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Abstract We show that smooth cubic hypersurfaces of dimension n defined over a
finite field F, contain a line defined over F, in each of the following cases:

en=3andg > 11;
en=4andg=2o0rqg>75;
e n>>5.

For a smooth cubic threefold X, the variety of lines contained in X is a smooth
projective surface F(X) for which the Tate conjecture holds, and we obtain informa-
tion about the Picard number of F(X) and the 5-dimensional principally polarized
Albanese variety A(F (X)).
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1 Introduction

The study of rational points on hypersurfaces in the projective space defined over a
finite field has a long history. Moreover, if X C P"*! is a (smooth) cubic hypersurface,
the (smooth) variety F(X) parametrizing lines contained in X is an essential tool for
the study of the geometry of X. Therefore, it seems natural to investigate F'(X) when
X is a cubic hypersurface defined over a finite field F, and the first question to ask is
whether X contains a line defined over F,.

One easily finds smooth cubic surfaces defined over F, containing no F,-lines,
with ¢ arbitrarily large. On the other hand, if dim(X) > 5, the variety F(X), when
smooth, has ample anticanonical bundle, and it follows from powerful theorems of
Esnault and Fakhruddin—Rajan that X always contains an F,-line (Sect.6). So the
interesting cases are when dim(X) = 3 or 4.

When X is a smooth cubic threefold, F(X) is a smooth surface of general type.
Using a recent formula of Galkin—Shinder which relates the number of F,-points on
F(X) with the number of F;- and F ;>-points on X (Sect. 2.3), we find the zeta function
of F(X) (Theorem 4.1). Using the Weil conjectures, we obtain that a smooth X
always contains F,-lines when ¢ > 11 (Theorem 4.4). F,-lines using a computer, we
produce examples of smooth cubic threefolds containing no lines for g € {2, 3, 4, 5}
(Sect.4.5.4), leaving only the cases where g € {7, 8, 9} open, at least when X is
smooth.

Theorem 4.1 can also be used for explicit computations of the zeta function of
F(X). For that, one needs to know the number of F, -points of X for sufficiently
many r. Direct computations are possible for small ¢ or when X has symmetries (see
Sect.4.5.1 for Fermat hypersurfaces, Sect.4.5.2 for the Klein threefold, and [19]
for cyclic cubic threefolds). If X contains an F-line, it is in general faster to use
the structure of conic bundle on X induced by projection from this line, a method
initiated by Bombieri and Swinnerton-Dyer in 1967 (Sect. 4.3). This is illustrated by
an example in Sect.4.5.3, where we compute the zeta function of a cubic X and of
its Fano surface F(X) in characteristics up to 31. In all these examples, once one
knows the zeta function of F(X), the Tate conjecture (known for Fano surfaces, see
Remark 4.2) gives its Picard number. It is also easy to determine whether its 5-
dimensional Albanese variety A(F (X)) is simple, ordinary, supersingular...

Singular cubics tend to contain more lines (Example 4.17). When X is a cubic
threefold with a single node, the geometry of F(X) is closely related to that of a
smooth genus-4 curve ([9, 20]; see also [14, Example 5.8]). Using the results of [16]
on pointless curves of genus 4, we prove that X always contains F -lines when g > 4
(Corollary 4.8) and produce examples for ¢ € {2, 3} where X contains no F,-lines
(Sect.4.5.5).

When X is a smooth cubic fourfold, F(X) is a smooth fourfold with trivial canon-
ical class. Using again the Galkin—Shinder formula, we compute the zeta function of
F(X) (Theorem 5.1) and deduce from the Weil conjectures that X contains an F,-line
when g > 5 (Theorem 5.2). Since the cohomology of O x) is very simple (it was
determined by Altman and Kleiman; see Proposition 5.3), we apply the Katz trace
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formula and obtain that X still contains an F,-line when ¢ = 2 (Corollary 5.4). This
leaves the cases where g € {3, 4} open, at least when X is smooth. We suspect that
any cubic fourfold defined over F,, should contain an F-line.

2 Definitions and Tools

2.1 The Weil and Tate Conjectures

Let F, be a finite field with g elements and let £ be a prime number prime to g.
Let Y be a projective variety of dimension n defined over F,. For every integer
r>1,set
N.(Y) := Card(Y(qu))

and define the zeta function

Z(Y,T) = exp(ZN,.(Y)TTr).

r>1

Let F, be an algebraic closure of F, and let Y be the variety obtained from ¥
by extension of scalars from F, to F_q. The Frobenius morphism F: ¥ — Y acts on
the étale cohomology H*(Y, Q;) by a Q,-linear map which we denote by F*. We
have Grothendieck’s Lefschetz Trace formula ([22, Theorem 13.4, p. 292]): for all
integers r > 1,

NY)= D (=D)'Tr(F7, H'(Y, Qo). (1)

0<i<2n

If Y is moreover smooth, the Weil conjectures proved by Deligne in [10, Théoréme
(1.6)] say that for each 7, the (monic) characteristic polynomial

Qi(Y,T) :=det(T1d —F*, H' (Y, Qy))

has integral coefficients and is independent of £; in particular, so is its degree b;(Y) :=
h (Y, Qp), called the i-th Betti number of Y. All the conjugates of its complex roots wij
have modulus qi/ 2. Poincaré duality implies by,—;(Y) = b;(Y) and wa,—;j = q" /wjj
forall 1 <j < b;j(Y).

We can rewrite the trace formula (1) as

bi(Y)
N = D (=)D wp )
0<i<2n j=1

or
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z(v,7)= [[ Py, 3)

0<i<2n
Finally, it is customary to introduce the polynomials

bi(Y)

P.(Y, T) := det(Id —TF*, H'(Y, Q/)) —Tb(Y)Q( ) H(l wiT). (4)

Whenever i is odd, the real roots of Q;(Y, T) have even multiplicities ([11, Theo-
rem 1.1.(b)]), hence b;(Y) is even. We can therefore assume wj j1,(y),2 = wj; for all
1 <j<bi(Y)/2,0r TN Q(Y,q'/T) = ¢*V2Qu(Y, T). It m := by (Y)/2, we will
write

Ql(Ys T) — T2m +611T2n171 4. +ame +qame+1 4. _}_qulalT_’_qm.
(5)

The Tate conjecture for divisors on Y states that the Q,-vector space in
H? (7 , Qg(l)) generated by classes of F ,-divisors is equal to the space of Gal (FT[/ F,)-
invariants classes and that its dimension is equal to the multiplicity of g as a root of
the polynomial Q> (Y, T) ([29, Conjecture 2, p. 104]).

2.2 The Katz Trace Formula

Let Y be a proper scheme of dimension n over F,,.. The endomorphism f +— f¢ of Oy
induces an F-linear endomorphism §, of the F,-vector space H*(Y, Oy) and for all
r > 1, one has ([18], Corollaire 3.2)

N(Y) - 1g, = D (1Y Te(§,. H/(Y, Oy))  inF,. (6)
j=0

In particular, the right side, which is a priori in F, is actually in the prime subfield
of Fy.

2.3 The Galkin—Shinder Formulas

Let X C P;ff“l be a reduced cubic hypersurface defined over F,, with singular set
Sing(X).

We let F(X) c Gr(1, P”“) be the scheme of lines contained in X, also
defined over F,. When n > '3 and Sing(X) is finite, F(X) is a local complete
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intersection of dimension 2n — 4, smooth if X is smooth, and geometrically con-
nected ([2, Theorem 1.3 and Corollary 1.12]).

In the Grothendieck ring of varieties over F,, one has the relation
([14, Theorem 5.1])

L[FOO] = [X®] = (1 +L")[X] + L"[Sing(X)], ()
where X® := X2/, is the symmetric square of X and, as usual, I denotes the class
of the affine line. Together with the relation [14, (2.5)], it implies that, for all » > 1,

we have ([14, Corollary 5.2.3)])

Ny (X)* = 2(1 + ¢" )N, (X) + No,(X)
2q2r

N, (F(X)) = +¢" "N, (Sing(X)).  (8)

2.4 Abelian Varieties Over Finite Fields

Let A be an abelian variety of dimension n defined over a finite field F, of charac-
teristic p and let £ be a prime number prime to p. The Z,-module H' (A, Z;) is free
of rank 27 and there is an isomorphism

AH'(A, Q) > H*(A, Q) 9)

of Gal(F_q/ F,)-modules.

