
Chapter 2
Background

In this chapter we present the basics that will be used in the rest of the thesis, as well
as the results that represent the state of the art. Expert readers may skip this chapter.

2.1 Entanglement

If one had to describe quantum physics in just one word, this would probably be
entanglement. Quantum physics predicts that, for a multipartite system, there exist
states which cannot be written as a product of the states of its subsystems; such states
are called entangled. This fact is just a direct consequence of the tensor product
structure of the Hilbert space that describes a composite quantum system and the
linearity of quantummechanics, also known as the superposition principle; however,
it entails deep consequences.

Historically, Einstein, Podolsky and Rosen argued in 1935 that quantum mechan-
ics was an incomplete description of Nature,1 and entanglement was at the heart of
their argument [EPR35]. However, Schrödinger, who first coined the term entan-
glement, noted that it was the most characteristic feature of quantum mechanics
[Sch35]:

Entanglement is not one but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.

In 1964 the physicist John Bell came up with a way to test the EPR paradox,
and he proved that the statistics obtained through some quantum experiments cannot
be reproduced by any local hidden variable theory [Bel64]. This means that Nature
can produce correlations between spacelike separated events that can be explained

1The authors argued that any complete theory should have an element that describes every ‘element
of reality’ (i.e., a physical quantity whose values can be predicted with certainty without disturbing
the system).
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14 2 Background

neither by an influence continuously propagating (at arbitrary finite speed) from one
event to the other nor by a common local cause.

Surprisingly, very few works appeared from 1935 to the early 1990s, when Artur
Ekert proposed to use the correlations arising from entangled states for cryptography
[Eke91].

Nowadays, entanglement is considered a resource for many quantum information
tasks, comprising quantum cryptography [Eke91], quantum teleportation [Ben+93],
quantum dense coding [BW92], quantum repeaters based on entanglement purifica-
tion [Dür+99], lowering bounds on communication complexity [CB97, Gro97], and
it is a prerequisite for another important resource in quantum information theory:
nonlocal correlations [Bar+05].

2.1.1 Characterization of Entanglement

Quantum states are represented by positive semi-definite linear operators of unit
trace acting on a Hilbert space H. Recall that a Hilbert space is an inner product
space2 which is also complete (every Cauchy sequence in H converges in H with
the norm induced by the inner product inH). For the purposes of this Thesis,H will
be a finite-dimensional complex Hilbert space; i.e., H = Cd . The set of bounded
linear operators acting onH will be denoted B(H). By picking an orthonormal basis
of H, typically named computational, consisting of the vectors {|i〉, 0 ≤ i < d},
the elements of B(H) are represented by d × d matrices with complex entries, and
we denote such set by Md . The identity matrix from Md is denoted 1d . The set
of elements of B(H) that correspond to quantum states is denoted by D(H)and it
contains the elements of B(H) with unit trace and non-negative eigenvalues. The
elements of D(H) are called density matrices or density operators. Formally, one
has D(H) = {ρ ∈ B(H) | ρ � 0, Trρ = 1}.

Any density operator ρ∈ D(H) can be written as a convex combination of rank-
one projectors:

ρ =
∑

i

pi|ψi〉〈ψi|, (2.1)

where piis a probability distribution (i.e., for all i, pi ≥ 0 and
∑

i pi = 1) and |ψi〉 are
unit vectors fromH, called kets. The co-vectors 〈ψi|, called bras, are the Hermitian
transposition of the vectors |ψi〉 with respect to the computational basis; two vectors
|ψi〉 are considered equivalent if they differ only by a global phase. Note that the
decomposition (2.1) is not unique in general. The set {pi, |ψi〉}iis called ensemble
and different ensembles may lead to the same quantum state ρ. The probability
distribution pi indicates the ignorance or the lack of information that one has on
the state of the system. In the case that pi = 1 for some i, the information about

2Unless stated otherwise, throughout this Thesis we consider thatH is a vector space defined over
the field of complex numbers, denoted �.
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the quantum state is maximal and then ρ = |ψi〉〈ψi| is said to be in a pure state;
otherwise we say that the state is mixed. Thus, Eq. (2.1) indicates that any mixed
quantum state ρ can be obtained as a convex combination of pure states (rank-one
projectors). Thus, D(H) forms a convex set, and it is completely determined by its
extremal points (i.e., those that cannot be written as a convex combination of other
elements in D(H)). The extremal points of D(H) are denoted Ext(D(H)).

The Hilbert spaceH corresponding to a composite quantum system consisting of
parts A1, . . . ,An is endowed with a tensor product structure H = H1 ⊗ · · · ⊗ Hn,
whereHi is theHilbert space corresponding to the i-th subsystem.This tensor product
structure and the linearity ofH are the two key ingredients that lead to the notion of
entanglement.

Entanglement Definition

Many concepts in quantum information are defined through a negative qualifier;
i.e., one defines what a certain concept is not. This is as well the case of entangle-
ment, which is defined as not being separable. The reason for that is the operational
interpretation that a separable state has: any separable state can be created by Local
Operations and Classical Communication (LOCC) from scratch starting from a pure
product state |ψ〉 = |ψ1〉 · · · |ψn〉 [Wer89]; in other words, a separable state can be
produced by parties in separated laboratories that are allowed to exchange classical
information via e.g. a telephone line.

Let us illustrate the simplest case; that of a bipartite Hilbert space between parties
A and B: H = HA ⊗ HB.

Definition 2.1 A state ρ ∈ D(HA ⊗ HB) is called separable if it admits the follow-
ing convex decomposition [Wer89]:

ρ =
∑

i

piρ
(i)
A ⊗ ρ(i)

B ,
∑

i

pi = 1, pi ≥ 0, (2.2)

where ρ(i)
A ∈ D(HA) and ρ(i)

B ∈ D(HB).

