2:18Þ

φ ρcPð Þf
∂Tf

∂t
þ ρcPð Þv �∇Tf ¼ φ

∂
∂x

k0f
∂Tf

∂x

� �
þ ∂
∂y

kf
∂Tf

∂y

� �� �
þ h Ts � Tfð Þ;

ð2:19Þ

where k0f ¼ k0s ¼ kH with kH given by Eq. (2.8). Equations (2.12) and (2.13) have to

be solved subject to certain applied thermal boundary conditions. If a boundary is at

uniform temperature, then one has Tf¼ Ts on the boundary. If uniform heat flux is

imposed on the boundary, then there is some ambiguity about the distribution of

flux between the two phases. Nield and Kuznetsov (1999) argued that if the flux is

truly uniform, then it has to be uniform with respect to the two phases, and hence the

flux on the r.e.v. scale has to be distributed between the fluid and solid phases in the

ratio of the surface fractions; for a homogeneous medium that means in the ratio of

the volume fractions, that is in the ratio ϕ: (1� ϕ). This distribution allows the

conjugate problem considered by them to be treated in a consistent manner. The

consequences of other choices for the distribution were explored by Kim and Kim

(2001) and Alazmi and Vafai (2002). The Nield and Kuznetsov (1999) approach is

equivalent to Model 1D in Alazmi and Vafai (2002) and is not equivalent to either

approach used in Kim and Kim (2001). When one examines LTNE at the boundary

of a porous medium, or at an interface with a fluid clear of solid material, the

solution of the differential equation system that arises is undetermined until further

information is available to determine how the total heat flux is split between the two

phases. Two second-order differential equations are involved and so at an interface

one needs four boundary conditions, two involving the temperature and two

involving the heat flux. The conservation of energy imposes just one heat flux

condition, and hence another condition must be sought. For this Yang and Vafai

(2010, 2011a, b, c) and Vafai and Yang (2013) introduced five models for what they

called “heat flux bifurcation,” but they did not clearly distinguish between them.

Nield (2012) argued that this approach was not satisfactory. Rather, one should

distinguish between the heat transfer in the bulk of the porous medium (which

depends on the interphase heat transfer coefficient) and the heat transfer across the

interface (which is affected by what happens on the other side of the interface, i.e.,

outside the porous medium). For example, if the porous medium is bounded by a

solid with high thermal conductivity (effectively a constant-temperature boundary),

then one has LTE at the boundary and one can use the formulation employed by

Nield and Kuznetsov (2011h). Much the same is true if the neighboring region is a

fluid of high conductivity. If the region is a solid of very low conductivity

(an insulating boundary), then there is essentially no boundary flux to be divided

between the two phases. More generally, if the solid boundary is controlled by an

imposed constant flux, then the natural assumption is that just across the interface in

the porous medium the flux is also constant. Thus the splitting occurs so that the flux
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in the fluid phase is the same as in the solid phase. This means that the interfacial

heat transport is divided between the fluid and solid phases in the ratio of ϕ to

(1�ϕ). This was the model employed by Nield and Kuznetsov (1999). Two

approaches to the case of an adiabatic boundary condition were discussed by

Yang et al. (2016).

A pore-scale numerical experiment on the effect of the pertinent parameters on

heat flux splitting at the boundary of a porous medium was carried out by Imani

et al. (2013). A more general study was made by Miansari et al. (2015), who

compared continuum and porous continuum models in a study of natural convec-

tion in a cavity with a random distribution of solid obstacles. They found that

micro- and macroscale results can merge if a proper choice of LTNE and thermal

dispersion models is made, the choice depending of the range of Rayleigh numbers

being investigated. The concept of tangential interfacial thermal resistance was

developed by Ouyang et al. (2013a). Their model involves a conjugate problem.

They validated their model by comparison with pore-scale numerical simulations.

The model involves a conjugate problem with LTNE in each of a porous medium

zone and an impermeable wall zone. For the case of a nanofluid, Nazari et al.

