Chapter 2
A First Example

In Chap. 1, we explained the fundamental philosophy that underpins the finite element
method—that is, the region on which a differential equation is defined is partitioned
into smaller regions known as elements, and the solution on each of these elements
is approximated using a low-order polynomial function. In this chapter, with the aid
of a simple example, we illustrate how this may be done. This overview will require
the definition of some terms that the reader may not be familiar with, as well as
a few technical details. We will, however, undertake to keep these definitions to a
minimum and will focus on the underlying strategy of applying the finite element
method without getting bogged down by these technical details. As a consequence,
we will inevitably skate over some mathematical rigour, but will make a note to
return to these points in later chapters.

2.1 Some Brief Mathematical Preliminaries

We make a few comments on notation before we begin our overview of the finite
element method. Throughout this book, we use the convention that a solution of a
differential equation that is represented by a lowercase letter, for example u(x), is the
exact, or analytic, solution of the differential equation. The corresponding uppercase
letter, U (x) in this case, will represent the finite element approximation to the exact
solution.

We will frequently make use of vectors and matrices, and adopt the following
conventions.

1. Vectors will be assumed to be column vectors, i.e. a vector with many rows but
only one column, and will be denoted by bold font. Entry i of the vector x will
be denoted by x;.

© Springer International Publishing AG 2017 5
J. Whiteley, Finite Element Methods, Mathematical Engineering,
DOI 10.1007/978-3-319-49971-0_2

http://dx.doi.org/10.1007/978-3-319-49971-0_1

6 2 A First Example

2. Matrices will be represented by upper case letters typeset in italic font. The entry
in row i and column j of the matrix A will be denoted by A; ;.

3. The indexing of both vectors and matrices will start from 1. A vector b with
N entries, for example, will have entries by, by, ..., by. This allows the finite
element algorithms to be written in a way that facilitates the writing of software
in programming languages or environments such as MATLAB, Octave or Fortran,
where array indexing starts from 1 (known as “one-based indexing”). Readers
using programming languages such as C, C++ and Python, where the indexing
of arrays starts from O (known as “zero-based indexing”) will need to adapt the
algorithms to take account of this feature of the programming language being
used.

2.2 A Model Differential Equation

We will use a simple boundary value problem to demonstrate the application of
the finite element method. A boundary value problem comprises both a differential
equation and boundary conditions. In this chapter, we will consider only Dirichlet
boundary conditions, where the value of the unknown function u(x) is specified
on the boundary. More complex boundary conditions, such as those that include the
derivative of u(x) on the boundary, will be discussed in Chap. 3. Our model boundary
problem comprises the differential equation

d%u

—@:2, 0<x<l, 2.1)

and the Dirichlet boundary conditions given by
u(0) =u(l) =0. (2.2)

The region 0 < x < 1 on which the equation is defined is known as the domain.
This simple example, with solution u(x) = x(1 — x), will now be used to exhibit
the underlying principles of calculating the finite element solution of a differential
equation.

2.3 The Weak Formulation

Let u(x) be the solution of the model differential equation, Eq.(2.1), subject to the
boundary conditions given by Eq.(2.2). The function u(x) is known as the classical
solution of this differential equation, and specification of u(x) through Eqgs. (2.1) and
(2.2) is known as the classical formulation.

http://dx.doi.org/10.1007/978-3-319-49971-0_3

2.3 The Weak Formulation 7

We now introduce the weak formulation of the model problem, a concept that
may be unfamiliar to some readers. In this chapter, we limit ourselves to illustrating
the weak formulation of a differential equation by example, rather than giving a
watertight definition through precise mathematical statements. A more complete
and rigorous treatment of this material will be presented in Sect. 3.2.

To derive the weak formulation of our model problem, we first define v(x) to be
a continuous function that satisfies

v(0) = v(1) = 0, 2.3)

so that v(x) = O at the values of x where we apply Dirichlet boundary conditions.
We now multiply the differential equation, given by Eq. (2.1), by v(x), and integrate
the resulting product over the interval 0 < x < 1 on which the differential equation
is defined, giving

1 d2
v(x) dx = / 2v(x) dx.

