
Chapter 2
Theoretical Background

2.1 The Schrödinger Equation

Any computational approach to study the properties of molecular systems needs
to deal with the Schrödinger equation [1], which describes the dynamics in non-
relativistic quantummechanics. A brief summary of the approximations necessary to
runmolecular simulations within reasonable periods of time is given in the following
sections. It follows several standard textbooks [2–5], so the educated reader might
directly continue with Chap.3.

The general time-dependent form of the Schrödinger equation in Dirac notation
reads as

H |Φ(t)〉 = i�
∂

∂t
|Φ(t)〉 , (2.1)

where H is the Hamiltonian and |Φ(t)〉 is a state vector in the Hilbert space of
all possible quantum states of the particular system. If the Hamiltonian does not
explicitly depend on the time t and |Φ(t)〉 is a stationary state, the time dependence
can be separated by the ansatz

|Φ(t)〉 = exp

(
− i

�
Et

)
|Ψ 〉 , (2.2)

where |Ψ 〉 is an eigenstate of H, so it fulfills the time-independent Schrödinger
equation

H |Ψ 〉 = E |Ψ 〉 (2.3)

with the energy eigenvalue E.
In amolecular system that consists ofN electrons andM nuclei, theHamiltonian is

commonly chosen to include the kinetic energy of the electrons Te, the kinetic energy
of the nuclei Tn, the Coulomb repulsion between the electrons Vee, the Coulomb
attraction of the nuclei and the electrons Vne, and the Coulomb repulsion between
the nuclei Vnn:
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H = Te + Tn + Vee + Vne + Vnn
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(2.4)

In this equation, MA and ZA denote the mass and the atomic number of nucleus A,
respectively, as well as rij = |ri −rj|, riA = |ri −RA|, and rAB = |RA −RB| represent
the respective distances between electrons and nuclei. The coordinates of electron i
and nucleus A are given by ri and RA, respectively.

The electronic and the nuclear motion can be separated within the Born–
Oppenheimer approximation [6]. The total molecular wave function Ψ (r, R), which
depends on the sets of all electronic coordinates r = {ri} and nuclear coordinates
R = {Ri}, is expanded by

Ψ (r, R) =
∞∑

k=0

ψk(r; R)χk(R), (2.5)

where the electronic wave functions ψk(r; R) are assumed to form a complete set
of eigenfunctions of the electronic Hamiltonian He = Te + Vee + Vne + Vnn and
fulfill—for fixed nuclear positions R—the electronic Schrödinger equation

Heψk(r; R) = Ek(R)ψk(r; R) (2.6)

with the electronic energy Ek(R). The nuclear wave functions χk(R) can be seen as
expansion coefficients that depend on the nuclear positions. Using this ansatz for the
time-independent Schrödinger equation (2.3) with the molecular Hamiltonian (2.4)
and integrating out the electronic coordinates, leads to the set of coupled equations

(
−

M∑
A=1

�
2

2MA
∇2

A + Ek(R)

)
χk(R) +

∞∑
l=0

Cklχl(R) = εkχk(R) (2.7)

with the energy εk and the coupling operator

Ckl = −
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2MA

〈
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〉
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�
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MA
〈ψk(r; R)|∇A|ψl(r; R)〉r ∇A.

(2.8)
Within the Born–Oppenheimer approximation, all coupling terms are neglected,
resulting in the nuclear Schrödinger equation

(
−

M∑
A=1

�
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2MA
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A + Ek(R)

)
χk(R) = εkχk(R). (2.9)
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This effectively means to assume that the gradients of the electronic wave function
along the nuclear coordinates inEq. (2.8) vanish, so the the electronicwave function is
influenced only by the positions of the nuclei but not by their momenta, and the nuclei
move without changing the quantum state of the electrons. This is usually justifiable
if the electronic states are separated well in energy. However, the approximation
breaks down if two potential energy surfaces get close. This is often important, e.g.,
for photochemical processes, but such phenomena are not investigated in this thesis.

By the separation of electronic and nuclear motion, the Schrödinger equation
is divided into two individual problems. For each nuclear configuration R, the
electronic energy Ek(R) can be calculated by solving the electronic Schrödinger
equation (2.6). This defines a potential energy surface, on which the nuclei behave
according to the nuclear Schrödinger equation (2.9). A common method to solve
the electronic Schrödinger equation is density functional theory (DFT), which is
discussed in Sect. 2.2. Afterwards, the obtained electronic energy is used to treat
the nuclear Schrödinger equation with further approximations that are described in
Sect. 2.3.

2.2 Density Functional Theory

2.2.1 Hohenberg–Kohn Theorems and Kohn–Sham Method

Density functional theory (DFT) is a widely used method to solve the electronic
Schrödinger equation, and it is founded on the Hohenberg–Kohn theorems [7]. The
first Hohenberg–Kohn theorem states that the electronic ground-state wave function
is uniquely determined by the ground-state electron density. The unique determi-
nation of the wave function also defines any further molecular property such as,
e.g., the electronic ground-state energy. Thus, it is sufficient to calculate the electron
density instead of the wave function. The advantage of the electron density is that
it only depends on three spatial coordinates, whereas the wave function depends on
the spatial and the spin coordinates of all N electrons.