(2014b) compared three possible models.

The particular case of local thermal nonequilibrium in a steady process is

discussed by Nield (1998a). Petit et al. (1999a, b) proposed a local nonequilibrium

model for two-phase flow. A numerical study of the interfacial convective heat

transfer coefficient was reported by Kuwahara et al. (2001). Possible confusion

associated with their proposed correlation was cleared up by Nakayama (2014).

Their results were modified by Pallares and Grau (2010) to produce agreement

between the theoretical results for the Nusselt number and experimental data. An

application of the method of volume averaging to the analysis of heat and mass

transfer in tubes was made by Golfier et al. (2002). An alternative two-equation

model for conduction only was presented by Fourie and Du Plessis (2003a, b).

Vadasz (2005a) demonstrated that, for heat conduction problems, local thermal

equilibrium applies for any conditions that are a combination of constant temper-

ature and insulation. He also questioned whether a linear relationship between the

average temperature difference between the phases and the heat transferred over the

fluid-solid surface was appropriate in connection with conditions of local thermal

nonequilibrium. The exclusion of oscillations in the context of conduction with

LTNE and an associated paradox were discussed by Vadasz (2005b, 2006b, 2007).

(The apparent paradox arises in trying to reconcile the results from two alternative

mathematical approaches to modeling the problem.) This work is surveyed by

Vadasz (2008b), who also shows the relevance of LTNE to the study of nanofluids

and bi-composite media, as well as to the experimental measurement of the

effective thermal conductivity of a porous medium via the transient hot wire

method.

Rees and Pop (2005) surveyed studies of local thermal nonequilibrium with

special attention to natural and forced convection boundary layers and on internal

natural convection. Their survey complements that by Kuznetsov (1998e) for

internal forced convection. The effect of LTNE on conduction in channels with a
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uniform heat source was investigated by Nouri-Borujerdi et al. (2007b). Several

causes of LTNE were discussed by Virto et al. (2009). Some microscopic modeling

of conduction with LTNE was carried out by Rees (2010).

The topic of LTNE was reviewed by Haji-Sheikh and Minkowycz (2008). They

cite references to a number of engineering applications, such as nuclear devices,

fuel cells, electronic systems, and micro devices, in the context of rapid transport of

heat. They include a discussion of the development of the thermal field with a

moving fluid. They summarize experimental results obtained by Nnanna et al.

(2004, 2005) which conform to the observation by Vadasz (2005b, 2006b, 2007)

that the physical conditions for thermal waves to materialize are not obtainable in a

porous slab subject to a combination of constant heat flux and temperature bound-

ary conditions. Virto et al. (2009) discussed several causes of LTNE even in steady

and quasi-steady processes. A general numerical investigation of LTNE in

low-velocity reacting flow was made by Chen et al. (2014b). Analytical consider-

ation for LTNE in metal foams was discussed by Xu et al. (2015a, b). Deléglise

et al. (2007) discussed the use of nonequilibrium theory to predict transient tem-

perature during nonisothermal resin flow in a fibrous porous medium.

Structural stability in the case of LTNE was examined by Passarella et al. (2015).

Xu et al. (2015a, b) investigated a nonequilibrium thermal response of porous

media in unsteady heat conduction with sinusoidally changing boundary

temperature.

Miansari et al. (2015) carried out a pore-scale simulation against which an

independent REV-averaged solver was fine tuned. They found that micro- and

macroscale result can merge if a proper choice of LTNE and thermal dispersion

models are selected, depending on the range of Rayleigh number values being

investigated.

2.2.4 Thermal Dispersion

A further complication arises in forced convection or in vigorous natural convec-

tion in a porous medium. There may be significant thermal dispersion, i.e., heat

transfer due to hydrodynamic mixing of the interstitial fluid at the pore scale. In

addition to the molecular diffusion of heat, there is mixing due to the nature of the

porous medium. Some mixing is due to the obstructions; the fact that the flow

channels are tortuous means that fluid elements starting a given distance from each

other and proceeding at the same velocity will not remain at the same distance

apart. Further mixing can arise from the fact that all pores in a porous medium may

not be accessible to a fluid element after it has entered a particular flow path.

