
Introduction to First-Principle Simulation
of Molecular Systems

Eric Cancès

Abstract First-principle molecular simulation aims at computing the physical and
chemical properties of a molecule, or more generally of a material system, from the
fundamental laws of quantum mechanics. It is widely used in various application
fields ranging from quantum chemistry to materials science and molecular biology,
and is the source of many very interesting and challenging mathematical and
numerical problems. This chapter is an elementary introduction to this field,
covering some modeling, mathematical, and numerical aspects.

1 Introduction

This chapter contains lecture notes of a 4 h introductory course to first-principle
molecular simulation, delivered in June 2016 in Gijón, on the occasion of the
XVII Jacques-Louis Lions Spanish-French School on Numerical Simulation in
Physics and Engineering. First-principle molecular simulation aims at computing
the physical and chemical properties of a molecule, or more generally of a material
system, from the fundamental laws of quantum mechanics. Its power is that it can
be used in principle to compute any property of any molecule or materials from
its chemical formula. Its limitations are on the one hand that approximations are
required to deal with the curse of dimensionality (see Sect. 5), and on the other hand
that the computational costs of the approximate models increase fast with the size
and complexity of the simulated system.

First-principle molecular simulation is used by thousands of physicists, chemists,
biologists, materials scientists, and nanoscientists on a daily basis. Such simulations
are reported in over 20,000 scientific articles published in 2015, and are the matter of
about 15% of the high-performance computing (HPC) projects funded by PRACE
(Partnership for Advanced Computing in Europe) in 2016. The importance of
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molecular simulation for the applications was acknowledged by the 1998 and 2013
Nobel prizes in Chemistry [43, 45, 50, 64, 77].

From a mathematical point of view, first-principle molecular simulation is
an extremely rich field, which gives rise to a variety of interesting modeling,
mathematical analysis, and numerical problems of different natures, ranging from
easy to extremely difficult. The many mathematical models encountered in this
field involve linear and nonlinear partial differential equations (PDEs), optimiza-
tion problems, spectral theory, stochastic processes, high-performance computing,
machine learning, as well as some tools of differential geometry (Berry curvature),
non-commutative geometry (C*-algebras), or algebraic topology (Chern classes).
This is therefore a fantastic playground for mathematicians.

This chapter is organized as follows. In Sects. 2 and 3, we briefly present
two fundamental mathematical tools, namely optimization in Hilbert spaces, and
the spectral theory of self-adjoint operators, which are useful in many fields of
mathematics, and are heavily relied upon in Sects. 4–7. The reader familiar with
these tools can directly proceed to Sect. 4. In the latter, we introduce the (non-
relativistic) quantum many-problem and the N-body Schrödinger equation, and we
then apply this formalism to the special case of a molecular system in Sect. 5.
In Sect. 6, we present the Hartree-Fock model, which is the simplest variational
approximation of the central equation in first-principle molecular simulation, that is
the N-electron Schrödinger equation. As will be seen throughout these notes, (linear
and nonlinear) elliptic eigenvalue problems play a key role in this field. Section 7
is devoted to the numerical approximation of the eigenvalues of (linear) elliptic
eigenvalue problems.

2 Optimization in Hilbert Spaces

It is well-known that if J W R ! R is differentiable, the set of the local minimizers
of J is included in the set C D fx 2 R j J0.x/ D 0g of the critical points of J. The
latter set contains all the local minimizers and maximizers of J, as well as points
which are neither minimizers nor maximizers (see Fig. 1).

The purpose of this section is to extend this elementary result to unconstrained
and constrained optimization problems in finite or infinite dimensional Hilbert
spaces. Let us first recall some basic definitions.

In this section, V and W are two real Hilbert spaces. We denote by .�; �/V and
.�; �/W the scalar products on V and W respectively, by k�kV and k�kW the associated
norms, and by B.V;W/ the vector space of the continuous (also called bounded)
linear maps from V to W. Recall that B.V;W/, endowed with the norm defined by

kAkB.V;W/ WD sup
v2Vnf0g

kAvkW

kvkv ;
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Local maximizer

Global minimizer
Local minimizers

Critical points

Fig. 1 Critical points of a simple differentiable function J W R ! R

is a Banach space. The adjoint of a continuous linear map A 2 B.V;W/ is the
continuous linear map A� 2 B.W;V/ characterized by

8.v;w/ 2 V � W; .A�w; v/V D .w;Av/W :

The above definition makes sense by virtue of Riesz representation theorem [69,
Theorem II.4].

Definition 1 Let U be an open subset of V , F W U ! W, and v 2 U. The
function F is called differentiable at v, if there exists dvF 2 B.V;W/ such that
in the vicinity of v,

F.v C h/ D F.v/C dvF.h/C o.h/;

which means

8" > 0; 9� > 0 s.t. 8h 2 V s.t. khkV � �; we have v C h 2 U and

kF.v C h/� F.v/ � dvF.h/kW � "khkV :

If such a linear map dvF exists, it is unique. It is called the derivative of F at v.

Definition 2 The function F is called differentiable on U if F is differentiable at
each point of U. In this case, the mapping

dF W U ! B.V;W/

v 7! dvF

is called the derivative of F. The function F is called of class C1 on U if dF is
continuous.
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Definition 3 Let U be an open subset of V and J W U ! R a function
differentiable at v 2 U. The unique vector of V denoted by rJ.v/ and uniquely
defined1 by

8h 2 V; dvJ.h/ D .rJ.v/; h/V ;

is called the gradient of J at v.
Note that the above abstract definition of the gradient of agrees with the usual

one when V is the space Rd endowed with the Euclidean scalar product:

8h 2 R
d; J.x C h/ D J.x/C

dX

iD1

@J

@xi
.x/ hi C o.h/ D J.x/C rJ.x/ � h C o.h/;

where

rJ.x/ D

0

BBBBBBBB@

@J

@x1
.x/

�
�
�

@J

@xd
.x/

1

CCCCCCCCA

:

It is important to keep in mind the geometric interpretation of the gradient. Let
J W V ! R be a function of class C1, v 2 V and ˛ D J.v/. If rJ.v/ ¤ 0, then

• in the vicinity of v, the level set

C˛ WD fw 2 V jJ.w/ D ˛g

is a C1 hypersurface (a codimension one C1 manifold);
• the vector rJ.v/ is orthogonal to the affine hyperplane tangent to C˛ at v and

points toward the steepest ascent direction.

The first-order optimality condition for smooth unconstrained optimization
problems in Hilbert spaces, that is for problems consisting in minimizing some
differentiable real-valued function on an open subset of a Hilbert space, is a direct
extension of the basic result for the one-dimensional case recalled at the beginning
of the present section.

1Again by Riesz representation theorem.
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Theorem 4 (Optimality Condition for Unconstrained Optimization Problems)
Let J W V ! R be a differentiable function. The set of the local minima of J is
included in the set

C D fv 2 V j dvJ D 0g D fv 2 V j rJ.v/ D 0g
of the critical points of J.

The proof of this result is elementary and is left to the reader.
As a first example, consider V D R

2, endowed with the Euclidean scalar product,
and J W R2 ! R defined by

8x D
�

x1
x2

�
2 R

2; J.x/ D .x31 C x22/ e�.x21Cx22/: (1)

We have

rJ.x/ D
0

@ x1
�
3x1 � 2x31 � 2x22

�
e�.x21Cx22/

2x2
�
1 � x31 � x22

�
e�.x21Cx22/

1

A D 0 , .x1; x2/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.0; 0/;

.˙p3=2; 0/;

.0;˙1/;

.2=3;˙p19=27/:
We can clearly see the positions of these seven critical points on the level set

representation of the function J plotted on Fig. 2.
The second example is concerned with an infinite dimensional optimization

problem in the Sobolev space

V D H1.Rd/ D ˚
v 2 L2.Rd/ j rv 2 .L2.Rd//d

�
;

0

0
–1

–1
1 2 3–2

–2
–3

–3–4
–4–5 –5

Fig. 2 Graphical representations of the function J defined by (1): 3D plot (left) and level sets
(right)
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endowed with its usual scalar product

.u; v/H1 D
Z

Rd
uv C

Z

Rd
ru � rv;

and the quadratic functional J W H1.Rd/ ! R defined by

8v 2 H1.Rd/; J.v/ D 1

2

Z

Rd
jrvj2 C 1

2

Z

Rd
v2 �

Z

Rd
fv;

where f is a given function of L2.Rd/. To compute the derivative of J, we proceed
as follows. For v 2 V and h 2 V , we have

J.v C h/D 1

2

Z

Rd
jr.v C h/j2 C 1

2

Z

Rd
.v C h/2 �

Z

Rd
f .v C h/

D 1

2

Z

Rd
jrvj2C

Z

Rd
rv � rhC 1

2

Z

Rd
jrhj2C 1

2

Z

Rd
v2C

Z

Rd
vhC 1

2

Z

Rd
h2

�
Z

Rd
fv�

Z

Rd
fh

DJ.v/C
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh C 1

2

Z

Rd
jrhj2 C 1

2

Z

Rd
h2;

with
ˇ̌
ˇ̌
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh

ˇ̌
ˇ̌ � Cv;f khkH1 ;

and
ˇ̌
ˇ̌1
2

Z

Rd
jrhj2 C 1

2

Z

Rd
h2
ˇ̌
ˇ̌ D 1

2
khk2H1 D o.h/:

This allows one to conclude that J is differentiable at v and that

8h 2 V; dvJ.h/ D
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh:

By definition, the gradient of J at v is the function w 2 H1.Rd/ characterized by

8h 2 V D H1.R3/; .w; h/H1 D dvJ.h/ D
Z

R3

rv � rh C
Z

R3

vh �
Z

Rd
fh:

To compute w D rJ.v/, we therefore have to solve the linear elliptic problem

�
seek w 2 V such that
8h 2 V; a.w; h/ D L.h/;
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where

a.w; h/ D
Z

R3

rw �rhC
Z

R3

wh and L.h/ D
Z

R3

rv �rhC
Z

R3

vh�
Z

R3

fh;

or equivalently the PDE

seek w 2 H1.R3/ such that ��w C w D ��v C v � f in D 0.R3/;

where D 0.R3/ is the space of distributions in R
3. The integral kernel of the operator

.��C 1/�1 being the Green function G.x; y/ D e�jx�yj

4�jx�yj , we therefore have

rvJ.x/ D v.x/ �
Z

R3

e�jx�yj

4�jx � yj f .y/ dy:

Let us now turn to the more interesting case of equality constrained optimization
problems. Let V and W be real Hilbert spaces such that dim.W/ < 1, J W V ! R,
and F W V ! W. We consider the optimization problem

inf
v2K

J.v/ where K D fv 2 V j F.v/ D 0g :

The first-order optimality conditions for the above problem are easy to state when
the constraints F D 0 are qualified in the following sense.