In analogy to the electronic Hamiltonian He defined for Eq. (2.6), the electronic
energy is written as a functional of the electron density:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vn[ρ(r)]. (2.10)

The last term in this sum,

Vn[ρ(r)] =
∫

ρ(r)vext(r) dr, (2.11)

is the only one that depends on the nuclear coordinates, as it contains the Coulomb
attraction of the nuclei and the electrons as well as the nuclear Coulomb repulsion
in the external potential
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vext(r) = e2

4πε0
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)
. (2.12)

The other two functionals, the kinetic energy T [ρ(r)] and the electron–electron
interaction Vee[ρ(r)], are universal expressions that are valid for any system. Unfor-
tunately, their general form is hitherto unknown.

The secondHohenberg–Kohn theorem introduces the variational principle toDFT.
According to that, the energy of any trial electron density is never lower than the
exact ground-state energy. It is therefore possible to find the exact ground-state
electron density by varying a trial electron density until the energy reaches the global
minimum.

A widely used approach to actually calculate the electron density in DFT is the
Kohn–Sham method [8]. Within this technique, a fictitious system of noninteracting
electrons is considered, the electron density ρs(r) of which is equal to the one of
the real system ρ(r). The noninteracting electrons occupy the auxiliary Kohn–Sham
orbitals θi(r), and the electron density is formed according to

ρs(r) = ρ(r) = e
N∑

i=1

|θi(r)|2 . (2.13)

Since the overall wave function of this system is exactly given by a single Slater
determinant of Kohn–Sham orbitals, the kinetic energy is equal to

Ts[{θi(r)}] = − �
2

2me

N∑
i=1

〈
θi(r)|∇2|θi(r)

〉
. (2.14)

If also the classical Coulomb repulsion

J[ρ(r)] = 1

4π ε0

1

2

∫∫
ρ(r1)ρ(r2)
|r1 − r2| dr1 dr2 (2.15)

is separated from the total electron–electron interaction Vee[ρ(r)], the electronic
energy (2.10) can be rewritten as

E[{θi(r)}] = Ts[{θi(r)}] + J[ρ(r)] + Exc[ρ(r)] + Vn[ρ(r)]. (2.16)

The exchange-correlation energy functionalExc[ρ(r)] collects all unknown contribu-
tions to the energy, in particular the kinetic correlation energy, the exchange energy,
the Coulombic correlation energy and the self-interaction correction.

Based on the second Hohenberg–Kohn theorem, the Kohn–Sham orbitals are
found byminimizing the electronic energywith respect to the orbitals. As a constraint
to thisminimization, the orbitals are required to be orthonormal.Applying themethod
of Lagrange multipliers, this leads to the Kohn–Sham equations
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(
− �

2

2me
∇2 + vext(r) + 1

4π ε0

∫
ρ(r1)

|r − r1| dr1 + δExc[ρ(r)]
δρ(r)

)
θi(r) = εiθi(r)

(2.17)

with the orbital energies εi. Because the Coulomb potential and the exchange-
correlation energy depend through the electron density on the orbitals, the Kohn–
Sham equations are nonlinear and are, therefore, commonly solved iteratively. The
traditional diagonalization approach to this problem is discussed in Sect. 2.2.3.
Another method that relies on a direct minimization of the electronic energy is men-
tioned in Sect. 2.2.4.

2.2.2 Approximate Exchange-Correlation Functionals

Up to this point, DFT would provide an exact solution of the electronic Schrödinger
equation. However, the correct exchange-correlation functional Exc[ρ(r)] is hitherto
unknown, so approximations have to be made. For this purpose, the functional is
usually divided into an exchange part and a correlation part:

Exc[ρ(r)] = Ex[ρ(r)] + Ec[ρ(r)]. (2.18)

In principle, it would be possible to evaluate the exchange part in the same way
as in the Hartree–Fock method using the Kohn–Sham orbitals, but in connection
with approximations to the correlation part, this exact exchange often yields poor
results for the molecular properties. Other approaches that benefit from a successful
cancellation of errors and, furthermore, avoid the evaluation of costly exchange
integrals are therefore very popular.

A simple model for the exchange-correlation energy is the local density approxi-
mation (LDA), which assumes that the electron density is a slowly varying function,
so it can locally be treated as a uniform electron gas. In this case, an exact expression
for the exchange energy can be derived [9, 10]:

ELDA
x [ρ(r)] = −9α

8

(
3
π

) 1
3
∫

ρ
4
3 (r) dr, where α = 2

3
. (2.19)