In the multipartite case, one has a Hilbert spaceH = H1 ⊗ · · · ⊗ Hn, where there
are different notions of separability. The reason for that is that there are many ways
to partition a set of n parties, whereas in Definition 2.1 there is only one. Let us
denote by A = {A1, . . . ,An} the set of n parties and let us consider ρA ∈ D(HA),
where HA = ⊗n

i=1 HAi and HAi is the Hilbert space corresponding to party Ai. We
say that a set of subsets S = {S1, . . . , SK }, where Si ⊆ A, is a K-partition of A if⋃K

i=1 Si = A and for all i 
= j, Si ∩ Sj = ∅. Thus, a K-partition ofA is a way to split
the set of n parties into K non-empty, pairwise disjoint, subsets. Let SKbe the set of
all K-partitions.

Definition 2.2 A state ρA ∈ D(HA) isK-separable if it admits the following convex
decomposition

ρA =
∑

S∈SK

pS
∑

i

qS,i

K⊗

k=1

|ψSk ,i〉〈ψSk ,i|, (2.3)
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where pS and qS,i are probability distributions and |ψSk ,i〉 ∈ HAi .

Remark 2.3 Observe that Definition 2.2 is the same as Definition 2.1 for K = 2
and n = 2. If K = 2 and n is arbitrary, the state is called bi-separable, as it can be
prepared by allowing the n parties to gather in bipartitions; in this case we abuse
notation and we simply denote S as S|Swith S = A\S. A state ρA is fully separable
if it is n-separable, and it is Genuinely Multipartite Entangled (GME) if it does not
admit any form of K-separability; in particular, if it is not bi-separable.

Remark 2.4 Definition 2.2 is clearly inspired in the operational way to construct a
quantum state: the higher the K , the less effort the parties need to make to produce
the state. However, there are other ways to generalize Definition 2.1, also with a clear
operational interpretation. This is the case of K-producibility [GTB05]. A state is
K-producible if it can be prepared by allowing parties to gather in groups consisting
of at most K parties. This leads to another characterization of the set of quantum
states. However, the two definitions coincide for the case of GME states that we will
mostly consider in Chaps. 3 and 5: GME states are those which are not biseparable
or, equivalently, those which are not (n − 1)-producible.

2.1.2 The Separability Problem

Despite having an operationally clear interpretation, deciding in practice if a state ρA
is K-separable or not is far from trivial, even in the bipartite case where A = {A,B}.
It was shown by Gurvits in 2003 that this problem is NP-hard3 [Gur03].

For a few particular cases this question does have a simple complete answer. In
general, however, one can obtain only partial results: sufficient, but not necessary,
conditions that certify that a state is entangled.

The Bipartite Case

Let us beginwith considering the simplest case of two parties. Any bipartite pure state
|ψAB〉 ∈ HAB admits the following decomposition, called Schmidt decomposition
[NC00]:

|ψ〉 =
r(|ψ〉)∑

i=1

αi|ei〉 ⊗ |fi〉, (2.4)

where {|ei〉}d1i=1 and {|fi〉}d2i=1 form orthonormal basis of their respective Hilbert spaces
and

∑
i |αi|2 = 1. The minimal number of terms r(|ψ〉)for which the decomposi-

tion in Eq. (2.4) is possible is called the Schmidt rank. A bipartite pure state |ψ〉 is

3A problem belongs to the class of complexity NP-hard if any algorithm that solves it can be
translated in polynomial time into one solving any problem in NP. Hence, an NP-hard problem is
as hard as any problem in NP, although it might be harder.

NP stands for Nondeterministic Polynomial time and it consists of all problems whose solution
can be verified in polynomial time by a deterministic Turing machine.

http://dx.doi.org/10.1007/978-3-319-49571-2_3
http://dx.doi.org/10.1007/978-3-319-49571-2_5
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entangled if, and only if, r(|ψ〉) > 1. This definition is generalized to mixed states,
leading to the so-called Schmidt number s of a mixed state, by means of the convex
roof extension [TH00]:

s = inf
{pi,|ψi〉}i

max
i

r(|ψi〉), (2.5)

i.e., the Schmidt number of ρ is the minimum over all ensembles that generate ρ
(cf. Eq. (2.1)) of the maximal Schmidt rank of the pure states in the ensemble. A
mixed state ρ is separable if, and only if, s = 1; in such case, the decomposition
in Eq. (2.2) is given by the ensemble minimizing Eq. (2.5). The Schmidt number
constitutes a measure of entanglement and it is non-increasing under LOCC [Nie99,
TH00]. Hence, it divides D(HAB) into d21d

2
2 nested regions4 according to s.

In what follows we present two operational criteria for deciding whether a state
ρ belongs to the set of separable states, denoted Dsep: the Positive under Partial
Transposition (PPT) criterion and certification through an Entanglement Witness
(EW).

Separability Based on Positive, but Not Completely Positive, Maps

Amap� : B(H1) −→ B(H2) is called positive if, for all ρ � 0,�[ρ] � 0.However,
if ρ is the state of a composite quantum system and we apply � to one subsystem
only, it may happen that the resulting state is not positive semi-definite; i.e., not
physical. Consequently, the positivity of amap is not sufficient to guarantee a physical
operation. This caveat is solved through the notion of a completely positive map.

A positive map � is Completely Positive (CP) if, for any n and for any ρ � 0,
(1n ⊗ �)[ρ] � 0; i.e., no matter what happens to the rest of the system, ρ is mapped
onto a positive-semidefinite operator. If in addition � is Trace Preserving (TP), then
� defines a physical operation: CPTPmapsmap quantum states onto quantum states.
CPTP maps are also known as quantum channels.

Any positive map, however, is completely positive on separable states, and this is
the idea behind the separability criteria based on positive, but not completely positive,
maps: If we apply (1n ⊗ �) to a state of the form (2.2), we also obtain a positive
state

(1n ⊗ �)[ρ] =
∑

i

piρ
(i)
A ⊗ �(ρ(i)

B ) � 0. (2.6)

Hence, (1n ⊗ �)[ρ] � 0 indicates that ρ is not of the form (2.2) hence it must be
entangled.

A necessary and sufficient condition for deciding if a bipartite ρ is separable is
that ρ satisfies condition (2.6) for all positive, but not completely positive, maps
[HHH96]. In practice, one cannot check this condition for all �, but there are maps
that very well approximate Dsep.