Definition 5 (Qualification of the Constraints) The equality constraints F D 0

are called qualified at u 2 K if duF W V ! W is surjective.
We are now in position to write down the central result of this section.

Theorem 6 Let V and W be real Hilbert spaces such that dim.W/ < 1, J W V !
R, and F W V ! W. Let u 2 K be a local minimum of J on

K D fv 2 V j F.v/ D 0g :

Assume that

1. J is differentiable at u and F is C1 in the vicinity of u;
2. the equality constraint F D 0 is qualified at u.

Then, there exists a unique � 2 W such that

8h 2 V; duJ.h/C .�; duF.h//W D 0 or equivalently rJ.u/C duF�.�/ D 0;

where duF� is the adjoint of duF. The vector � 2 W is called the Lagrange multiplier
of the constraint F D 0.
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Fig. 3 Graphical illustration
of Theorem 6 for V D R

2 and
W D R. Some level sets of J
are represented in dashed
closed curves, while
K D F�1.0/ is represented
by a solid closed curve. The
five critical points of J on K
are represented by bullets

g(u)

K

u

E(u)

Assume that the constraints are qualified at any point of K. The solutions of the
Euler-Lagrange equations

8
<

:

seek .u; �/ 2 V � W such that
rJ.u/C duF�.�/ D 0;

F.u/ D 0;

(2)

are called the critical points of J on K. The set of critical points contains in particular
the local minimizers and the local maximizers of J on K.

Remark 7 If dim.V/ D d < 1 and dim.W/ D m < 1, then the above problem
consists of .d C m/ scalar equations with .d C m/ scalar unknowns.

A simple case when V D R
2 and W D R is depicted on Fig. 3. On K D F�1.0/ D

fv 2 V j F.v/ D 0g, the function J possesses

• two local minimizers, both global
• two local maximizers, among which the global maximizer
• one critical point which is neither a local minimizer not a local maximizer.

Sketch of the Proof of Theorem 6 Let u be a local minimizer of J on K D F�1.0/ D
fv 2 V j F.v/ D 0g and ˛ D J.u/. If the constraint F D 0 is qualified at u (i.e. if
duF W H ! K is surjective), then, in the vicinity of u, K is a C1 manifold and its
affine tangent subspace at u is

u C TuK D u C fh 2 V j duF.h/ D 0g D u C Ker.duF/:

Since u is a minimizer of J on K, the vector rJ.u/ must be orthogonal to TuK.
Indeed, for any h 2 TuK, there exists a C1 curve � W Œ�1; 1� ! V drawn on K such
that �.0/ D u and �0.0/ D h, and we have

0 � J.�.t//� J.u/ D J.u C th C o.t//� J.u/ D trJ.u/ � h C o.t/:

Therefore, rJ.u/ � h D 0. In addition, it holds

rJ.u/ 2 .TuK/? D .Ker.duF//? D Ran.duF�/ D Ran.duF�/ since dim.W/ < 1:
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Therefore, there exists � 2 W such that rJ.u/C duF�.�/ D 0. ut
Most often, Lagrange multipliers have a “physical” interpretation:

• in statistical mechanics [9], the equilibrium state of a chemical system interacting
with its environment is obtained by maximizing the entropy (which is equivalent
to minimizing minus the entropy) under the constraints that the energy, the
volume and the concentration of chemical species are given on average: the
corresponding Lagrange multipliers are respectively 1=T, P=T and �i=T, where
T is the temperature, P the pressure, and �i the chemical potential of species i;

• in fluid mechanics [25], the admissible dynamics of an incompressible fluid are
the critical points of some action under the constraint that the density of the fluid
remains constant (div .u/ D 0). The Lagrange multiplier of the incompressibility
constraint is the pressure field;

• in microeconomics [66], prices are Lagrange multipliers arising in the opti-
mization of utility functions under the constraints that some goods have limited
availability.

Let us conclude this section with a result on the differentiability of func-
tions defined by equality constrained optimization problems. Such a situation is
encountered in many fields of science and engineering, and is very useful in first-
principle molecular simulation to compute atomic forces (see Sects. 5 and 6) or
molecular properties such as polarizabilities or hyperpolarizabilities [40]. Consider
the function W W Rd ! R defined as

8x 2 R
d; W.x/ D inf fE.x; v/; v 2 V; F.x; v/ D 0g ; (3)

where E W Rd � V ! R, F W Rd � V ! W, V and W being real Hilbert spaces such
that dim.W/ < 1.

Assume that for each x 2 R
d, problem (3) has a unique minimizer v.x/, and that

the function x 7! v.x/ is regular. Then,

W.x/ D E.x; v.x// ) @W

@xi
.x/ D @E

@xi
.x; v.x//C @E

@v
.x; v.x//

�
@v

@xi
.x/
�
;

F.x; v.x// D 0 ) @F

@xi
.x; v.x//C @F

@v
.x; v.x//

�
@v

@xi
.x/
�

D 0:

On the other hand, the Euler-Lagrange equations associated with the constrained
optimization problem (3) give

8h 2 V;
@E

@v
.x; v.x// .h/C

�
@F

@v
.x; v.x//.h/; �.x/

�

W

D 0:
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Therefore

@W

@xi
.x/ D @E

@xi
.x; v.x//C

�
@F

@xi
.x; v.x//; �.x/

�
: (4)

This formula is very important for practical purposes: it implies that it is possible
to compute the derivatives of W at x without computing the derivatives of the
minimizer v.x/. Only the state itself v.x/ and the Lagrange multiplier �.x/ are
necessary, and those quantities can be obtained by solving the Euler-Lagrange
equations.

3 Introduction to the Spectral Theory of Self-adjoint
Operators

The purpose of this section is to transpose to the case of self-adjoint operators on
infinite-dimensional separable complex Hilbert spaces, the following well-known
results on Hermitian2 matrices:

1. the spectrum �.A/ D ˚
z 2 C j .z � A/ 2 C

d�d non-invertible
�

of a Hermitian
matrix A 2 C

d�d consists of the set

�p.A/ D ˚
z 2 C j .z � A/ 2 C

d�d non-injective
�

D ˚
z 2 C j 9x 2 C

d n f0g s.t. Ax D zx
�

of the eigenvalues of A, and �.A/ � R;
2. any Hermitian matrix A 2 C

d�d can be diagonalized in an orthonormal basis:

A D
dX

iD1
�ixix�

i ; �i 2 �.A/ � R; xi 2 C
d; x�

i xj D ıij; Axi D �ixi:

(5)
Here �1 � �2 � � � � � �d denote the d eigenvalues of A (counting multiplicities),
and .x1; � � � ; xd/ an orthonormal basis of associated eigenvectors;

3. there exists a functional calculus for Hermitian matrices: for any Hermitian
matrix A, and any f W R ! C, the matrix

f .A/ WD
dX

iD1
f .�i/xix�

i (6)

2Recall that a matrix A 2 C
d�d is called Hermitian if A� D A (i.e. Aij D Aji, 81 � i; j � d). If

z 2 C and A 2 C
d�d , we use the shorthand notation z � A to denote the matrix zId � A, where Id is

the rank-d identity matrix. We proceed similarly with linear operators on complex Hilbert spaces.
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is independent of the choice of the spectral decomposition of A, that is on the
choice of the basis .x1; � � � ; xd/ of eigenvectors. This definition agrees with the

usual definition of f .A/ for polynomial functions f . Indeed, if f .�/ D
nX

kD0
˛k�

k,

then

f .A/ D
dX

iD1
f .�i/xix�

i D
dX

iD1

 
nX

kD0
˛k�

k
i

!
xix

�
i D

nX

kD0
˛k

 
dX

iD1
�k

i xix
�
i

!
D

nX

kD0
˛kAk:

The strength of formula (6) is that it makes sense for any function f W R ! C,
while the definition based on a polynomial expansion of f only works for
polynomial functions, and in the limit, for continuous functions by virtue of
Weierstrass approximation theorem.

In this section, H denotes a separable complex Hilbert space, h�j�i its scalar
product, and k � k the associated norm.

3.1 Linear Operators on Hilbert Spaces

Let us first review some basic properties of bounded linear operators on Hilbert
spaces.

Definition 8 (Bounded Linear Operator) A bounded operator on H is a linear
map A W H ! H such that

kAk WD sup
u2H nf0g

kAuk
kuk < 1:

In other words, a bounded operator on H is an element of B.H / WD
B.H ;H /.

Theorem 9 The set B.H / of bounded operators on H is a non-commutative
algebra and k � k is a norm on the algebra B.H /:

8.A;B/ 2 B.H / � B.H /; kABk � kAk kBk: (7)

Endowed with the norm k � k, B.H / is a Banach algebra.
The proof that k � k is a norm on B.H / is elementary, as well as the one of (7).