Even for this simple system, it is impossible to give an analytic expression for the
correlation energy, but it can accurately be determined by quantum Monte Carlo
simulations. An analytic fitting formula to the results of these simulations has been
developed by Vosko, Wilk, and Nusair (VWN) [11]. Neglecting the correlation part
and taking only the exchange part (2.19) results in the Xα method proposed by Slater
[12], where differing prefactors of α = 1 and α = 3/4 are used for better agreement
with experimental results. The LDA is easily extended to open shell systems in terms
of the local spin density approximation (LSDA) [11, 12].
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Because the assumption of a uniform electron gas does not provide a good descrip-
tion of typical molecular systems, more advanced exchange-correlation functionals
depend on the gradient of the electron density. This is called generalized gradient
approximation (GGA).Commonexamples ofGGAfunctionals areBecke’s exchange
functional (B) [13] and the correlation functional of Lee, Yang, and Parr (LYP) [14],
which can be combined to form the exchange-correlation functional BLYP. Both
parts of this functional contain empirical parameters fitted to Hartree–Fock data of
noble gases. In the exchange-correlation functional of Perdew andWang (PW91) [15]
and its successor functional of Perdew, Burke, and Ernzerhof (PBE) [16], no fitting
to existing data is performed and the parameters are chosen to fulfill some general
theoretical requirements instead. The basic idea of GGA functionals is extended in
meta-GGA functionals, which depend on higher derivatives of the electron density,
such as, e.g., the exchange-correlation functional of Tao, Perdew, Staroverov, and
Scuseria (TPSS) [17].

As mentioned before, it is in principle possible to use the Kohn–Sham orbitals for
calculating the exchange part as inHartree–Fock theory. In a systemof noninteracting
electrons, this would provide the exact exchange-correlation energy as there is no
correlation energy.Basedon the adiabatic connectionmethod, hybrid functionals take
the exact exchange for a part of the exchange-correlation energy while the remainder
is calculated using the pure functionals from above. The amount of exact exchange
constitutes another empirical parameter that has to be chosen. Very common are
Becke’s three-parameter functionals (B3). The originally proposed one utilized the
B exchange and the correlation part of PW91. Its general form reads as

EB3PW91
xc = (1 − a − b)ELSDA

x + aEexact
x + bEB

x + (1 − c)ELSDA
c + cEPW91

c . (2.20)

The parameters were optimized to a = 0.20, b = 0.72 and c = 0.81 by fitting to
experimental data [18]. Later on, PW91 was replaced by LYP in the correlation part
to create the B3LYP functional, but the parameters a, b, and c were kept at the same
values [19]. In the sameway asB3LYP is connected to theBLYP functional, the PBE0
functional has been developed as a hybrid version of PBE [20]. However, in PBE0 the
amount of exact exchange is fixed at 25% according to arguments from perturbation
theory. Therefore, it does not contain any parameters fitted to experimental data and
is given by

EPBE0
xc = 1

4
Eexact
x + 3

4
EPBE
x + EPBE

c . (2.21)

Also hybrid versions of meta-GGA functionals have been developed, such as, e.g.,
TPSSh that combines TPSS with 10% of exact exchange [21].

A common deficiency of the above mentioned exchange-correlation functionals
is the lack of a proper description of dispersion interactions. Several approaches to
include also these effects have been proposed. Beside, e.g., nonlocal van der Waals
functionals [22, 23] and dispersion-corrected atom-centered potentials [24, 25], the
DFT-D technique [26–28] is widely applied. In this method, an empirical correction
term is added to the final energy of the system, which has the general form
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Edisp = −
M∑

A=1

M∑
B=A+1

∑
n=6,8,10,...

sn
CAB

n

rn
AB

fdamp(rAB), (2.22)

where the sum over all atom pairs (A, B) is taken,CAB
n denotes the averaged nth-order

dispersion coefficient of atompair (A, B), rAB = |RA−RB| is the distance of the atoms
A and B, sn is a global scaling factor adjusted to the exchange-correlation functional,
and fdamp is a damping function to avoid near-singularities at small distances and
double-counting effects at intermediate distances. In DFT-D3 [27], the sum over
n is truncated after n = 8, and the dispersion coefficients are calculated by time-
dependent density functional theory.

2.2.3 Basis Set Expansion

TheKohn–Sham equations (2.17) are usually solved by representing theKohn–Sham
orbitals θi(r) as linear combinations of a finite set of n known basis functions φi(r):

θi(r) =
n∑

j=1

Cijφj(r). (2.23)

This allows to transform the Kohn–Sham equations from their integro-differential
form into a matrix representation:

KC = SCε. (2.24)

In this equation, K is the Kohn–Sham matrix with the elements

Kij =
〈
φi(r)| − �

2

2me
∇2 + vext(r) + 1

4π ε0

∫
ρ(r1)

|r − r1| dr1 + δExc[ρ(r)]
δρ(r)

|φj(r)
〉
,

(2.25)
S is the overlap matrix with the elements

Sij = 〈
φi(r)|φj(r)

〉
, (2.26)

C is the matrix of the coefficients Cij from the basis expansion (2.23), and ε is a
diagonal matrix with the orbital energies εi on the main diagonal. In doing so, the
problemof finding theKohn–Shamorbitals θi(r) is reduced to the task of determining
the coefficients Cij. Equation (2.24) possesses the form of a generalized eigenvalue
problem, but since the Kohn–Sham matrix K depends on the coefficients C, an
iterative procedure is needed: An initial guess for the coefficients C is taken, the
Kohn–Sham matrix K is evaluated using these coefficients, new coefficients C are
calculated by solving the generalized eigenvalue problem, and this process is repeated
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until the coefficients do not change anymore. Thismeans that they are self-consistent,
and the approach is, therefore, called self-consistent field (SCF) method.