4The upper bound s ≤ d21d
2
2 , stems from Carathodory’s theorem [Car11]: Any state expressed as a

convex combination like in Eq. (2.2) can be re-expressed as another convex combination of no more
than dim D(HAB) terms, as D(HAB) can be embedded into the �-vector space of d1d2 × d1d2
Hermitian matrices, which has dimension d21d

2
2 .
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The PPT Criterion

By picking � = T , where T is the transposition map with respect to a basis, defined
as T(|i〉〈j|) = |j〉〈i| and extended by linearity, one obtains the Peres criterion, a very
strong necessary condition for separability [Per96]. In fact, it is also a sufficient
condition for any ρ ∈ D(C2 ⊗ C2) or ρ ∈ D(C2 ⊗ C3). This is because all positive
maps � : B(C2 ⊗ Cd) −→ B(C2 ⊗ Cd) are decomposable5 for d = 2 [Stø63] and
for d = 3 [Wor76] and if a decomposable map reveals entanglement, so does the
transposition map [HHH96].

ThePositive under Partial Transposition (PPT) criterion is known to be insufficient
for any other bipartite case, as there are entangled states in ρ ∈ D(C2 ⊗ C4) and in
ρ ∈ D(C3 ⊗ C3) for which ρTB � 0, where ρTB := (1 ⊗ T)[ρ] is the state ρ partially
transposed on Bob’s side [Hor97].

The PPT criterion and, in general, any criterion of separability based on positive,
but not completely positive, maps is straightforward to generalize to the multipartite
scenario, for the case of fully separable states.

If a state ρA is n-separable, then for any bipartition S|Sof A, the application of
� to every party in S does not change the positivity of the resulting state: (1S ⊗⊗

Ai∈S �Ai)[ρ] � 0. A violation of this condition signals that there is entanglement
across that bipartition.

Entanglement Witnesses

The concept of EntanglementWitness (EW)was introduced in [HHH96] as amethod
to exploit the geometric properties of Dsep. The set of separable states is closed and
convex. It will be convenient to consider in this section unnormalized states, so that
Dsepis a cone.

The Hahn–Banach theorem [Edw95] states that, given two convex closed sets A1

and A2, one of them being compact, there exists a continuous linear map f and a
constant α ∈ R such that f (a1) < α ≤ f (a2) for all ai ∈ Ai. In particular, it implies
that a closed convex set in a Banach space is characterized by half-spaces whose
normal vectors are non-positive semi-definite elements of the dual cone of Dsep,
denoted P . P is, by definition, the set {W ∈ MdA ⊗ MdB | Tr(Wρ) ≥ 0, ∀ ρ ∈ Dsep}.
Then, the set of elements W ∈ P such that W � 0 forms a non-convex set. Such an
operatorW is called Entanglement Witness [Ter00]. Note that we require thatW has
some negative eigenvalue, so that it can detect some entangled state. We denote by
Wthe set of EWs. A necessary and sufficient condition for ρ ∈ Dsep is that TrWρ ≥ 0
for all W ∈ W [HHH96].

Not all elements in W are necessary to characterize Dsep and the first attempt to
find a minimal set of EWs that determine Dsep was done in [Lew+00], where the
notion of optimal EW was defined. Let us briefly recall it. Given W ∈ W , consider
the sets

�W := {ρ ∈ D(H)| TrWρ < 0} (2.7)

5A decomposable map � can be written as � = �1 + �2 ◦ T , where �1 and �2 are CP maps.
This fact is intimately related to the decomposability of entanglement witnesses via the Choi-
Jamiołkowski-Sudarshan isomorphism [Jam72, Cho75].
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and
�W := {|e, f 〉 ∈ CdA ⊗ CdB |〈e, f |W |e, f 〉 = 0}, (2.8)

which are the set of states detected by W and the set of product states with zero
expectation value6 onW , respectively. Given two entanglement witnessesW1,W2 ∈
W , W1 is finer than W2 if �W2 ⊂ �W1 ; i.e., if W1 detects more entangled states
than W2. If there is no witness finer than W , then W is optimal. In terms of �W ,
optimal entanglement witnesses are those for which, for any ε > 0 and any operator
P � 0 with support orthogonal to�W , the operatorW − λP /∈ W; i.e., there exists a
product vector |e′, f ′〉 for which 〈e′, f ′|W − λP|e′, f ′〉 < 0, soW − λP is not an EW.
Consequently, if �W spans the whole Hilbert space, then W is optimal [Lew+00].
We denote by Opt(W) the set of optimal entanglement witnesses.

There is a class of entanglement witnesses which is much easier to characterize:
these are called decomposable witnesses. A decomposable EW W ∈ W has the
formW = P + QTB , where P,Q � 0 (it is equivalent to take partial transposition on
Alice instead of Bob). If this decomposition is not possible, the witness is called
indecomposable. Notice the similarities with the notion of decomposable maps, first
introduced in [Stø63, Wor76]. Decomposable EWs are those that are translated from
decomposable maps via the Choi-Jamiołkowski-Sudarshan isomorphism [Jam72,
Cho75].

Geometrically, one has the inclusions Ext(W) � Opt(W) � ∂W [SSŻ09], where
∂W is the boundary of W and Ext(W) is the set that generates extremal rays in P .
Each of these inclusions is strict.7 Note, however that, although extremal (or even
exposed8) EWs form proper subsets of Opt(W), they are sufficient to detect all
entangled states [SSŻ09, HK11, CS14]. Nevertheless, the definition of optimal EWs
is operational, in the sense that it can be recast into an efficient algorithm that brings
any W ∈ W into an optimal one [Lew+00]. Hence, optimal EWs constitute a useful
tool in entanglement theory.

Relating Positive Maps and EWs

The concepts defined for EWs can be recast in terms of positive maps via the
Choi-Jamiołkowski-Sudarshan isomorphism [Jam72, Cho75], which relates the set
L(M�,M�′) of linearmaps fromMd toMd′ and the setMd ⊗ Md′ . Such isomorphism

6Note that �W does not form a subspace; in fact, it can be a finite set.
7As an example of W ∈ ∂W \ Opt(W), consider the line segment W (p) = pW+ + (1 − p)W− ∈
M2 ⊗ M2 and consider the Bell basis |ψ±〉 = (|00〉 ± |11〉)/√2, |φ±〉 = (|01〉 ± |10〉)/√2. Pick
W± = |ψ±〉〈ψ±|TB ∈ Ext(W). For any p ∈ [0, 1/2) ∪ (1/2, 1], W ∈ W , whereas W (1/2) � 0.
Consequently, W (p) /∈ Opt(W) for any 0 < p < 1. Hence, by moving to one of the extremes of
the segment, W (p) can be optimized. W (p) ∈ ∂W because for every p ∈ [0, 1] and for any ε > 0,
W(p) − ε|φ+〉〈φ+|TB /∈ W .