Regarding the completeness of B.H / for the resulting topology, we refer e.g. to
[69, Theorem III.2].

Note that, in view of Riesz representation theorem, a bounded linear operator B
is uniquely defined by the values of the sesquilinear form H � H 3 .u; v/ 7!
hujBvi 2 C. This is the reason why the following definition makes sense.
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Definition 10 (Adjoint of a Bounded Linear Operator) Let A 2 B.H /. The
operator A� 2 B.H / defined by

8.u; v/ 2 H � H ; hujA�vi D hAujvi; (8)

is called the adjoint of A. The operator A is called self-adjoint if A� D A.
Endowed with its norm k � k and the 
 operation, B.H / is in fact a C�-

algebra [5]:

.A�/� D A; kA�k D kAk; and kA�Ak D kAk2:

Many linear operators arising in quantum mechanics are not bounded operators
on some Hilbert space. This is the case for instance of the kinetic energy operator,
formally defined as T D � „2

2m�. We therefore have to introduce the concept of
(non-necessarily bounded) linear operators on Hilbert spaces.

Definition 11 (Linear Operator) A linear operator on H is a linear map A W
D.A/ ! H , where D.A/ is a subspace of H called the domain of A.

Note that bounded linear operators are special linear operators, for which D.A/ D
H and A W H ! H is continuous.

Definition 12 (Extensions of Operators) Let A1 and A2 be operators on H . A2 is
called an extension of A1 if D.A1/ � D.A2/ and if 8u 2 D.A1/, A2u D A1u.

Definition 13 (Unbounded Linear Operator) An operator A on H which does
not possess a bounded extension is called an unbounded operator on H .

A possible way to extend the notion of bounded self-adjoint operator to the case
of unbounded operators is the following.

Definition 14 (Symmetric Operator) A linear operator A on H with dense
domain D.A/ is called symmetric if

8.u; v/ 2 D.A/ � D.A/; hAujvi D hujAvi: (9)

Criterion (9) is simple and usually quite easy to check, but, unfortunately,
symmetric operators are not very interesting. Only self-adjoint operators—which we
are going to introduce—represent physical observables and have nice mathematical
properties reminiscent of those of Hermitian matrices (real spectrum, spectral
decomposition, functional calculus).

Definition 15 (Adjoint of a Linear Operator with Dense Domain) Let A be a
linear operator on H with dense domain D.A/, and D.A�/ the vector space defined
as

D.A�/ D fv 2 H j 9wv 2 H s.t. 8u 2 D.A/; hAujvi D hujwvig :
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The linear operator A� on H , with domain D.A�/, defined by

8v 2 D.A�/; A�v D wv;

(if wv exists, it is unique since D.A/ is dense) is called the adjoint of A.
Note that this definition agrees with definition (8) for bounded operators.

Definition 16 (Self-adjoint Operator) A linear operator A with dense domain is
called self-adjoint if A� D A (that is if A symmetric and D.A�/ D D.A/).

Any self-adjoint operator is symmetric, but the converse is not true. As mentioned
previously, only self-adjoint operators have interesting mathematical properties.
While it is usually easy to check that a given operator is symmetric, proving self-
adjointness is not trivial and often relies on deep theorems of linear operator theory.
We will not elaborate on these technicalities in these lectures notes and refer the
reader to the literature [67]. We will only provide a short list of self-adjoint operators
commonly encountered in first-principle molecular simulation:

• free-particle Hamiltonian (or kinetic energy operator)

H D L2.Rd/; D.T/ D H2.Rd/; 8u 2 D.T/; Tu D � „2
2m
�u;

where m > 0 is the mass of the particle, and „ the reduced Planck constant;
• Schrödinger operators with confining potential V 2 C0.Rd/ s.t. V.x/ �!

jxj!C1
C1

H D L2.Rd/; D.H/ D
�

u 2 L2.Rd/ j � „2
2m
�u C Vu 2 L2.Rd/




8u 2 D.H/; Hu D � „2
2m
�u C Vu I

• Schödinger operators with uniformly locally L2 potentials in dimension 3, i.e.

V 2 L2unif.R
3/ WD

(
u 2 L2loc.R

3/ j sup
x2R3

Z

xCŒ0;1�3
juj2 < 1

)
;

H D L2.Rd/; D.H/ D H2.R3/; 8u 2 D.H/; Hu D � „2
2m
�u C Vu:

3.2 Spectrum

The following definition is a natural extension of the definition of the spectrum of a
square matrix A 2 C

d�d.
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Definition 17 (Spectrum of a Linear Operator) Let A be a closed3 linear operator
on H . Then

• the set 
.A/ D fz 2 C j .z � A/ W D.A/ ! H invertibleg is called the resolvent
set of A;

• the set �.A/ D C n 
.A/ is called the spectrum of A.

As for Hermitian matrices, the spectrum of a self-adjoint operator A is always a
subset of R. On the other hand, it does not only contains the set of the eigenvalues
of A, that is the set of the complex numbers z such that .z � A/ W D.A/ ! H is
injective. Indeed, even in the case when D.A/ D H , the linear map .z � A/ can be
injective and not surjective since H is infinite dimensional.

Theorem 18 (Spectrum and Resolvent) Let A be a closed linear operator on H .
Then

• the resolvent set 
.A/ is an open subset of C and the function


.A/ 3 z 7! Rz.A/ WD .z � A/�1 2 B.H /

is analytic. It is called the resolvent of A. It holds

8.z; z0/ 2 
.A/ � 
.A/; Rz.A/ � Rz0.A/ D .z0 � z/Rz.A/Rz0.A/:

The above equality is called the resolvent identity;
• the spectrum �.A/ of A is a closed subset of C.

Theorem 19 (Spectrum of a Self-adjoint Operator) Let A be a self-adjoint
operator on H . Then A is closed, �.A/ � R, and it holds

�.A/ D �p.A/[ �c.A/;

where �p.A/ and �c.A/ are respectively

• the point spectrum of A

�p.A/ D fz 2 C j .z � A/ W D.A/ ! H non-injectiveg D feigenvalues of Ag I

• the continuous spectrum of A

�c.A/ D fz 2 C j .z � A/ W D.A/ ! H injective but non surjectiveg:

The mathematical decomposition of the spectrum of a self-adjoint operator into
point and continuous spectra has an interesting physical counterpart, which will

3The operator A is called closed if its graph � .A/ WD f.u;Au/; u 2 D.A/g is a closed subspace of
H � H .
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be presented in the next section. The following alternative decomposition of the
spectrum is fundamental both for theoretical and numerical purposes, as will be
seen in Sect. 7.

Definition 20 Let A be a closed linear operator on H . Then �.A/ D �d.A/[�ess.A/
where

�d.A/ D ˚
isolated eigenvalues of A with finite multiplicities

�
(discrete spectrum)I

�ess.A/ D �.A/ n �d.A/ (essential spectrum):

The essential spectrum therefore consists of

• the continuous spectrum;
• the eigenvalues of infinite multiplicities;
• the eigenvalues embedded in the continuous spectrum.

Theorem 21 (Weyl) Let A be a self-adjoint operator on H and B a symmetric
operator on H with domain D.A/ such that B.A C i/�1 2 L .H / is compact. Then
A C B, with D.A C B/ D D.A/ is self-adjoint and �ess.A C B/ D �ess.A/.

Weyl theorem allows in particular to prove the following result, which covers
many interesting cases arising in first-principle molecular simulation.

Corollary 22 Let ˛ > 0 and V 2 L2.R3/C L1
" .R

3/, where

L2.R3/C L1
" .R

3/ WD ˚
V 2 L2loc.R

3/ j 8" > 0; 9.V2;V1/ 2 L2.R3/ � L1.R3/

such that V D V2 C V1; kV1kL1 � "
�
:

Then the operator H D �˛� C V is self-adjoint on L2.R3/ with domain H2.R3/

and �ess.H/ D Œ0;C1/.
We conclude this brief introduction to spectral theory, with the famous min-max

principle, which gives a variational characterization of the discrete eigenvalues (with
their multiplicities) located below the bottom of the essential spectrum of a bounded
below self-adjoint operator.

Theorem 23 (Min-Max Principle, Courant-Fisher Formula) Let A be a
bounded below self-adjoint operator on H , Q.A/ its form domain,4 and a its
associated quadratic form. For each j 2 N

�, we define

�j.A/ D inf
Wj2Ej

sup
w2Wjnf0g

a.w;w/

kwk2 ;

4Since A is bounded below, there exists C 2 R s.t. .u; v/Q.A/ WD hujAviCChujvi is a scalar product
on D.A/. The Cauchy closure of D.A/ for the associated norm is a Hilbert space, independent of
C, called the form domain of A. The quadratic form associated with A is the unique continuous
extension of .u; v/ 7! hujAvi to Q.A/.
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where Ej is the set of the j-dimensional subspaces of Q.A/. Then,

• if A has at least j eigenvalues lower than min �ess.A/ (taking multiplicities into
account), then �j.A/ is the smallest jth eigenvalue of A;

• otherwise, �j.A/ D min �ess.A/.

4 The Quantum Many-Body Problem

According to the first principles of quantum mechanics, an isolated quantum system
is described by

• a state space H (a complex Hilbert space);
• a Hamiltonian H (a self-adjoint operator on H );
• other observables (i.e. self-adjoint operators on H ) allowing one to connect

theory and experiments.