Several choices for the basis functions φi(r) have been proposed. Very common
in quantum chemistry are contracted Gaussian type orbitals (GTOs) of the general
form

φ(r) = Nξ(r − r0)
m∑

k=1

dk exp
(−ζk |r − r0|2

)
, (2.27)

which try to mimic the atomic orbitals of the individual atoms. Here, N is a nor-
malization constant, ξ(r − r0) contains the angular momentum dependence, and r0
is the center of the basis function, which usually coincides with the position of the
corresponding nucleus. The orbital exponents ζk and the expansion coefficients dk

are optimized once when the basis set is created, but they remain fixed in the SCF
procedure to solve Eq. (2.24). Advantages of GTO basis sets are the good results with
small set sizes and the straight description of all electrons in the system. However, the
basis functions are not generally orthogonal, which can lead to linear dependencies
that cause problems in the SCF procedure. Moreover, one has to take care of the
basis set superposition error and Pulay forces [29] due to the position dependence of
the basis functions.

Another approach, which is very common in solid state physics, is the use of plane
wave basis sets. The periodicity of a crystalline solid imposes the same periodicity
on the electron density, suggesting to use basis functions of the general form

φ(r) = 1√
Ω

exp (iG · r) , (2.28)

where Ω is the volume of the periodic cell, and the wave vector G has to satisfy
the periodic boundary conditions. Usually, the basis set expansion (2.23) contains
all wave vectors up to a certain cutoff. Since the plane waves are independent of the
nuclear positions, Pulay forces and the basis set superposition error do not occur.
Furthermore, all basis functions are orthogonal, making the overlap matrix trivial.
Although a plane wave basis set implies periodic boundary conditions, molecular
calculations in the gas phase are possible by applying such a large cell that the
periodic images do not interact. The drawback of this approach is that a large number
of basis functions is actually used to describe the empty part of the system.

Amajor issue of plane waves is the very high cutoff that is required to describe the
rapid oscillations of thewave functiondue to the nodal structure of the valenceorbitals
near the nuclei. To overcome this problem, it is very common to apply pseudopo-
tentials. A pseudopotential combines the Coulomb potential of the nuclei and the
effective interaction potential of the core electrons with the valence electrons, and
it replaces the sole Coulomb attraction of the nuclei in the external potential (2.12).
This softens the potential the valence electrons move in, and lower cutoffs are suf-
ficient for an adequate description. On the other hand, the core electrons are not
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treated explicitly anymore, but this is only a minor restriction for most chemical
applications.

2.2.4 The Gaussian and Plane Waves Method

The Gaussian and plane waves method [30, 31] is a particular implementation of
DFT available in the CP2K software package [32], aiming for efficient calculations
of large systems containing several thousand atoms.Within this approach, the Kohn–
Sham orbitals are expanded in terms of GTO basis functions, but an auxiliary basis
of plane waves is used for a second representation of the electron density. To convert
between these representations, the electron density in the GTO basis is mapped onto
a real-space grid with a spacing determined by the plane wave cutoff, and the plane
wave coefficients are obtained by a discrete Fourier transform. The pseudopotentials
of Goedecker, Teter, andHutter (GTH) [33–35] are employed to reduce the necessary
cutoff in the plane wave basis (see Sect. 2.2.3). These pseudopotentials are norm-
conserving and separable, and their dual-space Gaussian form allows for an analytic
calculation of the corresponding matrix elements in the GTO basis set. Also the
kinetic energy contributions to the Kohn–Sham matrix are evaluated in the GTO
basis, but the Coulomb interaction and the exchange-correlation potential are more
efficiently calculated in the plane wave representation of the electron density. This
leads to a construction scheme of the Kohn–Sham matrix that scales linearly with
the system size.

Due to the application of GTH pseudopotentials, the electron density vanishes at
the positions of the nuclei except for hydrogen atoms. Since many GGA exchange-
correlation functionals contain terms with the electron density in the denominator,
this gives rise to numerical problems in the evaluation of the exchange-correlation
potential near the nuclei, making the total energy dependent on the atom positions
relative to the real-space grid imposed by the plane wave basis. To reduce this effect,
several smoothing procedures have been developed [31].

The SCFmethod described in Sect. 2.2.3 relies on the diagonalization of a matrix.
An alternative approach is the direct minimization of the electronic energy (2.16),
rewritten with the basis set expansion (2.23). In this formulation, the energy E(C) is
a function of the expansion coefficients, and the orthonormality constraint is given
by CTSC = I, where C and S are defined in Sect. 2.2.3, and I is the identity matrix
of the appropriate size. A minimization with this nonlinear constraint would require
to follow a curved geodesic, but this can be avoided [36] by introducing a new set of
variables X that fulfill the linear constraint

XTSC0 = 0, (2.29)

whereC0 are constant initial coefficients that satisfy theoriginal constraintC0
TSC0 =

I. The coefficients C are related to the new variables X by
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C = C0 cos(U) + XU−1 sin(U), with U = (
XTSX

) 1
2 . (2.30)

With a linear constraint, any standard minimization algorithm such as the conjugate
gradient method or direct inversion in the iterative subspace (DIIS) [37] can be
employed.

In the CP2K software package, this approach is available as orbital transformation
(OT) method. If conjugate gradients are used with an extensive line search, conver-
gence is guaranteed, leading to a procedure that can handle also cases which are
problematic within the traditional diagonalization approach. Furthermore, the OT
method is often faster than diagonalization [36].