Mixing can also be caused by recirculation caused by local regions of reduced

pressure arising from flow restrictions. Within a flow channel mixing occurs

because fluid particles at different distances from a wall move relative to one

another. Mixing also results from the eddies that form if the flow becomes
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turbulent. Diffusion in and out of dead-end pores modifies the nature of molecular

diffusion. For details, see Greenkorn (1983, p. 190).

Dispersion is thus a complex phenomenon. Rubin (1974) took dispersion into

account by generalizing Eq. (2.3) so that the term∇�(αm∇T), where αm¼ km/(ρc)m
is the thermal diffusivity of the medium, is replaced by ∇�E�∇T where E is a

second-order tensor (the dispersion tensor). In an isotropic medium the dispersion

tensor is axisymmetric and its components can be expressed in the form

Eij ¼ F1δij þ F2ViVj; ð2:20Þ

where Vi(¼vi/φ) is the ith component of the barycentric (intrinsic) velocity vector,

and F1 and F2 are functions of the pore size and the Péclet and Reynolds numbers of

the flow.

At any point in the flow field it is possible to express E with reference to a

coordinate system in which the first axis coincides with the flow direction; when

this is done we have

E11 ¼ η1U þ αm;

E22 ¼ E33 ¼ η2U þ αm; ð2:21Þ
Ei j ¼ 0 for i 6¼ j;

where E11 is the longitudinal dispersion coefficient, E22 and E33 are the lateral

dispersion coefficients, and U is the absolute magnitude of the velocity vector.

If the Péclet number of the flow is small, then η1 and η2 are small and the

molecular thermal diffusivity αm is dominant. If the Péclet number of the flow is

large, then η1 and η2 are large and almost constant. It is found experimentally that

η2¼ η1/30, approximately.

For an account of the treatment of dispersion in anisotropic media in the context

of convection, the reader is referred to Tyvand (1977). In the particular case when

heat conduction is in parallel, Catton et al. (1988) conclude on the basis of their

statistical analysis that the effective thermal conductivity k�zz, for mass and thermal

transport in the z-direction through a bed of uniform spherical beads, is given by

k*z z ¼ 1� φð Þks þ φ
2B

π

� �
Pekf ð2:22Þ

In this expression B is a constant introduced by Ergun (empirically, B¼ 1.75) and

Pe is the Péclet number defined by Pe¼ vdp/αf 1� φð Þ, where dp is the spherical

particle diameter and αf is the thermal diffusivity of the fluid, defined by αf¼ kf/
(ρcP)f.

Thermal dispersion plays a particularly important role in forced convection in

packed columns. The steep radial temperature gradients that exist near the heated or

cooled wall were formerly attributed to channeling effects, but later work has

indicated that thermal dispersion is also involved. For a nearly parallel flow at
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high Reynolds numbers, the thermal dispersivity tensor reduces to a scalar, the

transverse thermal dispersivity. Cheng and his colleagues [see Hsu and Cheng

(1990) and the references given in Section 4.9] assumed that the local transverse

thermal dispersion conductivity k
0
T is given by

k0T
kf

¼ DTPed‘
u

um
: ð2:23Þ

In this equation Ped is a Péclet number defined by Ped¼ um dp/αf, in terms of the

mean seepage velocity um, the particle diameter dp, and fluid thermal diffusivity αf,
while DT is a constant and ‘ is a dimensionless dispersive length normalized with

respect to dp. In later work the dispersive length was modeled by a wall function of

the Van Driest type:

‘ ¼ 1� exp �y=ωdp
� �

: ð2:24Þ

The empirical constants ω and DT depend on the coefficients N and C in the wall

porosity variation formula [Eq. (1.28)]. The best match with experiments is given

by DT¼ 0.12 and ω¼ 1, if N¼ 5 and C¼ 1.4. The theoretical results based on this

ad hoc approach agree with a number of experimental results.