We now apply integration by parts to the left-hand side of the equation above to
obtain

[du ()}14_ Udu dv " 12 @ d
——Vv(x _—— = v(x) dx,
dx 0 0 dx dx 0

which may be written as

O+ o+ Hudy (/‘2 (x) dx, 2.4)
_ — A% —_— A% V(X .
&, &, , dx dx
where

d

b and d_u

dx x=1 dx x=0

denote the value taken by at x = 1 and x = 0, respectively. Remembering our
condition on v(x), given by Eq.(2.3), we see that the first two terms in the sum on
the left-hand side of Eq. (2.4) are zero, and we may write this equation as

U du dv 1
Y = [2v(x) dr.
o dxdx 0

Assuming that all derivatives and integrals we have used exist, we may now specify
the weak formulation of our model differential equation by:

http://dx.doi.org/10.1007/978-3-319-49971-0_3

8 2 A First Example

find u(x) that satisfies the Dirichlet boundary conditions given by Eq. (2.2) and
is such that

Udu dv

A T dx = / 2v(x) dx, (2.5)

for all continuous functions v(x) that satisfy v(0) = v(1) = 0.

The solution u(x) given by Eq. (2.5) is known as the weak solution. The functions
v(x) that appear in Eq. (2.5) are known as fest functions.

The concept of weak solutions will be revisited in the next chapter, providing
some mathematical details that have been omitted above. For now, the reader need
only know what has been derived above, namely that a classical solution of the
differential equation and boundary conditions given by Egs. (2.1) and (2.2) is also a
weak solution that satisfies Eq. (2.5).

2.4 Elements and Nodes

We now begin to lay out some of the ingredients required by the finite element
method. We have already explained that we need to partition the domain on which
the differential equation is specified into smaller regions. Our model differential
equation, Eq.(2.1), is defined on the domain 0 < x < 1, and we now partition this
domain into N intervals of equal length & = 1lv If we define

i=1,2,....,N+1, (2.6)

then these intervals are the regions x; < x < x4, fork = 1,2, ..., N. We refer
to these intervals as elements. The points x; that define the element boundaries are
known as nodes. We also define element k to be the element that occupies x;, < x <
Xk+1, for k = 1,2, ..., N. The elements and nodes are collectively known as the
computational mesh, the finite element mesh or, more simply, the mesh. The nodes
and elements for the case where N = 5 are shown in Fig.2.1.

h
<>
[{ { @ | @
x1:0 x2:02 x3:0.4 x4:06 x5:08 x6:1

Fig. 2.1 The nodes and elements in a finite element mesh when the interval 0 < x < 1 is partitioned
into five equally sized elements

2.4 Elements and Nodes 9

The mesh we have described above contains elements that are equally sized. We
will see in the next chapter that it is straightforward to generalise the definition of
the mesh so that it contains elements that are of different sizes.

2.5 Basis Functions

In this chapter, we will use the finite element method to calculate a linear approxima-
tion to the solution on each element, that is continuous across element boundaries.
In the previous section, we partitioned the domain 0 < x < 1 into N equally sized
elements, each of length 4 = 1lv Note that this implies that

Xj+1—)€j:/’l,]:1,2,,N (27)
We now specify some functions that will be required when calculating the finite

element solution. Using the property of & given by Eq. (2.7), the functions ¢;(x), for
j=1,2,...,N + 1, are defined by

| G2 —x)/h, Xp = x < X,
$1(x) = [0, otherwise, (28)
(x—x-0/h, x-1=x=x,
@i(x) = 1 (31 —x)/h, X <X < Xjp1, j=2,3,...,N, (2.9
0, otherwise,
| e =xn)/h, XN <X < XNt
P () = [0, otherwise. (2.10)

These functions are illustrated in Fig.2.2. For reasons that will soon become clear,
we refer to these functions as basis functions.

The functions ¢;(x),j = 1,2, ..., N + 1, defined by Egs. (2.8)—(2.10) have three
properties that are useful when calculating the finite element solution: (i) they are
linear functions on each element; (ii) they are continuous functions; and (iii) they
satisfy, fori = 1,2, ..., N + 1, the condition

o=y 13 @11

These properties may easily be verified using the definition of basis functions given
by Egs. (2.8)—(2.10), and the plots of these functions in Fig.2.2. As a consequence,
the function ¢;(x) takes the value 1 at the node where x = x;, and the value 0 at all
other nodes. This is a very important property of basis functions, as we will see in
later chapters when using more general basis functions to calculate the finite element
approximation of more complex differential equations.