The state5 of the system at time t is completely characterized by a wavefunction
�.t/ 2 H such that k�.t/kH D 1. Its dynamics is governed by the time-dependent
Schrödinger equation

i„d�

dt
.t/ D H�.t/; (10)

where we recall that „ is the reduced Planck constant. The steady states are by
definition states of the form �.t/ D f .t/ , where f .t/ 2 C and  2 H . Inserting
the Ansatz �.t/ D f .t/ in (10) and separating the variables, we obtain that
the function f is just a physically irrelevant phase factor6: f .t/ D e�iEt=„, with
E 2 R is homogenous to an energy. The function  satisfies the time-independent
Schrödinger equation

H D E ; k kH D 1:

The energy E is therefore an eigenvalue of the Hamiltonian H and  an associated
normalized eigenvector.

5We limit ourselves to pure states in these lectures notes.
6It may seem weird that steady states explicitly depend on time. This apparent paradox is due to
the fact that a state is in fact an element of the projective space .H n f0g/=C�, so that f .t/ and
 actually represent the exact same state.
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4.1 One-Particle Systems

The above formalism is completely general, and valid for any isolated quantum
system. Let us now deal with specific systems of physical interest, starting with a
very simple one: a spinless particle of mass m subjected to an external potential Vext.
In this case, the state space is H D L2.R3;C/ and the Hamiltonian

H D � „2
2m
�C Vext;

which, under assumptions on Vext (see some examples in Sect. 3.1), is a self-adjoint
operator on H . In the so-called position representation, the wavefunction has a
clear physical meaning: j�.t; r/j2 is the probability density of observing the particle
at point r at time t. Note that it follows from the normalization condition that

Z

R3

j�.t; r/j2 dr D k�.t/k2H D 1:

The time-dependent Schrödinger equation then takes the form of a partial differen-
tial equation (PDE):

i„@�
@t
.t; r/ D � „2

2m
��.t; r/C Vext.r/�.t; r/:

Likewise, the time-independent Schrödinger equation reads in this case as an elliptic
linear eigenvalue problem:

� „2
2m
� .r/C Vext.r/ .r/ D E .r/:

The spectrum of H strongly depends on Vext (see Sect. 3.2). The spectrum of the
free Hamiltonian (Vext D 0) is purely continuous and equal to RC. For confining
potentials, the spectrum of H is purely discrete and consists of an increasing
sequence of real eigenvalues of finite multiplicities going to C1. For one-particle
or mean-field Hamiltonians usually encountered in first-principle models of finite
molecular systems, the potential Vext vanishes at infinity, �ess.H/ D RC, and
�d.H/ can be either empty (no bound states), or consist of a finite or infinite
increasing sequence of negative eigenvalues of finite multiplicities. If H has negative
eigenvalues, the lowest one is called the ground state energy. If Vext is not too
singular (see [68, Theorem XIII.46] for details), it is non-degenerate. The higher
eigenvalues are called excited state energies. If H has infinitely many negative
eigenvalues, then they necessarily accumulate at 0, the bottom of the essential
spectrum. This is the case for instance for the Hamiltonian of the hydrogen atom:
the discrete spectrum of the Hamiltonian

H D � „2
2me

� e2

4�"0jrj
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Scattering states (continuous spectrum)
Ground state

Excited states

Fig. 4 Typical spectrum of one-particle Hamiltonians encountered in first-principle simulation of
finite molecular systems

Fig. 5 Emission spectrum of atomic hydrogen in the visible range

on L2.R3/ is the Rydberg series .En/n2N� , where En D � ERyd

n2
, and where

ERyd WD me

2

�
e2

4�"0„
�2

is the Rydberg energy. Here me is the electron mass, e the elementary charge, and
"0 the dielectric permittivity of the vacuum (Fig. 4).

When this model is coupled to a quantized electromagnetic field, transitions
between electronic energy levels may occur. The electron of the hydrogen atom
may jump from a higher energy level Em to a lower one En (m > n) by emitting a
photon of energy h	m!n D Em � En (h D 2�„ is the Planck constant and 	m!n the
frequency of the photon), or, conversely, absorb a photon of energy h	m!n and jump
from the energy level En to the energy level Em. As a consequence, the transitions
between electronic levels are quantized. This is the reason why the emission and
absorption spectra of molecular gases consist of rays (see Fig. 5). In the case of the
hydrogen atom, four rays lay in the visible spectrum (wavelengths between 400 and
700 nm). They are part of the Balmer series (transitions between Em and E2) and
can be easily measured experimentally:

�
exp
6!2 D 410:17 nm; �exp

5!2 D 434:05 nm; �exp
4!2 D 486:13 nm; �exp

3!2 D 656:28 nm:

Using the relation �m!n D c=	m!n, where c is the speed of light, the wavelengths
of the electronic transitions are given by

�m!n D 8�„c

ERyd

�
1

n2
� 1

m2

��1
;
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which leads to the following numerical results

�6!2 D 410:07 nm; �5!2 D 433:94 nm; �4!2 D 486:01 nm; �3!2 D 656:11 nm:

The slight discrepancies between these results and the experimental ones are due to
the fact that the motion of the nucleus and the relativistic effects have not been taken
into account. Replacing the electron mass me with the reduced mass memp=.me C
mp/, where mp is the proton mass, and adding to the non-relativistic Hamiltonian the
so-called Breit terms [30], experimental values can be recovered with a very high
relative accuracy of the order of 10�8.

The above discussion provides a physical interpretation of the discrete spectrum
of the Hamiltonian of the hydrogen atom. Let us now turn to the continuous
spectrum.

Theorem 24 (RAGE Theorem, Ruelle [70], Amrein and Georgescu [3],
Enss [33]) Let H be a locally compact7 self-adjoint operator on L2.Rd/. Let

Hp D Span feigenvectors of Hg and Hc D H ?
p :

Let �BR be the characteristic function of the ball BR D ˚
r 2 R

d j jrj < R
�
. Then,

�
�0 2 Hp

� , 8" > 0; 9R > 0; 8t � 0;
���.1 � �BR/e

�itH=„�0
���
2

L2
� "I

.�0 2 Hc/ , 8R > 0; lim
T!C1

1

T

Z T

0

����BR e�itH=„�0
���
2

L2
dt D 0:

The physical meaning of this result is the following: if the particle is in the
quantum state �0 at t D 0, then its state at time t is the solution at time t
of the time-dependent Schrödinger equation (10) with initial datum �0, that is
 .t/ D e�itH=„�0. In view of the physical interpretation of the wavefunction in
the position representation,

����BR e�itH=„�0
���
2

L2
D
Z

BR

j .t; r/j2 dr

7An operator A on L2.Rd/ such that 
.A/ ¤ ; is called locally compact if for any bounded set
B, the operator �B.z � A/�1 is a compact operator on L2.Rd/ for some (and then all by virtue of
the resolvent formula) z 2 
.A/. Here, �B is the characteristic function of B; in the expression
�B.z � A/�1, �B should be understood as the multiplication operator by the bounded function �B,
which is a bounded self-adjoint operator on H . The Hamiltonian of the hydrogen atom is a locally
compact self-adjoint operator on L2.R3/, and for this operator, dim.Hp/ D dim.Hc/ D 1.
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is the probability that the particle lays inside the ball BR at time t, while

���.1 � �BR/e
�itH=„�0

���
2

L2
D
Z

R3nBR

j .t; r/j2 dr

is the probability that the particle lays outside the ball BR at time t.
The subspace Hp can therefore be seen as a set of bound states, and the subspace

Hc as a set of scattering states:

• if �0 2 Hp, then the particle essentially remains in the vicinity of the nucleus at
all times;

• if �0 2 Hc, then the particle scatters away from the nucleus. Note that in the case
of the hydrogen atom, which has no singular continuous spectrum [68, Section

XIII.10], the convergence is stronger:
���BR e�itH=„�0

��2
L2

goes to zero when t goes
to infinity.

4.2 Many-Particle Systems

The state space H of a quantum system consisting of two spinless particles is
always a closed subspace of L2.R3;C/ ˝ L2.R3;C/ � L2.R6;C/, and, in the
position representation, if the system is in the pure state �.t/ at time t, then
j�.t; r1; r2/j2 is the probability density of observing at time t particle 1 at r1 and
particle 2 at r2. The precise structure of H depends of the natures of the two
particles8:

• for two different particles: H D L2.R3;C/˝ L2.R3;C/;
• for two identical bosons (e.g. two carbon 12 nuclei), H D L2.R3;C/ _

L2.R3;C/, where _ denotes the symmetrized tensor product. Otherwise stated,
the wavefunction � must satisfy the symmetry condition

�.t; r2; r1/ D �.t; r1; r2/I

• for two identical fermions (e.g. two electrons), H D L2.R3;C/ ^ L2.R3;C/,
where ^ denotes the antisymmetrized tensor product. In other words, the
wavefunction � must satisfy the antisymmetry condition, also called Pauli
principle,

�.t; r2; r1/ D ��.t; r1; r2/:

8For simplicity, we omit the spin variables. See Remark 25 below for more details.
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Note that for two identical particles, whatever they are bosons or fermions, the
particle density is given by


.t; r/ D
Z

R3

j�.t; r; r2/j2 dr2 C
Z

R3

j�.t; r1; r/j2 dr1 D 2

Z

R3

j�.t; r; r2/j2 dr2:

Consider now N quantum particles of masses m1; � � � ;mN subjected to an external
potential Vext.r/ and pair-interaction potentials Wij.ri; rj/. The state space H then
is a closed subspace of L2.R3;C/˝ � � � ˝ L2.R3;C/ � L2.R3N ;C/, whose precise
structure depends on the natures of the N particles. In the case of N identical bosons,
H D _NL2.R3;C/, while in the case of N identical fermions, H D ^NL2.R3;C/.
Likewise, if the state of the system at time t is characterized by the wavefunction
�.t/ 2 H in the position representation, then j�.t; r1; � � � ; rN/j2 is the probability
density of observing at time t particle 1 at r1, particle 2 at r2, etc. The time-
independent Schrödinger equation of such a system reads
0

@�
NX

iD1

„2
2mi

�ri C
NX

iD1
Vext.ri/C

X

1�i<j�N

Wij.ri; rj/

1

A�.r1; � � � ; rN/ D E�.r1; � � � ; rN/

and therefore has the structure of a 3N-dimensional linear elliptic eigenvalue
problem.

