
Chapter 2
A First Example

InChap.1,we explained the fundamental philosophy that underpins thefinite element
method—that is, the region on which a differential equation is defined is partitioned
into smaller regions known as elements, and the solution on each of these elements
is approximated using a low-order polynomial function. In this chapter, with the aid
of a simple example, we illustrate how this may be done. This overview will require
the definition of some terms that the reader may not be familiar with, as well as
a few technical details. We will, however, undertake to keep these definitions to a
minimum and will focus on the underlying strategy of applying the finite element
method without getting bogged down by these technical details. As a consequence,
we will inevitably skate over some mathematical rigour, but will make a note to
return to these points in later chapters.

2.1 Some Brief Mathematical Preliminaries

We make a few comments on notation before we begin our overview of the finite
element method. Throughout this book, we use the convention that a solution of a
differential equation that is represented by a lowercase letter, for example u(x), is the
exact, or analytic, solution of the differential equation. The corresponding uppercase
letter, U(x) in this case, will represent the finite element approximation to the exact
solution.

We will frequently make use of vectors and matrices, and adopt the following
conventions.

1. Vectors will be assumed to be column vectors, i.e. a vector with many rows but
only one column, and will be denoted by bold font. Entry i of the vector x will
be denoted by xi.

© Springer International Publishing AG 2017
J. Whiteley, Finite Element Methods, Mathematical Engineering,
DOI 10.1007/978-3-319-49971-0_2

5

http://dx.doi.org/10.1007/978-3-319-49971-0_1

6 2 A First Example

2. Matrices will be represented by upper case letters typeset in italic font. The entry
in row i and column j of the matrix A will be denoted by Ai,j.

3. The indexing of both vectors and matrices will start from 1. A vector b with
N entries, for example, will have entries b1, b2, . . . , bN . This allows the finite
element algorithms to be written in a way that facilitates the writing of software
in programming languages or environments such asMatlab, Octave or Fortran,
where array indexing starts from 1 (known as “one-based indexing”). Readers
using programming languages such as C, C++ and Python, where the indexing
of arrays starts from 0 (known as “zero-based indexing”) will need to adapt the
algorithms to take account of this feature of the programming language being
used.

2.2 A Model Differential Equation

We will use a simple boundary value problem to demonstrate the application of
the finite element method. A boundary value problem comprises both a differential
equation and boundary conditions. In this chapter, we will consider only Dirichlet
boundary conditions, where the value of the unknown function u(x) is specified
on the boundary. More complex boundary conditions, such as those that include the
derivative of u(x) on the boundary, will be discussed in Chap.3. Our model boundary
problem comprises the differential equation

− d2u

dx2
= 2, 0 < x < 1, (2.1)

and the Dirichlet boundary conditions given by

u(0) = u(1) = 0. (2.2)

The region 0 < x < 1 on which the equation is defined is known as the domain.
This simple example, with solution u(x) = x(1 − x), will now be used to exhibit
the underlying principles of calculating the finite element solution of a differential
equation.

2.3 The Weak Formulation

Let u(x) be the solution of the model differential equation, Eq. (2.1), subject to the
boundary conditions given by Eq. (2.2). The function u(x) is known as the classical
solution of this differential equation, and specification of u(x) through Eqs. (2.1) and
(2.2) is known as the classical formulation.

http://dx.doi.org/10.1007/978-3-319-49971-0_3

2.3 The Weak Formulation 7

We now introduce the weak formulation of the model problem, a concept that
may be unfamiliar to some readers. In this chapter, we limit ourselves to illustrating
the weak formulation of a differential equation by example, rather than giving a
watertight definition through precise mathematical statements. A more complete
and rigorous treatment of this material will be presented in Sect. 3.2.

To derive the weak formulation of our model problem, we first define v(x) to be
a continuous function that satisfies

v(0) = v(1) = 0, (2.3)

so that v(x) = 0 at the values of x where we apply Dirichlet boundary conditions.
We now multiply the differential equation, given by Eq. (2.1), by v(x), and integrate
the resulting product over the interval 0 < x < 1 on which the differential equation
is defined, giving

∫ 1

0
−d2u

dx2
v(x) dx =

∫ 1

0
2v(x) dx.