A theoretical backing for this approach has been given by Hsu and Cheng

(1990). This is based on volume averaging of the velocity and temperature devia-

tions in the pores in a dilute array of spheres, together with a scale analysis. The

thermal diffusivity tensor D is introduced as a multiplying constant which accounts

for the interaction of spheres. For the case of high pore Reynolds number flow, Hsu

and Cheng (1990) found the thermal dispersion conductivity tensor k0 to be given

by

k0 ¼ Dkf
1� φ

φ
Ped ð2:25Þ

The linear variation with Ped is consistent with most of the existing experimental

correlations for high pore Reynolds number flow. At low pore Reynolds number

flow they found

k0 ¼ D*kf
1� φ

φ2
Pe2d ð2:26Þ

where D* is another constant tensor. The quadratic dependence on Ped has not yet

been confirmed by experiment.

Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) have studied

numerically thermal diffusion for a two-dimensional periodic model. A limitation

of their correlation formulas as the porosity tends to unity was discussed by Yu

(2004) and Nakayama and Kuwahara (2004). A similar model was examined by

Souto and Moyne (1997a, b). The frequency response model was employed by
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Muralidhar and Misra (1997) in an experimental study of dispersion coefficients.

The role of thermal dispersion in the thermally developing region of a channel with

a sintered porous metal was studied by Hsieh and Lu (2000). Kuwahara and

Nakayama (2005) have extended their earlier numerical studies to the case of

three-dimensional flow in highly anisotropic porous media. Niu et al. (2006)

reported direct measurements of eddy transport and thermal dispersion in a high-

porosity matrix. An equation for thermal dispersion-flux transport was introduced

by Nakayama et al. (2006).

For further information about dispersion in porous media, the reader is referred

to the review by Liu and Masliyah (2005), which deals with the dispersion of mass,

heat, and momentum. Rudraiah and Ng (2007) have reviewed dispersion in porous

media with and without reaction. Experimental studies of thermal dispersion have

been reviewed by Ozgumus et al. (2013). Valdés-Parada et al. (2016) presented a

new formulation of the dispersion tensor in homogeneous porous media.

2.2.5 Cellular Porous Media

Cellular porous media have the property that to a good approximation the effect of

radiation can be modeled using a temperature-dependent thermal conductivity

(Viskanta 2009). For a few situations an analytical solution can be obtained. This

was done by Nield and Kuznetsov (2010a, c) and Nield and Kuznetsov (2010b) for

paradigmatic forced convection, external natural convection, and internal natural

convection problems.

Zhao et al. (2005a, b) and Zhao (2012) investigated natural convection in metal

foams with open cells.

2.2.6 Heat Wave Theory

In most circumstances the Fourier law for conduction is a satisfactory basis for a

constitutive equation. This leads to a parabolic differential equation, and then thermal

waves are ruled out. However, these waves are important for some medical and other

biological problems involving lasers, for planetary and stellar evolution, and for heat

transfer in nanofluids. Then the Fourier law is appropriately replaced by the law

introduced by Cattaneo (1948). The application of the Cattaneo law to convection in

porous media has been extensively studied by Straughan and this work has been

surveyed in Sections 5.3–5.5 of Straughan (2016). The papers cited there are by

Straughan (2010a, b, c, 2015a), Haddad (2013, 2014b), Haddad and Straughan

(2012), Nagouda and Pranesh (2012), and Nagouda and Maruthamanikandan (2013).
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2.3 Oberbeck–Boussinesq Approximation

In studies of natural convection we add the gravitational term ρf g to the right-hand
side of the Darcy equation (1.4) or its appropriate extension. [Note that in Eq. (1.4)

the term∇P denotes an intrinsic quantity, so we add the gravitational force per unit
volume of the fluid.] For thermal convection to occur, the density of the fluid must

be a function of the temperature, and hence we need an equation of state to

complement the equations of mass, momentum, and energy. The simplest equation

of state is

ρf ¼ ρ0 1� β T � T0ð Þ½ �; ð2:27Þ

where ρ0 is the fluid density at some reference temperature T0 and β is the

coefficient of thermal expansion.