In general, such an equation is extremely difficult to solve. However, in the
special case of N non-interacting identical particles of mass m subjected to an
external potential Vext.r/, the Hamiltonian becomes separable

H D �
NX

iD1

„2
2m
�ri C

NX

iD1
Vext.ri/ D

NX

iD1
hri

and all the bound states of H can be easily computed from the bound states of the
three-dimensional Schrödinger operator h:

8
ˆ̂̂
<

ˆ̂̂
:

h�i D "i�i; "1 � "2 � � � � ;Z

R3

�i�j D ıij;

h D � „2
2m
�C Vext:

In particular, if h is bounded below and has at least one (for bosons) or N (for
fermions) eigenvalues below the bottom of the essential spectrum, then H has a
ground state:

• the bosonic ground state energy is E0 D N"1 and the ground state wavefunction
and density are given by

 .r1; � � � ; rN/ D
NY

iD1
�1.ri/ and 
.r/ D Nj�1.r/j2I
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• the fermionic ground state energy is E0 D PN
iD1 "i, a ground state wavefunction

is the Slater determinant

 .r1; � � � ; rN/ D 1p
NŠ

det.�i.rj// D 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.r1/ �1.r2/ � � � �1.rN/

�2.r1/ �2.r2/ � � � �2.rN/

� � �
� � � � � �
� � �

�N.r1/ �N.r2/ � � � �N.rN/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

;

and the corresponding density is 
.r/ D
NX

iD1
j�i.r/j2.

5 First-Principle Molecular Simulation

First-principle molecular simulation is based on a simple observation:

• any molecule is a set of M nuclei and N electrons in Coulomb interaction;
• the state space H is the subset of L2.R3.MCN/;C/ defined by the suitable

symmetry and antisymmetry constraints for identical bosons and fermions;
• the Hamiltonian of the molecule is

H D �
MX

kD1

1

2mk
�Rk �

NX

iD1

1

2
�ri

�
NX

iD1

MX

kD1

zk

jri � Rkj C
X

1�i<j�N

1

jri � rjj C
X

1�k<l�M

zkzl

jRk � Rlj : (11)

Here, we have used atomic units, that is the set of units such that

„ D 1; me D 1; e D 1; 4�"0 D 1:

Remarkably, the Hamiltonian (11) is free of empirical parameters specific to the
molecular system, and it can be deduced from the mere chemical formula of the
latter. Likewise, any physical observable associated with the system and can be
written down from the first-principles of quantum mechanics. Quoting Dirac [28],

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
solved.
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The model described above is extremely accurate, at least for light atoms, for
which relativistic effects can be neglected. As a matter of example, let us consider
the computation of the ionization energy of the helium atom. The ionization process
is the reaction

He C h	 ! HeC C e�;

in which a helium atom absorbs a photon; if the energy of the photon is larger than
a threshold value �E D h�	, one of the two electrons of the atom is kicked out of
its bound state and escapes to infinity. The threshold frequency�	 can be measured
experimentally with high accuracy. Two different experiments on helium 4 (the most
common isotope of helium, whose nucleus contains four nucleons: two protons and
two neutrons) performed in 1997 and 1998 respectively lead to the following results:

�	exp:1 ' 5;945;204;238MHz [32] and �	exp:2 ' 5;945;204;356 MHz [11]:

From a theoretical point of view, �	 can be computed as �	 D �E=h, where
�E D min.�.HHeC// � min.�.HHe//, where �.HHeC/ and �.HHe/ are the spectra
of the operators

HHe D � 1

2m
�R � 1

2
�r1 � 1

2
�r2 � 2

jr1 � Rj � 2

jr2 � Rj C 1

jr1 � r2j ;

and

HHeC D � 1

2m
�R � 1

2
�r1 � 2

jr1 � Rj ;

respectively (see Fig. 6), where m denotes the mass of the Helium 4 nucleus. It can
be shown that min.�.HHeC// D �2. Using translational and rotational invariance,
the quantity min.�.HHe// can be obtained by solving a three-dimensional linear
elliptic eigenvalue problem. A careful calculation reported in [47] gives:�Ecalc:1 D
5;945;262;288 MHz. Taking relativistic corrections (Breit terms) into account
gives �Ecalc:2 D 5;945;204;223MHz, to be compared with the experimental

Δ E=h ν − E (e ) = h Δν

Ground state energy of He

Ground state energy of He +

c
−

Fig. 6 Spectra of the Hamiltonians HHe and HHeC
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values reported above. The agreement between theory and experiment is therefore
exceptionally good.

Let us now turn to the more complicated case of a polyatomic system. As a
matter of example, we will deal with a water molecule H2O, which consists of M D
3 atomic nuclei (1 oxygen 16 nucleus, and 2 hydrogen 1 nuclei9) and N D 10

electrons in Coulomb interaction. Such a system can be fully described by the laws
of quantum mechanics (many-body Schrödinger equation) and statistical physics.
The only parameters of these models are

• a few fundamental constants of physics

„ D 1; me D 1; e D 1; "0 D .4�/�1;

c ' 137:0359996287515 : : : ; kB D 3:16681537 : : :� 10�6;

where c is the speed of light and kB the Boltzmann constant (all the values are in
atomic units);

• the charges and masses of the hydrogen 1 and oxygen 16 nuclei

zH D 1; zO D 8; mH D 1836:152701 : : :; mO D 29156:944123 : : :

We then observe that the ratio me=mn (electron mass/nucleus mass) is very small,
even for the lightest nucleus (hydrogen 1). Following Born and Oppenheimer, this
suggests to use this ratio as a small parameter to approximate the many-body
Schrödinger equation. The procedure described in the sequel can be justified to some
point with mathematically rigorous arguments; we refer the interested reader to the
literature cited below. The so-called Born-Oppenheimer method can be decomposed
in two steps:

• step 1: definition of the potential energy surfaces;
• step 2: analysis of the potential energy surfaces.

Let us first detail the first step. Assuming that the M nuclei are clamped point-
like particles located at positions R1; � � � ;RM , Rk 2 R

3, the electronic problem for
the nuclear configuration fRkg1�k�M consists in computing the bound states of the
N electrons in the electrostatic potential

Vne
fRkg.r/ D �

MX

kD1

zk

jr � Rkj

9These are the most common isotopes of oxygen and hydrogen.
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generated by the nuclei. For the water molecule, we have: M D 3, N D 10, z1 D 8,
z2 D 1, z3 D 1. The electronic bound states are obtained by solving the time-
independent Schrödinger equation

0

@�1
2

NX

iD1
�ri C

NX

iD1
Vne

fRkg.ri/C
X

1�i<j�N

1

jri � rjj

1

A .r1; � � � ; rN/ D E  .r1; � � � ; rN/:

Since electrons are fermions, the wavefunction  must satisfy the antisymmetry
condition

8p 2 SN ;  .rp.1/; � � � ; rp.N// D ".p/ .r1; � � � ; rN/; (Pauli principle):

The electronic density associated with  is


 .r/ D N
Z

R3.N�1/

j .r; r2; � � � ; rN/j2 dr2 � � � drN ; (12)

and the normalization condition k kL2 D 1 ensures that

Z

R3


 .r/ dr D N:

Remark 25 For simplicity, we omit here the spin variables. In fact, electrons are
particles of spin s D 1=2, so that the one-electron state space is not L2.R3;C/ but

L2.R3;C2sC1/ D L2.R3;C2/ � L2.R3 � fj"i; j#ig ;C/;

where j "i and j #i respectively denote the spin-up and spin-down states. An N-
electron wavefunction therefore is a vector of HN D VN L2.R3 � fj"i; j#ig ;C/,
that is a complex-valued function of the variables .r1; �1I � � � ; rN ; �N/ 2�
R
3 � fj"i; j#ig�N

satisfying the antisymmetry condition

8p 2 SN ;  .rp.1/; �p.1/I � � � I rp.N/; �p.N// D ".p/ .r1; �1I � � � I rN ; �N/:

In this framework, j .r1; �1I � � � I rN ; �N/j2 represents the probability density of
observing electron 1 at r1 in the spin state �1, electron 2 at r2 in the spin state
�2, etc.

The structure of the spectrum of the electronic Hamiltonian

HfRkg
N D �

NX

iD1

1

2
�ri �

NX

iD1
Vne

fRkg.ri/C
X

1�i<j�N

1

jri � rjj
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{R }k

Excited statesGround state

Essential spectrum
Ε

Σ0 {R }k

Fig. 7 Graphical illustration of Zhislin’s theorem

on HN D VN L2.R3;C/ with domain HN \ H2.R3N/, which can be proved to be
self-adjoint, is given by Zhislin’s theorem (illustrated by Fig. 7).

Theorem 26 (Zhislin [79]) If N �
MX

kD1
zk (neutral or positively charged sys-

tem), then

�d.H
fRkg
N / D

n
EfRkg

n

o

n2N and �ess.H
fRkg
N / D Œ˙

fRkg
N ;C1/;

where .EfRkg
n /n2N is a nondecreasing sequence of negative eigenvalues10 converging

to˙ fRkg, the bottom of the essential spectrum of HfRkg
N . Besides˙ fRkg

N D 0 if N D 1

and˙ fRkg < 0 if N � 1.
It can also be shown (HVZ theorem [42, 76, 78]) that˙ fRkg

N D min �.HfRkg
N�1 /.