We now apply integration by parts to the left-hand side of the equation above to
obtain

[
−du

dx
v(x)

]1

0

+
∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
2v(x) dx,

which may be written as

− du

dx

∣∣∣∣
x=1

v(1) + du

dx

∣∣∣∣
x=0

v(0) +
∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
2v(x) dx, (2.4)

where

du

dx

∣∣∣∣
x=1

and
du

dx

∣∣∣∣
x=0

denote the value taken by du
dx at x = 1 and x = 0, respectively. Remembering our

condition on v(x), given by Eq. (2.3), we see that the first two terms in the sum on
the left-hand side of Eq. (2.4) are zero, and we may write this equation as

∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
2v(x) dx.

Assuming that all derivatives and integrals we have used exist, we may now specify
the weak formulation of our model differential equation by:

http://dx.doi.org/10.1007/978-3-319-49971-0_3

8 2 A First Example

find u(x) that satisfies the Dirichlet boundary conditions given by Eq. (2.2) and
is such that

∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
2v(x) dx, (2.5)

for all continuous functions v(x) that satisfy v(0) = v(1) = 0.

The solution u(x) given by Eq. (2.5) is known as the weak solution. The functions
v(x) that appear in Eq. (2.5) are known as test functions.

The concept of weak solutions will be revisited in the next chapter, providing
some mathematical details that have been omitted above. For now, the reader need
only know what has been derived above, namely that a classical solution of the
differential equation and boundary conditions given by Eqs. (2.1) and (2.2) is also a
weak solution that satisfies Eq. (2.5).

2.4 Elements and Nodes

We now begin to lay out some of the ingredients required by the finite element
method. We have already explained that we need to partition the domain on which
the differential equation is specified into smaller regions. Our model differential
equation, Eq. (2.1), is defined on the domain 0 < x < 1, and we now partition this
domain into N intervals of equal length h = 1

N . If we define

xi = i − 1

N
, i = 1, 2, . . . ,N + 1, (2.6)

then these intervals are the regions xk ≤ x ≤ xk+1, for k = 1, 2, . . . ,N . We refer
to these intervals as elements. The points xi that define the element boundaries are
known as nodes. We also define element k to be the element that occupies xk ≤ x ≤
xk+1, for k = 1, 2, . . . ,N . The elements and nodes are collectively known as the
computational mesh, the finite element mesh or, more simply, the mesh. The nodes
and elements for the case where N = 5 are shown in Fig. 2.1.

x
1
 = 0 x

2
 = 0.2 x

3
 = 0.4 x

4
 = 0.6 x

5
 = 0.8 x

6
 = 1

h

Fig. 2.1 The nodes and elements in a finite elementmeshwhen the interval 0 < x < 1 is partitioned
into five equally sized elements

2.4 Elements and Nodes 9

The mesh we have described above contains elements that are equally sized. We
will see in the next chapter that it is straightforward to generalise the definition of
the mesh so that it contains elements that are of different sizes.

2.5 Basis Functions

In this chapter, we will use the finite element method to calculate a linear approxima-
tion to the solution on each element, that is continuous across element boundaries.
In the previous section, we partitioned the domain 0 < x < 1 into N equally sized
elements, each of length h = 1

N . Note that this implies that

xj+1 − xj = h, j = 1, 2, . . . ,N . (2.7)

We now specify some functions that will be required when calculating the finite
element solution. Using the property of h given by Eq. (2.7), the functions φj(x), for
j = 1, 2, . . . ,N + 1, are defined by

φ1(x) =
{

(x2 − x)/h, x1 ≤ x ≤ x2,
0, otherwise,

(2.8)

φj(x) =
⎧⎨
⎩

(x − xj−1)/h, xj−1 ≤ x ≤ xj,
(xj+1 − x)/h, xj ≤ x ≤ xj+1,

0, otherwise,
j = 2, 3, . . . ,N, (2.9)

φN+1(x) =
{

(x − xN)/h, xN ≤ x ≤ xN+1,

0, otherwise.
(2.10)

These functions are illustrated in Fig. 2.2. For reasons that will soon become clear,
we refer to these functions as basis functions.

The functions φj(x), j = 1, 2, . . . ,N + 1, defined by Eqs. (2.8)–(2.10) have three
properties that are useful when calculating the finite element solution: (i) they are
linear functions on each element; (ii) they are continuous functions; and (iii) they
satisfy, for i = 1, 2, . . . ,N + 1, the condition

φj(xi) =
{
1, i = j,
0, i �= j.