10 2 A First Example

¢1(z) ;(x) N1 ()

Fig. 2.2 The basis functions defined by Egs. (2.8)—(2.10)

2.6 The Finite Element Solution

We will now use the basis functions ¢;(x),j = 1,2, ..., N+1, defined by Egs. (2.8)—
(2.10), to generate a finite element solution of our model differential equation that is
a linear approximation to the solution on each element. We claim that we can write
the finite element solution, U (x), as a linear sum of these basis functions:

N+1
U =D U@, (2.12)
j=1
where the as yet unknown values U, j = 1,2,..., N + 1, are to be determined.

Our claim that the finite element solution, U (x), is of the form given by Eq.(2.12)
is straightforward to verify. As the basis functions ¢;(x) are linear functions on each
element and continuous, the sum given by Eq. (2.12) also satisfies these properties
and is therefore a suitable candidate for the finite element solution. Finally we note
that, on using the property of basis functions given by Eq. (2.11), we may write

N+1
Ux) = D Uigi(xi)
J=1

— U (2.13)

2.6 The Finite Element Solution 11

and so U; is the finite element approximation to the solution at the node where x = x;.
We now move on to describe how to determine the values U;,i = 1,2, ..., N+1,
that complete the definition of the finite element solution given by Eq. (2.12).

2.7 Algebraic Equations Satisfied by the Finite Element
Solution

Having prescribed the functional form for the finite element solution by Eq.(2.12),
we now generate a system of algebraic equations satisfied by the coefficients U;,
j=1,2,...,N + 1. This is achieved by modifying the weak formulation of the
model differential equation, given by Eq. (2.5), to specify the finite element solution
U(x) by:

find U(x) that satisfies the Dirichlet boundary conditions given by Eq.(2.2)
and is such that

LdU dey

dx = 2¢;(x) dx, 2.14
L dx dr / ¢i(x) (2.14)
for all basis functions ¢;(x), i = 1,2,...,N + 1, that satisfy ¢;(0) =
¢i(1) =0.

The statement above is nothing more than the weak formulation, Eq. (2.5), restated
with two minor modifications. First, we replace the weak solution u(x) by the finite
element solution U(x). Second we restrict the test functions to be the finite set of
basis functions ¢;(x) that satisfy

$i(0) = ¢i(1) = 0.

We see, from the definitions of the basis functions given by Egs. (2.8)—(2.10) and their
illustration in Fig.2.2, that this condition on ¢;(x) is satisfied by all basis functions
except ¢ (x) and ¢y (x). We therefore have N — 1 functions ¢, (x), ¢3(x), . .., dn(x)
that satisfy this condition.

We now use Eq.(2.14) to derive a system of algebraic equations, satisfied by the
N + 1 unknown values Uj, U,, ..., Uyy, that specify the finite element solution
given by Eq. (2.12). As we have N + 1 unknown values, we require a system of N + 1
algebraic equations to determine these values.

The first condition in the specification of the finite element solution by Eq. (2.14)
is that U(x) satisfies the Dirichlet boundary conditions given by Eq.(2.2). These
boundary conditions are applied at the node where x = x; and the node where
X = xy4+1 and may be written as

Ux) =0, UQGny)=0.

12 2 A First Example

Using Eq. (2.13), we see that these Dirichlet boundary conditions are satisfied pro-
vided that

U =0, (2.15)
Uy+1 =0, (2.16)

and these are our first two algebraic equations.
We have already noted that the N — 1 basis functions ¢;, where i = 2,3, ..., N,
satisfy the condition on test functions given in Eq. (2.14), i.e. that ¢;(0) = ¢;(1) = 0.
The remaining N — 1 algebraic equations result from substituting these functions

into the integral equation given in Eq. (2.14). Noting that the definition of the finite
element solution given by Eq. (2.12) may be differentiated to give