The lowest eigenvalue EfRkg
0 is called the ground state energy of HfRkg

N , while the

eigenvalues EfRkg
n > EfRkg

0 are called the excited state energies of HfRkg
N . For each

n 2 N, the function R
3M 3 .R1; � � � ;RM/ 7! EfRkg

n 2 R is continuous. This can
be proved using e.g. the minmax principle (Theorem 23), or Kato’s perturbation
theory of self-adjoint operators [44]. Using the latter approach, it can be shown in
addition that this function is C1 at .R1; � � � ;RM/ whenever EfRkg

n is a nondegenerate

eigenvalue of HfRkg
N .

The potential energy surfaces are then defined as the real-valued functions Wn

on R
3M , n 2 N, defined by

Wn.R1; � � � ;RM/ D EfRkg
n C

X

1�k<l�M

zkzl

jRk � Rlj : (13)

The function W0 is called the ground state potential energy surface (PES), the
function W1 the first excited state PES, etc. (Fig. 8).

10Eigenvalues are counted with their multiplicities, so that EfRkg

0 � EfRkg

1 � EfRkg

2 � � � , with a
priori large inequalities.
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Fig. 8 Sketch of the
potential energy surfaces Wn

W0

σ(H  )N

{Rk}

W1

W2

Let us now turn to the second step, that is the analysis of the potential energy
surfaces. Usually,11 the Born-Oppenheimer approximation is invoked at this point.
This approximation is based on the fact that

1. the ratio me=mn (electron mass/nucleus mass) is small, which allows one to
somehow decouple the electronic and nuclear dynamics by means of an adiabatic
limit [61]. At low enough temperature (usually from 0 K to room temperature
or more), it can be considered for most systems that the wave function of the
molecular system at time t can be approximated by a wave function of the form

�BO.tI R1; � � � ;RMI r1; � � � ; rN/ D ˚.tI R1; � � � ;RM/ 
.R1;��� ;RM/.r1; � � � ; rN/;

where  .R1;��� ;RM /.r1; � � � ; rN/ is a normalized ground state of HfRkg
N , that is a L2-

normalized eigenfunction of the electronic Hamiltonian HfRkg
N associated with

the ground state eigenvalue EfRkg
0 , assumed here to be non-degenerate;

2. nuclei are heavy particles, so that their dynamics can be well-approximated by
the classical Newton equation

mk
d2Rk

dt2
.t/ D �rRk W0.R1.t/; � � � ;RM.t//; 1 � k � M: (14)

This equation is obtained from the Schrödinger equation on ˚.tI R1; � � � ;RM/

resulting from the adiabatic approximation, by letting the reduced Planck
constant „ go to zero (semiclassical limit, see [1, 2] and references therein).

Equation (14), together with the definition (13) for n D 0 of the ground state PES,
are the fundamental equations of first-principle molecular dynamics. According to
this model, the nuclei behave as point-like classical particles interacting via the
effective M-body potential W0.

11Breakdowns of the adiabatic approximation are studied in [14, 22, 35].
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Fig. 9 Within the
Born-Oppenheimer
approximation, the global
minimizers of W0 correspond
to the most stable
configurations of the system

W0

σ(H  )N

{Rk}

Fig. 10 Equilibrium
configuration of the water
molecule (experimental
values)

104.45°

OH

H

95.84 pm

It follows from (14) that the local minima of W0 correspond to equilibrium
configurations of the system. In particular, global minima of W0 correspond to the
most stable configurations of the molecular system under consideration (Fig. 9).
The water molecule has a single global minimum (up to translations and rotations),
corresponding to the configuration depicted on Fig. 10.

The limiting step for integrating numerically the first-principle molecular dynam-
ics Eq. (14) is the computation of the effective forces �rRk W0.R1; � � � ;RM/

experienced by the nuclei. The nucleus-nucleus interaction is explicit and easy to
deal with. The main issue is the computation of �rRk EfR1;��� ;RMg

0 . Since EfR1;��� ;RM g
0

is the ground state eigenvalue of HfRkg
N , il can be obtained by solving the constrained

optimization problem

EfR1;��� ;RMg
0 D inf

(
h jHfRkg

N j i;  2
N̂

L2.R3/ \ H1.R3N/; k kL2 D 1

)
:

(15)
This problem has the same structure as problem (3), which implies that it is not
necessary to compute the first derivatives of the minimizers with respect to the
Rk’s to compute �rRk EfR1;��� ;RMg

0 . In addition, since the constraint k kL2 D 1 does
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Schrodinger
equation 

electronic 

Wavefunction methods 

Density functional theory
(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

Fig. 11 Classification of the main electronic structure methods

not depend explicitly on the Rk’s, the gradients �rRk EfR1;��� ;RMg
0 can be computed

explicitly from the minimizer  fRkg
0 . A simple calculation shows that

�rRk W0.R1; � � � ;RM/ D zk

Z

R3



fRkg
0 .r/

r � Rk

jr � Rkj3 dr C
X

l¤k

zkzl
Rk � Rl

jRk � Rlj3 ;

where the ground state density



fRkg
0 .r/ D N

Z

R3.N�1/

j fRkg
0 .r; r2; � � � ; rN/j2 dr2 � � � rN ;

is the electronic density associated with the ground state wavefunction  fRkg
0 . Since

the electronic Schrödinger equation is a 3N-dimensional PDE, it is not possible to
solve it accurately for systems containing more than a couple of electrons. Several
approximation have been proposed along the past 80 years, which can be classified
in three main groups (see Fig. 11). Describing all these methods is out of the scope of
this introductory lecture notes. We will only focus on the simplest of them, namely
the Hartree-Fock method, which will be presented in the next section. We refer the
reader to [40] for a comprehensive monograph on wavefunction methods, to [29, 34]
for reference textbooks on DFT, to [7] for a several relevant contributions, including
a mathematical introduction to quantum Monte Carlo methods, and to [4, 17–19,
24, 26, 37–39, 48, 51, 53–60, 71, 74] and reference therein for various mathematical
and numerical works on these models.

Let us mention that the various avatars of the Kohn-Sham model [10, 46, 62, 63,
73, 75] are the most widely used models in the present time, since it is generally
considered as the best compromise between computational efficiency and accuracy.
The mathematical structure of the Kohn-Sham LDA model is quite similar to the
one of the Hartree-Fock model we are now going to discuss.
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6 Hartree-Fock Approximation

In this section, we assume that the nuclear configuration fRkg is given, and we focus
on the calculation of the electronic ground state energy EfRkg

0 and of the electronic

components �rRk EfRkg
0 of the atomic forces. In order to simplify the notation, we

set E0 WD EfRkg
0 , 
0 WD 


fRkg
0 ,

HN WD �1
2

NX

iD1
�ri C

NX

iD1
Vne.ri/C

X

1�i<j�N

1

jri � rjj and Vne.r/ WD �
MX

kD1

zk

jr � Rkj :

Recall that the operator HN is self-adjoint on HN D
N̂

L2.R3/ with domain

D.HN/ D HN \ H2.R3N/ and form domain Q.HN/ D HN \ H1.R3N/, and that
the ground state energy can be obtained as

E0 D inf fh jHN j i;  2 WNg ;

where

WN D
(
 2

N̂

L2.R3/\ H1.R3N/; k kL2 D 1

)
:

The Hartree-Fock approximation is a variational approximation consisting in
minimizing the exact energy functional h jHN j i on the subset of WN defined as

�
 ˚; ˚ D .�1; � � � ; �N/ 2 .H1.R3//N ;

Z

R3

�i�j D ıij




where

 ˚.r1; � � � ; rN/ WD 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.r1/ �1.r2/ � � � �1.rN/

�2.r1/ �2.r2/ � � � �2.rN/

� � �
� � �
� � �

�N.r1/ �N.r2/ � � � �N.rN/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

is the Slater determinant constructed with the functions �1; � � � ; �N .
Rewriting h ˚ jHN j ˚ i as a function of ˚ D .�1; � � � ; �N/, we obtain after some

technical manipulations that the Hartree-Fock ground state energy is

EHF
0 D inf

�
EHF.˚/; ˚ D .�1; � � � ; �N/ 2 .H1.R3//N ;

Z

R3

�i�j D ıij



;
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where the Hartree-Fock energy functional is defined by

EHF.˚/ D 1

2

NX

iD1

Z

R3

jr�ij2 C
Z

R3


˚Vne

C1

2

Z

R3

Z

R3


˚ .r/ 
˚.r0/
jr � r0j dr dr0

„ ƒ‚ …
Coulomb term

� 1

2

Z

R3

Z

R3

j�˚.r; r0/j2
jr � r0j dr dr0

„ ƒ‚ …
exchange term

;

with

Vne.r/ D �
MX

kD1

zk

jr � Rkj ; �˚ .r; r0/ D
NX

iD1
�i.r/ �i.r0/; 
˚ .r/ D

NX

iD1
j�i.r/j2:

Since the Hartree-Fock approximation is variational, we have E0 � EHF
0 . The

function 
˚ is the electronic density associated with ˚ . It is easy to check that

˚ D 
 ˚ , where 
 ˚ is the density associated with the N-body wavefunction  ˚
by (12). The function �˚ is called the (one-electron) density matrix associated with
˚ . It holds

�˚.r; r0/ D N
Z

R3.N�1/

 ˚.r; r2; � � � ; rN/ ˚.r0; r2; � � � ; rN/ dr2 � � � drN :

The Hartree-Fock model enjoys a gauge invariance property: if ˚ 2 .H1.R3//N

satisfies the L2-orthonormality constraints, then so does ˚U for all U 2 O.N/ and
E.˚U/ D E.˚/. This is due to the fact that  ˚U D det.U/ ˚ . This property is
used in the proof of the fifth statement of the following theorem.