As an example of W ∈ Opt(W)\Ext(W), a decomposable witness of the form W = QTA with
Q ∈ M2 ⊗ M2, Q � 0 and supp(Q) being a Completely Entangled Subspace (CES) is optimal
[Lew+00]; however it is not extremal if rank(Q) > 1. A CES is a subspace containing no product
vectors (see e.g. [ATL11]).
8Exposed EWs form a subset of Ext(W) [HK11]. All extremal decomposable EWs are exposed
[CS14].
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sendsP to the cone of positive maps andW to the set of positive, but not completely
positive, maps. Interestingly, a positive map gives a more powerful necessary con-
dition for separability than its corresponding EW.9 On the other hand, entanglement
witnesses correspond to quantum observables, whereas positive, but not completely
positive, maps are unphysical. The Structural Physical Approximation (SPA) (see
e.g. [HE02, Aug+14]) allows one to overcome this difficulty by mixing a given posi-
tive map�with the completely depolarizing channel, until the result is a completely
positive map: �(p) = p� + (1 − p)D, whereD(X) = Tr(X)1�/d is the completely
depolarizing channel and 0 ≤ p ≤ 1. Clearly, there exists a largest p for which �(p)
is a CP map, denoted p∗. �(p∗) is then called the SPA of �.

Via the Choi-Jamiołkowski-Sudarshan isomorphism one formulates the SPA in
terms of EWs: the SPA to an EW W ∈ W is

W (p∗) = p∗W + (1 − p∗)
1dAdB

dAdB
, (2.9)

where p−1∗ = 1 + dAdB|λmin| and λmin is the minimal eigenvalue of W , which is
negative.

2.2 Nonlocality

Nonlocality [Bra+14] is a central concept in quantum information theory. In 1964,
Bell proved that some predictions of quantum theory cannot be explained through
a Local Hidden Variable Model (LHVM) [Bel64], ruling out the possibility that
quantum physics was an incomplete theory because of the existence of inaccessible
(hidden) variables that would determine with certainty the outcome of measurements
performed on a quantum system.

Local models are those that arise naturally within our everyday experience with
the classical world. Physicists considered, after the formulation of the EPR paradox
[EPR35], whether they could provide an alternative explanation to quantum physics
which would be complete and more intuitive, until in 1964 Bell showed that the
two of them were in contradiction. Years after, Alain Aspect demonstrated, with an
experiment in 1982, that Nature does not admit a LHVM [AGR82].

It is worth mentioning that three −almost simultaneous− landmark experiments
had been performed shortly after writing this Thesis, in Delft [Hen+15], Vienna
[Giu+15] and Illinois [Sha+15], proving that QT is incompatible with any LHVM
theory beyond any reasonable doubt, by closing all the so-called loopholes that one
can close in an experiment.

9The typical example is the transposition map, which detects all 2 ⊗ 2 and 2 ⊗ 3 states, whereas
its corresponding entanglement witness detects just a subset of them [HHH96].
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2.2.1 The Device-Independent Formalism

Although a Bell experiment was initially designed to test a fundamental question
(whether Nature is nonlocal), we typically present it as a game: a Bell experiment
involves two or more parties, which may have interacted in the past, located in space-
like separated regions, each of them having access to their share of a physical system,
for example, a source of entangled photons. Independently of the state of the system,
each party chooses which measurement to perform on their subsystem and gets a
result. Thus, each party can be treated as a black boxwith an input which corresponds
to the choice of a measurement and an output that tells its result; nothing is assumed
about the internal working of the device nor the object they are measuring.

We label the inputs of the n parties by �x = (x0, . . . , xn−1) and the outputs by �a =
(a0, . . . , an−1). The labelling of �x encodes the different tunable parameters relevant
for the experiment (i.e., the measurement choice) and the labelling of �a encodes
the possible readouts of the experiment. The way that this labelling is assigned is
irrelevant to the Bell’s experiment and labels do not even have to correspond to
physical quantities.

In theDI framework, one assumes that the parties have Independent and Identically
Distributed (IID) preparations of the experiment, in the sense that after repeating it
many times, they can infer the underlying conditional probabilities of the outputs
given the inputs P(�a|�x) from the statistics collected from the experiment.10

It is also required that the choice of inputs is independent of the state of the
system, an assumption often referred to as the free will assumption.11 Sometimes
this assumption is partially fulfilled, but it can be remediated through a protocol
called randomness amplification (see Chap.6).

Depending on the physical principles that we take into consideration, some prob-
ability distributions P(�a|�x) may contradict them, so not every mathematically con-
sistent P may be compatible with a given physical principle.

2.2.2 A Geometric Approach to Correlations

In general, we will consider a scenario where n parties, each having access to m
measurements which have d outcomes, are performing a Bell experiment, and we
denote this Bell scenario by (n,m, d). We denote by M(i)

xi the xi-th measurement

10There exist other frameworks in which can study nonlocality, such as the ones considered in
Sect. 5.5.1. In this Thesis, we consider the typical framework in which parties perform a single
measurement on a single copy of their resource and repeat the experiment in the same conditions.
11For instance, if Alice has to choose betweenmeasuring the spin of a electron in the direction x and
measuring the spin in the direction z, her choice has to be independent on the state of the electron;
in other words, the electron cannot know what Alice is going to measure. This situation is relevant
in the framework of quantum cryptography tasks, where the manufacturer of the devices and/or the
provider of entangled particles is untrusted and can use this information to fake the statistics P(�a|�x),
compromising security (see Sect. 6.3.2).

http://dx.doi.org/10.1007/978-3-319-49571-2_6
http://dx.doi.org/10.1007/978-3-319-49571-2_5
http://dx.doi.org/10.1007/978-3-319-49571-2_6
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performed by i-th party. The object under consideration is then

P(a0, . . . , an−1|x0, . . . xn−1), 0 ≤ ai < d, 0 ≤ xi < m. (2.10)

Geometrically, one can think of (2.10) as a vector with (md)n coordinates, each
corresponding to a possible combination of a0, . . . , an−1|x0, . . . xn−1. Let us name
such vector �P.