In order to simplify the subsequent analysis, one employs the Boussinesq

approximation whenever it is valid. Strictly speaking, one should call this the

Oberbeck–Boussinesq approximation, since Oberbeck (1879) has priority over

Boussinesq (1903), as documented by Joseph (1976). The approximation consists

of setting constant all the properties of the medium, except that the vital buoyancy

term involving β is retained in the momentum equation. As a consequence the

equation of continuity reduces to ∇�v¼ 0, just as for an incompressible fluid. The

Boussinesq approximation is valid provided that density changes Δρ remain small

in comparison with ρ0 throughout the flow region and provided that temperature

variations are insufficient to cause the various properties of the medium (fluid and

solid) to vary significantly from their mean values. Johannsen (2003) discussed the

validity of the Boussinesq approximation in the case of a benchmark problem

known as the Elder problem.

Barletta (2009) introduced a thermodynamic argument to obtain the most appro-

priate form of the approximation. He concluded that no explicit pressure term must

be present in the energy balance.

In an application to heat and brine transport in porous media, Landman and

Schotting (2007) revisited the Oberbeck–Boussinesq approximation in the limiting

case of zero density differences. They found conditions that must be satisfied if

volume changes can still be neglected.

2.4 Thermal Boundary Conditions

Once the thermal conductivity in the porous medium has been determined, the

application of thermal boundary conditions is usually straightforward. At the

interface between two porous media, or between a porous medium and a clear

fluid, we can impose continuity of the temperature (on the assumption that we have

local thermodynamic equilibrium) and continuity of the normal component of the
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heat flux. We note that two conditions are required because the equation of energy

(2.3) contains second-order derivatives.

The heat flux vector is the sum of two terms: a convective term (ρcP)fT v and a

conductive term �k∇T. The normal component of the former is continuous

because both T and the normal component of ρf v are continuous. It follows that

the normal component of k∇T also must be continuous. At an impermeable

boundary the usual thermal condition appropriate to the external environment can

be applied, e.g., one can prescribe either the temperature or the heat flux, or one can

prescribe a heat transfer coefficient.

Sahraoui and Kaviany (1993, 1994) have discussed the errors arising from the

use of approximations of the effective conductivity near a boundary, due to

nonuniformity of the distributions of the solid and fluid phases there. They have

introduced a slip coefficient into the thermal boundary condition to adjust for this,

for the case of two-dimensional media.

Ochoa-Tapia and Whitaker (1997, 1998) have developed flux jump conditions

applicable at the boundary of a porous medium and a clear fluid. These are based on

a nonlocal form of the volume-averaged thermal energy equations for fluid and

solid. The conditions involve excess surface thermal energy and an excess

nonequilibrium thermal source. Min and Kim (2005) have used the special

two-dimensional model of Richardson (1971) in order to obtain estimates of the

coefficients that occur in the thermal and hydrodynamic jump conditions. The jump

conditions were further analyzed by d’Hueppe et al. (2011). Valdés-Parada et al.

(2009a, b) included the effects of adsorption and a chemical reaction. Betchen et al.

(2006) considered a nonequilibrium model. d’Hueppe et al. (2012a, b) discussed the
coupling of a two-temperature model with a one-temperature model at a fluid-

porous interface.

An analogous mass transfer jump condition was formulated by Valencia-Lopez

et al. (2003). The thermal interaction at the interface between a porous medium and

an impermeable wall was studied by Kim and Kim (2001). The role of particle-

particle contact on effective thermal properties in the interfacial region was exam-

ined by Aguilar-Madera et al. (2011b).

