Chapter 1
VISCERAL: Evaluation-as-a-Service

for Medical Imaging

Allan Hanbury and Henning Miiller

Abstract Systematic evaluation has had a strong impact on many data analysis
domains, for example, TREC and CLEF in information retrieval, ImageCLEF in
image retrieval, and many challenges in conferences such as MICCAI for medical
imaging and ICPR for pattern recognition. With Kaggle, a platform for machine
learning challenges has also had a significant success in crowdsourcing solutions.
This shows the importance to systematically evaluate algorithms and that the impact
is far larger than simply evaluating a single system. Many of these challenges also
showed the limits of the commonly used paradigm to prepare a data collection and
tasks, distribute these and then evaluate the participants’ submissions. Extremely
large datasets are cumbersome to download, while shipping hard disks containing
the data becomes impractical. Confidential data can often not be shared, for example
medical data, and also data from company repositories. Real-time data will never be
available via static data collections as the data change over time and data preparation
often takes much time. The Evaluation-as-a-Service (EaaS) paradigm tries to find
solutions for many of these problems and has been applied in the VISCERAL project.
In EaaS, the data are not moved but remain on a central infrastructure. In the case of
VISCERAL, all data were made available in a cloud environment. Participants were
provided with virtual machines on which to install their algorithms. Only a small
part of the data, the training data, was visible to participants. The major part of the
data, the test data, was only accessible to the organizers who ran the algorithms in
the participants’ virtual machines on the test data to obtain impartial performance
measures.
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1.1 Introduction

Scientific progress can usually be measured via clear and systematic experiments
(Lord Kelvin: “If you can not measure it, you can not improve it.””). In the past,
scientific benchmarks, such as TREC (Text REtrieval Conference) and CLEF (Con-
ference and Labs of the Evaluation Forum), have given a platform for such scientific
comparisons and have had a significant impact [15, 17, 18]. Commercial platforms
such as Kaggle' have also shown that there is a market for a comparison of techniques
based on real problems that companies can propose.

Much data are available and can potentially be exploited for generating new
knowledge based on data, including notably medical imaging, where extremely large
amounts have been produced for many years [1]. Still, constraints are often that data
need to be manually anonymized or can only be used in restricted settings, which
does not work well for very large datasets.

Several of the problems encountered in traditional benchmarking that often relies
on the paradigm of creating a dataset and sending it to participants can be summarized
in the following points:

e very large datasets can only be distributed with very much effort, usually by
sending hard disks through the post;

e confidential data are extremely hard to distribute, and they can usually only be
used in a closed environment, in a hospital or inside the company firewalls;

e quickly changing datasets cannot be used for benchmarking if it is necessary to
package the data and send them around.

To answer these problems and challenges, the VISCERAL project proposed a change
in the way that benchmarking has been organized by proposing to keep the data in a
central space and move the algorithms to the data [3, 10].

Other benchmarks equally realized these difficulties in running benchmarks and
came up with a variety of propositions for running benchmarks without fixed data
packages that are distributed. These ideas were discussed in a workshop organized
around this topic and named Evaluation-as-a-Service (EaaS) [6]. Based on the dis-
cussions at the workshop, a detailed White Paper was written [4], which outlines
the roles involved in this process and also the benefits that researchers, funding
organizations and companies can gain from such a shift in scientific evaluations.

This chapter highlights the role of VISCERAL in the EaaS area, in which the
benchmarks were organized and how the benchmarks helped advance this field and
gain concrete experience with running scientific evaluations in the cloud.

Thitp://www.kaggle.com.
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1.2 VISCERAL Benchmarks

The VISCERAL project organized a series of medical imaging Benchmarks described
below:

1.2.1 Anatomy Benchmarks

A set of medical imaging data in which organs are manually annotated is provided
to the participants. The data contain segmentations of several different anatomical
structures and positions of landmarks in different image modalities, e.g. CT and MRIL.
Participants in the Anatomy Benchmarks have the task of submitting software that
automatically segments the organs for which manual segmentations are provided, or
detecting the locations of the landmarks. After submission, this software is tested
on images which are inaccessible to the participants. Three rounds of the Anatomy
Benchmark have been organized, and this Benchmark is continuing beyond the end
of the VISCERAL project. These benchmarks are described in more detail in Chap.
7. In Chaps. 9—12 are reports of some participants in the Anatomy Benchmarks.