(2.11)

These properties may easily be verified using the definition of basis functions given
by Eqs. (2.8)–(2.10), and the plots of these functions in Fig. 2.2. As a consequence,
the function φj(x) takes the value 1 at the node where x = xj, and the value 0 at all
other nodes. This is a very important property of basis functions, as we will see in
later chapters when using more general basis functions to calculate the finite element
approximation of more complex differential equations.

10 2 A First Example

0

1

φ1(x) φj(x) φN+1(x)

x1 x2 xj−1 xj xj+1 xN xN+1

Fig. 2.2 The basis functions defined by Eqs. (2.8)–(2.10)

2.6 The Finite Element Solution

Wewill now use the basis functions φj(x), j = 1, 2, . . . ,N+1, defined by Eqs. (2.8)–
(2.10), to generate a finite element solution of our model differential equation that is
a linear approximation to the solution on each element. We claim that we can write
the finite element solution, U(x), as a linear sum of these basis functions:

U(x) =
N+1∑
j=1

Ujφj(x), (2.12)

where the as yet unknown values Uj, j = 1, 2, . . . ,N + 1, are to be determined.
Our claim that the finite element solution, U(x), is of the form given by Eq. (2.12)
is straightforward to verify. As the basis functions φj(x) are linear functions on each
element and continuous, the sum given by Eq. (2.12) also satisfies these properties
and is therefore a suitable candidate for the finite element solution. Finally we note
that, on using the property of basis functions given by Eq. (2.11), we may write

U(xi) =
N+1∑
j=1

Ujφj(xi)

= Ui, (2.13)

2.6 The Finite Element Solution 11

and soUi is the finite element approximation to the solution at the node where x = xi.
We nowmove on to describe how to determine the valuesUi, i = 1, 2, . . . ,N+1,

that complete the definition of the finite element solution given by Eq. (2.12).

2.7 Algebraic Equations Satisfied by the Finite Element
Solution

Having prescribed the functional form for the finite element solution by Eq. (2.12),
we now generate a system of algebraic equations satisfied by the coefficients Uj,
j = 1, 2, . . . ,N + 1. This is achieved by modifying the weak formulation of the
model differential equation, given by Eq. (2.5), to specify the finite element solution
U(x) by:

find U(x) that satisfies the Dirichlet boundary conditions given by Eq. (2.2)
and is such that

∫ 1

0

dU

dx

dφi

dx
dx =

∫ 1

0
2φi(x) dx, (2.14)

for all basis functions φi(x), i = 1, 2, . . . ,N + 1, that satisfy φi(0) =
φi(1) = 0.

The statement above is nothing more than the weak formulation, Eq. (2.5), restated
with two minor modifications. First, we replace the weak solution u(x) by the finite
element solution U(x). Second we restrict the test functions to be the finite set of
basis functions φi(x) that satisfy

φi(0) = φi(1) = 0.

Wesee, from the definitions of the basis functions given byEqs. (2.8)–(2.10) and their
illustration in Fig. 2.2, that this condition on φi(x) is satisfied by all basis functions
exceptφ1(x) andφN+1(x).We therefore haveN−1 functionsφ2(x), φ3(x), . . . , φN (x)
that satisfy this condition.

We now use Eq. (2.14) to derive a system of algebraic equations, satisfied by the
N + 1 unknown values U1,U2, . . . ,UN+1, that specify the finite element solution
given by Eq. (2.12). As we haveN+1 unknown values, we require a system ofN+1
algebraic equations to determine these values.

The first condition in the specification of the finite element solution by Eq. (2.14)
is that U(x) satisfies the Dirichlet boundary conditions given by Eq. (2.2). These
boundary conditions are applied at the node where x = x1 and the node where
x = xN+1 and may be written as

U(x1) = 0, U(xN+1) = 0.

12 2 A First Example

Using Eq. (2.13), we see that these Dirichlet boundary conditions are satisfied pro-
vided that

U1 = 0, (2.15)

UN+1 = 0, (2.16)

and these are our first two algebraic equations.
We have already noted that the N − 1 basis functions φi, where i = 2, 3, . . . ,N ,

satisfy the condition on test functions given in Eq. (2.14), i.e. that φi(0) = φi(1) = 0.
The remaining N − 1 algebraic equations result from substituting these functions
into the integral equation given in Eq. (2.14). Noting that the definition of the finite
element solution given by Eq. (2.12) may be differentiated to give

dU

dx
=

N+1∑
j=1

Uj
dφj

dx
,

substitution of dU
dx into the integral equation given by Eq. (2.14) yields

∫ 1

0

⎛
⎝N+1∑

j=1

Uj
dφj

dx

⎞
⎠ dφi

dx
dx =

∫ 1

0
2φi(x) dx, i = 2, 3, . . . ,N,

which, after a little manipulation, becomes

N+1∑
j=1

(∫ 1

0

dφi

dx

dφj

dx
dx

)
Uj =

∫ 1

0
2φi(x) dx, i = 2, 3, . . . ,N . (2.17)