2.5 Hele-Shaw Analogy

The space between two plane walls a small distance apart constitutes a Hele-Shaw

cell. If the gap is of thickness h and the walls each of thickness d, then the governing
equations for gap-averaged velocity components (parallel to the plane walls) are

identical with those for two-dimensional flow in a porous medium whose perme-

ability K is equal to h3/[12(h + 2d )], for the case where the heat flow is parallel to

the plane walls (Hartline and Lister 1977). The Hele-Shaw cell thus provides a

means of modeling thermal convection in a porous medium, as in the experiments

by Wooding (1963, 1964), Elder (1967a), and Taunton et al. (1972).
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For the analogy to hold, the three quantities h/δ, Uh2/νδ, and Uh2/αfδ must all be

small compared with unity. Here U is the velocity scale and δ the smallest length

scale of the motion being modeled, while ν and αf are the kinematic viscosity and

thermal diffusivity of the fluid. These conditions ensure that there is negligible

advection of vorticity and rapid diffusion of vorticity and heat across the flow.

The experimental temperature profiles found by Vorontsov et al. (1991) were in

good agreement with the theory. Sch€opf (1992) extended the comparison to the case

of a binary mixture. Specific studies of convection in a Hele-Shaw cell were

reported by Green and Foster (secondary convection), Hartline and Lister (1977,

1981), Griffiths (1981), Ozawa et al. (1992), Nakoryakov et al. (1993), Cooper et al.

(1997, 2001) and Pringle et al. (2002) (double diffusion), Goldstein et al. (1998),

Vadasz (1998a, b, c) (rotation), Gorin et al. (1993,1998), Nguyen-Quang et al.

(2009) (gyrotactic bioconvection), and Vosper et al. (2014) (CO2 dissolution).

The Hele-Shaw cell experiments are especially useful for revealing streamline

patterns when the walls are made of transparent material. The analogy has obvious

limitations. For example, it cannot deal with the effects of lateral dispersion or

instabilities associated with three-dimensional disturbances. The discrepancies

associated with these effects have been examined by Kvernvold (1979) and

Kvernvold and Tyvand (1981) who compared analysis with experiment.

Hsu (2005) has compared the governing equations for the averaged flows and

heat transfer in Hele-Shaw cells with those of porous media and he observed the

following differences: (a) the averaged Hele-Shaw cell is two-dimensional, (b) the

interfacial force in the averaged Hele-Shaw flows is contributed entirely from the

shear force, and (c) there exists no thermal tortuosity for the averaged Hele-Shaw

flows. Thus the Hele-Shaw analogy is good for viscous dominated two-dimensional

flow with negligible thermal tortuosity. However, these simplifications help in the

verification of closure modeling. Furthermore, a three-dimensional numerical sim-

ulation of the convection heat transfer in Hele-Shaw cells may reveal some detailed

physics of heat transfer in porous media that are impossible to tackle due to the

randomness and the complexity of the microscopic solid geometry. Hsu (2005)

illustrates this with results for the case of oscillating flows past a heated circular

cylinder.

Cherkaoui and Wilcock (2001) performed laboratory studies of high Rayleigh

number circulation in an open-top cell with an analogy to mid-ocean ridge hydro-

thermal systems in mind. Babushkin and Demin (2006a) reported an experimental

and theoretical investigation of transient convective regimes. Babushkin et al.

(2012) considered the action of centrifugal forces. Backhaus et al. (2011) investi-

gated the convective instability and mass transport of diffusion layers. Kimura et al.

(2002) experimented with an anisotropic medium heated from the side.

Abdelkareem et al. (2009) performed an experimental study on oscillatory convec-

tion in a Hele-Shaw cell due to an unstably heated side. A study of convection from

a buried pipe with backfill was reported by Ngo and Lai (2007). Temperature

modulation was studied by Souhar et al. (2011). The effect of Coriolis force on

thermosolutal convection in an annular Hele-Shaw cell was investigated by Souhar

and Aniss (2012). Vibrational convection was examined by Babushkin and Demin
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(2006b). Experiments on the effect of a magnetic field were performed by Aniss

et al. (1993), Souhar et al. (1999), Wen et al. (2002), Wen and Su (2005), and Wen

et al. (2010). Erglis et al. (2013) and Kitenbergs et al. (2015) studied magnetic field

driven micro-convection (with in turn a Darcy model and a Brinkman model) and

made a comparison with experiment.