2.3 Molecular Dynamics

Within the Born–Oppenheimer approximation, the nuclei obey the nuclear
Schrödinger equation, which was given in its time-independent form in Eq. (2.9).
The time-dependent form reads as

(
−

M∑
A=1

�
2

2MA
∇2

A + Ek(R)

)
χk(R, t) = i�

∂

∂t
χk(R, t). (2.31)

For basic cases such as, e.g., the harmonic oscillator (see Sect. 2.4.1), it can be solved
analytically. For larger systems, it can be simplified by approximating the nuclei as
classical point particles. For this purpose, the complex nuclear wave function is
rewritten as

χk(R, t) = Bk(R, t) exp

(
i
Sk(R, t)

�

)
(2.32)

with real functionsBk(R, t) (amplitude) and Sk(R, t) (phase). Applying this ansatz to
Eq. (2.31) and separating the real and imaginary parts results in two coupled equations
for amplitude and phase:

∂

∂t
Bk(R, t) +

M∑
A=1

1

MA

(
∇ABk(R, t)∇ASk(R, t) + 1

2
Bk(R, t)∇2

ASk(R, t)

)
= 0,

(2.33)

∂

∂t
Sk(R, t) +

M∑
A=1

1

2MA
(∇ASk(R, t))2 + Ek(R) = �

2
M∑

A=1

1

2MA

∇2
ABk(R, t)

Bk(R, t)
. (2.34)

Equation (2.33) can be interpreted as a continuity equation that ensures the con-
servation of the probability density |χk(R, t)|2. In Eq. (2.34), the right-hand side
vanishes in the classical limit � → 0, and the Hamilton–Jacobi equation of classical
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mechanics remains:

∂

∂t
Sk(R, t)+

M∑
A=1

1

2MA
(∇ASk(R, t))2+Ek(R) = ∂

∂t
Sk(R, t)+Hk(R, P) = 0 (2.35)

with the momenta P = {PA}, PA(t) = ∇ASk(R, t), and the Hamilton function
Hk(R, P) = T(P) + Ek(R), where T(P) is the kinetic energy. This can be trans-
formed to the Newtonian equations of motion

d

dt
PA(t) = MA

d2

dt2
RA(t) = −∇AEk(R(t)). (2.36)

Thismeans that the nuclei move according to classical mechanics in the potential that
is provided by the electronic energy Ek(R), suggesting the following procedure to
study the time evolution of a molecular system: the nuclei are propagated according
to Eq. (2.36), and at any particular time t, the electronic energy and its gradient are
obtained by solving the time-independent electronic Schrödinger equation (2.6) for
the current nuclear configuration R(t). This approach is called Born–Oppenheimer
molecular dynamics (BOMD). The AIMD simulations performed in the course of
this thesis are BOMD simulations.

The Newtonian equations of motion (2.36) are usually solved by numerical meth-
ods that introduce a discrete timestep �t. In the Verlet algorithm [38], the nuclear
coordinates are expanded in Taylor series up to third order:

RA(t + �t) = RA(t) + �t
d

dt
RA(t) + 1

2
�t2

d2

dt2
RA(t) + 1

6
�t2

d3

dt3
RA(t) + O

(
�t4

)
,

(2.37)

RA(t − �t) = RA(t) − �t
d

dt
RA(t) + 1

2
�t2

d2

dt2
RA(t) − 1

6
�t2

d3

dt3
RA(t) + O

(
�t4

)
.

(2.38)

Adding these two equations and rearranging the terms leads to

RA(t + �t) = 2RA(t) − R(t − �t) + 1

MA
�t2FA(t) + O

(
�t4

)
, (2.39)

where the forces FA(t) = MAR̈(t) = −∇AEk(R(t)) are introduced. The nuclear
velocities VA(t) = ṘA(t) are eliminated in this derivation, but it is often desirable to
know them, e.g., to calculate the kinetic energy. Therefore, it is more convenient to
apply the velocity form of the Verlet algorithm [39], where coordinates and velocities
are given by
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RA(t + �t) = RA(t) + �tVA(t) + 1

2MA
�t2FA(t), (2.40)

VA(t + �t) = VA(t) + 1

2MA
�t (FA(t) + FA(t + �t)) . (2.41)

It can be shown that this formulation is equivalent to the original Verlet method,
but it directly delivers the velocities in each step of the simulation. The complete
BOMD procedure starting from certain initial coordinates R(0) and velocities V(0)
now reads as follows: The coordinates R(t) are used to calculate the forces F(t) by
solving the time-independent electronic Schrödinger equation for these coordinates
(e.g., by applying DFT, see Sect. 2.2), the new coordinates R(t + �t) are calculated
by Eq. (2.40), they are used to obtain the new forces F(t + �t) by solving again the
electronic Schrödinger equation, and the new velocities V(t + �t) are finally given
by Eq. (2.41). This procedure has to be repeated until a reasonable part of the nuclear
phase space is sampled.