An elliptic curve E defined over ITq is supersingular if its only p-torsion point is 0.
All supersingular elliptic curves are isogenous. The abelian variety A is supersingular
if Ay, is isogenous to E”, where E is a supersingular elliptic curve (in particular, any

two supersingular abelian varieties are isogenous over IT(,). The following conditions
are equivalent ([15, Theorems 110, 111, and 112])

(1) A is supersingular;
(i) Q1(Ag,,T) = (T £ ¢"/*)*" for some r > 1;
(iii) Card(A(qu-)) = (¢""* £ 1)*" for some r > 1;
(iv) each complex root of Q;(A, T) is /g times a root of unity;
(v) in the notation of (5), if ¢ = p", one has p/7/?! | @; forallj € {1, ..., n}.

If condition (ii) is satisfied, one has Q> (Ay,,, T) = (T — ¢")"**~" and the Tate con-
jecture, which holds for divisors on abelian varieties, implies that the Picard number
of AFq,. , hence also the geometric Picard number of A, is n(2n — 1), the maximal pos-
sible value. Conversely, when n > 1, if AFq, has maximal Picard number for some r,
the abelian variety A is supersingular.

The abelian variety A is ordinary if it contains p" (the maximal possible number)
p-torsion FT,-points. This is equivalent to the coefficient a, of T" in Q;(A, T) being
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prime to p; if this is the case, A is simple (over F,) if and only if the polynomial
01(A, T) is irreducible (see [17, Sect. 2]).

3 Cubic Surfaces

There exist smooth cubic surfaces defined over F, containing no F,-lines, with ¢
arbitrarily large. This is the case for example for the diagonal cubics defined by

3, .3, ,3 3
x| +x +x3+ax; =0,

where a € F, is not a cube. If g =1 (mod 3), there is such an a, since there are
elements of order 3 in F; , hence the morphism F; — F; , X — X7 is not injective,
hence not surjective.

4 Cubic Threefolds

4.1 The Zeta Function of the Surface of Lines

LetX C P4 be a smooth cubic hypersurface defined over F,. Its Betti numbers are
1,0, 1, 10 1 0, 1, and the eigenvalues of the Frobenius morphlsm acting on the
10-dimensional vector space H>(X, Q;) are all divisible by ¢ as algebraic integers
([18, Remark 5.1]). We can therefore write (1) as

10
NX) =144+ +q" —q D ],
=1

where, by the Weil conjectures proved by Deligne (Sect.2.1), the complex algebraic
integers w; (and all their conjugates) have modulus ,/g. The trace formula (3) reads

Py(X,T)
1 -7)1 —¢g)(A —¢*T)(1 - ¢°T)’

ZX,T) =

where P3(X, T) = 1‘[}21 (I — qw;T). If we set

1
M, (X) := ;(N,(X) (A +q + g +4) == w, (10)

we obtain
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Py(X,T) = exp(z M, (X) ("f)r).

r>1

(1)

We will show in Sect.4.3 that the numbers M, (X) have geometric significance.

Theorem 4.1 Let X C P4 be a smooth cubic hypersurface defined over ¥, and let
F(X) be the smooth surface of lines contained in X. With the notation (4), we have

PI(F(X),T) = Ps(X, T/q) = [] (1 —w),

1<j<10
P(FX),T) = [] (1—ww),
1<j<k<10
Ps(F(X),T) =Ps(X,T) = ] (1 —qu),
1<j<10
where the complex numbers wy, . . ., wig have modulus ,/q. In particular,

[ligj<100 = oD [Tijzio( = qT)
a1-7a - qu) H1§i<k§10(l _ ijkT).

Z(F(X),T) = (12)

Proof There are several ways to prove this statement. The first is to prove that there
are isomorphisms

H(X,Q,) > H'(FX),Q«(—1)) and A’H'(F(X), Q)= H*(F(X), Q)

of Gal(qu/Fq)—modules. The first isomorphism holds with Z,-coefficients: if we
introduce the incidence variety I = {(L, x) € F(X) x X | x € L} with its projections
pr;: I — F(X) and pr,: I — X, it is given by pr;, prj ([8, p. 256]). The second
isomorphism follows, by standard arguments using smooth and proper base change,
from the analogous statement in singular cohomology, over C, which is proven in
[25, Proposition 4].

These isomorphisms (and Poincaré duality) then imply the formulas for the poly-
nomials P;(F(X), T) given in the theorem.

Alternatively, simply substituting in the definition of Z(F(X), T') the values for
N,(F (X)) given by the Galkin—Shinder formula (8) directly gives (12), from which
one deduces the formulas for the polynomials P;(F (X), T). O

Remark 4.2 (The Tate conjecture for F (X)) The Tate conjecture for the surface
F(X) (see Sect.2.1) was proved in [25] over any field k of finite type over the prime
field, of characteristic other than 2. This last restriction can in fact be lifted as follows:
the proof in [25] rests on the following two facts

(a) F(X) maps to its (5-dimensional) Albanese variety A(F (X)) onto a surface with
class a multiple of #°, where @ is a principal polarization on A(F(X));
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(b) b2 (A(F(X))) = b2 (F(X)).

Item (a) is proved (in characteristic # 2) via the theory of Prym varieties ([4,
Proposition 7]). For item (b), we have dim(A(F(X))) = h'(F(X), Orx)) =5 ([2,
Proposition (1.15)]), hence by(A(F(X))) = (**™{'™)) = 45, whereas by (F(X)) =
deg(Pz(F(X), T)) = 45 by Theorem 4.1.

To extend (a) to all characteristics, we consider X as the reduction modulo the
maximal ideal m of a smooth cubic 2~ defined over a valuation ring of characteristic
zero. There is a “difference morphism” dpxy: F(X) x F(X) — A(F(X)), defined
over k, which is the reduction modulo m of the analogous morphism 6g(2-y: F(Z') x
F(Z) — A(F(Z)). By [4, Proposition 5], the image of d (2 is a divisor which
defines a principal polarization 1} on A(F (& )), hence the image of dr(x) is also a
principal polarization on A(F (X)), defined over k.

Since the validity of the Tate conjecture is not affected by passing to a finite
extension of k, we may assume that F (X) has a k-point, which we lift to F(.Z"). We
can then define Albanese morphisms, and arp): F(X) — A(F(Z")) is the reduction
modulo m of ap(gy: F(Z") = A(F(Z)). The image of ag has class 93/3! ([4,
Proposition 7]), hence the image of ap(x) also has class (19|A(X))3 /3! (this class is
not divisible in H®(A(X), Z¢), hence arx is generically injective). This proves (a),
hence the Tate conjecture for F (X), in all characteristics.

Going back to the case where k is finite, Theorem 4.1 implies the equality
O,(F(X), T) = Q2,(A(F(X)), T). Since the Tate conjecture holds for divisors on
abelian varieties, this proves that F(X) and A(F (X)) have the same Picard num-
bers, whose maximal possible value is 45.

Corollary 4.3 Let 2my be the multiplicity of the root x./q of O1(F(X),T) and
let my, ..., m. be the multiplicities of the pairs of non-real conjugate roots of
01(F(X), T), so that my +m_ + >";_, m; = 5. The Picard number of F(X) is then

p(FX)=mCmy —1)+m_Q2m_—1)+ Zmlz

i=1

We have p(F (X)) > 5, with equality if and only if Q1 (F(X), T) has no multiple roots.
If q is not a square, the possible Picard numbers are all odd numbers between 5
and 13, 17, and 25.
If q is a square, the possible Picard numbers are all odd numbers between 5 and

21, 25, 29, and 45. We have p(F (X)) = 45 ifand only if Q1 (F(X), T) = (T + ﬁ)lo.

Proof The Tate conjecture holds for divisors on F(X) (Remark 4.2). As explained at
the end of Sect.2.1, it says that the rank of the Picard group is the multiplicity of ¢
as a root of Q»(F(X), T). The remaining statements then follow from Theorem 4.1
by inspection of all possible cases for the values of m ., m_, my, ..., mc. (I
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4.2 Existence of Lines on Smooth Cubic Threefolds Over
Large Finite Fields

We can now bound the number of F,-lines on a smooth cubic threefold defined
over F,.

Theorem 4.4 Let X be a smooth cubic threefold defined over ¥, and let Ny (F (X))
be the number of ¥ ;-lines contained in X. We have

1+45¢+4¢* —10(g+ 1) /g if q > 64;
Ni(F(X)) > {1+ 13g+¢*—6(qg+ 1) /g if 16 <q <6l;
1-3¢g+4¢*—2(q+1)q ifq=<13.

In particular, X contains at least 10 F-lines if g > 11.
Moreover, for all g,

Ni(F(X)) < 1+45¢+¢° +10(q + 1)/q.
Proof As we saw in Sect.2.1, we can write the roots of Q(F(X), T) as wy, ..., ws,

Wi, ..., ws. The rj := w; + w; are then real numbers in [-2,/q, 2,/q] and, by (2)
and Theorem 4.1, we have

NUFOO) = 1= D rj+5q+ D (wwp +jwg +wTg + @) — > qrj +q°

1<j<5 1<j<k<5 1<j<5

L45q+ =@+ D) 2+ 30 nn
1<j<5 1<j<k<5

=: Fg(ry,...,rs5).