This may be written as

N+1∑
j=1

Ai,jUj = bi, i = 2, 3, . . . ,N, (2.18)

where for i = 2, 3, . . . ,N ,

Ai,j =
∫ 1

0

dφi

dx

dφj

dx
dx, j = 1, 2, 3, . . . ,N + 1, (2.19)

bi =
∫ 1

0
2φi(x) dx. (2.20)

2.7 Algebraic Equations Satisfied by the Finite Element Solution 13

We may combine Eqs. (2.15), (2.16) and (2.18) into the (N + 1) × (N + 1) linear
system

AU = b. (2.21)

The entries of A and b in row i, where i = 2, 3, . . . ,N , are given by Eqs. (2.19) and
(2.20). Using Eqs. (2.15) and (2.16), we see that the entries of A and b in rows 1 and
N + 1 are given by

A1,j =
{
1, j = 1,
0, j �= 1,

(2.22)

A(N+1),j =
{
1, j = N + 1,
0, j �= N + 1,

(2.23)

b1 = 0, (2.24)

bN+1 = 0. (2.25)

The algebraic equations that comprise the linear system given by Eq. (2.21) fall
into two categories. The first category is equations such as Eqs. (2.15) and (2.16) that
arise from demanding that the finite element solution satisfies all Dirichlet boundary
conditions. The second category is equations such as Eq. (2.18) that arise fromusing a
suitable basis function as the test function in the integral condition given byEq. (2.14).
This categorisation of equations will be a feature of all the systems of algebraic
equations that we derive in later chapters.

Having derived the linear system of algebraic equations that determines the values
U1,U2, . . . ,UN+1, we now introduce a flexible technique for the practical computa-
tion of the entries of the matrix A and the vector b.

2.8 Assembling the Algebraic Equations

Most entries of the matrix A and vector b that appear in the linear system given
by Eq. (2.21) are of the form specified by Eqs. (2.19) and (2.20) and are defined by
integrals over the whole domain on which the differential equation is specified. We
will now demonstrate that, from a computational implementation viewpoint, it is
convenient to compute these entries by summing the contributions from individual
elements. That is, for i = 2, 3, . . . ,N , we write Eqs. (2.19) and (2.20) as the sum of
integrals over individual elements:

14 2 A First Example

Ai,j =
N∑

k=1

∫ xk+1

xk

dφi

dx

dφj

dx
dx, j = 1, 2, . . . ,N + 1, (2.26)

bi =
N∑

k=1

∫ xk+1

xk

2φi(x) dx. (2.27)

Using Eq. (2.26) we see that the contribution to entry Ai,j from integrating over
the element that occupies xk ≤ x ≤ xk+1 is given by

∫ xk+1

xk

dφi

dx

dφj

dx
dx. (2.28)

From the definition of the basis functions, given by Eqs. (2.8)–(2.10) and illustrated
in Fig. 2.2, we see that φk(x) and φk+1(x) are the only basis functions that are nonzero
on the element occupying xk ≤ x ≤ xk+1: all other basis functions are identically
zero on this element. Hence, the integral above, over xk ≤ x ≤ xk+1, yields nonzero
contributions only to the entries Ak,k,Ak,k+1,Ak+1,k,Ak+1,k+1 of A. Motivated by this
observation, we calculate only these nonzero contributionswhen integrating over this
element and store these contributions in a 2×2 matrix called A(k)

local. The relationship
between the location of the entries of A(k)

local and the location of the entries of A that
they contribute to is given in Table2.1.

The entries of A(k)
local are known as the local contributions to the matrix A from ele-

ment k, and A is often referred to as the global matrix. We may compute A efficiently
by looping over all elements, calculating only the nonzero local contributions from
each element, before adding the local contributions to the appropriate entries of the
global matrix A. Having calculated the entries of A that are given by Eq. (2.19), we
complete the specification of the matrix by setting the remaining entries, i.e. those
defined by Eqs. (2.22) and (2.23).