N+1

dUu d
&~ 2UG
substitution of % into the integral equation given by Eq. (2.14) yields

1 .
/ ZUJ% d¢’dx /2¢,(x>dx i=23.....N,
0

which, after a little manipulation, becomes

N+1

92 4) = [20 _
Z(/o dx dx dx) A 2¢i(x)dx, i=2,3,...,N. (2.17)

j=1
This may be written as

N+1
> AyUi=bi, i=23,....N, (2.18)

where fori =2,3,...,N,

Ude; de;
d¢i dgy

A=)

j=1,2,3,...,N+1, (2.19)

1
b; =/ 2¢i(x) dx. (2.20)
0

2.7 Algebraic Equations Satisfied by the Finite Element Solution 13

We may combine Eqgs. (2.15), (2.16) and (2.18) into the (N 4 1) x (N + 1) linear
system

AU =b. (2.21)
The entries of A and b in row i, where i = 2, 3, ..., N, are given by Eqgs. (2.19) and

(2.20). Using Egs. (2.15) and (2.16), we see that the entries of A and b in rows 1 and
N + 1 are given by

(L =1,
Ay = ’0, L0 2.22)
I, j=N+1,
A(N-‘rl),j = [O,]#N-’- 17 (223)
by =0, (2.24)
byy = 0. (2.25)

The algebraic equations that comprise the linear system given by Eq.(2.21) fall
into two categories. The first category is equations such as Egs. (2.15) and (2.16) that
arise from demanding that the finite element solution satisfies all Dirichlet boundary
conditions. The second category is equations such as Eq. (2.18) that arise from using a
suitable basis function as the test function in the integral condition given by Eq. (2.14).
This categorisation of equations will be a feature of all the systems of algebraic
equations that we derive in later chapters.

Having derived the linear system of algebraic equations that determines the values
Uy, Us, ..., Uyy1, we now introduce a flexible technique for the practical computa-
tion of the entries of the matrix A and the vector b.

2.8 Assembling the Algebraic Equations

Most entries of the matrix A and vector b that appear in the linear system given
by Eq.(2.21) are of the form specified by Eqgs.(2.19) and (2.20) and are defined by
integrals over the whole domain on which the differential equation is specified. We
will now demonstrate that, from a computational implementation viewpoint, it is
convenient to compute these entries by summing the contributions from individual
elements. That is, fori = 2,3, ..., N, we write Egs. (2.19) and (2.20) as the sum of
integrals over individual elements:

14 2 A First Example

N

o dgi dg .

A= — 2 gy, =1,2,...,N+1, 2.26

iy kZ}‘,/ L + (2.26)
N Xk+1

b=, / 2¢; (x) dx. (2.27)
k=1 "%

Using Eq.(2.26) we see that the contribution to entry A;; from integrating over
the element that occupies x; < x < x4 is given by

Wt dg; dg;
Wy 2.28
/x T O (2.28)

k

From the definition of the basis functions, given by Egs. (2.8)—(2.10) and illustrated
in Fig. 2.2, we see that ¢ (x) and ¢ (x) are the only basis functions that are nonzero
on the element occupying x; < x < xx,: all other basis functions are identically
zero on this element. Hence, the integral above, over x; < x < x4, yields nonzero
contributions only to the entries A x, Ak k+1, Ak+1.4> Ak+1.4+1 Of A. Motivated by this
observation, we calculate only these nonzero contributions when integrating over this
element and store these contributions in a 2 x 2 matrix called Afgga]. The relationship
between the location of the entries of Al(fgal and the location of the entries of A that
they contribute to is given in Table 2.1.
The entries of Al(fgal are known as the local contributions to the matrix A from ele-
ment k, and A is often referred to as the global matrix. We may compute A efficiently
by looping over all elements, calculating only the nonzero local contributions from
each element, before adding the local contributions to the appropriate entries of the
global matrix A. Having calculated the entries of A that are given by Eq. (2.19), we
complete the specification of the matrix by setting the remaining entries, i.e. those
defined by Eqgs. (2.22) and (2.23).