Theorem 27 Assume that N � Z WD PM
kD1 zk (neutral or positively charged

molecular system). Then

1. the Hartree-Fock model has a ground state ˚0 D .�01 ; � � � ; �0N/ [56];
2. Euler-Lagrange equations: there exists � 2 R

N�N symmetric such that

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

˚0 D .�01 ; � � � ; �0N/ 2 .H1.R3//N

�1
2
��0i C Vne�0i C �


˚0 ? j � j�1��0i �
Z

R3

�˚0.�; r0/
j � �r0j �0i .r

0/ dr0 D
NX

jD1
�ij�

0
j

Z

R3

�0i �
0
j D ıijI

3. elliptic regularity: �0i 2 H2.R3/ \ C0;1.R3/ \ C1.R3 n fRkg/;
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4. Fock operator:

F˚0 WD �1
2
�C Vne C 
˚0 ? j � j�1 C K˚0;

where

.K˚0�/.r/ D �
Z

R3

�˚0.r; r
0/

jr � r0j �.r0/ dr0;

defines a self-adjoint operator on L2.R3/ with domain H2.R3/ and form domain
H1.R3/. It is bounded below and �ess.H0/ D Œ0;C1/;

5. Hartree-Fock equations: up to replacing˚0 by˚0U for some U 2 O.N/, it holds

F˚0�
0
i D "i�

0
i ;

Z

R3

�0i �
0
j D ıij; "1 � � � � � "N < 0I

6. Aufbau principle: "1 � "2 � � � � � "N are the lowest N eigenvalues of F˚0 ,
counting multiplicities;

7. no unfilled-shell property [8]: "N < "NC1 where "NC1 D �NC1.F˚0/ is the
.N C 1/st eigenvalue of F˚0 (counting multiplicities) if F˚0 has at least .N C 1/

negative eigenvalues and 0 otherwise.

The Hartree-Fock model can be solved numerically by means of a Galerkin
approximation. Let X D Span.�1; � � � ; �Nb/ be a subspace of H1.R3/ of finite
dimension Nb. An upper bound EHF

0;X of the exact Hartree-Fock ground state
energy EHF

0 , which is itself an upper bound of the exact ground state energy E0
of the electronic Hamiltonian, is obtained by minimizing the Hartree-Fock energy
functional on the sets of orbitals in X D Span.�1; � � � ; �Nb/ satisfying the L2

orthonormality conditions:

E0 � EHF
0 � EHF

0;X D inf

�
EHF.˚/; ˚ D .�1; � � � ; �N/ 2 X N ;

Z

R3

�i�j D ıij



:

Denoting by C D ŒC�i�1���Nn; 1�i�N the matrix collecting the coefficients of the
orbitals �1; � � � ; �N in the basis .�1; � � � ; �N�b/,

�i.r/ D
NbX

�D1
C�i��.r/;

the discretized Hartree-Fock model can be written as

EHF
0;X D inf

˚
EHF.CCT/; C 2 R

Nb�N ; CTSC D IN
�
;
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where

EHF.D/ D Tr.hD/C1

2
Tr.G.D/D/; ŒG.D/��	 D

X

��

Œ.�	j��/� .��j�	/� D��;

and where the entries of the overlap matrix S, the core Hamiltonian matrix h, and
the two-electron integrals .��j�	/ are defined as

S�	 D
Z

R3

���	; h�	 D 1

2

Z

R3

r�� �r�	�
MX

kD1
zk

Z

R3

��.r/�	.r/
jr � Rkj dr; (16)

and

.�	j��/ D
Z

R3

Z

R3

��.r/�	.r/��.r0/��.r0/
jr � r0j dr dr0: (17)

A fundamental observation made by Boys in the 1950s [15] is that if the ��’s are
gaussian-polynomial functions, i.e. functions of the form

��.r/ D p.r/ exp.�˛jrj2/;

where p is a polynomial function and ˛ a positive real number, then all the integrals
in (16) and (17) can be computed analytically.

In practice, most calculations in quantum chemistry are performed using gaussian
atomic orbital basis sets, which are built as follows:

1. a collection
n
�A
�

o

1���nA

of nA linearly independent linear combinations of

gaussian polynomials are associated with each chemical element A of the
periodic table: these are the atomic orbitals of A;

2. to perform a calculation on a given chemical system, one builds a basis
˚
��
�

by
putting together all the atomic orbitals related to all the atoms of the system.

This approach is reminiscent of the reduced basis method used in other fields of
science and engineering (see e.g. [41, 65] and references therein). For instance, still
in the case of a water molecule H2O, we have

˚
��
� D ˚

�H
1 .r � RH1 /; � � � ; �H

nH
.r � RH1 /I �H

1 .r � RH2 /; � � � ; �H
nH
.r � RH2 /I

�O
1 .r � RO/; � � � ; �O

nO
.r � RO/

�
;

where RH1 , RH2 and RO denote the positions in R
3 of the hydrogen nuclei and of

the oxygen nucleus respectively.
To better understand the geometric nature of the discretized Hartree-Fock model,

let us assume that the family .��/1���Nb is orthonormal. The discretized Hartree-
Fock model can be written in two different ways:
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• molecular orbital formulation

EHF
0;X D inf

˚
EHF.CCT /; C 2 C

�
; (18)

where

EHF.D/ D Tr.hD/C 1

2
Tr.G.D/D/;

and where

C D ˚
C 2 R

Nb�N ; CT C D IN
�

is a so-called Stiefel manifold;
• density matrix formulation

EHF
0;X D inf

˚
EHF.D/; D 2 P

�
; (19)

where

P D ˚
D 2 R

Nb�Nb ; D D DT ; Tr.D/ D N; D2 D D
�

is the set of rank-N orthogonal projectors of RNb�Nb and is called a Grassmann
manifold.

The equivalence between (18) and (19) comes from the fact that when C varies in
the set C , D D CCT spans P .

The Euler-Lagrange equations associated with (18) can be transformed as in the
fifth statement of Theorem 27 by a unitary transform to diagonalize the Lagrange
multiplier � of the orthonormality constraints (� is an N �N real symmetric matrix).
We thus obtain the discretized Hartree-Fock equations (for the general case of a non-
orthogonal basis)

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

D D
NX

iD1
˚i˚

T
i ;

F D h C G.D/;

F˚i D "iS˚i; "1 � � � � � "N ; ˚T
i ˚j D ıij;

(20)

where "1 � � � � � "N are the lowest N generalized eigenvalues (counting
multiplicities) of the generalized eigenvalue problem

F˚ D "S˚;
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and where

D 2 R
Nb�Nb
sym ; F 2 R

Nb�Nb
sym ; ˚i 2 R

Nb ;

respectively denote the discretizations of the density matrix, of the Fock operator,
of the Hartree-Fock orbitals in the discretization basis .�1; � � � ; �Nb/.

Solutions to the discretized Hartree-Fock problem can be obtained

• either by solving a constrained optimization problem (on a Stiefel or a Grassmann
manifold [31, 49]);

• or by solving the above equations by means of a self-consistent field (SCF)
algorithm (see [16] and references therein).

The design of more efficient methods, in particular for very large molecular systems,
is still an active field of research.

Since the Hartree-Fock ground state energy for the nuclear configuration fRkg is
obtained by solving a constrained optimization problem depending parametrically
on the fRkg, it also falls into the scope of formulas (3) and (4). A simple calculation
shows that the effective forces in the discretized Hartree-Fock model are given by

�rRk WHF
0 .R1; � � � ;RM/ D �Tr .rRk hD/� Tr .rRk SDE/C

X

l¤k

zkzl
Rk � Rl

jRk � Rlj3 ;

where D is the ground state density of the discretized Hartree-Fock model for the
nuclear configuration fRkg obtained by solving (20) and DE is the energy weighted
ground state density matrix defined by

DE D
NX

iD1
"i˚i˚

T
i ;

where the "i’s and the ˚i’s are solutions to (20).

7 Numerical Approximation of Eigenvalues of Self-adjoint
Operators

Let A be a self-adjoint operator on a Hilbert space H with domain D.A/ and form
domain Q.A/, and a the associated quadratic form. The typical example we have in
mind is the three-dimensional Schrödinger operator

H D L2.R3/; D.A/ D H2.R3/; A D �1
2
�C V; V 2 L2unif.R

3/:
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The quadratic form associated with A is defined on the form domain Q.A/ D H1.R3/

by

8.u; v/ 2 Q.A/ � Q.A/; a.u; v/ D 1

2

Z

R3

ru � rv C
Z

R3

Vuv:

Let .Vn/n2N be a sequence of finite-dimensional subspaces of Q.A/ such that

8v 2 Q.A/; inf
vn2Vn

kv � vnkQ.A/ �!
n!1 0:

For each n, we denote by AjVn the self-adjoint operator on Vn defined by

8.un; vn/ 2 Vn � Vn; .AjVnun; vn/H D a.un; vn/:

The spectrum of AjVn is obtained by solving the variational problem

8
<

:

search .un; �n/ 2 Vn � R such that
8vn 2 Vn; a.un; vn/ D �n.un; vn/H
kunkH D 1

The question we would like to investigate in this section is the following:
does �.AjVn/, the spectrum of AjVn , converge to �.A/, the spectrum of A? Quite
surprisingly, the answer to this question is no, in general.

Recall that, according to Theorem 23, if A is bounded below, then the real number

�j.A/ D inf
Wj2Ej

sup
w2Wjnf0g

a.w;w/

kwk2 ;

where Ej is the set of the d-dimensional subspaces of Q.A/, is equal to

• the smallest jth eigenvalue of A if A has at least j eigenvalues lower than
min �ess.A/ (taking multiplicities into account);

• min �ess.A/ otherwise.

From this result, we can infer the following classical results (see e.g. [6, 23]).