Since the real function F,: [-2.,/q, 2\/5]5 — R is linear in each variable, its
extrema are reached on the boundary of its domain, i.e., at one of the points
2,/q (&1, ..., £1). At such a point r; (with / positive coordinates), we have

F,(r)) =1+45q + ¢ =221 -5)(qg+ /g + %(46](21 —5)% - 20q).

The minimum is obviously reached for [ € {3, 4, 5}, the maximum for / = 0, and the
rest is easy. O

4.3 Computing Techniques: The Bombieri-Swinnerton-Dyer
Method

By Theorem 4.1, the zeta function of the surface F (X) of lines contained in a smooth
cubic threefold X C Pﬁq defined over F, is completely determined by the roots
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qwi, - . ., qwig of the degree-10 characteristic polynomial of the Frobenius morphism
acting on H3(X, Q;). If one knows the numbers of points of X over sufficiently many
finite extensions of F,, these roots can be computed from the relations

exp (X M,00 ) = Psx, /) = P, ) = ] (1),

r=1 1<j<10

where M, (X) = 2 (N,(X) — (1 + ¢+ ¢* +¢")) was defined in (10).

The reciprocity relation (5) implies that the polynomial P (F(X), T) is determined
by the coefficients of 1,7, ..., T°, hence by the numbers N;(X), ..., N5(X). The
direct computation of these numbers is possible (with a computer) when ¢ is small
(see Sect.4.5 for examples), but the amount of calculations quickly becomes very
large.

We will explain a method for computing directly the numbers M, (X), ..., Ms(X).
It was first introduced in [5] and uses a classical geometric construction which
expresses the blow up of X along a line as a conic bundle. It is valid only in charac-
teristics # 2 and requires X to contain an F-line L.

Let X — X be the blow up of L. PrOJectlng from L induces a morphism 7, : X —
qu which is a conic bundle and we denote by I'; C PFq its discriminant curve,
defined over F,. Assume from now on that q is odd; the curve I'y is then a nodal
plane quintic curve and the associated double cover p: [, — I, is admissible in
the sense of [3, Définition 0.3.1] (the curve fL is nodal and the fixed points of the
involution associated with p are exactly the nodes of fL; [5, Lemma 2]).!

One can then define the Prym variety associated with p and it is isomorphic to
the Albanese variety of the surface F(X) ([24, Theorem 7] when I'; is smooth). The
following is [5, Formula (18)].

Proposition 4.5 Let X C P4 be a smooth cubic threefold defined over ¥, with q
odd, and assume that X contains an F,-line L. With the notation (10), we have, for
allr > 1, 5

Mr(X) = Nr(rL) - Nr(FL)-

Proof We will go quickly through the proof of [5] because it is the basis of our
algorithm. A point x € P? (F,) corresponds to an Fy-plane P, D L and the fiber
7TL_1()C) is isomorphic to the conic C, such that X N P, = L + C,. We have four
cases:

(i) either C, is geometrically irreducible,i.e.,x ¢ I'; (F,),in which case 77[1 (x)(F,)
consists of g + 1 points;

(i1) or C; is the union of two different F-lines, i.e., x is smooth on I'; and the 2
points of p~!(x) are in FL(Fq) in wh1ch case 7, (x)(Fq) consists of 2g + 1
points;

'In characteristic 2, the curves I'; and l~"L might not be nodal (see Lemma 4.13).
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(iii) or Cy is the union of two different conjugate F-lines, i.e., x is smooth on I'y
and the 2 points of p~! (x) are notin T, (F,), in which case 7TL_1 (x)(F,) consists
of 1 point;

(iv) or C, is twice an Fy-line, i.e., x is singular on I'y, in which case 7rL_1 (x)(Fy)
consists of g + 1 points.

The total number of points of I, (F,) lying on a degenerate conic C; is therefore
gN1(I'L) + Ni(I'1) and we obtain

Ni(X) = (g + D(N(PF) — Ni(T1)) + gNi (Tr) + N (T).
Finally, since each point on L C X is replaced by a Pﬁq on X, we have

N(X) =Ni(X) = (g + 1)+ (g + 1),

thus Ny (X) = ¢* + ¢* + ¢+ 1 + q(Ni(T1) — Ni(I'1)). Since the same conclusion
holds upon replacing g with ¢", this proves the proposition. (|

Let x € I'L(F,). In order to compute the numbers N1(I';) — N, (fL), we need to
understand when the points of p~!(x) are defined over F,.

We follow [5, p. 6]. Take homogenous F,-coordinates xi, ..., x5 on P* so that L
is given by the equations x; = x, = x3 = 0. The equation of the cubic X can then be
written as

f +2q1xs + 2qoxs + £1x] + 20ox4xs + (352 = 0,

where f is a cubic form, ¢, ¢, are quadratic forms, and ¢, £,, {3 are linear forms in
the variables x;, x5, x3. We choose the plane P%q C P%q defined by x4 = x5 = 0. If

x = (x1,x2,x3,0,0) € qu , the conic C, considered above is defined by the equation

BT+ 2010132 + 2q031y3 + C1y3 + 262y2y3 + €355 = 0

and the quintic I';, C P%q is defined by the equation det(M) = 0, where

[ a
ML =190 [1 fz . (13)

q2 €2 €3

Foreachi € {1,2,3},let§; € H® (FL, ﬁ(ai)), where a; = 2, 4, or 4, be the determi-
nant of the submatrix of M, obtained by deleting its ith row and ith column. The
—&; are transition functions of an invertible sheaf .% on I'; such that #®? = wr, (a
theta characteristic). It defines the double cover p: I, — I,

A pointx € P%q is singular on I'y if and only if d; (x) = J,(x) = J3(x) = 0. These
points do not contribute to M, since the only point of p~! (x) is defined over the field
of definition of x. This is the reason why we may assume that x is smooth in the next
proposition.
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Proposition 4.6 Let x be a smooth F;-point of I'y.. The curve ', has two F,-points
overx € I'r(Fy) ifand only if either —0, (x) € (Fj )2, or 81 (x) = 0 and either —&,(x)
or —03(x) is in (Fy )2.

Proof With the notation above, the line L = V (y;) C P%q meets the conic C, C P%q
at the points (0, y,, y3) such that

C1y3 + 262323 + (3y3 = 0.

Therefore, if —d1(x) = ¢ % (x) — €1 (x)€3(x) is non-zero, the curve [, has two rational
points over x € I'.(F,) if and only if —d; (x) € (F} )2
When 6 (x) = 0, we have C, = L + L,, where L, and L, are lines meeting in an
F,-point z of L which we assume to be (0, 0, 1). This means that there is no y3 term
in the equation of C,, hence £5(x) = €3(x) = g»(x) = 0. The conic C is defined by
the equation
01(0)y3 + 2q1(@)y1y2 +f @)y} =0

and the two lines L; and L, are defined over F, if and only if —d5(x) = ¢7(x) —
{1 (0)f (x) € (Fy )2 (since 6; (x) = 8,(x) = 0, this is necessarily non-zero because x
is smooth on I'y).

For the general case: if y3(z) # 0, we make a linear change of coordinates y; = |,
Y2 =5 + 15, y3 = y5 in order to obtain y,(z) = 0, and we check that —d5(x) is
unchanged; if z = (0, 1, 0), we obtain as above d; (x) = d3(x) = 0 and L; and L, are
defined over F, if and only if —d,(x) € (F; ). This proves the proposition. O

We can now describe our algorithm for the computation of the numbers M, (X) =
N (T'r) = N (T'p).

The input data is a cubic threefold X over F,, containing an F-line L. We choose
coordinates as above and construct the matrix M; of (13) whose determinant is
the equation of the quintic I'; C P%q. We compute M, with the following simple
algorithm.

Input: (X, L, r)

Output: M,

Compute the matrix My, the three minors d1, &7, 43 and the curve 'y ;

M, :=0;

whilep € {p : p e I'L(Fy) | I'L is smooth at p} do

if —61(p) € ()5)2 or (81(p) = 0 and (=02(p) € (F}5)? or — 3(p) € (F}5)?)) then

| M, =M, +1;
else
‘ M, =M, —1;
end
end
return M, ;

Algorithm 1: Computing M,
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4.4 Lines on Mildly Singular Cubic Threefolds

We describe a method based on results of Clemens—Griffiths and Kouvidakis—van der
Geer which reduces the computation of the number of F,-lines on a cubic threefold
with a single singular point, of type A; or A,,” to the computation of the number
of points on a smooth curve of genus 4. One consequence is that there is always an
F,-line when g > 3.

