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Abstract We explore new results between P-matrix property and regularity of
interval matrices. In particular, we show that an interval matrix is regular in and
only if some special matrices constructed from its center and radius matrices are
P-matrices. We also investigate the converse direction. We reduce the problem of
checking P-matrix property to regularity of a special interval matrix. Based on
this reduction, novel sufficient condition for a P-matrix property is derived, and
its strength is inspected. We also state a new observation to interval P-matrices.
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1 Introduction

Notation. The kth row of a matrix A is denoted as Ak∗. The sign of a real r is defined
as sgn(r) = 1 if r ≥ 0 and sgn(r) = −1 otherwise; for vectors the sign is meant
entrywise. For a vector y, the diagonal matrix with entries y1, . . . , yn is denoted by
Dy . Eventually, e = (1, . . . , 1)T stands for a vector of ones and ρ(A) for the spectral
radius of a matrix A.

Interval computation. An interval matrix is defined as

A := {A ∈ R
m×n; A ≤ A ≤ A},

where A and A, A ≤ A, are given matrices. The midpoint and radius matrices are
defined as

Ac := 1

2
(A + A), AΔ := 1

2
(A − A).

M. Hladík (B)
Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Malostranské Nám. 25, 11800 Prague, Czech Republic
e-mail: milan.hladik@matfyz.cz

© Springer International Publishing AG 2017
N. Bebiano (ed.), Applied and Computational Matrix Analysis,
Springer Proceedings in Mathematics & Statistics 192,
DOI 10.1007/978-3-319-49984-0_2

27



28 M. Hladík

The set of interval matrices of size m × n is denoted by IR
m×n . For definition of

interval arithmetic see [8, 10], for instance.
We say that A is regular if every A ∈ A is nonsingular. Regularity of interval

matrices is dealt with, e.g., in [5, 15, 16]. In particular, Rohn [16] presents forty equi-
valent characterizations. NP-hardness of checking regularity was proven by Poljak
and Rohn [12, 13]. Sufficient conditions for checking regularity are surveyed in Rex
and Rohn [14]. We recall the following one, due to Beeck [1].

Theorem 1 (Beeck [1]) If ρ(|(Ac)
−1|AΔ) < 1, then A is regular.

P-matrices. A square matrix is a P-matrix if all its principal minors are positive.
P-matrices play an important role in linear complementarity problems [9, 22]

q + Mx ≥ 0, x ≥ 0, (q + Mx)T x = 0.

Such a complementarity problem has a unique solution for each q if and only if M
is a P-matrix. Since linear complementarity problems appear in so many situations
(quadratic programming, bimatrix games, equilibria in specific economies, etc.),
P-matrix property is of high importance.

Unfortunately, the problem of checking whether a given matrix is a P-matrix is
known to be co-NP-hard [3, 7]. That is why diverse polynomially recognizable sub-
classes of P-matrices were studied; see [11, 24] and the references therein. Some of
them are:

• positive definite matrices;
• M-matrices (ai j ≤ 0 ∀i, j and A−1 ≥ 0);
• B-matrices (

∑n
k=1 aik > 0 and 1

n

∑n
k=1 aik > ai j for j �= i);

• H-matrices with positive diagonal entries (A is an H-matrix if 〈A〉 is an M-matrix,
where 〈A〉i i = |aii | and 〈A〉i j = −|ai j |, i �= j).

The related problem how to generate P-matrices was considered in [18, 24].
The following characterization of P-matrices is due to Fiedler and Pták [4].

Theorem 2 (Fiedler and Pták [4]) A matrix A ∈ R
n×n is a P-matrix if and only if

for each vector x �= 0 there is i such that xi (Ax)i > 0.

The following relations between regularity of interval matrices and P-matrices
are by Rohn [15].

Theorem 3 (Rohn [15]) An interval matrix A ∈ IR
n×n is regular if and only if for

each y ∈ {±1}n the matrix Ac − Dy AΔ is nonsingular and (Ac − Dy AΔ)−1(Ac +
Dy AΔ) is a P-matrix.

Theorem 4 (Rohn [15]) Let A ∈ IR
n×n be regular. Then A−1

1 A2 is a P-matrix for
each A1, A2 ∈ A.

The following reduction of P-matrix property to interval matrix regularity comes
from [19, 21].
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Theorem 5 (Rump [21]) Let A ∈ IR
n×n with A − I and A + I nonsingular. Then

A is a P-matrix if and only if [(A − I )−1(A + I ) − I, (A − I )−1(A + I ) + I ] is
regular.