The entries of b that are given by Eq. (2.27) may be calculated in a similar manner
to that used for the entries of A that are given by Eq. (2.26). The contribution to
bi,i =2,3,...,N, from integrating over the element that occupies x; < x < X34

is given by

(k)

Table 2.1 The relationship between the location of the entries of A;

entries of A that they contribute to

1 and the location of the

Entry in Al(gzal Entry in A

Row Column Row Column
1 1 k k

1 2 k k+1

2 1 k+1 k

2 2 k+1 k+1

2.8 Assembling the Algebraic Equations 15

Table 2.2 The relationship Entry in b
between the location of the

entries of bffga] and the k

location of the entries of b 2 k+1

that they contribute to

(k)

local

Entry in b,

/ 26:(x) dx. (2.29)

k

As ¢ (x) and ¢y (x) are the only basis functions that are nonzero inside the element
that occupies x; < x < xx1, the only nonzero contributions to b from this element
are to the entries by and by ;. We again calculate only these nonzero contributions
and store them in a vector of length 2 called bfﬁgal, known as the local contribution
to the global vector b. The relationship between the location of the entries of bl(égal
and the location of the entries of b that they contribute to is given in Table2.2. We
may then calculate the global vector b by looping over all elements, calculating
only the nonzero contributions to Eq.(2.27) from each element, and adding these
contributions into b. We then use Egs. (2.24) and (2.25) to set the other entries.

2.8.1 Calculating the Local Contributions

We explained above that the entries of the global matrix A and global vector b
that are given by Eqgs. (2.19) and (2.20) should be assembled by summing the local
contributions to these entries from each element. We now explain how these local
contributions may be calculated.

Using the mapping between the entries of Al(fgal and the entries of A, given by
Table 2.1, and the definition of the contribution to entries of A from element &, given

by Eq. (2.28), we see that the entries of A]((]fgal are given by

Xie+1 Aoy depe d kaﬂ dey depey
[dudon g, 4o d0ut gy
_ Xk dx dx X drx dx
local ™ (kaﬂ dr1 dopwc dx kaﬂ dpir1 At dx) !
X) dx

Xk dx dx

(2.30)

e dx

Similarly, using Table 2.2 and Eq. (2.29), the entries of bl((lfgal
(k)
blocal = (

The integrals required to calculate the entries of Al(fgal and bl(('fgal are sufficiently simple

in this case that we may evaluate them analytically. Using Egs. (2.8)—(2.10), we see
that, for xx < x < xp41,

may be written as

Ju " 261 () dx) 2.31)

j;z“' 211 (x) dx

16 2 A First Example

Xk+1 — X
h 9
X — Xk
A P

Pr(x) =

drp1(x) =

and so the derivatives of these functions take the constant values given by

dox 1
T

dgpsr 1
dx K

Elementary integration allows us to deduce that the entries of Al(fgal and bl(fgal are
given by

2.8.2 Assembling the Global Matrix

We have proposed calculating the entries of the global matrix A and global vector
b that are of the form given by Eqgs. (2.19) and (2.20), by looping over all elements
in the mesh, calculating the nonzero local contributions Al((’fc)al and bl(fgal from each
element, and using these contributions to increment the appropriate entries of A and
b, given by Tables2.1 and 2.2.

Readers may have spotted a potential flaw with this approach for calculating A
and b. The expressions for A; ; and b; given by Egs. (2.19) and (2.20) are only valid
fori = 2,3, ..., N, with the entries for rows 1 and N + 1 given by Eqs. (2.22)—(2.25).
When calculating the local contributions from the element that occupies x| < x < xp,
we evaluate contributions to both row 1 and row 2 of A and b. The entries of row 1 of A
and b do not, however, fall into the pattern given by Egs. (2.19) and (2.20), although
the contribution to row 2 of both A and b from this element is correct. Similarly,
when calculating the local contribution from the element occupying xy < x < xy41
we calculate contributions to row N 4 1 of A and b that are not of the correct form.
We could avoid adding these incorrect entries into rows 1 and N + 1 by performing
a check, before adding any local contributions into the global matrix and vector, to
ensure we do not add any entries into rows 1 and N + 1. There is nothing wrong
with this approach. However, to promote clear, modular code—especially for the
more complex problems encountered later in this book—it is easier to add the local
contributions into rows 1 and N + 1 and then to overwrite these erroneous entries
afterwards with the correct values, given by Egs. (2.22)—(2.25).