The entries of b that are given by Eq. (2.27) may be calculated in a similar manner
to that used for the entries of A that are given by Eq. (2.26). The contribution to
bi, i = 2, 3, . . . ,N , from integrating over the element that occupies xk ≤ x ≤ xk+1

is given by

Table 2.1 The relationship between the location of the entries of A(k)
local and the location of the

entries of A that they contribute to

Entry in A(k)
local Entry in A

Row Column Row Column

1 1 k k

1 2 k k + 1

2 1 k + 1 k

2 2 k + 1 k + 1

2.8 Assembling the Algebraic Equations 15

Table 2.2 The relationship
between the location of the
entries of b(k)

local and the
location of the entries of b
that they contribute to

Entry in b(k)
local Entry in b

1 k

2 k + 1

∫ xk+1

xk

2φi(x) dx. (2.29)

As φk(x) and φk+1(x) are the only basis functions that are nonzero inside the element
that occupies xk ≤ x ≤ xk+1, the only nonzero contributions to b from this element
are to the entries bk and bk+1. We again calculate only these nonzero contributions
and store them in a vector of length 2 called b(k)

local, known as the local contribution
to the global vector b. The relationship between the location of the entries of b(k)

local
and the location of the entries of b that they contribute to is given in Table2.2. We
may then calculate the global vector b by looping over all elements, calculating
only the nonzero contributions to Eq. (2.27) from each element, and adding these
contributions into b. We then use Eqs. (2.24) and (2.25) to set the other entries.

2.8.1 Calculating the Local Contributions

We explained above that the entries of the global matrix A and global vector b
that are given by Eqs. (2.19) and (2.20) should be assembled by summing the local
contributions to these entries from each element. We now explain how these local
contributions may be calculated.

Using the mapping between the entries of A(k)
local and the entries of A, given by

Table2.1, and the definition of the contribution to entries of A from element k, given
by Eq. (2.28), we see that the entries of A(k)

local are given by

A(k)
local =

(∫ xk+1

xk
dφk

dx
dφk

dx dx
∫ xk+1

xk
dφk

dx
dφk+1

dx dx∫ xk+1

xk
dφk+1

dx
dφk

dx dx
∫ xk+1

xk
dφk+1

dx
dφk+1

dx dx

)
. (2.30)

Similarly, using Table2.2 and Eq. (2.29), the entries of b(k)
local may be written as

b(k)
local =

(∫ xk+1

xk
2φk(x) dx∫ xk+1

xk
2φk+1(x) dx

)
. (2.31)

The integrals required to calculate the entries ofA(k)
local andb

(k)
local are sufficiently simple

in this case that we may evaluate them analytically. Using Eqs. (2.8)–(2.10), we see
that, for xk ≤ x ≤ xk+1,

16 2 A First Example

φk(x) = xk+1 − x

h
,

φk+1(x) = x − xk
h

,

and so the derivatives of these functions take the constant values given by

dφk

dx
= −1

h
,

dφk+1

dx
= 1

h
.

Elementary integration allows us to deduce that the entries of A(k)
local and b(k)

local are
given by

A(k)
local =

(1
h − 1

h− 1
h

1
h

)
,

b(k)
local =

(
h
h

)
.

2.8.2 Assembling the Global Matrix

We have proposed calculating the entries of the global matrix A and global vector
b that are of the form given by Eqs. (2.19) and (2.20), by looping over all elements
in the mesh, calculating the nonzero local contributions A(k)

local and b(k)
local from each

element, and using these contributions to increment the appropriate entries of A and
b, given by Tables2.1 and 2.2.

Readers may have spotted a potential flaw with this approach for calculating A
and b. The expressions for Ai,j and bi given by Eqs. (2.19) and (2.20) are only valid
for i = 2, 3, . . . ,N , with the entries for rows 1 andN+1 given by Eqs. (2.22)–(2.25).
When calculating the local contributions from the element that occupies x1 ≤ x ≤ x2,
we evaluate contributions to both row 1 and row 2 ofA andb. The entries of row 1 ofA
and b do not, however, fall into the pattern given by Eqs. (2.19) and (2.20), although
the contribution to row 2 of both A and b from this element is correct. Similarly,
when calculating the local contribution from the element occupying xN ≤ x ≤ xN+1

we calculate contributions to row N + 1 of A and b that are not of the correct form.
We could avoid adding these incorrect entries into rows 1 and N + 1 by performing
a check, before adding any local contributions into the global matrix and vector, to
ensure we do not add any entries into rows 1 and N + 1. There is nothing wrong
with this approach. However, to promote clear, modular code—especially for the
more complex problems encountered later in this book—it is easier to add the local
contributions into rows 1 and N + 1 and then to overwrite these erroneous entries
afterwards with the correct values, given by Eqs. (2.22)–(2.25).