Similar problem with convex combinations of rows or columns instead of full
interval matrices was discussed in [6].

2 Results

Lemma 1 Let A ∈ IR
n×n with Ac nonsingular. Then A is regular if and only if

I − A−1
c R is a P-matrix for each R ∈ [−AΔ, AΔ].

Proof “Only if.” Follows from Theorem 4 by choosing A1 := Ac.
“If.” Let A ∈ A be singular and denote R := Ac − A ∈ [−AΔ, AΔ]. Then there

is x �= 0 such that Ax = (Ac − R)x = 0, from which (I − A−1
c R)x = 0. Therefore

I − A−1
c R is singular and cannot be a P-matrix. �

Theorem 6 Let A ∈ IR
n×n with Ac nonsingular. Then A is regular if and only if

I − A−1
c Dy AΔDz is a P-matrix for each y, z ∈ {±1}n.

Proof “Only if.” Follows from Lemma 1.
“If.” Suppose to the contrary that A is not regular. By Lemma 1, there is R ∈

[−AΔ, AΔ] such that I − A−1
c R is not a P-matrix. Hence I − RT A−T

c is not a P-
matrix as well. By Theorem 2, there is x �= 0 such that xi ((I − RT A−T

c )x)i ≤ 0
for each i . Equivalently, x2i ≤ xi (RT A−T

c x)i for each i . Define y := sgn(A−T
c x) and

z := sgn(x). Then

x2i ≤ xi (R
T A−T

c x)i ≤ xi (zi |R|T |A−T
c x |)i ≤ xi (Dz A

T
Δ|A−T

c x |)i = xi (Dz A
T
ΔDy A

−T
c x)i

for each i . Thus, xi ((I − Dz AT
ΔDy A−T

c )x)i ≤ 0 for each i . This means that I −
Dz AT

ΔDy A−T
c is not a P-matrix, and also I − A−1

c Dy AΔDz is not a P-matrix. A
contradiction. �

Remark. Since P-property is not changed by multiplying from the left and from
the right by Dz , we can formulate the theorem also as follows: Let A ∈ IR

n×n with
Ac nonsingular. Then A is regular if and only if I − Dz A−1

c Dy AΔ is a P-matrix for
each y, z ∈ {±1}n .

Contrary to the characterization of regularity in Theorem 3, we have to use both
diagonal matrices Dy and Dz . The following example illustrates it. Let

A =
([1, 2] [−1, 1]

1 [1, 2]
)

.

This interval matrix is not regular since it contains the all-one matrix. On the
other hand, all matrices of the form I − A−1

c Dy AΔ, y ∈ {±1}n , or of the form
I − A−1

c AΔDz , z ∈ {±1}n , are P-matrices.
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Theorem 7 Let A ∈ R
n×n. If α > 0 is sufficiently small, then P := αA is a P-matrix

if and only if [(I − P)−1 − I, (I − P)−1 + I ] is regular.
Proof “If.” By Theorem 4, regularity of M := [(I − P)−1 − I, (I − P)−1 + I ]
implies that M−1

c M is a P-matrix. This matrix, however, reads M−1
c M = (I −

P)((I − P)−1 − I ) = I − (I − P) = P .
“Only if.” By Theorem 6, have to verify that I − (I − P)Dy I Dz is a P-matrix

for each y, z ∈ {±1}n . Obviously, is it sufficient to verify matrices I − (I − P)Dy ,
y ∈ {±1}n , only. Without loss of generality suppose that y = (−eT , eT )T , where the
number of minus ones is k. Then I − (I − P)Dy = PDy + (I − Dy) has the form
of ⎛

⎝
− +

− +

⎞

⎠ +
⎛

⎝
2Ik 0

0 0

⎞

⎠ .

By the column linearity of determinants (applied on the first k columns), we can
express the determinant of this matrix as

∑

J⊆{1,...,k}
2|J |(−1)k−|J |αn−|J | det(AJ ), (1)

where AJ denotes the principal submatrix of A obtained by removing the rows and
columns indexed by J . So, as α → 0, the dominant term in the summation is that
for J = {1, . . . , k} and it draws

2kαn−k det(AJ ).