1.2.2 Detection Benchmark

A set of medical imaging data that contains various lesions manually annotated in
anatomical regions such as the bones, liver, brain, lung or lymph nodes is distributed
to the participants. Participants in the Detection Benchmark have the task of sub-
mitting software that will automatically detect these lesions. The software is tested
on detecting lesions on images that the participants have not seen. The Benchmark
data and ground truth continue to be available beyond the end of the VISCERAL
project as the Detection2 Benchmark. As this was the most challenging benchmark
that was organized, no solutions were submitted. There is therefore no chapter on this
benchmark included, although the data and ground truth continue to be available.

1.2.3 Retrieval Benchmark

One of the challenges of medical information retrieval is similar case retrieval in the
medical domain based on multimodal data, where cases refer to data about specific
patients (used in an anonymized form), such as medical records, radiology images
and radiology reports, or to cases described in the literature or teaching files. The
Retrieval Benchmark simulates the following scenario: a medical professional is
assessing a query case in a clinical setting, e.g. a CT volume, and is searching for
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cases that are relevant in this assessment. The participants in the Benchmark have
the task of developing software that finds clinically relevant (related or useful for
differential diagnosis) cases given a query case (imaging data only or imaging and
text data), but not necessarily the final diagnosis. The Benchmark data and relevance
assessments continue to be available beyond the end of the VISCERAL project as the
Retrieval2 Benchmark. This benchmark is described in more detail in Chap. 8, and
Chapters 13 and 14 give reports of two of the participants in the Retrieval Benchmark.

1.3 Evaluation-as-a-Service in VISCERAL

Evaluation-as-a-Service is an approach to the evaluation of data science algorithms,
in which the data remain centrally stored, and participants are given access to these
data in some controlled way.

The access to the data can be provided through various mechanisms, including an
API to access the data, or virtual machines on which to install and run the processing
algorithms. Mechanisms to protect sensitive data can also be implemented, such
as running the virtual machines in sandboxed mode (all access out of the virtual
machine is blocked) while the sensitive data are being processed, and destroying the
virtual machine after extracting the results to ensure that no sensitive data remains in
a virtual machine [13]. An overview of the use of Evaluation-as-a-Service is given
in [4, 6].

We now give two examples of Evaluation-as-a-Service in use, illustrating the dif-
ferent types of data for which EaaS is useful. In the TREC Microblog task [11],
search on Twitter was evaluated. As it is not permitted to redistribute tweets, an
API (application programming interface) was created, allowing access to the tweets
stored centrally. In the CLEF NewsREEL task [5], news recommender systems were
evaluated. In this case, an online news recommender service sent requests for rec-
ommendations in real time based on actual requests from users, and the results were
evaluated based on the clicks of the recommendations by the users of the online
recommender service. As this was real-time data from actual users of a system, a
platform, the Open Recommendation Platform [2], was developed to facilitate the
communication between the news recommender portal and the task participants.

In the VISCERAL project, we were dealing with sensitive medical data. Even
though the data had been anonymized by removing potentially personal metadata
and blurring the facial regions of the images, it was not possible to guarantee that
the anonymization tools had completely anonymized the images. We were therefore
required to keep a large proportion of images, the test set, inaccessible to participants.
Training images were available to participants as they had undergone a more thorough
control of the anonymization effectiveness. The EaaS approach allowed this to be
done in a straightforward way.

The training and test data are stored in the cloud in two separate storage containers.
When each participant registers, he/she is provided with a virtual machine on the
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Fig. 1.1 Training Phase. The participants register, and each get their own virtual machine in the
cloud, linked to a training dataset of the same structure as the test data. The software for carrying
out the competition objectives is placed in the virtual machines by the participants. The test data
are kept inaccessible to participants

cloud that has access to the training data container, as illustrated in Fig. 1.1. During
the Training Phase, the participant should install the software that carries out the
benchmark task on the virtual machine, following the specifications provided, and
can train algorithms and experiment using the training data as necessary. Once the
participant is satisfied with the performance of the installed software, the virtual
machine is submitted to the organizers. Once a virtual machine is submitted, the
participant loses access to it, and the Test Phase begins. The organizers link the
submitted virtual machine to the test data, as shown in Fig. 1.2, run the submitted
software on the test data and calculate metrics showing how well the submitted
software performs.

For the initial VISCERAL benchmarks, the organizers set a deadline by which
all virtual machines must be submitted. The values of the performance metrics were
then sent to participants by email. This meant that a participant had only a single
possibility to get the results of their computation on the test data. For the final round
of the Anatomy Benchmark (Anatomy3), a continuous evaluation approach was
adopted. Participants have the possibility to submit their virtual machine multiple
times for the assessment of the software on the test set (there is a limit on how
often this can be done to avoid “training on the test set”). The evaluation on the
test set is carried out automatically, and participants can view the results on their
personal results page. Participants can also choose to make results public on the
global leaderboard.