Let C be a smooth non-hyperelliptic curve of genus 4 defined over a perfect field
F. We denote by g3 and h} = K¢ — g3 the (possibly equal) degree-3 pencils on C.
The canonical curve ¢k, (C) C Py is contained in a unique geometrically integral
quadric surface Q whose rulings cut out the degree-3 pencils on C; more precisely,

e cither Q ~ P} x P} and the two rulings of Q cut out distinct degree-3 pencils g}
and hj = K¢ — g3 on C which are defined over F;

e or Q is smooth but its two rulings are defined over a quadratic extension of F and
are exchanged by the Galois action, and so are g} and hl;

e or Q is singular and its ruling cuts out a degree-3 pencil g% on C which is defined
over F and satisfies K¢ = Zg;.

Let p: P% -— P;: be the rational map defined by the linear system of cubics con-
taining ¢, (C). The image of p is a cubic threefold X defined over F; it has a single
singular point, p(Q), which is of type A; if Q is smooth, and of type A, otherwise.
Conversely, every cubic threefold X C Pif‘ defined over F with a single singular point
x, of type A; or A, is obtained in this fashion: the curve C is Tx , N X and parame-
trizes the lines in X through x ([7, Corollary 3.3]).

The surface F(X) is isomorphic to the non-normal surface obtained by gluing
the images C,, and Cj, of the morphisms C — C® defined by p > g} — pandp
h% — p (when Q is singular, F(X) has a cusp singularity along the curve C, = Cy,).
This was proved in [9, Theorem 7.8] over C and in [20, Proposition 2.1] in general.

Proposition 4.7 Let X C P4 be a cubic threefold defined over ¥, with a single
singular point, of type Ay or A2 Let C be the associated curve of genus 4, with
degree-3 pencils g3 and h3. For any r > 1, set n, := Card(C(F,)). We have

%(n% —2n1+ny) if g_% and h% are distinct and defined over ¥ y;
Card (F(X) (Fq)) = %(n% +2n1 +ny) ifg% and h; are not defined over Fq;
3(nf +n2) if g3 = hi.

2 A hypersurface singularity is of type Aj if it is, locally analytically, given by an equation x]frl +
x% + e +xﬁ+] = 0. Type A1 is also called a node.
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Proof Points of C®(F,) correspond to

e the %(n% — ny) pairs of distinct points of C(F,),
o the n; F,-points on the diagonal,
e the %(l’lz — ny) pairs of distinct conjugate points of C(F ),

for a total of 1(n} + n,) points (compare with [14, (2.5)]). When g} and h} are
distinct and defined over F, the gluing process eliminates n; F -points. When g%
and h; are not defined over F, the curves C, and C), contain no pairs of conjugate
points, and the gluing process creates n; new F,-points. Finally, when g3 = hl, the
map C?(F,) — F(X)(F,) is a bijection. O

Corollary 4.8 When g > 4, any cubic threefold X C Pﬁq defined over ¥, with a
single singular point, of type A or A,, contains an ¥-line.

For g € {2, 3}, we produce in Sect.4.5.5 explicit examples of cubic threefolds
with a single singular point, of type A, but containing no F,-lines: the bound in the
corollary is the best possible.

Proof Assume that X contains no F,-lines. Proposition 4.7 then implies that either
ny=n,=0,o0rn =n, =1and gj and h} are distinct and defined over F,. The
latter case cannot in fact occur: if C(F,) = {x}, we write gj = x + x’' +x”. Since
g% is defined over F,, so is x" 4+ x”, hence x’ and x” are both defined over F.. But
C(Fp) = {x}, hence x' = x”" = x and g} = 3x. We can do the same reasoning with
h} to obtain h} = 3x = g}, a contradiction.

Therefore, we have n; = ny = 0. According to [16, Theorem 1.2], every genus-4
curve over F, with ¢ > 49 has an F,-point so we obtain g < 7.

Because of the reciprocity relation (5), there is a monic degree-4 polynomial H
with integral coefficients that satisfies Q;(C, T) = T*H(T + q/T). If wy,...,ws,
Wi, ..., wy are the roots of Q;(C, T) (see Sect.2.4), with |w;| = ,/q, the roots of H
are the r; := w; + wj, and

qg+1—n = Z ro, q2+1—n2: Z(wj?+@]2): 2(7}'2_24)'

1<j=4 1<j<4 1js4

Since n; = n, = 0, we obtain 21354 ri=q+ land 215,'54 rj2 =q¢>+8g+1,s0
that Zl<i<j<4 rirj = —3¢q; we can therefore write

H(T) =T*— (g + )T* = 3¢T? +aT + b. (14)

Finally, since |rj| < 2,/q for each j, we also have |b| = |riryr3rs| < 164> and
la| = | Z;;l b/rj| < 32q3/ Z A computer search done with these bounds shows that
polynomials of the form (14) with four real roots and g € {2, 3, 4, 5, 7} only exist
for g < 3, which proves the corollary. O
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Remark 4.9 For g € {2, 3}, the computer gives a list of all possible polynomials

T4-373-6T2424T—16
T4—3T3—6T2+424T—15 (x) T4—473 972448736 (?)
T4-373-6T2+423T-13 T4—4T3 972447732 ()
=2) H(T) = . (g=3) HI) = :
(@=2) H(T) 31361240710y ° 4= HD) T4_4T3_0T2446T—29 (x)
437367242177 T4—4T3-9T2 444722 (?)
T4-373-6T2+18T+1 (»)

The nodal cubics of Sect. 4.5.5, defined over F, and F5, correspond to the polynomials
T4 — 373 — 6T + 24T — 15 and T* — 4T3 — 9T? 4 47T — 32, respectively. Over
F,, it is possible to list all genus-4 canonical curves and one obtains that only the
polynomials marked with (%) actually occur (all three are irreducible).

Over F3, our computer searches show that the two polynomials marked with
(%) actually occur (both are irreducible). We do not know whether the other two,
T* — 4T3 —9T? + 48T — 36 = (T — 1)(T — 3)(T* — 12) and T* — 4T3 — 9T? +
44T — 22 = (T? — 4T +2)(T?* — 11) (marked with (?)), actually occur.

4.5 Examples of Cubic Threefolds

In this section, we present some of our calculations and illustrate our techniques
for some cubic threefolds. We begin with Fermat cubics (Sect.4.5.1), which have
good reduction in all characteristics but 3. The case of general Fermat hypersurfaces
was worked out by Weil in [30] (and was an inspiration for his famous conjectures
discussed in Sect. 2.1). We explain how Weil’s calculations apply to the zeta function
of Fermat cubics (Theorem 4.11) and we compute, in dimension 3, the zeta function
of their surface of lines (Corollary 4.12).

The Fermat cubic threefold contains the line L := ((1,—1,0,0,0), (0,0, 1,
—1,0)) and we compute the discriminant quintic T'; C P? defined in Sect.4.3,
exhibiting strange behavior in characteristic 2.

In Sect.4.5.2, we turn our attention to the Klein cubic, which has good reduction
in all characteristics but 11. It also contains an “obvious” line L’ and we compute the
discriminant quintic I';; C P?, again exhibiting strange behavior in characteristic 2.
Using the Bombieri—-Swinnerton-Dyer method, we determine the zeta function of
F(X) over F,, for p < 13. We also compute the geometric Picard numbers of the
reduction of F(X) modulo any prime, using the existence of an isogeny between
A(F (X)) and the self-product of an elliptic curve.

In Sect.4.5.3, we compute, using the same method, the zeta function of F(X) of
a “random” cubic threefold X containing a line, over the fields Fs, F7, Fy3, Fy9, and
F;. Note that existing programs are usually unable to perform calculations in such
high characteristics.

In Sect.4.5.4, we present examples, found by computer searches, of smooth cubic
threefolds defined over F,, F3, Fy4, or F5 with no lines. We were unable to find
examples over F, for the remaining values g € {7, 8,9} (by Theorem 4.4, there
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are always F,-lines for g > 11). For the example over F;, we compute directly the
number of points over small extensions and deduce the polynomial P, for the Fano
surface F(X). For the example over F3, we obtain again the polynomial P; for the
Fano surface F(X) by applying the Bombieri—-Swinnerton-Dyer method over Fy.
Finally, in Sect.4.5.5, we exhibit cubic threefolds with one node but no lines,
defined over F, or F3, thereby proving that the bound in Corollary 4.8 is optimal.

4.5.1 Fermat Cubics

The n-dimensional Fermat cubic X" C P;“ is defined by the equation
x?+-~-+x2+2=0. (15)

It has good reduction at every prime p # 3.

Remark 4.10 Ingeneral,if¢g =2 (mod 3)and X C P’H'l isacyclic cubic hypersur-

face defined by the equation f(xy, . .., X,+1) + xn o= 0 the projection7m: X — P”
defined by (xi, ..., Xu42) = (x1, ..., X,41) induces a bijection X(F,) — P” (Fq)
because the map x > x% is a bijectlon of F, ([19, Observation 1.7.2]).