Because of the difficulty in performing experiments in porous media, the above

experimental studies are particularly welcome. We now briefly mention the ana-

lytical studies of Hwang and Chang (1989), Safonov (1991), Braverman (1991),

Graham et al. (1992), Ryland and Nandakumar (1994), Keller and Tarunin (1995),

Aniss et al. (1995, 2005), Hu and Steen (1996), Yang and Krishnamurthi (1999),

Bhadauria et al. (2005), Kim (2014c, 2016b), Yadav and Kim (2015b), Yadav and

Lee (2016), and Yadav et al. (2016). A numerical study of oscillatory convection

was made by Frick and Müller (1983).

2.6 Bioheat Transfer

Convective heat transfer in biological tissues involves a special situation. In some

cases applications of porous media theory are appropriate. Before discussing some

such applications in detail, we remark that porous medium models have recently

been applied to a wide range of biological systems. Narasimhan (2013) discusses

several interesting topics, such as drug delivery, transport of low-density lipopro-

tein across arterial tissues, biomass transport in tissue regeneration, and lung

diffusion. He notes that porous medium theory is applicable on a wide range of

length scales, from organs to cells. Reviews of the literature have been made by

Nicholson (2001), Khaled and Vafai (2003), Khanafer and Vafai (2008, 2009),

Khanafer et al. (2008a, b), Narasimhan (2011), Malviya and Dwivedi (2013), and in

the various chapters in the books edited by Vafai (2011, 2015). Porous media

models for bioheat transfer were placed in a wider context in the review by

Bhownik et al. (2013).

As noted by Narasimhan (2013), living tissues are complex structures in which

the heat transfer is primarily constituted by conduction in tissue, convection

involving flow in vessels, and blood perfusion, and this combination cannot be

properly understood using simplistic models. However, the ensemble can be con-

ceived as a fluid-saturated porous medium in which the effects of perfusion are

incorporated as internal heat generation. It appears that the first published paper

dealing with a porous-medium-type model for bioheat transfer was that by Xuan

and Roetzel (1997), who considered the whole human thermal system. Roetzel and

Xuan (1998) followed this up with a study of the human limb.

A feature of bioheat transfer is that in many situations there is counterflow. For

example, blood flows in adjacent arteries and veins in opposite directions. Nield and

Kuznetsov (2008a, 2009a, 2010b) and Kuznetsov and Nield (2009a, b) modeled

forced convection in a porous medium with counterflow. They employed the

Brinkman model and they allowed for asymmetrical constant heat flux boundary

conditions.
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Bellimoudi (2010), Belmiloudi (2016) examined the effects of blood perfusion

rate on the transient temperature of biological tissues in applications such as

thermotherapy. He established the existence, uniqueness, and regularity of the

solution of the state equation in his generalized bioheat transfer model.

In highly transient conduction in heterogeneous media such as human tissues

(an example is laser irradiation of the retina when a high heat flux is applied for a

short period of time), the Fourier heat model may give insufficiently accurate

results. In these circumstances a dual-phase lag constitutive relation between heat

flux and temperature gradient (such as that proposed by Cattaneo) is needed. This

situation was analyzed by Narasimhan and Sadavisam (2013). They performed

numerical simulations to compare temperature distribution with those obtained by

Narasimhan et al. (2010) using a Fourier model. Dual-phase-lag transfer was also

studied by Yuan et al. (2014) (LTNE) and Askarizadeh and Ahmadikia (2015)

(LTNE).

Zhang (2009) studied generalized dual-phase bioheat transfer using a local

thermal nonequilibrium (LTNE) model. In the model phase lag times were

expressed in terms of properties of the blood and tissue, the interphase heat transfer

coefficient, and the blood perfusion rate.