Theorem 28 Let A be a bounded below self-adjoint operator on H . Then

8j 2 N
�; �j.AjVn/ #

n!1
�j.A/:

Theorem 29 Let A be a bounded below self-adjoint operator on H , � <

min �ess.A/ a discrete eigenvalue of A of multiplicity m, and " > 0 such that

Œ� � "; �C "�\ �.A/ D f�g :
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Let P WD 1f�g.A/ and Pn WD 1Œ��"=2;�C"=2�.AjVn/. Then, for n large enough,
Rank.Pn/ D m and there exists C 2 RC such that

k.P � Pn/PkB.H ;Q.A// � Ck.1 �˘Q.A/
Vn

/PkB.H ;Q.A//;

k.P � Pn/PnkB.H ;Q.A// � Ck.1 �˘
Q.A/
Vn

/PkB.H ;Q.A//;

max
�n2�.AjVn /\Œ��";�C"�

j�n � �j � Ck.1 �˘
Q.A/
Vn

/Pk2B.H ;Q.A//;

where˘Q.A/
Vn

is the orthogonal projection of Q.A/ on Vn for the Q.A/-scalar product.
As previously mentioned, the spectrum of the discretized operator AjVn does not,

in general, converge to the spectrum of the original operator A. However, everything
goes well if A is a bounded operator with compact resolvent.12

Theorem 30 Assume that A is bounded below with compact resolvent. Then

lim
n!1 �.AjVn/ D �.A/:

More precisely,

• the spectrum of A is purely discrete and the sequence .�j/j2N� of the eigenvalues
of A (counted with their multiplicities) forms a non-decreasing sequence going
to C1;

• let �n
1 � �n

2 � � � � � �n
Nn

denote the eigenvalues of AjVn (counted with their
multiplicities). Then

8j 2 N
�; �n

j � �j for all n 2 N such that Nn � j; and lim
n!1�n

j D �j:

Example 31 Let H D L2.Rd/ and V 2 C0.Rd/ such that lim
jxj!C1

V.x/ D C1
(confining potential). Consider the operator A defined as

D.A/ D
�

u 2 L2.Rd/ j � 1

2
�u C Vu 2 L2.Rd/



;

and

8u 2 D.A/; Au D �1
2
�u C Vu:

12The operator A has a compact resolvent if, for some z 2 
.A/ (and therefore for all z 2 
.A/ by
virtue of the resolvent formula), z � A, considered as a bounded operator on H , is compact.
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Then A is bounded below and has a compact resolvent. The spectrum of A therefore
is an increasing sequence of eigenvalues of finite multiplicities going to C1, and
Theorem 23 can be applied.

If more general situations, two different problems may occur. First, it may happen
that

�.A/ ª lim inf
n!1 �.AjVn/:

This is referred to as the lack of approximation problem. It may also happen that

lim sup
n!1

�.AjVn/ ª �.A/:

This is called the spectral pollution problem.

Example 32 (Lack of Approximation Problem) Let H D L2per..0; 2�/;C/, D.A/ D
H1

per..0; 2�/;C/ and A D �i
d

dx
. The operator A is the momentum operator in one-

dimensional quantum mechanics. Let .ek/k2Z be the basis of the Fourier modes
(ek.x/ D .2�/�1=2eikx), and

Vn D Ce0;n ˚ CQe0;n ˚ Span fek; 1 � jkj � n � 1g ;

where

e0;n WD cos.1=n/e0 C sin.1=n/p
2

en C sin.1=n/p
2

e�n; Qe0;n D 1p
2

en � 1p
2

e�n:

Then

�.A/ D Z and lim
n!1 �.AjVn/ D Z

�;

which reveals a lack of approximation problem: the eigenvalue 0 of the operator A
is missed by the numerical approximation.

The lack of approximation and spectral solutions problems are investigated from
a mathematical point of view in the references [13, 27, 52, 72], from which we have
extracted some important general results.

First, there is no risk of lack of approximation whenever the operator is
semibounded, that is bounded from above, or bounded from below.

Theorem 33 If A is semibounded, then �.A/ � lim inf
n!1 �.AjVn/.

The following nice example of spectral pollution is due to Szegö.

Example 34 Let Vper 2 L1
per..0; 2�/;R/, H D L2per..0; 2�/;C/,

.Au/.x/ D Vper.x/u.x/:
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Vn

0 1
Graph of the function Vper Spectrum of A Spectrum of A|

Fig. 12 A case of spectral pollution (Example 34)

Let Vn D Span fek; jkj � ng, where .ek/k2Z is the Fourier basis. Then (see Fig. 12),

�.A/ D ess-range.Vper/ and lim
n0!1

[

n�n0

�.AjVn/ D CH.�.A//;

where CH.B/ denotes the convex hull of the set B.

Definition 35 A real number � … �.A/ such that there exists a sequence .Vn/n2N of
finite-dimensional subspaces of Q.A/ such that

• 8v 2 Q.A/; inf
vn2Vn

kv � vnkQ.A/ �!
n!1 0

• � 2 lim
n!1�.AjVn/

is called a spurious eigenvalue of A. The set of the spurious eigenvalues of A is
denoted by Spu.A/.

Theorem 36 It holds

Spu.A/ D CH

�
�.A/

R n �d.A/

�
n �.A/:

Let us illustrate the spectral pollution problem and the above theorem on the
more physical case of a perturbed periodic Schrödinger operators on L2.Rd/. Such a
situation notably arises in the modeling of crystals with point defects within density
functional theory (DFT). Consider a periodic lattice R of Rd, and the operator

H D �1
2
�C Vper C W; (21)

with

Vper 2 L1.Rd/R-periodic and W 2 L1.Rd/; lim
jxj!1

W.x/ D 0:

The operator H can be seen as a perturbation of the periodic Schrödinger operator

H0 D �1
2
�C Vper:
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Essential spectrum

Discrete spectrum

Spu(H)

Fig. 13 Sketch of the spectrum of the perturbed periodic Schrödinger operator H defined by (21)
(top) and of the set of the spurious eigenvalues of H (bottom) given by Theorem 36

It can be shown that the multiplication operator by the function W is H0-compact.
It therefore follows from Weyl’s theorem (Theorem 21) that �ess.H/ D �ess.H0/.
Besides, the spectrum of H0 can be studied using Bloch’s theory (see e.g. [68,
Section XIII.16]). It turns out that H0 is bounded below and that its spectrum
is purely continuous (i.e. H0 has no eigenvalues), and consists of bands: it is a
countable union of possibly overlapping closed bounded intervals of R.

In view of the previous results, there is no risk of lack of approximation since H is
bounded below (cf. Theorem 33), but spectral pollution may be a problem (Fig. 13).

Quoting Boulton and Levitin [12], the natural approach of truncating R
d to a

large compact domain and applying the projection method to the corresponding
Dirichlet problem is prone to spectral pollution. Consider for instance the case when
d D 2, R D 2�Z2 (so that a unit cell is Œ��; �/2),

Vper.x; y/ D cos.x/C 3 sin.2.x C y/C 1/;

W.x; y/ D �.x C 2/2.2y � 1/2 exp.�.x2 C y2//;

and the approximation spaces

Vn D ˚
vn 2 C0.R2/ j Supp.vn/ � ˝n; 8Kn 2 T 1

n ; vnjKn 2 P1

�
;

where the computational domain is defined as ˝n D Œ�Ln=2;Ln=2� with Ln ! 1,
and the mesh T 1

n is a uniform R-periodic mesh of R2 with 2n2 triangles per unit
cell (see Fig. 14).

Numerical simulations using Bloch theory show that there is a gap
.�0:341; 0:016/ between the first and second bands of the unperturbed operator
H0

per D ��C Vper, and that H D H0
per C W has exactly one eigenvalue � ' �0:105

in this gap. The spectral pollution problem can be clearly observed on Fig. 15. The
eigenfunction associated with the approximation of the eigenvalue � in the circle on
Fig. 15 is plotted on Fig. 16. The one associated with the spurious approximation in
the square on Fig. 15 is plotted on Fig. 17. We can see that the spurious eigenfunction
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hn Ln

Computational domain

Unit cell

Fig. 14 Computation domain ˝n and mesh T 1

n

Fig. 15 Spectrum of HjVn in the gap for 40 � n � 100

seems to concentrate on the boundary of the simulation domain. A mathematical
explanation of this phenomenon is given in [21] (see also [20]). These calculations
were performed with FreeFEM++ [36].
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IsoValue
–0.390637
–0.352804
–0.31497
–0.277136
–0.239302
–0.201468
–0.163634
–0.125801
–0.0879667
–0.0501329
–0.0122991

  0.0255348
  0.0633686
  0.101202
  0.139036
  0.17687
  0.214704
  0.252538
  0.290372
  0.328205

Fig. 16 Profile of a “true” eigenvector

Let us summarize the main messages of this section:

• variational approximations work well if the operator A is bounded below and has
a purely discrete spectrum;

• if the operator is bounded below (resp. bounded above), variational approxima-
tions allow one to approximate the eigenvalues which are below the bottom (resp.
above the top) of the essential spectrum;

• if the operator is bounded neither from below nor from above, variational
approximations can lead to lack of approximation (some eigenvalues can be
missed);

• variational approximation can give rise to spectral pollution in the “gaps” of the
essential spectrum;

• in the latter two cases, the approximation spaces must be chosen very carefully.
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Iso Value
–0.246176
–0.222618
–0.19906
–0.175502
–0.151944
–0.128386
–0.104828
–0.0812696
–0.0577116
–0.0341536
–0.0105956
0.0129624
0.0365204
0.0600784
0.0836364
0.107194
0.130752
0.15431
0.177868
0.201426

Fig. 17 Profile of a “spurious” eigenvector
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