The problem of which probability distributions �P are sound has been considered
since more than a century ago; way before the genesis of modern probability, theory
by George Boole, in his theory of conditions of possible experience [Boo62], but
it was Froissart who reintroduced it in terms of nonlocality and physical principles
from the geometric perspective [Fro81] that allows a systematic characterization of
correlations in terms of convex sets.

Mathematical Constraints

Since �P has to be a valid probability distribution, it has to fulfill Kolmogórov’s
axioms of Probability Theory [Kol33]. Consequently, the elements of �P have to be
non-negative and normalized.

Hence, only mn(dn − 1) components of �P remain independent and the non-
negativity constraints P(a0, . . . , an−1|x0, . . . xn−1) ≥ 0 define a region in space,
which we denote P.

Note that P is a convex set. Recall that a set P is convex if, and only if, for all
�P1, �P2 ∈ P the line segment �P(λ) = λ�P1 + (1 − λ)�P2 (where λ ∈ [0, 1]) belongs to
P. �P(λ) is called a convex combination of �P1 and �P2. P is convex because it is the
intersection of a number of half-spaces (non-negativity conditions) and a number
of affine subspaces (normalization conditions). The intersection of convex sets is a
convex set.

We shall name a set defined as a finite intersection of half-spaces a convex polyhe-
dra. If, in addition, it is bounded, we shall call it a convex polytope; P is an example
of a convex polytope.

Every convex polytope admits a dual description: On the one hand, it can be
fully characterized either as the intersection of a minimal number of half-spaces (the
intersection of the polytope with the hyperplane defining one of such half-spaces is
called facet; the intersection of the polytope with a hyperplane defining any half-
space which contains it and touching the boundary is called face). On the other hand,
it can be equivalently characterized by listing all its extreme points (the ones that
cannot be written as convex combinations of others with λ ∈ (0, 1); such points are
called vertices).

It is computationally a hard problem to go from one description to the other,
especially in large dimension spaces.12 Its complexity is O(n�D/2� + n log n), where
n is the number of vertices (inequalities) and D the dimension of the affine space;
�·�is the floor function [Cha93].

12A convex polyhedra admits this dual description as well, if we allow for vertices to be at infinity.
Some programs avoid this by working in the Projective space instead of the Affine space, by treating
points as rays, for example [Fuk14].
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The No-Signalling Set

It is a natural postulate in a physical theory that the speed at which information travels
is bounded; in particular, to be consistentwithEinstein’s relativity theory, information
cannot travel faster than light. Therefore, two events happening at spacelike separated
regions cannot instantaneously affect each other. This impossibility of instantaneous
communication is known as the No-Signalling (NS) principle. In terms of �P, the NS
principle has a simple formulation: the choice of measurement performed by one of
the parties cannot influence the statistics observed by the rest; i.e., for all xi 
= x′

i ,

∑

ai

P(�a|�x) =
∑

ai

P(�a|�x ′), (2.11)

where �x = (x0, . . . , xi, . . . , xn−1) and �x ′ = (x0, . . . , x′
i, . . . , xn−1). Note that when

the NS holds, the marginal probability distribution

P(a0, . . . , âi, . . . , an−1|x0, . . . , x̂i, . . . , xn−1) =
∑

ai

P(�a|�x) (2.12)

is well defined (the notation ·̂ indicates that the element under the hat is missing).
Observe that condition (2.11) can be applied recursively to any subset of parties.

The resulting region for which probabilities are no-signalling is also a convex
polytope, as it is the intersection of P with the vector subspaces given by (2.11).
This set is known as the no-signalling polytope and we denote it PNS . The number of
independent components13 of any �P ∈ PNS is reduced to (m(d − 1) + 1)n − 1. The
facets of PNS are easy to specify, as they are the non-negativity constraints subjected
to normalization and NS constraints. Its vertices, known as PR-boxes [PR94], are
hard to compute in general, and they are known only in few scenarios [Bar+05,
Fri12].

The Quantum Set

When �P is obtained from a quantum state on which local quantum measurements
are performed, one obtains a different set of possible correlations, the quantum set
of correlations fulfilling Quantum Theory (QT), which we denote by Q.

Following the axioms of quantum physics, �P has to be obtained via Born’s rule:

P(a0, . . . , an−1|x0, . . . , xn−1) = Tr

(
ρ ·

n−1⊗

i=0

�
(i)
ai|xi

)
, (2.13)

13This follows from a simple combinatorical argument: The number of independent components
of �P ∈ PNS is given by the normalization conditions of probabilities and the number of different
marginals because of the NS principle: For every party, one can choose whether to measure it or not;
if it is indeed measured, there are m possible measurements to perform, and for each measurement
there are d − 1 outcomes to specify (because the last outcome can always be recasted as a function
of the rest by means of the normalization conditions). If nobody measures, there is no value needed
to specify, so we rule out this possibility.
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where ρ ∈ D(H) for some Hilbert space H of unspecified dimension and {�(i)
ai|xi}

define a Positive-Operator Valued Measure (POVM) on the i-th party. A POVM
fulfills that its POVM elements, �

(i)
ai|xi , are positive semi-definite and they form a

resolution of the identity:
∑

ai
�

(i)
ai|xi = 1(i). Note that, since the dimension of H is

unconstrained, one can assume, without loss of generality, that ρ is in a pure state
and that the POVM is in fact a von Neumann (Projective Measurement (PM)) mea-
surement; i.e., the POVM elements are, in addition, pairwise orthogonal projectors.