Since BOMD on the basis of the Newtonian equations of motion (2.36) conserves
the total energy, a trajectory in the microcanonical or NV E ensemble is generated.
For comparison with experiments, where usually the temperature is controlled, it is,
however, desirable to run simulations in the canonical or NV T ensemble. For this
purpose, a thermostat has to be applied. A very common choice is the Nosé–Hoover
thermostat [40–42], which adds a heat bath by introducing an additional degree of
freedom to the system. This “heat bath particle” follows a specific potential so that
the original degrees of freedom sample the NV T ensemble. To handle also difficult
cases, the concept has been extended to the Nosé–Hoover thermostat chain [43],
where the heat bath is coupled to another heat bath. Introducing further heat baths
that are successively connected to each other finally leads to a linear chain of K
thermostats with the following equations of motion:

MAR̈A(t) = −∇AEk(R(t)) − MAξ̇1(t)ṘA(t), (2.42)

Q1ξ̈1(t) =
M∑

A=1

MAṘA(t)2 − gkBT − Q1ξ̇1(t)ξ̇2(t), (2.43)

Qiξ̈i(t) = Qi−1ξ̇i−1(t)
2 − kBT − Qiξ̇i(t)ξ̇i+1(t), i = 2, . . . , K − 1, (2.44)

QK ξ̈K(t) = QK−1ξ̇K−1(t)
2 − kBT . (2.45)

Here, T is the desired average temperature, and g is the number of degrees of freedom
to which the thermostat chain is coupled (g = 3M if no constraints are imposed on
the nuclear coordinates). Each thermostat has a coordinate ξi(t) and a mass-like
parameter Qi, which is chosen as

Q1 = gkBTτ 2, Qi = kBTτ 2, i = 2, . . . , K . (2.46)

The coupling time constant τ should be in the order of the timescale of the nuclear
motions. Since the forces in the equations of motion explicitly depend on the
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velocities, the velocity Verlet algorithm cannot be applied directly. It is possible to
solve Eq. (2.41) iteratively, but also explicit reversible integrators have been devel-
oped [44] on the basis of the Liouville operator, multiple timestep schemes, and
higher order Yoshida–Suzuki integration [45, 46]. For the NV E ensemble, these
reduce to the velocity Verlet method.

For the equilibration of an MD simulation, it is convenient to use an individual
Nosé–Hoover thermostat chain for each degree of freedom (massive thermostat). This
significantly reduces the equilibration time and helps to excite even stiff vibrational
modes that are only loosely coupled to all other modes of the system, as it is required
to fulfill the equipartition theorem.

2.4 Vibrational Spectroscopy

2.4.1 The Harmonic Oscillator

As discussed in Sect. 2.1, the Born–Oppenheimer approximation decouples the elec-
tronic from the nuclear motion in a molecular system. The nuclei move on the 3M-
dimensional potential energy surface that is determined by the electronic structure.
In a typical stable molecule, this potential has distinct minima and the molecule
performs oscillations around these minima.

For simplicity, a one-dimensional potential V (x) with a minimum at x = 0 is
considered in the following. The Taylor series around x = 0 reads as

V (x) = V (0) + V ′(0)x + 1

2
V ′′(0)x2 + 1

6
V ′′′(0)x3 + . . . (2.47)

The first term is a constant offset and the potential can always be transformed tomake
this offset vanish by choosing an appropriate energy zero point. Since the potential
has a minimum at x = 0, also the second term is zero. The first non-vanishing term
is the harmonic potential

V (x) = 1

2
kx2, (2.48)

where the second derivative of the potential is identified with the force constant k.
This means that the first approximation to an arbitrarily shaped potential is given
by (2.48) in the vicinity of a minimum. In particular, also the nuclear motion in
a molecule can approximately be described within a multidimensional harmonic
potential.

In classicalmechanics (cf. Eq. (2.36)), a particle ofmassmmoving in the harmonic
potential (2.48) fulfills the differential equation

mẍ(t) + kx(t) = 0. (2.49)
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It can be shown that the general solution of this differential equation is

x(t) = x0 cos

(√
k

m
t + ϕ

)
= x0 cos (ω0t + ϕ) , (2.50)

where the eigenfrequency ω0 = √
k/m is introduced. This means that the particle

performs a harmonic vibrationwith the constant angular frequencyω0. The amplitude
x0 and the phase ϕ are determined by the initial conditions.

In quantummechanics (cf. Eq. (2.9)), the correspondingdifferential equation reads
as (

− �
2

2m

d2

dx2
+ 1

2
kx2

)
χn(x) = εnχn(x). (2.51)

If ω0 = √
k/m is set as in the classical case, the eigenfunctions of the quantum

harmonic oscillator are given by

χn(x) = 1√
2nn!

4

√
mω0

π �
Hn

(√
mω0

�
x

)
exp

(
−1

2

mω0

�
x2

)
(2.52)

with the Hermite polynomials

Hn(x) = (−1)n exp
(
x2

) dn

dxn
exp

(−x2
)
. (2.53)

The energy eigenvalues are

εn = �ω0

(
n + 1

2

)
, n ≥ 0. (2.54)

The quantum harmonic oscillator can only take discrete energy valueswith a constant
spacing of �ω0. Even the ground state has the non-vanishing energy ε0 = �ω0/2,
which is called zero-point energy.