2.8 Assembling the Global Matrix 17

Having assembled the matrix A and the vector b, most of the work required to cal-
culate the finite element solution given by Eq. (2.12) has been done. All that remains
is to solve the linear system given by Eq.(2.21) to calculate U, before substituting
the entries of U into Eq.(2.12). We now summarise the steps we have taken when
applying the finite element method and then present an exemplar computational
implementation.

2.9 A Summary of the Steps Required

The aim of this chapter has been to give an overview of the finite element method
by illustrating its application to an example boundary value problem. We now give
a summary of the steps required when applying the finite element method. We will
see in later chapters that this summary may be used as a guide for the application of
the finite element method to more general differential equations.

1. Derive the weak formulation of the boundary value problem from the specified
differential equation and boundary conditions.

2. Define the finite element mesh by partitioning the domain into elements, and

specifying the nodes defined by these elements.

Use the nodes and elements in the mesh to define suitable basis functions.

4. Write the finite element solution as a linear sum of the basis functions. Modify the
weak formulation of the problem to determine the system of algebraic equations
that the finite element solution satisfies. These algebraic equations will fall into
one of two categories. The first category is equations that ensure that all Dirichlet
boundary conditions are satisfied. The second category is equations that arise
from substituting suitable test functions into an integral condition on the finite
element solution.

5. Assemble the algebraic equations. Begin with the second category of equations
given in step #4 above. Calculate the nonzero contributions from each element,
and use these local contributions to increment the correct entries of the global
matrix and vector. After this has been done, modify the equations to take account
of the boundary conditions.

6. Solve the system of algebraic equations.

W

2.10 Computational Implementation

We will now develop a practical computational implementation of the material
described in this chapter. This implementation will assemble and solve the system
of algebraic equations.

The entries of the system of algebraic equations depend on the basis functions
used, which in turn depend on the finite element mesh. Before we can assemble the
algebraic equations, we must therefore specify the finite element mesh. The mesh we

18 2 A First Example

defined in Sect. 2.4 requires only specification of the number of elements, N. This is
sufficient to define the location of the nodes xi, x3, . . ., xy+1, and the element length
h. Further, these nodes allow us to specify the basis functions through the material
given in Sect.2.5. We are then in a position to assemble the algebraic equations. We
will therefore implement the material described in this chapter by writing a function
that accepts a positive integer, N, that represents the number of elements, as an
input, and returns the vector x (containing the nodes in the mesh) and the vector U
(containing the finite element solution at each node).

A MATLARB script for the implementation described above is given in Listing 2.1.
This function may be called by saving the file as Chap2_CalculateModelFem-
Solution.m and typing, in a MATLAB session,

[x, U] = Chap2_CalculateModelFemSolution (40) ;

to run with N = 40 elements. Variable names in this script have been chosen to
correspond to the mathematical notation used in this chapter. This function begins
by initialising entries of the global matrix A and global vector b to zero in lines 4
and 5, before generating a vector containing the equally spaced nodes in the mesh in
line 8. We then loop over all elements in lines 12-23, calculating the nonzero local
contributions to A and b given by Egs.(2.30) and (2.31), before incrementing the
appropriate entries of the global linear system, given by Tables2.1 and 2.2. MATLAB
users will be aware that the expression A (k:k+1, k:k+1) thatappears in line 21
is shorthand for the submatrix given by

Ark Akks
Arr1k Arsiks1)’

and that the expression b (k:k+1) that appears in line 22 represents the subvector

given by
by
by)’

Note that the loop over elements introduces incorrect entries into rows 1 and N + 1 of
A and b, for the reasons explained in Sect.2.8.2. These entries are overwritten with
the correct values in lines 26-31. Note that line 26 uses MATLAB notation to set all
entries of row 1 to zero. We then solve the linear system using MATLAB’s backslash
operator in line 34. This is a suitable method for solving linear systems of the modest
size generated here. However, iterative techniques may be more suitable for solving
the larger systems of algebraic equations that arise from the application of the finite
element method to partial differential equations in later chapters. A summary of these
linear algebra techniques is given in Appendix A. Finally, in lines 37-39, we plot the
finite element solution that has been calculated, which is a linear approximation to
the solution on each element. This finite element solution may be plotted by drawing
a straight line between the finite element solution at adjacent nodes: this is exactly
what is plotted by line 37 of the listing.