The remark gives in particular Card (X” (Fz)) = Card (P” (Fz)) = 2" — 1. For
the number of points of X"(Fy4), observe that the cyclic cover 7 is 3-to-1 outside
its branch divisor V (f). Let (xq, ..., X,.1) € P"(F4). Since x* € {0, 1} for any x €
Fy, either x{ 4+ -+ +x,, =0 and the inverse image by 7 has one F4-point, or
xj + -+ +x2,, = 1 and the inverse image by 7 has three F4-points. One obtains the
inductive formula

Card (X" (F4)) = Card(X"~'(F4)) + 3(Card (P"(F4)) — Card (X"~ (F4))).
Since Card (X°(F4)) = 3, we get
Card(X"(Fy)) = % (22 — (=2)" —1).

Using (8), we see that the number of F,-lines on leiz is

(2n+1 _ 1)2 _ 2(1 + 211)(2n+1 _ 1) + %(22n+3 _ (_2)n+1 _ 1) _ 22n + 1 + ((_l)n _ 9)21172
8 B 3 ’

For example, the 15 F,-lines contained in Xéz are the line Ly, and its images by
permutations of the coordinates.

In fact, general results are available in the literature on the zeta function of Fermat
hypersurfaces over finite fields (starting with [30]; see also [26, Sect. 3]), although
they do not seem to have been spelled out for cubics. Let us first define
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o P, (X"p, T) if n is odd,
P, (Xﬁ’ T)= Po(Xj,,T)

H’W if n is even

(this is the reciprocal characteristic polynomial of the Frobenius morphism acting
on the primitive cohomology of X ) and set BY(X™) := deg(PY); this is b,(X") if n
is odd, and b, (X"") — 1 if n is even.

Theorem 4.11 (Weil) Let X" C P%H be the Fermat cubic hypersurface. Let p be a
prime number other than 3.

e Ifp =2 (mod 3), we have
PYX , T) = (1 = (=p)" T2,

e If p=1 (mod 3), one can write uniquely 4p = a*> + 27b* with a = 1 (mod 3)
and b > 0, and

1 +aT + pT? whenn =1,
(1 —pD)° whenn = 2,
Py(Xg . T) = { (1 + apT + p*T?)° whenn =3,
(14+@2p—AT +p’THA = p*T)*  whenn =4,
(1 + ap®T 4+ p°T*)?! whenn = 5.

As will become clear from the proof, it would be possible to write down (com-
plicated) formulas for all 7 in the case p = 1 (mod 3). We leave that exercise to the
interested reader and restrict ourselves to the lower-dimensional cases.

Proof Assume first p =2 (mod 3). It follows from Remark 4.10 that the polyno-
mial PS(XH,,» T) is even (this is explained by (19) and (20) when n = 4). It is there-
fore equivalent to prove P9 (X{;Pz, T)y=(>1 - (—p)" T)bﬁ(x")‘ We follow the geometric
argument of [26].

It is well known that P (X, , T) = 1 4 pT?, hence P1(Xy ,, T) = (1 +pT)*. In

P P
other words, the Frobenius morphism of F» acts on the middle cohomology of X | by
p-

multiplication by —p. By the Kiinneth formula, it acts by multiplication by (—p)? on
the middle cohomology of XPI‘ 5 X Xﬁ‘ e The proof by induction on n of [26, Theorem
2.10] then applies and gives that the Frobenius morphism acts by multiplication by
(—p)" on the middle cohomology of Xﬁpz.

Assume now p =1 (mod 3). The number of points of X' (F,) was computed
by Gauss ([28, Theorem 4.2]): writing 4p = a® + 27b* as in the theorem, one
has Card(X'(F,)) =p + 1 +a,ie., Pl(Xéﬂ, T)=14aTl +pT*=: (1 —wT)(1 —
wT). In other words, the eigenvalues of the Frobenius morphism of F,, acting on the
first cohomology group are w and w. They are therefore the Jacobi sums denoted by
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j(1,2) and j(2, 1) in [26, (3.1)], and also the generators of the prime ideals p and p
in Z[{] (¢ = exp(2imw/3)) such that (p) = pp

The eigenvalues of the Frobenius morphism acting on the primitive middle coho-
mology of Xl’;p are denoted j(«) by Weil, where « runs over the set

Uy = {(ao, ..., pp1) € {1, 2}n+2 |ag+ -+ auy1 =0 (mod 3)}.

The ideal (j(«)) in Z[(] is invariant under permutations of the «; and its decompo-
sition is computed by Stickelberger (see [26, (3.10)]):

(@) = pH VP,

with A(a) = | X %] and & =3 —

The elements of LI, are (1, 1, 1) and (2 2,2), and the corresponding values of A
are 0 and 1. The eigenvalues are therefore (up to multiplication by a unit of Z[(]), w
and w. By Gauss’ theorem, we know they are exactly w and w. By induction on n, it
then follows from the embeddings [26, (2.17)] that

jlo) = W@ ZAQ)

The elements of LI, are (up to permutations) (1, 1,2, 2) and the corresponding
value of A is 1. The only eigenvalue is therefore ww = p, with multiplicity (3)

The elements of 13 are (up to permutations) (1, 1, 1, 1,2) and (1, 2, 2, 2, 2), and
the corresponding values of A are 1 and 2. The eigenvalues are therefore w’w = pw
and pw, with multiplicity 5.

The elements of {4 are (up to permutations) (1, 1,1,1,1,1), (1,1,1,2,2,2),
and (2,2,2,2,2,2), and the correspondlng values of A are 1, 2, and 3. The elgen-
values are therefore pw? and pi?, with multiplicity 1, and p?, with multiplicity ().

The elements of s are (up to permutations) (1,1,1,1,1,2,2) and (1, 1,2,2,
2,2,?2), and the corresponding values of A are 2 and 3. The eigenvalues are therefore
p*w and p*©, with multiplicity (Z) This finishes the proof of the theorem. O

Corollary 4.12 Let X C P4Z be the Fermat cubic threefold defined by the equation
x4+ xg = 0 and let F (X) be its surface of lines. Let p be a prime number other
than 3.

The Albanese variety A(F (X)), is isogenous to Ef,p, where E is the Fermat plane
cubic curve. Moreover,

e ifp =2 (mod 3), we have

(1+pT?)>(1 4 p°T?)°
(1 —=T)(1 = pT)(1 + pT)>(1 — pT)>’

Z(F(X)k,, T) =

the Picard number of F(X)y, is 25 and that of F (X)sz is 45, and the abelian
variety A(F(X))¥, is supersingular;
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e ifp =1 (mod 3), we have (with the notation of Theorem 4.11)

(1 +aT + pT?)°(1 + apT + p3T?)°
(I =T)(1 =p?T)(1 + 2p — )T + p*TH'(1 — pT)>’

Z(FX)x,, T) =

the Picard and absolute Picard numbers of F(X)g, are 25, and the abelian variety
A(F(X))x, is ordinary.

Proof Theorems 4.1 and 4.11 imply that the characteristic polynomials of the Frobe-
nius morphisms acting on H' are the same for the abelian varieties A(F (X )¥, and
EI§ ; they are therefore isogenous ([23, Appendix I, Theorem 2]). The statements
about A(F(X))r, being supersingular or ordinary follow from the analogous state-
ments about EF,.

The values of the zeta functions also follow from Theorems4.1 and 4.11, and the
statements about the Picard numbers from Corollary 4.3. (]

We now restrict ourselves to the Fermat cubic threefold X C P4Z (n=3). We
parametrize planes containing the line L := ((1, —1, 0,0, 0), (0,0,1, —1,0)) C X
by the P? defined by the equations x; = x3 = 0 and determine the discriminant quintic
I'; C P? (see Sect.4.3).

Lemma 4.13 In the coordinates x,, x4, X5, an equation of the discriminant quintic
Ty C P?isxoxs (x% + xi + 4x§) = 0. Therefore,

e in characteristics other than 2 and 3, it is a nodal quintic which is the union of
two lines and an elliptic curve, all defined over the prime field;

e in characteristic 2, it is the union of 5 lines meeting at the point (0, 0, 1); 3 of them
are defined over ¥, the other 2 over Fy.