Because dim�H is unconstrained, Q forms a convex set. However, it is not a
polytope and its boundary is unknown in practically all cases. Surprisingly, it turns
out that although Q is contained in PNS , a fact that follows directly from (2.13)
fulfilling (2.11), it is strictly smaller [PR94]. It remains today an open question
What should one require, in addition to the no-signalling principle, in order to
recover quantum correlations? To this aim, several operational principles have been
proposed: Non-trivial communication complexity [Dam99, Bra+06], no advantage
for nonlocal computation [Lin+07], information causality [Paw+09], macroscopic
locality [NW10], local orthogonality [Fri+13]. However, each of them defines a
superset of Q.

It is possible to approximate Q with a convergent hierarchy of spectrahedrons14

Q ⊆ · · · ⊆ Q2 ⊆ Q1+AB ⊆ Q1 [NPA08]. Interestingly, it was recently shown that
a generalization of the level of the Navascués–Pironio–Acín (NPA) Hierarchy 1 +
AB to the multipartite case recovers all the operational principles mentioned above
(except for information causality, which remains unknown) [Nav+15].

The LHVM Set

Imagine a Bell experiment with n = 2 parties. In general, the obtained statistics
P(ab|xy) will not be of the form P(a|x)P(b|y). This lack of independence is not
surprising, nor does it imply an influence of one party to another; Alice and Bob
may simply have established some correlation in the past, when they were allowed
to interact or to agree on a common strategy. The idea behind a local theory, how-
ever, is that whatever interaction or factor relevant to both outcomes, described by a
variable λ, must decouple the two probabilities, so that, if we know λ, they become
independent: P(ab|xyλ) = P(a|xλ)P(b|yλ).

Observe that, when λ is known, the outcome of Alice does not depend on the
choice of input of Bob nor on his result, and vice-versa.

In general this λ may be inaccessible to us, and we call it hidden variable. In
fact, λ may not be the same in every round of the Bell experiment, as it may include
not fully controllable physical quantities, or the parties may agree to change their
strategy at every round. Hence, it is natural to describe it via a probability distribution
p(λ).

This is what motivates the definition of a Local Hidden Variable Model (LHVM):
We say that �P admits a LHVM if it can be written in the form

14A spectrahedron is the feasible set of a Semi-Definite Program (SDP).
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P(�a|�x) =
∫

�

p(λ)

n−1∏

i=0

P(ai|xiλ)dλ, (2.14)

where �is the space of hidden variables, p(λ) ≥ 0 and
∫
�
p(λ)dλ = 1.

The set of probabilities admitting the form (2.14) is again a polytope, known as the
local polytope and we denote it PL. The functions P(ai|xiλ) are called local response
functions and they need not be deterministic. However, every probability distribution
can be expressed as a convex combination of deterministic events (one for each
outcome and the weight of the convex combination corresponds to the probabilities
of the events). These deterministic events are delta functions δ(ai, fi(xi,λ)), where fi
is some deterministic function that takes the information available to the i-th party,
namely, xi andλ, and produces an outcome in {0, . . . , d − 1}. Consequently, aLHVM
admits also the form [Fin82]

P(�a|�x) =
∫

�

q(λ)

n−1∏

i=0

δ(ai, fi(xi,λ))dλ, (2.15)

for a (possibly different) probability distribution q(λ).
Equation (2.15) already gives information on how to construct the vertices of PL,

for they are the probability functions of the form P(�a|�x) = ∏n−1
i=0 δ(ai, f̃i(xi)), with

f̃i(xi) ∈ {0, . . . , d − 1}; i.e., the ones that cannot be expressed as a convex combina-
tion of λ. Varying the possible choices of f̃i(xi)we obtain the (md)n different vertices
of PL.

PL is a subset ofQ because every probability of the form (2.14) can be constructed
with a fully separable state; and it is a strictly smaller set because there are quan-
tum states and measurements that produce �P’s which are outside PL [Bel64]. These
probability distributions are called nonlocal.

The half-spaces containing PL are called Bell inequalities. If a Bell inequality cor-
responds to a facet of PL, we shall name it tight Bell inequality.15 If a Bell inequality
is violated by some �P ∈ PNS we call it non-trivial. Finding all Bell inequalities is an
extremely difficult task and only a few scenarios have been completely solved, none
of them for more than 3 parties16 [PS01, Pir14].

Since the labelling of parties, measurements and outcomes is arbitrary, the dif-
ferent sets of correlations obey some symmetries (e.g. shuffling the outcomes of a
certainmeasurement in a Bell inequality will lead to another Bell inequality) and Bell
inequalities can be grouped (see [Ros15], Chapter III) in classes.17 In the (2, 2, 2)
scenario, the only non-trivial class of Bell inequalities is the one derived by Clauser,

15Note, however, that in polytope theory, a tight inequality is one which just touches the polytope.
16See also [Fri12] for an interesting duality relation between the vertices and facets of PNS and
PL in the (n, 2, 2) scenario. A repository of the currently known Bell inequalities can be found in
[RBG14].
17The same argument applies to PR-boxes [Bar+05].
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Horne, Shimony and Holt [Cla+69] whereas in the (3, 2, 2) scenario one finds 46
different classes [Śli03].

2.2.3 Multipartite Nonlocality

Both the definition of a fully separable state (cf. Eq. (2.2)) and a LHVM (cf. Eq.
(2.14)) look similar. Analogously to the case of entanglement, in the multipartite
scenario, various degrees of nonlocality are possible.However, the case of nonlocality
is subtler, in the sense that one should specify what are the rules for the response
functions of more than one party.

Genuine multipartite nonlocality was first introduced by Svetlichny in 1987
[Sve87]. Analogously to the biseparable case, Svetlichny defined a 3-partite proba-
bility distribution to be bi-local if it was of the form

P(abc|xyz) =
∫

�

pAB|C(λ)PAB(ab|xyλ)PC(c|zλ)dλ

+
∫

�

pAC|B(λ)PAC(ac|xzλ)PB(b|yλ)dλ

+
∫

�

pBC|A(λ)PBC(bc|yzλ)PA(a|xλ)dλ. (2.16)

Operationally, terms such as PAB(ab|xyλ) mean that Alice and Bob can exchange an
arbitrary amount of communication between themselves, but not with Charlie. So,
PAB(ab|xyλ) can be any mathematically sound probability distribution; in particular,
a signalling one. This, however, leads to grandfather-type paradoxes [Ban+13].