Both types of harmonic oscillators are easily extended to the multidimensional
case, since the multidimensional harmonic potential

V (x) = 1

2
xTkx (2.55)

can always be written as a sum of one-dimensional harmonic potentials if the force
matrix k is diagonal. If the force matrix k is not diagonal, an appropriate transfor-
mation to the system of normal coordinates has to be applied beforehand. In such
a separable potential, the classical harmonic oscillator performs a harmonic vibra-
tion (2.50) along each normal coordinate. The total wave function of the quantum
harmonic oscillator is the product of the one-dimensional wave functions (2.52), and
its energy is the sum of the one-dimensional energy eigenvalues (2.54).
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2.4.2 Infrared Absorption

The nuclei in a molecule generally follow the laws of quantum mechanics, so they
can only take discrete eigenstates with certain energy values, as discussed for the
harmonic approximation to the potential energy surface in Sect. 2.4.1. A change from
one eigenstate to another one is possible by the absorption or emission of electro-
magnetic radiation, the energy of which is equal to the energy difference between
the two states. For the nuclear vibrations in a molecule, these energy differences are
typically in the range of 10−21 to 10−19 J, corresponding to the IR region of the elec-
tromagnetic spectrum. This leads to the experimental technique of IR spectroscopy:
a chemical substance is irradiated with IR radiation and its absorption is measured in
dependence of its energy. The resulting spectrum shows peaks at positions charac-
teristic for the molecular structure. For a harmonic oscillator, e.g., the peak is located
at the difference �

√
k/m between two subsequent states, so its position is directly

related to the force constant.
Beside the peak positions, also the intensities are an important property of IR

spectra. Their theoretical values can be derived [47] by applying Fermi’s golden rule
[48, 49]

Wi→f = 1

�2

∣∣〈vf |H′|vi
〉∣∣2 ρN (νfi), (2.56)

which gives the transition rate Wi→f for the transition from state |vi〉 to state
∣∣vf

〉
when

the perturbationH′ by electromagnetic radiation with a density of photon states per
frequency range ρN (ν) is applied to the system. Within the dipole approximation,
the perturbation is

〈
vf |H′|vi

〉 = − 〈
vf |μ̄(Q) · E|vi

〉 = − 〈
vf |μ̄(Q)|vi

〉 · E0 (2.57)

where μ̄(Q) is the molecular dipole moment depending on the mass-weighted nor-
mal coordinates Q (the overbar indicates the expectation value over the electronic
coordinates), andE is the electric field vector of the radiation, which is assumed to be
constant over the extent of the molecule with an average amplitude E0. For the evalu-
ation of the transition dipole matrix elements, the translational and rotational degrees
of freedom are separated and the classical average over all rotational states is taken.
Within the harmonic approximation, the harmonic oscillator wave functions (2.52)
are used for the remaining g = 3M −6 (g = 3M −5 in a linear molecule) vibrational
degrees of freedom. The molecular dipole moment is expanded in a Taylor series
around the minimum of the potential energy surface up to first order:

μ̄(Q) = μ̄0 +
g∑

k=1

(
∂μ̄(Q)

∂Qk

)
0

Qk . (2.58)

With all these assumptions, analytic expressions for the transition dipole matrix
elements can be found, and the integral absorption coefficient for the transition from
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the ground state to the first excited state in the harmonic oscillator corresponding to
mode k is given by [47]

Ak = 1

4π ε0

NA π

3c2

(
∂μ̄(Q)

∂Qk

)2

0

. (2.59)

This shows that a particular vibrational mode appears as a peak in the IR spectrum
of a molecule if the dipole moment changes along this mode.

Equation (2.59) can be used to estimate IR spectra by static quantum chemical
calculations within the harmonic approximation to the potential energy surface: a
geometry optimization is performed to find the minimum of the potential energy
surface, the Hessian matrix of the potential energy at this point is the force matrix in
(2.55), the force matrix is diagonalized to get the normal coordinates and the vibra-
tional frequencies, and the dipole moment derivatives along the normal coordinates
are calculated to obtain IR intensities according to (2.59).

For chiral molecules, the absorption is not the same if left and right circularly
polarized IR radiation are compared. The difference between these two cases is
measured in VCD spectroscopy. For a theoretical model of VCD intensities, the
interaction of the molecular magnetic moment m with the magnetic field of the
electromagnetic radiation has to be taken into account. In this way, it is found that
the VCD intensity for the transition from state |i〉 to state |f 〉 is proportional to the
rotational strength [50]

Ri→f = Im
(〈

i|μ̂|f 〉 〈f |m̂|i〉) , (2.60)

where μ̂ and m̂ are the electric dipole and magnetic dipole operators, respectively.
Themagnetic transitionmoment needs special care, since thematrix elements

〈
f |m̂|i〉

always vanish within the Born–Oppenheimer approximation. This can be circum-
vented bymagnetic field perturbation theory [51–54] or nuclear velocity perturbation
theory [55–61], allowing to calculate VCD spectra by static calculations within the
harmonic approximation.