Since A is a P-matrix, this term is positive, as well as the whole summation. Thus,
I − (I − P)Dy has the positive determinant. Its principal minors are positive for the
same reasons. Therefore, I − (I − P)Dy is a P-matrix. �

Remark 1 (Estimation of α) Here we estimate from below the sufficient value of α.
This value should be small enough to ensure that (1) is positive, where k > 0 (case
k = 0 holds trivially). That is,

∑

J⊆{1,...,k}
2|J |(−1)k−|J |αk−|J | det(AJ ) > 0.

This will be satisfied if

2k det(A{1,...,k}) >
∑

J�{1,...,k}
2|J |αk−|J | det(AJ ).
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Denote

m1 = min
J�{1,...,k}

det(AJ ),

m2 = max
J�{1,...,k}

det(AJ ).

Now, we can write a stronger inequality

2km1 > m2

∑

J�{1,...,k}
2|J |αk−|J |

= m2(α + 2)k − m22
k .

From this, we have

(α + 2)k < 2k(1 + m1/m2),

or,

α < −2 + 2 k
√
1 + m1/m2.

Due to overestimations, it suffices to take

α := −2 + 2 n
√
1 + m1/m2.

This value can be further simplified. By using concavity of log function and ex ≥
x + 1, we have

−2 + 2 n
√
1 + m1/m2 = −2 + 2 exp

(
1

n
log(1 + m1/m2)

)

≥ −2 + 2 exp

(
1

n

(
(1 − m1/m2) log 1 + (m1/m2) log 2

)
)

= −2 + 2 exp

(
1

n
(m1/m2) log 2

)

≥ −2 + 2 + 2

n
(m1/m2) log 2 = 2

n
(m1/m2) log 2.

The minimal and maximal determinants m1 and m2 can be estimated as follows. By
Hadamard’s inequality, we have

m2 ≤
n∏

i=1

‖Ai∗‖2.
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To estimate m1 is a more involved task. For any nonsingular matrix M ∈ R
n×n , its

determinant (and also sub-determinant) is bounded by

det(M) = det(M−1)−1 ≥ ρ(M−1)−n ≥ σmax(M
−1)−n = σmin(M)n.

This bound, however, can be very conservative. Anyway, we arrive at the possible
value of

α := 2 log 2

n
· σmin(M)n
∏n

i=1 ‖Ai∗‖2 .

2.1 Sufficient Conditions for P-Matrices

Characterizations of P-matrix property from the previous section enables us to derive
new sufficient conditions.

Theorem 8 The matrix A ∈ R
n×n is a P-matrix provided A − I and A + I are

nonsingular and

ρ(|(A + I )−1(A − I )|) < 1. (2)

Proof Let A − I and A + I be nonsingular. By Theorem 5, A is a P-matrix if and
only if [(A − I )−1(A + I ) − I, (A − I )−1(A + I ) + I ] is regular. By employing
the Beeck sufficient condition for regularity (Theorem 1), we arrive at the final
form. �

Obviously, this condition is incomparable with positive definiteness. Moreover,
it is also incomparable with M-matrix and H-matrix conditions. For example, the
matrix (

46 −19
−33 14

)

is an M-matrix (and thus also H-matrix), but the condition (2) is not satisfied since
the spectral radius is greater than 1.084 (verified by versoft [17]). On the other
hand, the matrix ⎛

⎝
1 1 1
1 2 3
1 4 10

⎞

⎠

is neither an M-matrix nor an H-matrix, but (2) is satisfied with the spectral radius
less than 0.955.

Theorem 9 The matrix A ∈ R
n×n is a P-matrix provided for I − αA is nonsingular

and ρ(|I − αA|) < 1 for some α > 0.
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Proof It follows again from the Beeck condition applied to [(I − αA)−1 − I, (I −
αA)−1 + I ] and using Theorem 7. �

The latter condition is not new in the essence. If ρ(|I − αA|) < 1, then I −
|I − αA| is an M-matrix, so also I − |I − αA| − diag(I − αA) + diag(|I − αA|)
is an M-matrix. The matrix I − |I − αA| − diag(I − αA) + diag(|I − αA|) is the
comparison matrix of I − (I − αA) = αA, so αA is an H-matrix. Moreover, αA has
positive diagonal since otherwise if (αA)i i ≤ 0 for some i , then |I − αA|i i ≥ 1 and
so ρ(|I − αA|) ≥ 1. Therefore, the sufficient condition is weaker than checking if
A is an H-matrix.