There are basically two possibilities to avoid these issues: one is to require that
the probability distributions PAB(ab|xyλ) satisfy the no-signalling constraints (2.11)
[Alm+10]; such correlations are called No-Signalling Bi-Local (NSBL). Another
one is to require that the correlations of the form PAB(ab|xyλ) appearing in (2.16)
are time-ordered (e.g. Alice can signal to Bob or vice-versa, but not both at the
same time); such correlations are called Time-Ordered Bi-Local (TOBL) [Gal+12].
All such constraints define convex polytopes and one has the chain of inclusions
PL � PNSBL � PTOBL � PSvetlichny � P [Ban+13].

In the general case of n parties, having in mind the different flavors of multipartite
locality stemming from the considerationsmentioned above, one defines a probability
distribution P(�a|�x) to be K-local if it is of the form

P(�a|�x) =
∑

S∈SK

pS

∫

�

pS(λ)

K∏

k=1

pk(�a|Sk |�x|Skλ)dλ. (2.17)
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Analogously to the case of (2.3), if K = 2 we will say that �P is bi-local, whereas if
K = n, we shall name it fully local. If �P cannot be written as (2.17) with K = 2, then
it is called Genuinely Multipartite Nonlocal (GMN).

Monogamy of Correlations

A nonlocal probability distribution �P /∈ PL will violate some Bell inequality. Geo-
metrically, the farther �P is from PL, the higher its violation will be. The amount of
violation (up to normalization) of a Bell inequality is often taken as a measure of
nonlocality.18 Physical principles (such as quantum mechanics or no-signalling the-
ories) prevent nonlocality from being distributed arbitrarily between several parties.
Entanglement does also display these kind of constraints, known as monogamy rela-
tions [CKW00]. In the case of nonlocal correlations, monogamies of correlations
impose a tradeoff between the violation of a Bell inequality between two sets of
parties, Aand B and the same Bell inequality between the first set A and another one
C.

As an example, let us consider 3 parties ABC and the Clauser–Horne–Shimony–
Holt (CHSH) inequality [Cla+69]:

IAB = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉, (2.18)

where each correlator 〈AxBy〉 is defined as follows: P(a = b|xy) − P(a 
= b|xy). The
classical bound forwhich IAB defines a facet ofPL for the (2, 2, 2) scenario is IAB ≤ 2.
If Alice, Bob and Charlie share arbitrary quantum resources, then I2AB + I2AC ≤ 8
[TV06]. Even if they share a No- Signalling resource, a monogamy relation holds,
namely |IAB| + |IAC | ≤ 4 [Ton09].

2.2.4 Local Models

Both entanglement and nonlocality are valuable resources for quantum information
theory, although inequivalent ones. Because every separable quantum state produces
local correlations, entanglement is necessary for nonlocality. In the case of pure
states, Gisin showed that every entangled pure state can display nonlocal correlations
[Gis91]. In the case ofmixed states, there are bipartite states, known asWerner states,
for which, no matter what measurements are performed on them, its statistics are of
the form (2.14) [Wer89]; i.e., they admit a Local Hidden Variable Model.

In general, very little is known about which quantum states admit a local model
[ADA14] essentially because one has to explicitly construct the response functions
P(ai|xiλ). In the multipartite case, even less is known: For example, when one con-
siders GME states, even those pure, it is unknown whether all GME states are GMN

18There is another formulation of measure of nonlocality formulated by Elitzur–Popescu–Rohrlich
(EPR2) [EPR92], which measures the nonlocal content of �P by decomposing it as a convex com-
bination of a no-signalling distribution �PNS ∈ PNS and a local distribution �PL ∈ PL with maximal
p: �P = p�PNS + (1 − p)�PL .
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[Bra+14]. In Chap.5, we address this question and show that there exist GME states
that do not display GMN.

2.3 Systems of Indistinguishable Particles

So far, we have considered entanglement and nonlocality in the setting of n spacelike
separated particles belonging to Alice, Bob, Charlie, etc. One can as well consider
the characterization of quantum correlations at short distances, where the particles
involved (e.g. photons, electrons) have an indistinguishable character that has to be
taken into account.

When one is given a system ρA of indistinguishable particles, then ρA remains
invariant under any permutation of its subsystems; otherwise they could be distin-
guished.

Consider Sn, the group of permutations of n elements. Consider as well the
n-partite Hilbert space H = (Cd)⊗n. Sn acts on H by means of permuting each
component of the computational basis of H and this action is extended by linearity
to every element of H. This action has a natural representation that assigns to each
σ ∈ Sn a permutation matrix �σdefined as

�σ|i0〉 ⊗ · · · ⊗ |in−1〉 = |iσ−1(0)〉 ⊗ · · · ⊗ |iσ−1(n−1)〉. (2.19)

Definition 2.5 A quantum state ρA ∈ D(H) is Permutationally Invariant (PI) if, for
any σ ∈ Sn

ρA = �σρA�†
σ. (2.20)

2.3.1 The Block Decomposition of a Permutationally
Invariant Operator. Schur–Weyl Duality

Given a permutationally invariant quantum state ρA, it turns out that one can choose
a basis of (Cd)⊗n such that its form is extremely simplified: In this basis, ρA is
block-diagonal, and the size of each block is exponentially small compared to the
dn × dn whole matrix ρA expressed in the computational basis. The reason for this
simplification lies on amathematical result known as Schur–Weyl duality, which says
that (Cd)⊗n can be naturally decomposed in terms of irreducible representations of
the groups Snand Ud(the group of d × d unitary matrices). This construction is
explained in detail in Appendix A.

Given a PI quantum state ρA, it decomposes H into the following direct sum (cf.
Theorem A.9):

(Cd)⊗n ∼=
⊕

λ�(d,n)

Kλ ⊗ Hλ, (2.21)

http://dx.doi.org/10.1007/978-3-319-49571-2_5
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where λ runs over all partitions of n with at most d elements and ⊕ denotes direct
sum.Kλ is known as the multiplicity space. In the basis (2.21) ρA is block-diagonal.