Proof We use the notation of the proof of Proposition 4.5 (although the choice of
coordinates is different). If x = (0, x,, 0, x4, x5) € P?, the residual conic C, is defined
by the equation

1
o (yg + (oy1 — ) +y§ + Cayr —3) +y?xg )= y%(X% +x42; +X§) - 3X§y1yz - 3x42;y1y3 + 3Xzy% + 3X4,v§

in the coordinates (y;, y2, y3). In characteristics other than 2 and 3, an equation of
I'y is therefore given by

gtxi+ad =322 -4 9 4063 +x34x3) 3x2 31y 9 ; 3 3
—1x% 3xy 0 = Z_XZ)C4 X% 1 0| = ZX2X4(.X2 +XA + 4.7%) =0.
320 3w 201

In characteristic 2, the Jacobian criterion says that the singular points of C, must
satisfy n = 0 and x,y3 + x4¥3 = x3y2 + x2y3 = 0. The curve I'; is therefore defined

=0, or xox4(x3 +x3) = 0. It is therefore the “same” equation reduced
modulo 2 O
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4.5.2 The Klein Threefold
This is the cubic threefold X C Py, defined by the equation

xfxz + x§X3 + x§x4 + xi)g + xgxl =0. (16)

It has good reduction at every prime p # 11.
It contains the line L' = ((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)) and we parametrize planes
containing L’ by the P? defined by x; = x3 = 0.

Lemma 4.14 In the coordinates x;, x4, x5, an equation of the discriminant quintic
Iy cP?is xg + x;;xé — 4x2x2xs = 0. Therefore,

e in characteristics other than 2 and 11, it is a geometrically irreducible quintic
with a single singular point, (0, 1, 0), which is a node;

e in characteristic 2, it is a geometrically irreducible rational quintic with a single
singular point of multiplicity 4, (0, 1, 0).

Proof We proceed as in the proof of Lemma 4.13. If x = (0, x2, 0, x4, x5) € P?, an
equation of the residual conic Cy is

1
o (¥3x2y1 +23¥7y3 + y3xayt + x3y3xsy1 +x3y3y2) = v3xz + x3y1ys + 33 + xdyias +x3yiye
1

in the coordinates (y;, y2, y3). In characteristic other than 2, an equation of I'y, is
therefore

Xxs 353 3|
: § x 0= —(xg +x4xg — 4x2xixS) =0.

2
3%5 0 x4

—

In characteristic 2, one checks that I';, is defined by the equation xg + x4x;1 =0.In
both cases, the singularities are easily determined. (]

In characteristic 11, Xg,, has a unique singular point, (1,3, 32, 33, 3%), which
has type A,. The quintic T';; C P? is still geometrically irreducible, with a node at
(0, 1, 0) and an ordinary cusp (type A,) at (5, 1, 3).

In characteristic 2, the isomorphism (xi,...,xs) — (x; + x5, X2 + x5, X3 + x5,
X4 + x5, x1 + X2 + x3 + x4 4 x5) maps Xp, to the cyclic cubic defined by xg + (x; +
X3 +x3 + x4)3 + xfxz + x%x_g + x§X4 = 0. Thus My, (Xg,) = Oforanym > 0 (rea-
soning as in Sect.4.5.1). The computer gives M, (Xy,) = M4(Xp,) = 0. Using (8),
we find that Xy, contains 5 F»-lines; they are the line L’ and its images by the cyclic
permutations of the coordinates.

By the reciprocity property (5), we obtain

Py(F(X)g,, T) = P3(Xg,, T/2) = 1 +2°T"°,
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Since this polynomial has simple roots, the Picard number of F(X)y, is 5 (Corollary
4.3). The eigenvalues of the Frobenius morphism F are wexp(2ik7/10), for k €
{0, ..., 9}, where w!'® = —23; hence F' acts by multiplication by —2°. This implies
Pi(F(X)p,,,, T) = (14 2°T)". It follows that F (X)g,,, has maximal Picard number
45 (Corollary 4.3) and that A(F (X)) is isogenous to E> over F,i, where E is the
Fermat plane cubic defined in Sect.4.5.1.

We also get Py(F(X)r,,T) = (1 —2T3)(1 = 210710 = (1 — 2575)°
(1 +27%)* and

(14+2°T'%(1 +2PT71)

ZE®w D) = TR0 =4 - BT L BT

Over other small fields, we find, using the Bombieri—-Swinnerton-Dyer method
(Proposition 4.5) and a computer,

Py(F(X)p,, T) = 14 317° 4 3°T"°
Pi(F(X)p,, T) = 1 —577° 4+ 5°T1°
Pi(F(X)p,,T) = 1 +7°T"°
Pi(F(X)g,, T) = 1 +13°T'°,

Note that A(F(X)) is ordinary in the first two cases and supersingular with maximal
Picard number in the other two cases. One can easily compute the Picard numbers and
write down the corresponding zeta functions if desired. We compute the geometric
Picard numbers by a different method. Note that —11 is a square modulo 3 or 5, but
not modulo 7 or 13.

Proposition 4.15 Let X C P4Z be the Klein cubic threefold with Eq. (16) and let F (X)
be its surface of lines. Suppose p # 2. If —11 is a square modulo p, the reduction
modulo p of F (X) has geometric Picard number 25, otherwise it has geometric Picard
number 45.

Proof Setv := ==l and E(, := C/Z[v]. By [1, Corollary 4, p. 1381, A(F (X))c
is isomorphic to (Eg)°. By [27, Appendix A3], the elliptic curve Eg has a model
defined by the equations

y2+y=x3—x2—7x+10=0

over Q, which we denote by E’. Since A(F(X))c and Eg are isomorphic, A(F (X))
and E” are isomorphic over some number field ([23, Appendix I, p. 240]).

We use Deuring’s criterion [21, Chapter 13, Theorem 12)]: for odd p # 11, the
reduction of E’ modulo p is supersingular if and only if p is inert or ramified in Z[v/].
By classical results in number theory, an odd prime p # 11 is inert or ramified in
Z[v] if and only if —11 is not a square modulo p. The geometric Picard number of
the reduction modulo p of A(F (X)) is therefore 45 if —11 is not a square modulo p,
and 25 otherwise. O
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4.5.3 An Implementation of Our Algorithm

We use the notation of Sect.4.3. Let X C Py, be the cubic threefold defined by the
equation
f+2q1xs + 2g2xs5 + x1X] + 2x0x4x5 + x3x3 = 0,

where

f= X§X3 - (xf + 4x1x§ + 2x§),
q1 = x% + 2x§ + Xx0x3 +x§,

2
q> = x1X2 + 4xox3 + x3.

It contains the line L defined by the equations x; = x, = x3 = 0.

In characteristics < 31, the cubic X is smooth except in characteristics 2 or 3 and
the plane quintic curve I'y is smooth except in characteristics 2 or 5.

We implemented in Sage the algorithm described in Algorithm 1 (see [31]). Over
Fs, we get

Py (F(X)r,, T) = (1 +5T*)(1 +2T% + 8T — 6T* + 407T° + 50T° + 625T*).

It follows that A (F (X ), ) is not ordinary and not simple (it contains an elliptic curve).
Over the field F7, we compute that P; (F(X)y,, T) is equal to

14+4T + 15T+ 46T +159T* +460T5 + 11137 +2254T7 4514578 + 9604 T° + 16807 T'°.

This polynomial is irreducible over Q; it follows that A(F(X)g,) is ordinary and
simple (Sect.2.4). We can even get more by using a nice criterion from [17].

Proposition 4.16 The abelian variety A(F (X)y,) is absolutely simple, i.e., it remains
simple over any field extension.

Proof We want to apply the criterion [17, Proposition 3 (1)] to the abelian variety
A :=A(F(X)¥,). Let d > 1. Since the characteristic polynomial Q;(A, T') (which
is also the minimal polynomial) of the Frobenius morphism F is not in Z[T“], it
is enough to check that, for any d > 1, there are no dth roots of unity ¢ such that
Q(F?) C Q(F) and Q(F?, () = Q(F). If this is the case, Q(() is contained in Q(F),
hence ¢(d) (where ¢ is the Euler totient function) divides deg(Q; (A, T)) = 10. This
implies d € {2,3,4,6, 11, 22}. But for these values of d, one computes that the
characteristic polynomial Qy(Ar,,,T) of F 4 is irreducible (of degree 10), and this
contradicts Q(F?) C Q(F). Thus A is absolutely simple. ]
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Here are some more computations in “high” characteristics:

PUF(X)py.T) = 1421 T2 =35T34759 T4 —890 T+17457 T—18 515 774255 507 T8 +6 436 343 T0,
PLF(X)pyg.T) = 143 T+5T> 415734352 T4+2828 T2+10208 7041261577 +121 945 7842 121 843 79+20511 149 710,

PUF(X)py, . T) = 142T+2T2+72 T3 +117 T4 =812 T54+3 627 T0+69 192 T7+59 582 T841847 042 79+28 629 151 T10.