2.8 Assembling the Global Matrix 17

Having assembled the matrix A and the vector b, most of the work required to cal-
culate the finite element solution given by Eq. (2.12) has been done. All that remains
is to solve the linear system given by Eq. (2.21) to calculate U, before substituting
the entries of U into Eq. (2.12). We now summarise the steps we have taken when
applying the finite element method and then present an exemplar computational
implementation.

2.9 A Summary of the Steps Required

The aim of this chapter has been to give an overview of the finite element method
by illustrating its application to an example boundary value problem. We now give
a summary of the steps required when applying the finite element method. We will
see in later chapters that this summary may be used as a guide for the application of
the finite element method to more general differential equations.

1. Derive the weak formulation of the boundary value problem from the specified
differential equation and boundary conditions.

2. Define the finite element mesh by partitioning the domain into elements, and
specifying the nodes defined by these elements.

3. Use the nodes and elements in the mesh to define suitable basis functions.
4. Write the finite element solution as a linear sum of the basis functions. Modify the

weak formulation of the problem to determine the system of algebraic equations
that the finite element solution satisfies. These algebraic equations will fall into
one of two categories. The first category is equations that ensure that all Dirichlet
boundary conditions are satisfied. The second category is equations that arise
from substituting suitable test functions into an integral condition on the finite
element solution.

5. Assemble the algebraic equations. Begin with the second category of equations
given in step #4 above. Calculate the nonzero contributions from each element,
and use these local contributions to increment the correct entries of the global
matrix and vector. After this has been done, modify the equations to take account
of the boundary conditions.

6. Solve the system of algebraic equations.

2.10 Computational Implementation

We will now develop a practical computational implementation of the material
described in this chapter. This implementation will assemble and solve the system
of algebraic equations.

The entries of the system of algebraic equations depend on the basis functions
used, which in turn depend on the finite element mesh. Before we can assemble the
algebraic equations, we must therefore specify the finite element mesh. The mesh we

18 2 A First Example

defined in Sect. 2.4 requires only specification of the number of elements, N . This is
sufficient to define the location of the nodes x1, x2, . . . , xN+1, and the element length
h. Further, these nodes allow us to specify the basis functions through the material
given in Sect. 2.5. We are then in a position to assemble the algebraic equations. We
will therefore implement the material described in this chapter by writing a function
that accepts a positive integer, N , that represents the number of elements, as an
input, and returns the vector x (containing the nodes in the mesh) and the vector U
(containing the finite element solution at each node).

AMatlab script for the implementation described above is given in Listing 2.1.
This functionmay be called by saving the file as Chap2_CalculateModelFem-
Solution.m and typing, in a Matlab session,

[x, U] = Chap2_CalculateModelFemSolution(40);

to run with N = 40 elements. Variable names in this script have been chosen to
correspond to the mathematical notation used in this chapter. This function begins
by initialising entries of the global matrix A and global vector b to zero in lines 4
and 5, before generating a vector containing the equally spaced nodes in the mesh in
line 8. We then loop over all elements in lines 12–23, calculating the nonzero local
contributions to A and b given by Eqs. (2.30) and (2.31), before incrementing the
appropriate entries of the global linear system, given by Tables2.1 and 2.2.Matlab
users will be aware that the expression A(k:k+1, k:k+1) that appears in line 21
is shorthand for the submatrix given by

(
Ak,k Ak,k+1

Ak+1,k Ak+1,k+1

)
,

and that the expression b(k:k+1) that appears in line 22 represents the subvector
given by

(
bk
bk+1

)
.