2.10 Computational Implementation 19

Listing 2.1 Chap2_CalculateModelFemSolution.m,a MATLAB function for cal-
culating the finite element solution of the model problem.

function [x, U] = Chap2_CalculateModelFemSolution (N)

¢ Initialise A and b to zero
zeros (N+1, N+1);
zeros (N+1, 1);

o >
o

% Generate N+1 nodes, equally spaced between 0 and 1
= linspace (0, 1, N+1);

X

o0

Loop over elements calculating local contributions
and incrementing the global linear system

for k=1:N

% Calculate element length

h = 1/N;

o

¢ Calculate local contributions
A_local = [1/h, -1/h; -1/h, 1/h];
b_local = [h; hl;

% Increment global system
A(k:k+1, k:k+1) = A(k:k+1, k:k+1) + A_local;
b(k:k+1) = b(k:k+1) + b_local;

end

% Set Dirichlet boundary conditions

A(l,:) = 0;
A(l1,1) = 1;
b(l) = 0;
A(N+1,:) = 0;
A(N+1,N+1) = 1;
b(N+1) = 0;

% Solve linear system and plot FE solution
U = A\b;

¢ Plot finite element solution
plot(x, U, '-0")

xlabel ('x"')

ylabel ('U"’)

2.11 Evaluating the Finite Element Solution at a Given

Point

We have now developed a computational implementation of the finite element method
that computes the quantities U;, Ua, ..., Uy4; that appear in the finite element solu-
tion given by Eq.(2.12). We will often need to evaluate the solution at some given

20 2 A First Example

point x, that is, evaluate U (x). If x is a node in the mesh, i.e. x; = x for some i, we
may then use Eq. (2.13) to write

Ux) = U.

If x is not a node in the mesh, then it will lie in element k£ for some k, where
X < X < xpy1. We first locate the element & that x lies in. Noting, as we did earlier in
this chapter, that only the basis functions ¢y (x) and ¢y (x) are nonzero on element
k, the finite element solution given by Eq. (2.12) may be written, for x; < x < x4,
as

U) = Ui (x) + Upg1 P41 (0).

We then use the definition of the basis functions ¢y (x) and ¢41(x), given by
Egs. (2.8)—(2.10), to deduce that

X, — X X — X,
U(x):k“TUH k

U1

2.12 Is the Finite Element Solution Correct?

It is always worth checking the solution to any mathematical problem, whether the
solution has been obtained by analytic “pen and paper” techniques or as the output
from a computer program. Easily made typographical errors, such as a missed factor
of 2, will at best lead to inaccuracies in the solution. There is, however, the potential
for completely nonsensical output, for example a physical quantity being assigned
a value that is calculated from taking the square root of a negative number. It is,
therefore, useful to perform some verification of the computation of a finite element
solution. An exhaustive verification, such as comparing the finite element solution of
a differential equation with the true solution of the equation, is rarely possible. After
all, if we knew the true solution of a differential equation, we would be unlikely to go
to the effort of computing the finite element solution. Nevertheless, some validation
is possible. Below we list a few simple tests that can usually be carried out.

e The simplest test that can be carried out is to plot the finite element solution to
check that the solution looks realistic and takes values that are reasonable—a
computed chemical concentration that takes a negative value, for example, should
set alarm bells ringing.

e Another simple check that should be carried out is to compare finite element
solutions that have been calculated using different numbers of elements. The finite
element solution should become more accurate, and approach a limit as the number
of elements is successively increased.

e Finally, analytic solutions may exist for some choices of parameter values that
appear in the differential equation, or for simplifications of the differential equa-

2.12 Is the Finite Element Solution Correct? 21

tion. The finite element solution should be computed in these cases and compared
to the analytic solution.

2.13 Exercises

For these exercises, you will need to download the MATLAB script given in Listing 2.1.
Remember that the true solution to the differential equation on which this script is
based is u(x) = x(1 — x).