Chapter 2 presents a detailed description of the VISCERAL cloud environment.
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Fig. 1.2 Test Phase. On the Benchmark deadline, the organizer takes over the virtual machines
containing the software written by the participants, links them to the test dataset, performs the
calculations and evaluates the results

1.4 Main Outcomes of VISCERAL

As a result of running the Benchmarks, the VISCERAL project generated data and
software that will continue to be useful to the medical imaging community. The first
major data outcomes are manually annotated MR and CT images, which we refer to as
the Gold Corpus. The use of the EaaS paradigm also gave the possibility to compute
a Silver Corpus by fusing the results of the participant submissions. One of the
challenges in creating datasets for use in medical imaging benchmarks is obtaining
permission to use the image data for this purpose. In order to provide guidelines
for researchers intending to obtain such permission, we present an overview of the
processes necessary at the three institutes that provided data for the VISCERAL
Benchmarks in Chap. 3. All data created during the VISCERAL project are described
in detail in Chap. 5. Finally, particular attention was paid to ensuring that the metrics
comparing segmentations were correctly calculated, leading to the release of new
open source software for efficient metric calculation.

1.4.1 Gold Corpus

The VISCERAL project produced a large corpus of manually annotated radiology
images, called the Gold Corpus. An innovative manual annotation coordination sys-
tem was created, based on the idea of tickets, to ensure that the manual annotation
was carried out as efficiently as possible. The Gold Corpus was subjected to an exten-
sive quality control process and is therefore small but of high quality. Annotation
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Fig. 1.3 Examples of lesion annotations

in VISCERAL served as the basis for all three Benchmarks. For each Benchmark,
training data were distributed to the participants and testing data were kept for the
evaluation.

For the Anatomy Benchmark series [8], volumes from 120 patients were manually
segmented by the end of VISCERAL by radiologists, where the radiologists trace out
the extent of each organ. The following organs were manually segmented: left/right
kidney, spleen, liver, left/right lung, urinary bladder, rectus abdominis muscle, 1st
lumbar vertebra, pancreas, left/right psoas major muscle, gallbladder, sternum, aorta,
trachea and left/right adrenal gland. The radiologists also manually marked land-
marks in the volumes, where the landmarks include lateral end of clavicula, crista
iliaca, symphysis below, trochanter major, trochanter minor, tip of aortic arch, trachea
bifurcation, aortic bifurcation and crista iliaca.

For the Detection Benchmark, overall 1,609 lesions were manually annotated in
100 volumes of two different modalities, in five different anatomical regions selected
by radiologists: brain, lung, liver, bones and lymph nodes. Examples of the manual
annotation of lesions are shown in Fig. 1.3.

For the Retrieval Benchmark [7], more than 10,000 medical image volumes were
collected, from which about 2,000 were selected for the Benchmark. In addition,
terms describing pathologies and anatomical regions were extracted from the corre-
sponding radiology reports.

Detailed descriptions of the methods used in creating the Gold Corpus are
described in Chap. 4.

1.4.2 Silver Corpus

In addition to the Gold Corpus of expert annotated imaging data described in the
previous section, the use of the EaaS approach offered the possibility to generate a
far larger Silver Corpus, which is annotated by the collective ensemble of participant
algorithms. In other words, the Silver Corpus is created by fusing the outputs of all
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participant algorithms for each image (inspired by e.g. [14]). Even though this Silver
Corpus annotation is less accurate than expert annotations, the fusion of participant
algorithm results is more accurate than individual algorithms and offers a basis
for large-scale learning. It was shown by experiments that the accuracy of a Silver
Corpus annotation obtained by label fusion of participant algorithms is higher than
the accuracy of individual participant annotations. Furthermore, this accuracy can
be improved by injecting multi-atlas label fusion estimates of annotations based on
the Gold Corpus-annotated dataset.

In effect, the Silver Corpus is large and diverse, but not of the same annotation
quality as the Gold Corpus. The final Silver Corpus of VISCERAL Anatomy Bench-
marks contains 264 volumes of four modalities (CT, CTce, MRT1 and MRT1cefs),
containing 4193 organ segmentations and 9516 landmark annotations. Techniques
for the creation of the Silver Corpus are described in [9].