4.5.4 Smooth Cubic Threefolds over F,, F3, F4, or F5 with No Lines
Using a computer, itis easy to find many smooth cubic threefolds defined over F, with

no F,-lines (see Example 4.17). For example, the cubic threefold X C Péz defined
by the equation

X3 403 4 x5 4 x3xg 4 13w 4 x3xy + xx00x3 + x0x5 + x5 + 0k 4 x3xs 4 xixs =0
contains no F,-lines. We also have?
N1 (X) =9, N,(X) = 81, N3(X) = 657, Ny(X) = 4225, Ns(X) = 34049,
hence (see (10) for the definition of M, (X))
M(X) = -3, M)(X) =—1,M3(X) =9, M4(X) = -9, Ms5(X) = 7.
The polynomial P (F(X),T) = P3(X,T/2) = H}il(l — wjT) is then given by
5

Tr
exp(ZMr(X)T) 4+ O(TS) = 1 — 3T + 4T% — 10T* + 2075 + O(T").

r=1
Using the reciprocity property (5), we obtain
PI(F(X),T) =1—3T +4T> — 10T* + 207> — 10-27% + 4. 2378 — 3. 2477 1 25710,

Since this polynomial has no multiple roots, the Picard number of F(X) is 5
(Corollary 4.3).

We found by random computer search the smooth cubic threefold X' C Pé;
defined by the equation

2x’? + 2x% + xlx% + x%)m + 2x§,r4 + xlzxs + xpx3x5 + 2x1X4X5 + 2x0X4X5 + 2x§xs + 2X4X§ + xg’ =0.

3 Among smooth cubics in P4F2 with no F»-lines, the computer found examples whose number of
F>-points is any odd number between 3 and 13.
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It contains no F3-lines and 25 F3-points. Computing directly the number of points on
extensions of F3, as we did above for F», takes too much time, and it is quicker to use
the Bombieri-Swinnerton-Dyer method (Proposition 4.5) on Xg, , which contains an
Fo-line. The result is that Py (F (X)x,, T) is equal to

1— 5T +8T% + 1073 — 124T* + 51577 — 1116T° + 81077 + 583278 — 3280572 + 59049710,

Using the fact that X’ has 25 F3-points and that the roots of P, (F (X")r,, T) are square
roots of the roots of P;(F(X')g,, T), one finds

PI(F(X)py, T) = 1 = ST+ 1072 =273 — 367 4+ 9575 — 1087° — 1877 +2707® — 40577 + 243710,

and the numbers of Fs--lines in Xl/?w for r € {1,...,5}, are 0, 40, 1455, 5740,
72 800, respectively. '
Similarly, the smooth cubic threefold in P“F4 defined by the equation

x% +x%x2 +x§ +.’C%X3 + uxlx% + uxzxg + u2x1x2x4 +x%x4 + uxi +x%x5 + uxpx3x5 +X%X5 +X3X§ +xg =0,

where u?> 4+ u + 1 = 0, contains no F,-lines and 61 F4-points.
Finally, the smooth cubic threefold in Pﬁs defined by the equation

x? + 2x3 + x%xg, + 3x1x§ + x%m + x1x0x4 + x1X3x4 + 3x3x3X4 + 4X§X4 + xgxi

+ 4X3x421 + 3x%x5 + x1x3x5 + 3x2x3x5 + 3x1X4X5 + 3x42‘x5 + xzxg + 3xg =0

contains no Fs-lines and 126 Fs-points.

We were unable to find smooth cubic threefolds defined over F, with no F,-lines
for the remaining values g € {7, 8, 9} (by Theorem 4.4, there are always F-lines for
g = 10).

4.5.5 Nodal Cubic Threefolds over F, or F3 with No Lines

Regarding cubic threefolds with one node and no lines, we found the following
examples.
The unique singular point of the cubic in Pf,z defined by the equation

3 2 3 2 3 2
X5 + X5X3 + X3 + X1X0X4 + X3X4 + X3 + X]{X5 + X1X3X5 + XoX4X5 = 0

is an ordinary double point at x := (0, 1, 0, 0, 1) and this cubic contains no F,-lines.
As we saw during the proof of Corollary 4.8, the base of the cone Ty N X is a
smooth genus-4 curve defined over F, with no F4-points. The pencils g% and h% are
defined over F».
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The unique singular point of the cubic in Pﬁ} defined by the equation

ZX? + Zx%xz + xlx% + 2x2x§ + 2x1X0x4 + X2X3X4

+ xlx‘% + 2x2 + xpx3x5 + 2x%xg + xzxg + xg =0

is an ordinary double point at x := (1, 0, 0, 0, 1) and this cubic contains no F3-lines.
Again, the base of the cone Tx , N X is a smooth genus-4 curve defined over F3 with
no Fy-points, and the pencils g3 and h} are defined over F;.

4.6 Average Number of Lines

Consider the Grassmannian G := Gr(1, Pﬁ:’l), the parameter space P = P(H° (P{’le,
ﬁpyu (d))) for all degree-d hypersurfaces in Pf-:“', and the incidence variety I =

{(L,X) € G xP|L C X}. The first projection I — G is a projective bundle, hence
itis easy to compute the number of F,-points of /. The fibers of the second projection
I — P are the varieties of lines. The average number of lines (on all degree-d n-folds)
is therefore

Card(G(F,))(g*™®~ — 1)
qdim(P)-H —1

~ Card(G(F,))gm®~4~1. (17)

Recall that Card (G(F,)) = > ;<41 47" For cubic 3-folds, the right side of
(17) is
T+q+2+2¢" +2¢+q 7 +q7".

For g = 2, the average number of lines on a cubic threefold is therefore ~9.688
(compare with Example 4.17 below).

Example 4.17 (Computer experiments) For a random sample of 5 - 10* cubic three-
folds defined over F,, we computed for each the number of F,-lines.

ir .

r 1

o
T

-
T

Percentage of cubics
e R
L] Ll

b
T

2 4 6 8 10 12 14 16 18 20 22 24 26
Number of lines

The average number of lines in this sample is ~9.651.
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Smooth cubic threefolds contain less lines: here is the distribution of the numbers
of F,-lines for a random sample of 5 - 10* smooth cubic threefolds defined over F».

10

8+

4

1 | I||

L | I I'Il- s
0 f

L 1 1 1
0 2 4 ]0 12 14 16 ]8 20 22 24 26
Number of lines

Percentage of smooth cubics

The average number of lines in this sample is ~6.963.

5 Cubic Fourfolds

We now examine cubic fourfolds over F,. We expect them to contain “more” lines
than cubic threefolds (indeed, all the examples we computed do contain F-lines).
Unfortunately, we cannot just take F,-hyperplane sections and apply our results from
Sect. 4, because these results only concern mildly singular cubic threefolds, and there
is no a priori reason why there would exist a hyperplane section defined over F, with
these suitable singularities.

We follow the same path as in Sect. 4. Recall that for any field k, the scheme F (X)
of lines contained in a cubic fourfold X C Pls( with finite singular set is a geometrically
connected local complete intersection fourfold (Sect. 2.3) with trivial canonical sheaf
([2, Proposition (1.8)]).

5.1 The Zeta Function of the Fourfold of Lines

LetX C P5 be a smooth cubic hypersurface defined over F,. Its Betti numbers are
1,0, 1,0, 23 0, 1, 0, 1, and the eigenvalues of the Frobemus morphism acting on
H* (X , Q) are all divisible by ¢ as algebraic integers ([18, Remark 5.1]). We write

23
NX) =144 +q"+q" +4q" D v,
j=1
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where the complex algebraic integers w; (and all their conjugates) have modulus
q, with wy3 = ¢g (it corresponds to the part of the cohomology that comes from
H*(P2-, Q;)). The trace formula (3) reads

1
XD = U =g =D (1 =@ D = DX, )
where
PYX,T) := }M H(l — qu;T). (18)
If we set
1
M%) = (N0 = (44 +47 +47 +4) = Dow, (19
we obtain

PIX,T) = exp(D_ M, (qT)r)

r>1

(20)

Theorem 5.1 Let X C P5 be a smooth cubic hypersurface defined over ¥, and let
F(X) be the smooth f()urfold of lines contained in X. With the notation above we
have P;(F(X), T) = 0 for i odd and

Py(F(X),T) = Po(F(X), T/q*) = Ps(X. T/q) = [] (1 —wT)

1<j<23
PyFX), Ty = ] (1 —wwD),
1<j<k<23
where the complex numbers wy, . . . , wy have modulus q and wy3 = ¢, and

1

Z(F(X),T) = .
Fx). 1) (1 =71 = ¢*T) [1<j<23 (1 =11 = 2T T1) <<k <23 (1 — wjwi T)

21

Proof The various methods of proof described in the proof of Theorem 4.1 are still
valid here. For example, one may deduce the theorem from the isomorphisms

H'(X,Q/) > H*(F(X),Q/(1)) and Sym”H*(F(X),Q;) = H*(F(X), Q)

obtained from the Galkin—Shinder relation (7) ([14, Example 6.4]) or the analogous
(known) statements in characteristic 0. We leave the details to the reader. ([l
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5.2 Existence of Lines over Large Finite Fields

As we did for cubic threefolds, we use the Deligne—Weil estimates to find a lower
bound for the number of F,-lines on a smooth cubic fourfold defined over F,,.