The Qubit Case

If d = 2, the construction of (2.21) can be explicitly given and it corresponds to the
case of n spin-1/2 particles. In this case, λ would run over the partitions of n with,
at most, 2 elements, so one can translate (2.21) to a language closer to Physics:

(C2)⊗n ∼=
n/2⊕

J=J0

KJ ⊗ HJ . (2.22)

Usually, HJ are called the spin Hilbert spaces, as dimHJ = 2J + 1 and KJ the
multiplicity spaces, which account for the different possibilities for the n qubits to
obtain to a spin-J state. The multiplicity spaces are of dimension 1 if J = n/2 and

dimKJ =
(

n

n/2 − J

)
−

(
n

n/2 − J − 1

)
(2.23)

otherwise.
A permutationally invariant n-qubit state ρA, in the basis given by (2.21) takes the

form

ρA =
n/2⊕

J=J0

pJ
dimKJ

1J ⊗ ρJ , (2.24)

where pJ forms a probability distribution and ρJ are the so-called spin states, which
can be viewed as density operators of D(C2J+1).

Hence, a permutationally invariant n-qubit state ρA is uniquely determined by
specifying its blocks ρJ , an amount of information exponentially small compared to
a general n-qubit state.

The following basis automatically gives a projection onto the J-th block (defining
m = n − 2J; note that m is always an even number):

{|Dk
2J〉 ⊗ |ψ−〉⊗m/2}k=0...2J , (2.25)

where |Dk
2J〉 is the 2J qubit Dicke state with k excitations (cf. Sect. 2.3.2, Eq. (2.27))

and |ψ−〉 is the singlet state

|ψ−〉 = |01〉 − |10〉√
2

. (2.26)
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2.3.2 Symmetric States

The so-called symmetric states (or Dicke states) were first introduced by R.H. Dicke
in 1954, when studying the emission of light from a cloud of atoms [Dic54]. He found
that, when the atoms were in certain entangled states, the intensity of radiation scaled
quadraticallywith the number of atoms,whereas if theywere radiating independently,
this intensity scaled linearly. Since then, Dicke states have been widely studied and
they have been produced in experiments.

Dicke states can be defined either as the simultaneous eigenstates of the total
angular momentum operators Jz = 1/2

∑
i σ

(i)
z and J2, where σ(i)

z is the Pauli matrix
acting on site i and J2 = J2x + J2y + J2z , or as symmetric superpositions of states with
the same number of excitations (throughout this Thesis we shall consider qubits, so
that a Dicke state is defined by n qubits and k excitations and denoted |Dk

n〉):

|Dk
n〉 =

(
n

k

)−1/2 ∑

σ

σ(|0〉⊗n−k|1〉⊗k). (2.27)

Dicke states form an important subclass of permutationally invariant states, and they
correspond to the first block in the decomposition (2.21); i.e., the one corresponding
to the partition λ = (n). They span the so-called symmetric space and the symmetric
space is closed19 under the action of U⊗n for any unitary U.

We shall denote the symmetric space by S(H) := Span{|Dk
n〉}k=0...n and we will

call a density operator symmetric if ρA ∈ D(S(H)). In the case of n qubits, a sym-
metric state ρA cannot have rank greater than n + 1, as these are the elements in
(2.27).

PPT Entanglement in the Symmetric States

The multipartite PPT criterion and, in general, any entanglement criterion based on
positive, but not completely positive maps, is hard to compute in systems of large n
as, even if it is efficient to test on a single bipartition S|S, the number of bipartitions
scales as 2n. However, for permutationally invariant states, this is greatly simplified:
Now the criterion “n-separable implies (1S ⊗ ⊗

ai∈S �Ai)[ρ] � 0” will be the same,
regardless of which particular parties are picked in S. Hence, it only depends on
the number of parties in S, denoted |S|. Hence, if a PI state is n-separable, only
n − 1 conditions need to be checked. In the particular case � = T , only �n/2� are
necessary, as global transposition preserves the positivity of the whole state. This
motivates the definition of partial transposition for symmetric states as ρ�k , where
k = |S| is the number of parties that have been transposed. A state which is PPT with
respect to every bipartition will be called fully PPT.

19A nice way to see this is via the so-called Majorana representation [Maj32], which assigns a
product state to every pure Dicke state; when taking a superposition of all permutations of this
product state, one recovers the original Dicke state. For d = 2 this assignment is unique and it can
be easily visualized in the Bloch sphere. Then, the action of U⊗n is just a rotation of the Bloch
sphere [Mar11].
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The zoo of separability classes for symmetric states is also greatly simplified:
Symmetric states are either n-separable, or GME, and there is no other possibility.
This makes them even more interesting, as proving that a general quantum state is
GME might turn into a difficult task.

Applying �k , transposition on k subsystems, breaks the symmetry of ρ: It is false
in general that ρ�k ∈ D(S(HA)). However, the symmetries in the partially transposed
subsystems and the untouched ones are kept, so that ρ�k ∈ D(S(HS) ⊗ S(HS)), for
k = |S|. In the case of qubits, this means that the rank of ρ�k isO(n2), more precisely,
bounded by (n + 1 − k)(k + 1), so it is possible to keep track of the transformation
�k efficiently. We shall denote by DPPT

S (H)the set of density operators acting on H
corresponding to symmetric states PPT with respect to every bipartition.

It was known that all PPT symmetric states of two and three qubits are fully
separable [Eck+02]. The reason is that there is only one possible nontrivial bipartition
to consider: (1, 1) and (2, 1), respectively, and then the sufficiency condition for
the PPT criterion carries, as one can think of S(C2) ⊗ S(C2) as C2 ⊗ C2 and of
S(C2)⊗2 ⊗ S(C2) asC3 ⊗ C2. However it was an open question whether this result
would still be true for systems of 4 qubits or more.

In the case of 5 and 6 qubits, Tóth and Gühne found examples of GME symmet-
ric states which are PPT with respect to the most balanced partition �n/2�, �n/2�,
although they would break the PPT condition with respect to some other bipartitions
[TG09].

Genuinemultipartite entanglement is considered to be the strongest form of entan-
glement, whereas PPT states are considered the weakest.20 Almost paradoxically, it
turns out that one can find fully PPT states which are also GME for more than 3
qubits, as we study in Chap.3.
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