2.4.3 Raman Scattering

Beside absorption and emission, the scattering of electromagnetic radiation is another
physical process that can change the quantum state of a molecule. When photons
interact with molecules, most of them are scattered elastically, so the scattered pho-
tons have the same energy as the incident photons and the molecular quantum state
remains unchanged (Rayleigh scattering). However, a small fraction of the photons
is scattered inelastically, meaning that the molecule switches to another quantum
state and the photon energy changes by the energy difference of the two molecular
states. This effect is named Raman scattering after Chandrasekhara Raman, who first
verified it experimentally [62], five years after the theoretical prediction by Adolf
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Smekal [63]. If the molecule switches to a state higher in energy and the photon
energy is reduced, the process is called Stokes Raman scattering. If the molecule
switches to a state lower in energy and the photon energy is increased, the process
is called anti-Stokes Raman scattering.

The effect of Raman scattering is used in Raman spectroscopy as an alternative
to IR spectroscopy for the investigation of molecular vibrations. Due to the low
efficiency of the Raman scattering process and the dependence of the scattering cross
section on the fourth power of the photon energy, it is common to use high intensity
lasers in the visible region of the electromagnetic spectrum for the irradiation of
the sample. The intensity of the scattered radiation is measured in dependence of
its energy, and the peak positions are recorded relative to the incident radiation, so
they relate to energy differences between vibrational states, and Raman spectra can
directly be compared to IR spectra.

Theoretical values for Raman intensities can be obtained from Placzek’s classical
theory of polarizability [64]. The electric field of the incident radiation induces a
dipole moment in the molecule, and within classical electrodynamics, the scattered
intensity is proportional to the square of the induced dipole moment. The expectation
value of the induced dipole moment μind

fi is determined quantum mechanically by
evaluation of the corresponding polarizability matrix elements,

〈
μind

fi

〉 = 〈
vf |ᾱ(Q)|vi

〉
E0, (2.61)

where it is assumed again that the electric field is constant over the extent of the
molecule with an average amplitude E0. The polarizability tensor ᾱ(Q) (the overbar
indicates the expectation value over the electronic coordinates) is expanded in a
Taylor series analogous to (2.58):

ᾱ(Q) = ᾱ0 +
g∑

k=1

(
∂ᾱ(Q)

∂Qk

)
0

Qk . (2.62)

This allows to derive analytic expressions for the Raman intensities of individual
vibrational modes [47]. An important parameter is, however, the scattering geometry
employed in the measurement setup. A common choice for theoretical investigations
is shown in Fig. 2.1: the incident light beam propagates along the y axis and is
polarized along the x axis. The detector for the scattered light is located on the z axis
and is equipped with a polarization filter to measure the x polarized intensity I‖ and
the y polarized intensity I⊥. If the molecule is fixed with respect to the laboratory
coordinate system, the differential Raman scattering cross sections for the Stokes
line of vibrational mode k in this setup are given by

I‖
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

(
∂ᾱxx(Q)

∂Qk

)2

0

1

1 − exp
(
− hcν̃k

kBT

) (2.63)
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Fig. 2.1 Measurement setup
for Raman spectra. The
incident light beam
propagates along the y axis
and is polarized along the x
axis. The light scattered
along the z axis is detected
with a polarization filter for
either x polarized or y
polarized light

and

I⊥
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

(
∂ᾱxy(Q)

∂Qk

)2

0

1

1 − exp
(
− hcν̃k

kBT

) , (2.64)

where ν̃in is the wavenumber of the incident radiation, ν̃k is the wavenumber corre-
sponding to vibrational mode k, and T is the temperature. This shows that a particular
vibrational mode appears as a peak in the Raman spectrum of a molecule if the polar-
izability changes along thismode. If themolecule is randomly orientatedwith respect
to the laboratory frame, the classical averages of the polarizability tensor components
have to be taken. This results in

I‖
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

45a2
k + 4γ 2

k

45

1

1 − exp
(
− hcν̃k

kBT

) (2.65)

and

I⊥
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

3γ 2
k

45

1

1 − exp
(
− hcν̃k

kBT

) (2.66)

with the isotropic polarizability derivative

ak = 1

3

((
∂ᾱxx(Q)

∂Qk

)
0

+
(

∂ᾱyy(Q)

∂Qk

)
0

+
(

∂ᾱzz(Q)

∂Qk

)
0

)
(2.67)

and the anisotropy

γ 2
k = 1

2

((
∂ᾱxx(Q)

∂Qk

)
0

−
(

∂ᾱyy(Q)

∂Qk

)
0

)2
+ 1

2

((
∂ᾱyy(Q)

∂Qk

)
0

−
(

∂ᾱzz(Q)

∂Qk

)
0

)2

+ 1

2

((
∂ᾱzz(Q)

∂Qk

)
0

−
(

∂ᾱxx(Q)

∂Qk

)
0

)2
+ 3

(
∂ᾱxy(Q)

∂Qk

)2

0
+ 3

(
∂ᾱyz(Q)

∂Qk

)2

0
+ 3

(
∂ᾱzx(Q)

∂Qk

)2

0
.

(2.68)
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An important quantity related to the scattering intensities is the depolarization ratio

ρk = I⊥
k

I‖
k

. (2.69)

For vibrations that transform as the totally symmetric irreducible representation of
the molecular point group, it can be lower than 0.75, but it is 0.75 in all other cases.

Analogous to IR spectra, these expressions can be used to estimate Raman spectra
by static quantum chemical calculations within the harmonic approximation. They
just require the calculation of the polarizability derivatives along the normal coordi-
nates.
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