Note that the loop over elements introduces incorrect entries into rows 1 andN+1 of
A and b, for the reasons explained in Sect. 2.8.2. These entries are overwritten with
the correct values in lines 26–31. Note that line 26 uses Matlab notation to set all
entries of row 1 to zero. We then solve the linear system usingMatlab’s backslash
operator in line 34. This is a suitable method for solving linear systems of the modest
size generated here. However, iterative techniques may be more suitable for solving
the larger systems of algebraic equations that arise from the application of the finite
elementmethod to partial differential equations in later chapters. A summary of these
linear algebra techniques is given in Appendix A. Finally, in lines 37–39, we plot the
finite element solution that has been calculated, which is a linear approximation to
the solution on each element. This finite element solution may be plotted by drawing
a straight line between the finite element solution at adjacent nodes: this is exactly
what is plotted by line 37 of the listing.

2.10 Computational Implementation 19

Listing 2.1 Chap2_CalculateModelFemSolution.m, aMatlab function for cal-
culating the finite element solution of the model problem.�

1 function [x, U] = Chap2_CalculateModelFemSolution(N)
2

3 % Initialise A and b to zero
4 A = zeros(N+1, N+1);
5 b = zeros(N+1, 1);
6

7 % Generate N+1 nodes , equally spaced between 0 and 1
8 x = linspace(0, 1, N+1);
9

10 % Loop over elements calculating local contributions
11 % and incrementing the global linear system
12 for k=1:N
13 % Calculate element length
14 h = 1/N;
15

16 % Calculate local contributions
17 A_local = [1/h, -1/h; -1/h, 1/h];
18 b_local = [h; h];
19

20 % Increment global system
21 A(k:k+1, k:k+1) = A(k:k+1, k:k+1) + A_local;
22 b(k:k+1) = b(k:k+1) + b_local;
23 end
24

25 % Set Dirichlet boundary conditions
26 A(1,:) = 0;
27 A(1,1) = 1;
28 b(1) = 0;
29 A(N+1,:) = 0;
30 A(N+1,N+1) = 1;
31 b(N+1) = 0;
32

33 % Solve linear system and plot FE solution
34 U = A\b;
35

36 % Plot finite element solution
37 plot(x, U, ’-o’)
38 xlabel(’x’)
39 ylabel(’U’)

2.11 Evaluating the Finite Element Solution at a Given
Point

Wehave nowdeveloped a computational implementation of the finite elementmethod
that computes the quantitiesU1,U2, . . . ,UN+1 that appear in the finite element solu-
tion given by Eq. (2.12). We will often need to evaluate the solution at some given

20 2 A First Example

point x, that is, evaluate U(x). If x is a node in the mesh, i.e. xi = x for some i, we
may then use Eq. (2.13) to write

U(x) = Ui.

If x is not a node in the mesh, then it will lie in element k for some k, where
xk < x < xk+1. We first locate the element k that x lies in. Noting, as we did earlier in
this chapter, that only the basis functions φk(x) and φk+1(x) are nonzero on element
k, the finite element solution given by Eq. (2.12) may be written, for xk < x < xk+1,
as

U(x) = Ukφk(x) + Uk+1φk+1(x).

We then use the definition of the basis functions φk(x) and φk+1(x), given by
Eqs. (2.8)–(2.10), to deduce that

U(x) = xk+1 − x

h
Uk + x − xk

h
Uk+1.

2.12 Is the Finite Element Solution Correct?

It is always worth checking the solution to any mathematical problem, whether the
solution has been obtained by analytic “pen and paper” techniques or as the output
from a computer program. Easily made typographical errors, such as a missed factor
of 2, will at best lead to inaccuracies in the solution. There is, however, the potential
for completely nonsensical output, for example a physical quantity being assigned
a value that is calculated from taking the square root of a negative number. It is,
therefore, useful to perform some verification of the computation of a finite element
solution. An exhaustive verification, such as comparing the finite element solution of
a differential equation with the true solution of the equation, is rarely possible. After
all, if we knew the true solution of a differential equation, we would be unlikely to go
to the effort of computing the finite element solution. Nevertheless, some validation
is possible. Below we list a few simple tests that can usually be carried out.

• The simplest test that can be carried out is to plot the finite element solution to
check that the solution looks realistic and takes values that are reasonable—a
computed chemical concentration that takes a negative value, for example, should
set alarm bells ringing.

• Another simple check that should be carried out is to compare finite element
solutions that have been calculated using different numbers of elements. The finite
element solution should becomemore accurate, and approach a limit as the number
of elements is successively increased.

• Finally, analytic solutions may exist for some choices of parameter values that
appear in the differential equation, or for simplifications of the differential equa-

2.12 Is the Finite Element Solution Correct? 21

tion. The finite element solution should be computed in these cases and compared
to the analytic solution.