2.2 Interval P-Matrices

An interval matrix A ∈ IR
n×n is called an interval P-matrix if each A ∈ A is a

P-matrix [2, 7, 20]. A more general concept of P-matrix sets was investigated by
Song and Gowda [23]. The following characterization of interval P-matrices is due
to Białas and Garloff [2], see also [7].

Theorem 10 (Białas and Garloff [2]) A ∈ IR
n×n is an interval P-matrix if and only

if Ac − Dz AΔDz is a P-matrix for each z ∈ {±1}n.
As a direct consequence we have:

Corollary 1 Let A ∈ IR
n×n such that Ac = D is diagonal. Then A is an interval

P-matrix if and only if A is a P-matrix.

Proof We have that A ∈ IR
n×n is an interval P-matrix if and only if for each z ∈

{±1}n the matrix Ac − Dz AΔDz = D − Dz AΔDz is a P-matrix. This matrix is a
P-matrix if and only if DzDDz − AΔ = D − AΔ = A is. �

Even though the assumption Ac = D is strong, it might possibly help for che-
cking interval P-matrix property. In a similar way, interval linear equation are often
preconditioned such that the midpoint matrix becomes an identity matrix since this
case is much easier to solve.

Another special case, reducing the interval P-matrix property to P-property of A
only, is the following.

Corollary 2 Let A ∈ IR
n×n such that AΔ = D is diagonal. Then A is an interval

P-matrix if and only if A is a P-matrix.

Proof We have that A ∈ IR
n×n is an interval P-matrix if and only if for each z ∈

{±1}n thematrix Ac − Dz AΔDz = Ac − DzDDz = Ac − D = A is a P-matrix. �

While Theorem 10 presents a reduction of interval to real P-matrix property, in
the theorem below, we show a direct reduction to an elementary formula.
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Theorem 11 A ∈ IR
n×n is an interval P-matrix if and only if

det(De−|y| + D|y|AcD|z| − Dy AΔDz) > 0 (3)

for each y, z ∈ {0,±1}n such that |y| = |z|.
Proof “Only if”. This is obvious since De−|y| + D|y|AcD|z| − Dz AΔDz is a block
diagonal matrix with entries either ones, or a principal submatrix of some A ∈ A.
Due to P-matrix property, this principal minor is positive.

“If”. We use the result from Rohn [16] that an interval matrix M ∈ IR
k×k has

all determinants positive, that is, det(M) > 0 ∀M ∈ M, if and only if det(Mc −
Dy AΔDz) > 0 for all y, z ∈ {±1}k . Now, A is an interval P-matrix if and only if
for each A ∈ A, each minor of A is positive. A minor of A can be expressed as
det(De−s + Ds ADs) for some s ∈ {0, 1}n . Thus, we have to show that for each s ∈
{0, 1}n , all determinants of De−s + DsADs are positive. By the above reasoning, this
is equivalent to det(De−s + Ds AcDs − DyDs AΔDsDz) > 0 for all y, z ∈ {±1}n .
When si = 0, the values of yi and zi play no role, so we can set s = |y| and arrive at
the resulting form of (3). �

Theorem 12 The number of determinants in (3) is 5n.

Proof By the binomial formula, the number of determinants in (3) is

n∑

k=0

(
n

k

)

2k2k =
n∑

k=0

(
n

k

)

4k1n−k = (4 + 1)n = 5n,

where k denotes the number of nonzero entries of y (or z),
(n
k

)
gives the number of

vectors in {0,±1}n with k nonzero entries, and 2k counts the number of possibilities
for y (and z) when the number of nonzero entries is k. �

3 Conclusion

We reviewed relations between P-matrix property and regularity of interval matri-
ces. We also proposed some new observations and links. In particular, a reduction
of interval matrix regularity to P-property and vice versa. As a consequence, new
sufficient conditions for P-matrices were stated.

Some new open problems arised as well, e.g., determining a sharper estimation of
α from Remark 1. Efficient utilization of Corollary 1 for interval P-matrix property
checking is a challenging problem, too.
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