1.4.3 Evaluation Metric Calculation Software

In order to evaluate the segmentations generated by the participants, it is necessary to
compare them objectively to the manually created ground truth. There are many ways
in which the similarity between two segmentations can be measured, and at least 22
metrics have each been used in more than one paper in the medical segmentation
literature. We implemented these 22 metrics in the EvaluateSegmentation software
[16], which is available as open source on GitHub,? and can read all image formats
(2D and 3D) supported by the ITK Toolkit. The software is specifically optimized
to be efficient and scalable, and hence can be used to compare segmentations on
full body volumes. Chapter 6 goes beyond [16] by discussing the extension to fuzzy
metrics and how well rankings based on similarity to the ground truth of organ
segmentations by various metrics correlate with rankings of these segmentations by
human experts.

1.5 Experience with EaaS in VISCERAL

Based on the examples given, there are several experiences to be gained from EaaS
in general and VISCERAL more particularly. Some of the experiences, particularly
in the medical domain, are also discussed in [12].

Initially, the idea to run an evaluation in the cloud was seen by the medical imaging
community with some skepticism. Several persons mentioned that they would not
participate if they cannot see the data and there definitely was a feeling of control
loss. It is definitely additional work to install the required environment on a new
virtual machine in the cloud. Furthermore, VISCERAL provided only a limited set

Zhtps://github.com/Visceral-Project/EvaluateSegmentation.
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of operating systems under Linux and Windows. There were also concrete questions
regarding hardware such as GPU (graphical processing units) that are widely used
for deep learning but that were not available in Azure at the time and prevented a
potential participant from participating. These techniques are now easily available,
so such problems are often removed quickly with the fast pace in the development
of cloud infrastructures. Several participants who did not participate mentioned that
they did so because it was additional work to set up the software in the cloud.

Other challenges were regarding the feedback when the algorithm completely
failed for a specific image or when the script crashed. We had a few such cases and
provided assistance to participants to remove the errors, but this is obviously only
possible if the number of participants is relatively small.

In this respect, the system also created more work for the organizers than simply
making data available for download and receiving calculated results from partici-
pants. Once infrastructures that are easier to use and a skeleton for evaluations are
available, this will also reduce the additional work. The CodaLab? software is one
such system that makes running a challenge in the cloud much easier, and a deeper
integration between cloud and executed algorithms could help even further.

On the positive side are several important aspects. First, the three problems men-
tioned above regarding very large datasets, confidential data and quickly changing
data are solved with the given approach. It is also important that all participants take
part under the same conditions, so that there is no advantage with a fast Internet con-
nection where data download takes minutes and not days. All participants also had
the same environment, hence the same computing power, and there was no difference
between computing resources available to participants, also removing a bias. The fact
that all participating groups were compared based on the same infrastructure also
allowed to compare run-time and thus efficiency of algorithms, which is impossible
to compare otherwise. In terms of reproducibility, the system is extremely good as
no one can optimize the techniques based on the test data.

The fact that the executables of all participants were available also allowed the
creation of the Silver Corpus on new, non-annotated data, done by running all sub-
mitted algorithms on the new data and then performing a label fusion. This has shown
to deliver much better results than even the best submitted algorithm. Availability
of executables can also be used to run the code on new data that has become avail-
able or on modified data when errors were detected, something that did happen in
VISCERAL.

The cloud-based evaluation workshop [12] also showed that there are several
ongoing developments that will make the creation of such challenges and use of
code much easier. Docker is, for example, much lighter than virtual machines, and
submitting Docker containers can be both faster and reduce the amount of work
necessary to create the container for participants. Code sharing among participants
might also be supported in a more straightforward way, so participants can combine
components of other research groups with their own components to optimize results
systematically.

‘https://github.com/codalab/.
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1.6 Conclusion

The VISCERAL project made a number of useful contributions not only to the
medical imaging field, but also to the organization of data science evaluations in
general through advancing the Evaluation-as-a-Service approach. The techniques
developed and lessons learned will be useful for the evaluation in machine learning,
information retrieval, data mining and related areas, allowing the evaluation tasks to
be done on huge, non-distributable, private or real-time data. This should not only
allow the evaluation tasks to become more realistic and closer to practice, but should
also increase the level of reproducibility of the experimental results.

In the area of medical imaging, the VISCERAL project contributed large datasets
of annotated CT and MRI images. The annotations have been done by qualified radi-
ologists in the creation of the Gold Corpus, but a form of crowdsourcing based on
participant submissions allowed the much larger Silver Corpus to be built. Further-
more, a thorough analysis of metrics used in the evaluation of image segmentation
was contributed, along with an efficient and scalable implementation of the calcula-
tion of these metrics.
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