A LTNE-based bioheat transfer model was derived from first principles (using

volume averaging) by Nakayama and Kuwahara (2008a, b), Nakayama et al. (2009,

2010), and Nakayama et al. (2011). They applied the bioheat equation to

cryoablation therapy for the treatment of malignant cancers. Kuwahara et al.

(2009) applied a porous media approach to bifurcating flow and mass transfer in

a human lung. Vyas et al. (2016) applied to photo thermal therapy a porous media-

based bioheat analysis.

Other aspects relevant to biological tissues were discussed using porous medium

models by Khanafer et al. (2003), Khaled and Vafai (2003), Yao and Gu (2007)

(mixture theory), Wood et al. (2007) (reaction at an interface), Mahjoob and

Vafai (2009, 2010, 2011) (layered material), Shafahi and Vafai (2011)

(human eye), Fan and Wang (2011a, b) (microscale), Wang and Fan (2011)

(macroscale), Rattanadecho and Keangin (2013) (liver tissue), Narasimhan (2014)

(human brain), Shao et al. (2014) (reactive hyperemia, 3D image-based hand

model), Majchrzak and Turchan (2013, 2014) (LTNE), Hassanpour and

Saboonchi (2014) (countercurrent vascular tissue), Wang et al. (2015e)

(radiofrequency ablation), and Wessapan and Rattnanadecho (2016) (exposure to

electromagnetic field).

2.7 Other Approaches, Numerical Methods

Direct numerical simulation of heat and fluid flow, using the full Navier-Stokes

equations at the pore scale, for regularly spaced square or circular rods or spheres

has been conducted by Kuwahara et al. (1994). A direct numerical simulation was

applied by He and Georgiadis (1992) to the study of the effect of randomness on
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one-dimensional heat conduction. Direct numerical simulation has also been

employed by Rahimian and Poushaghagy (2002), Yu et al. (2006b), Pourshaghaghy

et al. (2007), Narasimhan and Raju (2007), Gamrat et al. (2008), and Ma and

Zabaras (2008). Lattice gas cellular automata simulations were performed by

McCarthy (1994) for flow through arrays of cylinders, and by Yoshino and Inamura

(2003) for flow in a three-dimensional structure. Buikis and Ulanova (1996) have

modeled nonisothermal gas flow through a heterogeneous medium using a

two-media approach. A diffuse approximation has been applied by Prax et al.

(1996) to natural convection. Martins-Costa et al. (1992, 1994), Martins-Costa

and Saldanha da Gama (1994), and Martins-Costa (1996) have applied the contin-

uous theory of mixtures to the modeling and simulation of heat transfer in various

contexts. Modeling of convection in reservoirs having fractal geometry has been

conducted by Fomin et al. (2002). Spaid and Phelan (1997) applied lattice

Boltzmann methods to model microscale flow in fibrous porous media. A multiple-

relaxation-time lattice Boltzmann model appropriate for dealing with composite

anisotropic media was presented by Hu et al. (2017). A lattice Boltzmann model

capable of handling solid-liquid phase change was proposed by Wu et al. (2017).

A general discussion of the dynamic modeling of convective heat transfer in

porous media was provided by Hsu (2005). Further simulation studies with a lattice

Boltzmann model were reported by Guo and Zhao (2005a, b) (with the viscosity

independent or dependent on the temperature), Zhao et al. (2010b) (a problem

involving double diffusion), Seta et al. (2006), Rong et al. (2010a), Shokouhmand

et al. (2009), Xu et al. (2005, 2008), Wang et al. (2007a), Yan et al. (2006), Zhao

et al. (2010a, b), Roussellet et al. (2011), and Vishnampet Ramanathan et al. (2011).

Visser et al. (2008a, b) introduced an artificial compressibility method for

buoyancy-driven flow.

Petrasch et al. (2008) described a tomography-based determination of the inter-

facial heat transfer coefficient in reticulate porous dynamics.

Radiative heat transfer in porous media is beyond the scope of this book, but we

mention that a review of this subject was made by Howell (2000).
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