2.1 In this exercise, we will modify the MATLAB script given in Listing 2.1 so that
it returns the finite element solution at the point x = 0.45.

(a) Modify the MATLAB script so that it returns the finite element solution at
x = 0.45 when this point is a node of the mesh. Use the true solution, and
a mesh with N = 100 elements, to verify that your answer is correct.

(b) Use the material given in Sect.2.11 to modify the MATLAB script to evaluate the
finite element solution at x = 0.45 when this point is not a node of the mesh.
Use the true solution, and a mesh with N = 101 elements, to verify that your
answer is correct.

(c) Combine your answers to parts (a) and (b) so that the MATLAB script first deter-
mines whether or not x = 0.45 is a node of the mesh, before returning the finite
element solution at that point.

2.2 We denote the error between the finite element solution and the true solution by
E(x) = U(x) — u(x). The L? norm of the error of the finite element solution, ||E] 2,

is defined to be
1
IEl2 = \//0 (Ux) — u(x))* dx,

which may be written as the sum of the contribution from individual elements:

N Xk+1
Bl = |3 [W - ue? ax
k=1

(a) InSect.2.11, we saw that, for x; < x < x;41, the finite element solution is given
by

X, — X X — X,
Ux) = "“h Ui + hkUkH.

Use this expression for U (x) to explain why, for the model problem used in this
chapter, we may write

22 2 A First Example

N X+l _ _ 2
k X X — Xk
Hﬂ@=§;/ (i%—w+ ; wﬂ—mbﬁv dr.
k=1 "%

(b) Evaluate, by direct integration, the quantity

Xk+1 — _ 2
/ (x"“ U+t ""Uk+1—x(1—x)) dx,
. h h

and write your answer as a function of Uy and Uy .
(c) Using your answers to parts (a) and (b), modify the MATLAB script given in
Listing 2.1 so that it outputs the value of || E|| ;2 for a given number of elements, N.
(d) Define the element length by & = 171, where N is the number of elements. You
may assume that, as 7 — 0, ||E||.2 is related to the element length / by

IEl2 = Ch”,

for some constants C and p. Taking the logarithm of both sides of this expression
gives

log (IEll;2) = log C + plogh,

and so plotting log (||E||;2) against logh will give a straight line of gradient p
as h — 0. By plotting log (||E||.2) against log & for several values of /, estimate
the constant p.

2.3 InSect.2.11, we saw that, for x; < x < x4, the finite element solution is given
by

Xjp1 — X X — X
= U, Ups.
P r+ 7 k+1

(a) Write down the derivative of the finite element solution, %, on element k.

(b) Modify the MATLAB script given in Listing 2.1 so that it plots the derivative of
the solution. Note that this derivative is a function that may be discontinuous
across element boundaries.

2.4 A boundary value problem is defined by

—3— =2, O<x<l,

together with boundary conditions

u@© =1, u(l)=2.

2.13 Exercises 23

(a) Write down the analytic solution to this boundary value problem.

(b) By working through the steps required to calculate the finite element solution,
summarised in Sect. 2.9, modify the MATLAB script given in Listing 2.1 to cal-
culate the finite element approximation of the boundary value problem above.
Compare your finite element solution to the true solution.

2 Springer
http://www.springer.com/978-3-319-49970-3

Finite Element Methods

A Practical Guide

Whiteley, |.

2017, X, 232 p. 28 illus., Hardcover
ISBM: 878-3-319-459970-3

	2 A First Example
	2.1 Some Brief Mathematical Preliminaries
	2.2 A Model Differential Equation
	2.3 The Weak Formulation
	2.4 Elements and Nodes
	2.5 Basis Functions
	2.6 The Finite Element Solution
	2.7 Algebraic Equations Satisfied by the Finite Element Solution
	2.8 Assembling the Algebraic Equations
	2.8.1 Calculating the Local Contributions
	2.8.2 Assembling the Global Matrix

	2.9 A Summary of the Steps Required
	2.10 Computational Implementation
	2.11 Evaluating the Finite Element Solution at a Given Point
	2.12 Is the Finite Element Solution Correct?
	2.13 Exercises