2.13 Exercises

For these exercises, youwill need to download theMatlab script given inListing 2.1.
Remember that the true solution to the differential equation on which this script is
based is u(x) = x(1 − x).

2.1 In this exercise, we will modify the Matlab script given in Listing 2.1 so that
it returns the finite element solution at the point x = 0.45.

(a) Modify the Matlab script so that it returns the finite element solution at
x = 0.45 when this point is a node of the mesh. Use the true solution, and
a mesh with N = 100 elements, to verify that your answer is correct.

(b) Use the material given in Sect. 2.11 to modify theMatlab script to evaluate the
finite element solution at x = 0.45 when this point is not a node of the mesh.
Use the true solution, and a mesh with N = 101 elements, to verify that your
answer is correct.

(c) Combine your answers to parts (a) and (b) so that theMatlab script first deter-
mines whether or not x = 0.45 is a node of the mesh, before returning the finite
element solution at that point.

2.2 We denote the error between the finite element solution and the true solution by
E(x) = U(x) − u(x). The L2 norm of the error of the finite element solution, ‖E‖L2 ,
is defined to be

‖E‖L2 =
√∫ 1

0
(U(x) − u(x))2 dx,

which may be written as the sum of the contribution from individual elements:

‖E‖L2 =
√√√√ N∑

k=1

∫ xk+1

xk

(U(x) − u(x))2 dx.

(a) In Sect. 2.11, we saw that, for xk < x < xk+1, the finite element solution is given
by

U(x) = xk+1 − x

h
Uk + x − xk

h
Uk+1.

Use this expression for U(x) to explain why, for the model problem used in this
chapter, we may write

22 2 A First Example

‖E‖2L2 =
N∑

k=1

∫ xk+1

xk

(
xk+1 − x

h
Uk + x − xk

h
Uk+1 − x(1 − x)

)2

dx.

(b) Evaluate, by direct integration, the quantity

∫ xk+1

xk

(
xk+1 − x

h
Uk + x − xk

h
Uk+1 − x(1 − x)

)2

dx,

and write your answer as a function of Uk and Uk+1.
(c) Using your answers to parts (a) and (b), modify the Matlab script given in

Listing 2.1 so that it outputs the value of ‖E‖L2 for a given number of elements,N .
(d) Define the element length by h = 1

N where N is the number of elements. You
may assume that, as h → 0, ‖E‖L2 is related to the element length h by

‖E‖L2 = Chp,

for some constantsC and p. Taking the logarithm of both sides of this expression
gives

log (‖E‖L2) = logC + p log h,

and so plotting log (‖E‖L2) against log h will give a straight line of gradient p
as h → 0. By plotting log (‖E‖L2) against log h for several values of h, estimate
the constant p.

2.3 In Sect. 2.11, we saw that, for xk < x < xk+1, the finite element solution is given
by

U(x) = xk+1 − x

h
Uk + x − xk

h
Uk+1.

(a) Write down the derivative of the finite element solution, dU
dx , on element k.

(b) Modify the Matlab script given in Listing 2.1 so that it plots the derivative of
the solution. Note that this derivative is a function that may be discontinuous
across element boundaries.

2.4 A boundary value problem is defined by

−3
d2u

dx2
= 2, 0 < x < 1,

together with boundary conditions

u(0) = 1, u(1) = 2.

2.13 Exercises 23

(a) Write down the analytic solution to this boundary value problem.
(b) By working through the steps required to calculate the finite element solution,

summarised in Sect. 2.9, modify the Matlab script given in Listing 2.1 to cal-
culate the finite element approximation of the boundary value problem above.
Compare your finite element solution to the true solution.

http://www.springer.com/978-3-319-49970-3

	2 A First Example
	2.1 Some Brief Mathematical Preliminaries
	2.2 A Model Differential Equation
	2.3 The Weak Formulation
	2.4 Elements and Nodes
	2.5 Basis Functions
	2.6 The Finite Element Solution
	2.7 Algebraic Equations Satisfied by the Finite Element Solution
	2.8 Assembling the Algebraic Equations
	2.8.1 Calculating the Local Contributions
	2.8.2 Assembling the Global Matrix

	2.9 A Summary of the Steps Required
	2.10 Computational Implementation
	2.11 Evaluating the Finite Element Solution at a Given Point
	2.12 Is the Finite Element Solution Correct?
	2.13 Exercises