Theorem 5.2 Let X be a smooth cubic fourfold defined over ¥, and let N (F (X))
be the number of ¥ -lines contained in X. For g > 23, we have

N(F(X)) > ¢* —21¢° +210¢* — 21g + 1

and, for smaller values of q,

q 5 7 8 9 11 13 16 17 19
Ni(F(X)) >| 26 638 1337 2350 5930 12338 29937 38438 61010

In particular, X always contains an ¥ ,-line when q > 5.

When g = 2, we will see in Corollary 5.4 that X always contains an F,-line. These
leaves only the cases ¢ = 3 or 4 open (see Sect.5.4.3).

Proof Write theroots of Q, (F(X), T) as ¢ (with multiplicity a), —g (with multiplicity
b), wi, ..., we, Wi, ..., W, with a + b + 2¢ = 23. The r; := w; + w; are then real
numbers in [—2¢, 2¢] and, by (2) and Theorem 5.1, we have

Ni(F(X) =1+4"+ Z wiwe + (1 +¢°) Z wj

1<j<k<23 1<j<23

- 1+q4+(%(a(a+1)+b(b+1)) —ab)q2+(a—b)q >

1<j<c

ted+ Y ) (@-bgt Y r)

lsj<k=c 1<j<c
1
=1+4+4¢*+ 5((54 —b)* +23)¢> + (1 + ¢*)(a — b)g

+ Z rire + (14 ¢* + (a — b)q) Z .

1<j<k<c I1<j<c

Since a + b = 23 — 2¢ is odd, it is enough to study the cases a = 1 and b = 0, or
a =0and b = 1, since we can always consider pairs ¢, g, or —¢q, —q, as w, w. We
then have c =22 and we sete :=a — b € {—1, 1}.

As in the proof of Theorem 4.4, we note that this last expression G (r) is linear
in each variable, hence its minimum is reached at a point on the boundary, when the
r; are all equal to +2¢. At such a point r; (with / positive coordinates), we compute

Go(r) = 1 +¢* + 124> + eq(1 + ¢°) +2¢7((21 — 11)? = 11) + 221 — 11)q(1 + ¢* + £q).
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Since ¢ is always an eigenvalue, we must have ¢ = 1 when / = 0. As a function of [,
the minimum is reached for 2/ — 11 = —Hq;%. For g > 23, the allowable values
for which G (r;) is smallest are / = 0 and & = 1, and the minimum is ¢* — 21¢° +
210¢*> —21g+1 > 0.

For ¢ < 19, the numbers in the table follow from a longish comparison of the
various functions G;;. ([l

5.3 Existence of Lines over Some Finite Fields

The cohomology of the structure sheaf of the fourfold F(X) is particularly simple
and this can be used to prove congruences for its number of F,-points by using the
Katz formula (6).

Proposition 5.3 (Altman—Kleiman) Let X C Pi be a cubic hypersurface defined
over a field K, with finite singular set. We have

hO(F(X), Opx)) = B (F(X), Opx)) = h*(F(X), Op)) = 1
W(F(X), Opw) = B (F(X), Or) = 0.

Proof The scheme F(X) is the zero scheme of a section of the rank-4 vector bundle
&Y :=Sym*.#" on G := Gr(1, P}) and the Koszul complex

0> NE—> NE—> NE—>E— Og— Ory —> 0 (22)
is exact. By [2, Theorem (5.1)], the only non-zero cohomology groups of N’ & are
H3(G, \*6) ~ H*(G, \*6) ~ k.

Chasing through the cohomology sequences associated with (22), we obtain
H'(F(X), Orx)) = H(F(X), Orx)) = 0 and

H(F(X), Orx)) ~ H°(G, 05),
H*(F(X), Opx) ~ H*(G, N*&),
HY(F(X), Opx) ~ H* (G, \*&).

This proves the proposition. (]

Since wr(x) is trivial, the multiplication product
H*(F(X), Ox) ® H*(F(X), Op) = H*' (F(X). Orcx) (23)

is the Serre duality pairing. It is therefore an isomorphism.
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Corollary 5.4 Let X C P5 be a cubic hypersurface with finite singular set, defined
over F . If g =2 (mod 3) "the hypersurface X contains an F-line.

Proof The F,-linear map §, defined in Sect.2.2 acts on the one-dimensional F,,-
vector space H?(F(X), Or)) (Proposition 5.3) by multiplication by some A € F;
since (23) is an isomorphism, §, acts on H*(F(X), OF(x)) by multiplication by \2.
It then follows from the Katz formula (6) that we have

NFX) - lg,=1+A+X inF,

IfFl4+A+ X = OFq, we have \3 = lpq. Since 3 ¢ — 1, there are no elements of
order 3 in qu, hence the morphism F; — qu, X x3is injective. Therefore, A =
1g,, hence 3 - 1, = 1f,, but this contradicts our hypothesis.

We thus have 1 + \ + \? # Or,, hence N (F (X)) is not divisible by the charac-
teristic of F, and the corollary is proved. ([

5.4 Examples of Cubic Fourfolds

5.4.1 Fermat Cubics

If X C Py is the Fermat fourfold, it is a simple exercise to write down the zeta
function of F(X) using Theorems4.11 and 5.1, as we did in dimension 3 in
Corollary 4.12.

5.4.2 Cubic Fourfolds over F, with only One Line

Smooth cubic fourfolds defined over F, always contain an F,-line by Corollary 5.4.
Random computer searches produce examples with exactly one F;-line: for example,
the only F,-line contained in the smooth cubic fourfold defined by the equation

x? + x% + x; + x%xz + x%xl + x%xl + x1x0x3 + xlx% + x%x4 + xzxg + x%x5

+ xix5 + x4x§ + xgxg + x§x6 + x§x6 + X4xé + x§x6 + x5x(2) + x4x5x6 = 0

is the line ((0, 0, 0,0, 1, 1), (0,0, 0, 1, 0, 1)); the fourfold contains 13 F;-points.

5.4.3 Cubic Fourfolds over F3 or Fy4

Our results say nothing about the existence of lines in smooth cubic fourfolds defined
over F3 or F4. Our computer searches only produced fourfolds containing lines (and
over F3, both cases N (F(X)) = 0or 1 (mod 3) do occur), leading us to suspect that
all (smooth) cubic fourfolds defined over F3 or F, should contain lines.
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6 Cubics of Dimensions 5 or More

In higher dimensions, the existence of lines is easy to settle.

Theorem 6.1 Any cubic hypersurface X C P"Jr1 of dimension n > 6 defined over
F, contains ¥ ,-points and through any such pomt there is an F -line contained in X.

Proof This is an immediate consequence of the Chevalley—Warning theorem: X (F,)
is non-empty because n + 2 > 3 and given x € X(F,), lines through x and contained
in X are parametrized by a subscheme of Pﬁ«q defined by equations of degrees 1, 2,
and 3 and coefficients in F,. Since n + 1 > 1 + 2 + 3, this subscheme contains an
F,-point. (]

The Chevalley—Warning theorem implies N, (X) >

from the theorem N;(F (X)) > qqz—_ll when X (hence also F (X)) is smooth, the
Deligne—Weil estimates for F (X) provide better bounds.

When n > 5, we may also use the fact that the scheme of lines contained in a
smooth cubic hypersurface is a Fano variety (its anticanonical bundle &'(4 — n) is
ample).

Theorem 6.2 Assume n > 5 and let X C PEH be any cubic hypersurface defined
over ¥,. The number of F-lines contained in X is =1 (mod q).

Proof When X is smooth, the variety F(X) is also smooth, connected, and a Fano
variety. The result then follows from [12, Corollary 1.3].

To prove the result in general, we consider as in Sect.4.6 the parameter space P
for all cubic hypersurfaces in P”Jrl and the incidence variety I = {(L,X) € G x P |
L C X}. The latter is smooth and geometrlcally irreducible; the projectionpr: I — P
is dominant and its geometric generic fiber is a (smooth connected) Fano variety
([2, Theorem (3.3)(ii), Proposition (1.8), Corollary (1.12), Theorem (1.16)(1)]). It
follows from [13, Corollary 1.2] that for any x € P(F,) (corresponding to a cubic
hypersurface X C PE’I defined over F, ), one has Card (pr’l(x)) =1 (mod g).Since

pr~'(x) = F(X), this proves the theorem. O
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